Safety and efficacy of eculizumab in anti-acetylcholine refractory generalised myasthenia gravis (REGAIN): a p placebo-controlled, multicentre study

Lancet Neurology, The 16, 976-986 DOI: 10.1016/s1474-4422(17)30369-1

Citation Report

#	Article	IF	CITATIONS
1	Eculizumab: a treatment option for myasthenia gravis?. Lancet Neurology, The, 2017, 16, 947-948.	10.2	19
2	Burden of illness in patients with treatment refractory myasthenia gravis. Muscle and Nerve, 2018, 58, 99-105.	2.2	38
3	Correlation between myasthenia gravisâ^'activities of daily living (MGâ€ADL) and quantitative myasthenia gravis (QMG) assessments of antiâ°'acetylcholine receptor antibodyâ^'positive refractory generalized myasthenia gravis in the phase 3 regain study. Muscle and Nerve, 2018, 58, E21-E22.	2.2	5
4	Nature and Action of Antibodies in Myasthenia Gravis. Neurologic Clinics, 2018, 36, 275-291.	1.8	23
5	Fifty Key Publications on Myasthenia Gravis and Related Disorders. Neurologic Clinics, 2018, 36, xiii-xvii.	1.8	0
6	Eculizumab: A Review in Generalized Myasthenia Gravis. Drugs, 2018, 78, 367-376.	10.9	84
7	Distinct representation of muscle weakness in QMG and MG-ADL – Authors' reply. Lancet Neurology, The, 2018, 17, 205-206.	10.2	2
8	Distinct representation of muscle weakness in QMG and MG-ADL. Lancet Neurology, The, 2018, 17, 204-205.	10.2	10
9	When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561774913.	3.5	129
10	Myasthenia gravis: the role of complement at the neuromuscular junction. Annals of the New York Academy of Sciences, 2018, 1412, 113-128.	3.8	123
11	Eculizumab Found Safe and Effective for Myasthenia Gravis. Neurology Today: an Official Publication of the American Academy of Neurology, 2018, 18, 1,27-28.	0.0	0
12	Pain, Headache, and Other Non-motor Symptoms in Myasthenia Gravis. Current Pain and Headache Reports, 2018, 22, 39.	2.9	15
13	Escalation Strategies in the Treatment of Refractory Myasthenia Gravis. Neurology International Open, 2018, 02, E56-E59.	0.4	3
14	Treatment of Myasthenia Gravis. , 2018, , 169-187.		4
15	Emerging Therapeutics for Myasthenia Gravis. , 2018, , 319-333.		0
16	What is in the Neuromuscular Junction Literature?. Journal of Clinical Neuromuscular Disease, 2018, 20, 76-84.	0.7	1
17	Thymic epithelial tumors and paraneoplastic autoimmune syndromes. Mediastinum, 0, 2, 25-25.	1.1	1
18	Recent advances in understanding and managing myasthenia gravis. F1000Research, 2018, 7, 1727.	1.6	14

TION RE

#	Article	IF	Citations
19	Ultrastructural mechanisms of macrophage-induced demyelination in CIDP. Neurology, 2018, 91, 1051-1060.	1.1	64
20	Myasthenia gravis: from autoantibodies to therapy. Current Opinion in Neurology, 2018, 31, 517-525.	3.6	58
23	Erkrankungen der neuromuskulÄ r en Endplatte. , 2018, , 159-181.		0
24	Myasthenia gravis: the unmet needs of a paradigmatic autoimmune disease. Neurodegenerative Disease Management, 2018, 8, 137-139.	2.2	1
25	Advances in autoimmune myasthenia gravis management. Expert Review of Neurotherapeutics, 2018, 18, 573-588.	2.8	40
26	New Pathways and Therapeutic Targets in Autoimmune Myasthenia Gravis. Journal of Neuromuscular Diseases, 2018, 5, 265-277.	2.6	36
27	The rational design of affinity-attenuated OmCI for the purification of complement C5. Journal of Biological Chemistry, 2018, 293, 14112-14121.	3.4	13
28	Developments in anti-complement therapy; from disease to clinical trial. Molecular Immunology, 2018, 102, 89-119.	2.2	72
29	Efficacy of Rituximab in Refractory Generalized anti-AChR Myasthenia Gravis. Journal of Neuromuscular Diseases, 2018, 5, 241-249.	2.6	31
31	Myasthenia gravis and specific immunotherapy: monoclonal antibodies. Annals of the New York Academy of Sciences, 2019, 1452, 18-33.	3.8	8
32	Long-term efficacy and safety of eculizumab in Japanese patients with generalized myasthenia gravis: A subgroup analysis of the REGAIN open-label extension study. Journal of the Neurological Sciences, 2019, 407, 116419.	0.6	18
33	General Principles of Immunotherapy in Neurological Diseases. Contemporary Clinical Neuroscience, 2019, , 387-421.	0.3	3
34	Targeting the complement system in bacterial meningitis. Brain, 2019, 142, 3325-3337.	7.6	36
36	Clinical promise of next-generation complement therapeutics. Nature Reviews Drug Discovery, 2019, 18, 707-729.	46.4	253
37	Neuromuscular Junction Disorders. , 2019, , 217-224.		0
38	Neurorheumatology. , 2019, , .		2
39	Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells, 2019, 8, 671.	4.1	98
40	Myasthenia gravis: State of the art and new therapeutic strategies. Journal of Neuroimmunology, 2019, 337, 577080.	2.3	14

