The Origin of Animal Multicellularity and Cell Different

Developmental Cell 43, 124-140

DOI: 10.1016/j.devcel.2017.09.016

Citation Report

#	Article	IF	CITATIONS
1	Embracing Uncertainty in Reconstructing Early Animal Evolution. Current Biology, 2017, 27, R1081-R1088.	3.9	101
2	Complex multicellularity in fungi: evolutionary convergence, single origin, or both?. Biological Reviews, 2018, 93, 1778-1794.	10.4	92
3	Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biology, 2018, 15, 1-7.	3.1	14
4	Lessons from simple marine models on the bacterial regulation of eukaryotic development. Current Opinion in Microbiology, 2018, 43, 108-116.	5.1	33
5	Src signaling in a low-complexity unicellular kinome. Scientific Reports, 2018, 8, 5362.	3.3	6
6	Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	20
7	Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins. Molecular Biology of the Cell, 2018, 29, 3026-3038.	2.1	56
8	Geometry, packing, and evolutionary paths to increased multicellular size. Physical Review E, 2018, 97, 050401.	2.1	14
9	What Makes an Animal? The Molecular Quest for the Origin of the Animal Kingdom. Integrative and Comparative Biology, 2018, 58, 654-665.	2.0	15
10	Gene family innovation, conservation and loss on the animal stem lineage. ELife, 2018, 7, .	6.0	149
11	We are not so special. ELife, 2018, 7, .	6.0	2
12	Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integrative and Comparative Biology, 2018, 58, 640-653.	2.0	13
13	The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an "Explosion― Integrative and Comparative Biology, 2018, 58, 605-622.	2.0	81
14	Cell polarity: having and making sense of direction—on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biology, 2018, 8, .	3.6	23
15	Multicellular Features of Phytoplankton. Frontiers in Marine Science, 2018, 5, .	2.5	13
16	Matricellular Proteins: Functional Insights From Non-mammalian Animal Models. Current Topics in Developmental Biology, 2018, 130, 39-105.	2.2	24
17	Role of Chemical Mediators in Aquatic Interactions across the Prokaryote–Eukaryote Boundary. Journal of Chemical Ecology, 2018, 44, 1008-1021.	1.8	61
18	Dynamic cellâ \in "cell adhesion mediated by pericellular matrix interaction â \in " a hypothesis. Journal of Cell Science, 2019, 132, .	2.0	19

#	Article	IF	CITATIONS
19	A non-bilaterian perspective on the development and evolution of animal digestive systems. Cell and Tissue Research, 2019, 377, 321-339.	2.9	33
20	Early animal evolution: a morphologist's view. Royal Society Open Science, 2019, 6, 190638.	2.4	46
21	Emergence of diverse life cycles and life histories at the origin of multicellularity. Nature Ecology and Evolution, 2019, 3, 1197-1205.	7.8	49
22	Structure and Function of a Bacterial Gap Junction Analog. Cell, 2019, 178, 374-384.e15.	28.9	78
23	The Protistan Cellular and Genomic Roots of Animal Multicellularity. Fascinating Life Sciences, 2019, , 15-38.	0.9	0
24	Inherency of Form and Function in Animal Development and Evolution. Frontiers in Physiology, 2019, 10, 702.	2.8	32
25	Mineral-Chitin Composites in Molluscs. Biologically-inspired Systems, 2019, , 57-93.	0.2	3
26	Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell and Tissue Research, 2019, 377, 353-367.	2.9	20
27	Light-regulated collective contractility in a multicellular choanoflagellate. Science, 2019, 366, 326-334.	12.6	101
28	Evolutionary transitions revisited: Holobiont evoâ€devo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2019, 332, 307-314.	1.3	17
29	Spatial Cell Disparity in the Colonial Choanoflagellate Salpingoeca rosetta. Frontiers in Cell and Developmental Biology, 2019, 7, 231.	3.7	10
30	Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays in Biochemistry, 2019, 63, 389-405.	4.7	11
31	Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Communicative and Integrative Biology, 2019, 12, 119-132.	1.4	12
32	Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nature Communications, 2019, 10, 4080.	12.8	80
33	Understanding Multicellularity: The Functional Organization of the Intercellular Space. Frontiers in Physiology, 2019, 10, 1170.	2.8	49
34	Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190085.	4.0	21
35	How evolution made the matrix punch at the multicellularity party. Journal of Biological Chemistry, 2019, 294, 770-771.	3.4	4
36	The Animals. , 2019, , 311-346.		1

