Quantitative structureâ€reactivity relationships of hyd linear and cyclic volatile methylsiloxanes

Environmental Toxicology and Chemistry 36, 3240-3245 DOI: 10.1002/etc.3914

Citation Report

#	Article	IF	CITATIONS
1	Predicted persistence and response times of linear and cyclic volatile methylsiloxanes in global and local environments. Chemosphere, 2018, 195, 325-335.	4.2	27
2	Atmospheric Fate of Volatile Methyl Siloxanes. Handbook of Environmental Chemistry, 2018, , 227-245.	0.2	0
3	Levels of Volatile Methyl Siloxanes in Outdoor Air. Handbook of Environmental Chemistry, 2018, , 201-225.	0.2	2
4	Georeferenced multimedia environmental fate of volatile methylsiloxanes modeled in the populous Tokyo Bay catchment basin. Science of the Total Environment, 2019, 689, 843-853.	3.9	8
5	A review of contamination status, emission sources, and human exposure to volatile methyl siloxanes (VMSs) in indoor environments. Science of the Total Environment, 2019, 691, 584-594.	3.9	40
6	Decomposition of environmentally persistent cyclic methylsiloxanes in subcritical water. Sustainable Chemistry and Pharmacy, 2019, 13, 100160.	1.6	3
7	Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements. Chemosphere, 2019, 228, 460-468.	4.2	22
8	Reducing sampling artifacts in active air sampling methodology for remote monitoring and atmospheric fate assessment of cyclic volatile methylsiloxanes. Chemosphere, 2020, 255, 126967.	4.2	12
9	Ex Vivo Human Skin is not a Barrier for Cyclic Siloxanes (Cyclic Silicones): Evidence of Diffusion, Bioaccumulation, and Risk of Dermal Absorption Using a New Validated GC-FID Procedure. Pharmaceutics, 2020, 12, 586.	2.0	7
10	Atmospheric Chemistry of Volatile Methyl Siloxanes: Kinetics and Products of Oxidation by OH Radicals and Cl Atoms. Environmental Science & Technology, 2020, 54, 5992-5999.	4.6	30
11	Distribution characteristics of methylsiloxanes in atmospheric environment of Saitama, Japan: Diurnal and seasonal variations and emission source apportionment. Science of the Total Environment, 2021, 754, 142399.	3.9	13
13	PM2.5-bound silicon-containing secondary organic aerosols (Si-SOA) in Beijing ambient air. Chemosphere, 2021, 288, 132377.	4.2	5
14	Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. Integrated Environmental Assessment and Management, 2022, 18, 599-621.	1.6	5
15	Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations. Atmospheric Chemistry and Physics, 2022, 22, 917-928.	1.9	9
16	Atmospheric Degradation of Cyclic Volatile Methyl Siloxanes: Radical Chemistry and Oxidation Products. ACS Environmental Au, 2022, 2, 263-274.	3.3	12
17	Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere. Atmospheric Chemistry and Physics, 2022, 22, 10827-10839.	1.9	5
18	Seasonal and latitudinal variability in the atmospheric concentrations of cyclic volatile methyl siloxanes in the Northern Hemisphere. Environmental Sciences: Processes and Impacts, 2023, 25, 496-506.	1.7	1