#	Article	IF	Citations
38	Pluripotency and the origin of animal multicellularity. Nature, 2019, 570, 519-522.	27.8	106
39	The Vav GEF Family: An Evolutionary and Functional Perspective. Cells, 2019, 8, 465.	4.1	48
40	Emergence of a Thrombospondin Superfamily at the Origin of Metazoans. Molecular Biology and Evolution, 2019, 36, 1220-1238.	8.9	5
41	Origin and evolution of plexins, semaphorins, and Met receptor tyrosine kinases. Scientific Reports, 2019, 9, 1970.	3.3	48
42	Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology, 2019, 34, 169-177.	3.1	250
43	The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biology, 2019, 17, e3000226.	5.6	74
44	Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genetics, 2019, 15, e1007720.	3.5	30
45	The ventral epithelium of <i>Trichoplax adhaerens</i> deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biology Open, 2019, 8, .	1.2	29
46	Adhesions Assemble!—Autoinhibition as a Major Regulatory Mechanism of Integrin-Mediated Adhesion. Frontiers in Molecular Biosciences, 2019, 6, 144.	3.5	31
47	Evolution of Hormonal Mechanisms. , 2019, , 16-22.		0
48	Pre-ediacaran evolution. , 2020, , 1-26.		1
49	The significance of sponges for comparative studies of developmental evolution. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e359.	5.9	8
50	<i>Mesostigma viride</i> Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. Advanced Science, 2020, 7, 1901850.	11.2	40
51	Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology, 2020, 35, 16-30.	3.1	58
52	Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo, 2020, 11, 21.	3.2	19
53	The evolution of cell differentiation in animals: biomolecular condensates as amplification hubs of inherent cell functions., 2020,, 253-279.		O
54	Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biology Reviews, 2020, 34, 151-169.	4.7	25
55	Temperature sensitivities of metazoan and pre-metazoan Src kinases. Biochemistry and Biophysics Reports, 2020, 23, 100775.	1.3	1

#	ARTICLE	IF	Citations
56	Regeneration in sponge <i>Sycon ciliatum</i> partly mimics postlarval development. Development (Cambridge), 2020, 147, .	2.5	22
57	Ecological Advantages and Evolutionary Limitations of Aggregative Multicellular Development. Current Biology, 2020, 30, 4155-4164.e6.	3.9	31
58	Structural characterization and computational analysis of <scp>PDZ</scp> domains in <i>Monosiga brevicollis</i> . Protein Science, 2020, 29, 2226-2244.	7.6	4
59	Does Formation of Multicellular Colonies by Choanoflagellates Affect Their Susceptibility to Capture by Passive Protozoan Predators?. Journal of Eukaryotic Microbiology, 2020, 67, 555-565.	1.7	10
60	The Evolutionary Assembly of Neuronal Machinery. Current Biology, 2020, 30, R603-R616.	3.9	46
61	Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. ACS Nano, 2020, 14, 11215-11224.	14.6	20
62	Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Frontiers in Neuroscience, 2020, 14, 366.	2.8	15
63	Integrins meet complement: The evolutionary tip of an iceberg orchestrating metabolism and immunity. British Journal of Pharmacology, 2021, 178, 2754-2770.	5.4	15
64	On the coâ€evolution of surface oxygen levels and animals. Geobiology, 2020, 18, 260-281.	2.4	82
65	The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development (Cambridge), 2020, 147, .	2.5	69
66	Slow lane to collectivity. Nature Ecology and Evolution, 2020, 4, 292-293.	7.8	0
67	Biophysical principles of choanoflagellate self-organization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1303-1311.	7.1	31
68	Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals. BMC Biology, 2020, 18, 39.	3.8	36
69	Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. Science of the Total Environment, 2020, 723, 138180.	8.0	113
70	Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Molecular Phylogenetics and Evolution, 2020, 148, 106814.	2.7	17
71	Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends in Microbiology, 2020, 28, 732-743.	7.7	65
72	Temperature-sensitive pathways may be involved in duck embryonic developmental recovery from blastoderm dormancy during hatching. British Poultry Science, 2020, 61, 366-374.	1.7	0
73	Selective factors in the evolution of multicellularity in choanoflagellates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 315-326.	1.3	14

#	ARTICLE	IF	CITATIONS
74	Evolution of Cellular Differentiation: From Hypotheses to Models. Trends in Ecology and Evolution, 2021, 36, 49-60.	8.7	26
75	Do microenvironmental changes disrupt multicellular organisation with ageing, enacting and favouring the cancer cell phenotype?. BioEssays, 2021, 43, e2000126.	2.5	8
76	Evolution of the centrosome, from the periphery to the center. Current Opinion in Structural Biology, 2021, 66, 96-103.	5.7	13
77	Cancer and the breakdown of multicellularity: What <i>Dictyostelium discoideum</i> , a social amoeba, can teach us. BioEssays, 2021, 43, e2000156.	2.5	9
78	Decoding and recoding plant development. Plant Physiology, 2021, 187, 515-526.	4.8	5
80	Concepts Evolutionary Cell Biology: A Modern Synthesis of Cell and Evolutionary Biology. , 2021, , 89-96.		0
81	The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biology, 2021, 11, 200359.	3.6	67
82	The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Frontiers in Immunology, 2020, 11, 624597.	4.8	40
83	Evolution and Diversity of Semaphorins and Plexins in Choanoflagellates. Genome Biology and Evolution, 2021, 13, .	2.5	5
84	Mapping parameter spaces of biological switches. PLoS Computational Biology, 2021, 17, e1008711.	3.2	10
85	Developmental processes in Ediacara macrofossils. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203055.	2.6	7
87	Evolution of Reproductive Division of Labor – Lessons Learned From the Social Amoeba Dictyostelium discoideum During Its Multicellular Development. Frontiers in Cell and Developmental Biology, 2021, 9, 599525.	3.7	1
88	Do Somatic Cells Really Sacrifice Themselves? Why an Appeal to Coercion May be a Helpful Strategy in Explaining the Evolution of Multicellularity. Biological Theory, 2021, 16, 102-113.	1.5	4
91	Developmental capacity and the early evolution of animals. Journal of the Geological Society, 2021, 178, .	2.1	4
92	Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes, 2021, 12, 382.	2.4	6
93	The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity. Genes, 2021, 12, 661.	2.4	7
95	The cell cycle and differentiation as integrated processes: Cyclins and CDKs reciprocally regulate Sox and Notch to balance stem cell maintenance. BioEssays, 2021, 43, e2000285.	2.5	8
96	Oxygen suppression of macroscopic multicellularity. Nature Communications, 2021, 12, 2838.	12.8	30

#	ARTICLE	IF	CITATIONS
97	Role of epigenetics in unicellular to multicellular transition in Dictyostelium. Genome Biology, 2021, 22, 134.	8.8	12
99	Cancer progression as a sequence of atavistic reversions. BioEssays, 2021, 43, e2000305.	2.5	37
100	Why have aggregative multicellular organisms stayed simple?. Current Genetics, 2021, 67, 871-876.	1.7	23
103	Following the logic behind biological interpretations of the Ediacaran biotas. Geological Magazine, 2022, 159, 1093-1117.	1.5	12
104	The integrin-mediated adhesive complex in the ancestor of animals, fungi, and amoebae. Current Biology, 2021, 31, 3073-3085.e3.	3.9	6
105	Phylotranscriptomics points to multiple independent origins of multicellularity and cellular differentiation in the volvocine algae. BMC Biology, 2021, 19, 182.	3.8	15
106	The Shared Origins of Embodiment and Development. Frontiers in Systems Neuroscience, 2021, 15, 726403.	2.5	4
107	Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function. Current Biology, 2021, 31, 3275-3291.e5.	3.9	22
108	Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. Bmc Ecology and Evolution, 2021, 21, 160.	1.6	6
109	Intercellular communication and the organization of simple multicellular animals. Cells and Development, 2022, 169, 203726.	1.5	7
110	Green Algal Models for Multicellularity. Annual Review of Genetics, 2021, 55, 603-632.	7.6	23
112	Stable transfection in protist Corallochytrium limacisporum identifies novel cellular features among unicellular animals relatives. Current Biology, 2021, 31, 4104-4110.e5.	3.9	13
114	CRISPR-Cas Toxin–Antitoxin Systems: Selfishness as a Constructive Evolutionary Force. Trends in Microbiology, 2021, 29, 869-870.	7.7	2
115	Evolution of glutamatergic signaling and synapses. Neuropharmacology, 2021, 199, 108740.	4.1	36
116	Comments on the evolution of TRPV6. Annals of Anatomy, 2021, 238, 151753.	1.9	3
118	A flagellate-to-amoeboid switch in the closest living relatives of animals. ELife, 2021, 10, .	6.0	32
119	A Look Back Over 20ÂYears of Evo-Devo Studies on Sponges: A Challenged View of Urmetazoa. , 2019, , 135-160.		4
120	Differentiation and Transdifferentiation of Sponge Cells. Results and Problems in Cell Differentiation, 2018, 65, 229-253.	0.7	15

#	Article	IF	Citations
121	Evolutionary dynamics of gene regulation. Current Topics in Developmental Biology, 2020, 139, 407-431.	2.2	12
122	The evolution of multicellularity and cancer: views and paradigms. Biochemical Society Transactions, 2020, 48, 1505-1518.	3.4	22
123	The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity. Genome Biology and Evolution, $2021,13,.$	2.5	26
131	A Unicellular Relative of Animals Generates an Epithelium-Like Cell Layer by Actomyosin-dependent Cellularization. SSRN Electronic Journal, 0, , .	0.4	3
132	Predicted glycosyltransferases promote development and prevent spurious cell clumping in the choanoflagellate S. rosetta. ELife, 2018, 7, .	6.0	36
133	Cis-regulatory basis of sister cell type divergence in the vertebrate retina. ELife, 2019, 8, .	6.0	30
134	A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. ELife, 2019, 8, .	6.0	41
135	Topological constraints in early multicellularity favor reproductive division of labor. ELife, 2020, 9, .	6.0	34
136	Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations. ELife, 2020, 9, .	6.0	44
137	Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. ELife, 2020, 9, .	6.0	29
139	Identification of Components of the Hippo Pathway in Hydra and Potential Role of YAP in Cell Division and Differentiation. Frontiers in Genetics, 2021, 12, 676182.	2.3	5
143	An Evolutionary Perspective of Neoplastic Diseases in the Universe. Cureus, 2019, 11, e4030.	0.5	2
148	How contraction has shaped evolution. ELife, 2019, 8, .	6.0	2
150	Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. ELife, 2020, 9, .	6.0	4
152	Paligenosis: Cellular Remodeling During Tissue Repair. Annual Review of Physiology, 2022, 84, 461-483.	13.1	20
153	Blastocoel morphogenesis: A biophysics perspective. Seminars in Cell and Developmental Biology, 2022, 130, 12-23.	5.0	4
154	Towards the Idea of Molecular Brains. International Journal of Molecular Sciences, 2021, 22, 11868.	4.1	19
162	STING mediates immune responses in the closest living relatives of animals. ELife, 2021, 10, .	6.0	26

#	ARTICLE	IF	CITATIONS
163	Bacterial marginolactones trigger formation of algal gloeocapsoids, protective aggregates on the verge of multicellularity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	12
164	How geometry shapes division of labor. ELife, 2020, 9, .	6.0	1
166	What Do We Mean by Multicellularity? The Evolutionary Transitions Framework Provides Answers. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	18
167	The darkest microbiomeâ€"a postâ€human biosphere. Microbial Biotechnology, 2022, 15, 176-185.	4.2	14
168	Resolving the Microalgal Gene Landscape at the Strain Level: a Novel Hybrid Transcriptome of <i>Emiliania huxleyi</i> CCMP3266. Applied and Environmental Microbiology, 2022, 88, AEM0141821.	3.1	6
169	Social selection within aggregative multicellular development drives morphological evolution. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211522.	2.6	3
170	Aspirin impacts on stem cells: Implications for therapeutic targets. Tissue and Cell, 2022, 74, 101707.	2.2	1
171	Placozoan fiber cells: mediators of innate immunity and participants in wound healing. Scientific Reports, 2021, 11, 23343.	3.3	9
172	Fine details of the choanocyte filter apparatus in asconoid calcareous sponges (Porifera: Calcarea) revealed by ruthenium red fixation. Zoology, 2022, 150, 125984.	1.2	7
173	Evolution of a novel cell type in Dictyostelia required gene duplication of a cudA-like transcription factor. Current Biology, 2022, 32, 428-437.e4.	3.9	5
174	Genetic and correlative light and electron microscopy evidence for the unique differentiation pathway of erythrophores in brown trout skin. Scientific Reports, 2022, 12, 1015.	3.3	4
175	An RNA-based theory of natural universal computation. Journal of Theoretical Biology, 2022, 537, 110984.	1.7	15
176	Marine Protists: A Hitchhiker $\hat{a} \in \mathbb{T}^M$ s Guide to their Role in the Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 159-241.	0.6	3
178	The cellular slime mold Fonticula alba forms a dynamic, multicellular collective while feeding on bacteria. Current Biology, 2022, 32, 1961-1973.e4.	3.9	11
179	Origin and Evolution of the Multifaceted Adherens Junction Component Plekha7. Frontiers in Cell and Developmental Biology, 2022, 10, 856975.	3.7	5
180	Evolution of reproductive strategies in incipient multicellularity. Journal of the Royal Society Interface, 2022, 19, 20210716.	3.4	3
181	Conserved exchange of paralog proteins during neuronal differentiation. Life Science Alliance, 2022, 5, e202201397.	2.8	0
182	Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biology, 2022, 20, e3001551.	5.6	14

#	Article	IF	CITATIONS
183	Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes and Diseases, 2022, 9, 1234-1247.	3.4	14
185	The Lysosome Origin of Biosilica Machinery in the Demospongiae Model Petrosia ficiformis (Poiret,) Tj ETQq1 1 C).784314 r	gBT /Overloo
207	Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. Current Biology, 2022, 32, R385-R397.	3.9	30
209	The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Developmental Cell, 2022, 57, 1083-1101.	7.0	19
210	The Biological Effects of Polystyrene Nanoplastics on Human Peripheral Blood Lymphocytes. Nanomaterials, 2022, 12, 1632.	4.1	18
212	Spatially and Temporally Distributed Complexityâ€"A Refreshed Framework for the Study of GRN Evolution. Cells, 2022, 11, 1790.	4.1	2
213	Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. Biophysics Reviews, 2022, 3, .	2.7	11
214	Interspecies complementation identifies a pathway to assemble SNAREs. IScience, 2022, 25, 104506.	4.1	2
215	Quantitative models for building and growing fated small cell networks. Interface Focus, 2022, 12, .	3.0	6
216	Structure and evolution of neuronal wiring receptors and ligands. Developmental Dynamics, 2023, 252, 27-60.	1.8	13
217	The cellular function of ROP GTPase prenylation is important for multicellularity in the moss <i>Physcomitrium patens</i> . Development (Cambridge), 2022, 149, .	2.5	5
219	Signalling molecules inducing metamorphosis in marine organisms. Natural Product Reports, 2022, 39, 1833-1855.	10.3	7
220	When the end modifies its means: the origins of novelty and the evolution of innovation. Biological Journal of the Linnean Society, 2023, 139, 433-440.	1.6	6
221	Multicellularity in animals: The potential for within-organism conflict. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
222	Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. Contributions To Zoology, 2022, 91, 1-68.	0.5	0
223	Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics. , 2022, 39, .		1
224	How food fueled language, Part II: language genres, songs in the head, and the coevolution of cooking and language. Time and Mind, 0, , 1-24.	0.5	0
225	The origin and early evolution of complex organisms. Chinese Science Bulletin, 2023, 68, 169-187.	0.7	1

#	ARTICLE	IF	CITATIONS
226	Gradual specialization of phagocytic ameboid cells may have impaired regenerative capacities in metazoan lineages. Developmental Dynamics, 2023, 252, 343-362.	1.8	3
227	The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays in Biochemistry, 2022, 66, 781-795.	4.7	8
228	Systematic bias and the phylogeny of Coleopteraâ€"A response to Cai et al. (2022) following the responses to Cai et al. (2020). Systematic Entomology, 2023, 48, 223-232.	3.9	5
230	Hydrodynamics in early animal evolution. Biological Reviews, 2023, 98, 376-385.	10.4	5
231	Novel multicellular prokaryote discovered next to an underground stream. ELife, 0, 11 , .	6.0	7
232	Three-dimensional flagella structures from animals $\widehat{a}\in \mathbb{M}$ closest unicellular relatives, the Choanoflagellates. ELife, 0, 11, .	6.0	10
233	They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Seminars in Immunology, 2023, 65, 101673.	5.6	0
234	Evidence of a possible multicellular life cycle in Escherichia coli. IScience, 2023, 26, 105795.	4.1	8
235	Functional Interplay Between Fibronectin and Matricellular Proteins in the Control of Endothelial Tubulogenesis. Biology of Extracellular Matrix, 2023, , 29-62.	0.3	1
237	Mechano-biochemical marine stimulation of inversion, gastrulation, and endomesoderm specification in multicellular Eukaryota. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
238	Formation of multicellular colonies by choanoflagellates increases susceptibility to capture by amoeboid predators. Journal of Eukaryotic Microbiology, 0, , .	1.7	0
239	First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa. Scientific Reports, 2023, 13, .	3.3	0
240	Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics. EvoDevo, 2023, 14 , .	3.2	1
241	Cell polarity in the protist-to-animal transition. Current Topics in Developmental Biology, 2023, , 1-36.	2.2	4
242	Alternating selection for dispersal and multicellularity favors regulated life cycles. Current Biology, 2023, 33, 1809-1817.e3.	3.9	2
243	Evolution of homology: From archetype towards a holistic concept of cell type. Journal of Morphology, 2023, 284, .	1.2	2
244	On the origin of the functional versatility of macrophages. Frontiers in Physiology, 0, 14 , .	2.8	4
245	Fusome topology and inheritance during insect gametogenesis. PLoS Computational Biology, 2023, 19, e1010875.	3.2	3

#	Article	IF	CITATIONS
246	An environmentally induced multicellular life cycle of a unicellular cyanobacterium. Current Biology, 2023, 33, 764-769.e5.	3.9	4
247	<scp>mRNA</scp> anti ancer vaccine research gains momentum. The Prescriber, 2023, 34, 5-8.	0.3	0
248	Stemming Tumoral Growth: A Matter of Grotesque Organogenesis. Cells, 2023, 12, 872.	4.1	0
249	The role of SPIRE actin nucleators in cellular transport processes. Journal of Cell Science, 2023, 136, .	2.0	1
250	Promises and limits of an agency perspective in evolutionary developmental biology. Evolution & Development, 2023, 25, 371-392.	2.0	4
251	What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Animal Cognition, 2023, 26, 1767-1782.	1.8	3
252	The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes, 2023, 14, 941.	2.4	0
253	Single-cell adaptations shape evolutionary transitions to multicellularity in green algae. Nature Ecology and Evolution, 2023, 7, 889-902.	7.8	4
254	Chemical factors induce aggregative multicellularity in a close unicellular relative of animals. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	4
255	Assembling animals: trees, genomes, cells, and contrast to plants. Frontiers in Ecology and Evolution, 0, 11, .	2.2	1
257	Intrinsically disordered proteins and conformational noise: The hypothesis a decade later. IScience, 2023, 26, 107109.	4.1	4
258	The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biology, 2023, 21, .	3.8	6
259	The early animal radiation: insights from interpreting the Cambrian problematic fossils. Frontiers in Earth Science, $0,11,.$	1.8	1
260	The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annual Review of Microbiology, 2023, 77, 499-516.	7.3	2
261	Metabolic division of labor in social insects. Current Opinion in Insect Science, 2023, 59, 101085.	4.4	3
262	The Na+,K+-ATPase and its stoichiometric ratio: some thermodynamic speculations. Biophysical Reviews, 0 , , .	3.2	1
263	Effects of prey capture on the swimming and feeding performance of choanoflagellates. Flow, 2023, 3,	2.6	0
264	Perspectives on Principles of Cellular Behavior from The Biophysics of Protists. Integrative and Comparative Biology, 0, , .	2.0	0

#	ARTICLE	IF	CITATIONS
265	An RFX transcription factor regulates ciliogenesis in the closest living relatives of animals. Current Biology, 2023, , .	3.9	1
266	The Whole Is Greater Than The Sum of Its Parts: Large-scale Phenomena Arising from Small-Scale Biophysical Processes. Integrative and Comparative Biology, 0, , .	2.0	0
267	Protective Biology and Engineering., 2023, 2, .		0
268	Evolution of selfish multicellularity: collective organisation of individual spatio-temporal regulatory strategies. Bmc Ecology and Evolution, 2023, 23, .	1.6	О
269	Editorial: Unicellular organisms as an evolutionary snapshot toward multicellularity. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	0
270	Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell, 2023, 186, 4676-4693.e29.	28.9	4
271	Evolutionary changes in the capacity for organismic autonomy. Journal of Physiology, 0, , .	2.9	0
272	Cell contractility in early animal evolution. Current Biology, 2023, 33, R966-R985.	3.9	0
273	The Protistan Origins of Animals and Fungi. , 2023, , 3-38.		0
274	Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harbor Perspectives in Biology, 0, , a041418.	5. 5	0
275	Tissue Biology: In Search of a New Paradigm. Annual Review of Cell and Developmental Biology, 2023, 39, 67-89.	9.4	4
276	Giant cells: multiple cells unite to survive. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
277	Evolution: The ancient history of cilia assembly regulation. Current Biology, 2023, 33, R898-R900.	3.9	0
278	Swimming, Feeding, and Inversion of Multicellular Choanoflagellate Sheets. Physical Review Letters, 2023, 131, .	7.8	0
279	Ancient reproductive modes and criteria of multicellularity. Comparative Cytogenetics, 0, 17, 195-238.	0.8	0
280	Evolutionary consequences of nascent multicellular life cycles. ELife, 0, 12, .	6.0	3
281	Evolution of patterning. FEBS Journal, 2024, 291, 663-671.	4.7	1
282	Origin and development of primary animal epithelia. BioEssays, 2024, 46, .	2.5	0

#	Article	IF	CITATIONS
283	The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Developmental Cell, 2023, 58, 2850-2866.	7.0	2
284	Phenoptosis and the Various Types of Natural Selection. Biochemistry (Moscow), 2023, 88, 2007-2022.	1.5	0
285	Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. Science Advances, 2024, 10, .	10.3	3
286	Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Current Biology, 2024, 34, 361-375.e9.	3.9	1
287	Evolution of biological cooperation: an algorithmic approach. Scientific Reports, 2024, 14, .	3.3	0
288	How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development (Cambridge), 2024, 151, .	2.5	0
289	A synthetic differentiation circuit in Escherichia coli for suppressing mutant takeover. Cell, 2024, 187, 931-944.e12.	28.9	0
290	Evolutionary-Ecological Aspects of the Origin and Early Diversification of Multicellular Animals. Paleontological Journal, 2023, 57, 1277-1285.	0.5	0
291	Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Molecular and Cellular Endocrinology, 2024, 586, 112192.	3.2	0
292	Proteostatic tuning underpins the evolution of novel multicellular traits. Science Advances, 2024, 10,	10.3	0
293	Chapter 1: The Astrobiology Primer 3.0. Astrobiology, 2024, 24, S-4-S-39.	3.0	0
294	Chapter 5: Major Biological Innovations in the History of Life on Earth. Astrobiology, 2024, 24, S-107-S-123.	3.0	O