#	Article	IF	CITATIONS
41	Eculizumab and Beyond: The Past, Present, and Future of Complement Therapeutics. Transfusion Medicine Reviews, 2019, 33, 256-265.	2.0	46
42	Employment in refractory myasthenia gravis: A Myasthenia Gravis Foundation of America Registry analysis. Muscle and Nerve, 2019, 60, 700-706.	2.2	17
43	Current pharmacotherapeutic options for myasthenia gravis. Expert Opinion on Pharmacotherapy, 2019, 20, 2295-2303.	1.8	20
44	Clinical outcome measures following plasma exchange for MG exacerbation. Annals of Clinical and Translational Neurology, 2019, 6, 2114-2119.	3.7	14
45	Prevalence and Associated Factors of Depressive Symptoms in Patients with Myasthenia Gravis: A Cross-Sectional Study of Two Tertiary Hospitals in Riyadh, Saudi Arabia. Behavioural Neurology, 2019, 2019, 1-6.	2.1	10
46	Myasthenia gravis: Historical achievements and the "golden age―of clinical trials. Journal of the Neurological Sciences, 2019, 406, 116428.	0.6	23
48	Repeated low-dose rituximab treatment based on the assessment of circulating B cells in patients with refractory myasthenia gravis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641987118.	3.5	17
49	Clinical burden and healthcare resource utilization associated with myasthenia gravis: Assessments from a Japanese claims database. Clinical and Experimental Neuroimmunology, 2019, 10, 61-68.	1.0	9
50	Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology, 2019, 92, e2661-e2673.	1.1	169
51	The Challenges and Promise of Complement Therapeutics for Ocular Diseases. Frontiers in Immunology, 2019, 10, 1007.	4.8	76
52	Investigational RNAi Therapeutic Targeting C5 Is Efficacious in Pre-clinical Models of Myasthenia Gravis. Molecular Therapy - Methods and Clinical Development, 2019, 13, 484-492.	4.1	37
53	Eculizumab: A Complementary addition to existing longâ€ŧerm therapies for myasthenia gravis. Muscle and Nerve, 2019, 60, 7-9.	2.2	9
54	Nocebo effect in myasthenia gravis: systematic review and meta-analysis of placebo-controlled clinical trials. Acta Neurologica Belgica, 2019, 119, 257-264.	1.1	7
55	Myasthenia gravis. Nature Reviews Disease Primers, 2019, 5, 30.	30.5	421
56	Why is development of new treatments necessary for myasthenia gravis? Recent advances in clinical	0.4	2
	trials. Neurology and Clinical Neuroscience, 2019, 7, 161-165.		
57	trials. Neurology and Clinical Neuroscience, 2019, 7, 161-165. Complement Therapeutics in Autoimmune Disease. Frontiers in Immunology, 2019, 10, 672.	4.8	46
57 58	 trials. Neurology and Clinical Neuroscience, 2019, 7, 161-165. Complement Therapeutics in Autoimmune Disease. Frontiers in Immunology, 2019, 10, 672. Utility of experimental animal models of myasthenia gravis for the elucidation of pathogenic mechanisms and development of new medications. Clinical and Experimental Neuroimmunology, 2019, 10, 85-95. 	4.8 1.0	46

#	Article	IF	CITATIONS
60	A Neurologist's Perspective on Understanding Myasthenia Gravis. Thoracic Surgery Clinics, 2019, 29, 133-141.	1.0	6
61	Understanding the burden of refractory myasthenia gravis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983224.	3.5	90
62	Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials. Neurology, 2019, 92, e1610-e1623.	1.1	105
63	An update on thymectomy in myasthenia gravis. Expert Review of Neurotherapeutics, 2019, 19, 823-833.	2.8	26
64	Rituximab as induction therapy in refractory myasthenia gravis: 18Âmonth follow-up study. Journal of Neurology, 2019, 266, 1596-1600.	3.6	14
65	Immunosuppressive and monoclonal antibody treatment for myasthenia gravis: A network metaâ€analysis. CNS Neuroscience and Therapeutics, 2019, 25, 647-658.	3.9	14
66	Italian recommendations for the diagnosis and treatment of myasthenia gravis. Neurological Sciences, 2019, 40, 1111-1124.	1.9	38
67	Pharmacology, Pharmacokinetics and Pharmacodynamics of Eculizumab, and Possibilities for an Individualized Approach to Eculizumab. Clinical Pharmacokinetics, 2019, 58, 859-874.	3.5	82
68	Longâ€ŧerm safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle and Nerve, 2019, 60, 14-24.	2.2	162
69	Therapies Directed Against B-Cells and Downstream Effectors in Generalized Autoimmune Myasthenia Gravis: Current Status. Drugs, 2019, 79, 353-364.	10.9	32
70	Quality of life in refractory generalized myasthenia gravis: A rapid review of the literature. Intractable and Rare Diseases Research, 2019, 8, 231-238.	0.9	7
71	Impact of Refractory Myasthenia Gravis on Health-Related Quality of Life. Journal of Clinical Neuromuscular Disease, 2019, 20, 173-181.	0.7	29
72	Treatment of Ocular Myasthenia Gravis. Asia-Pacific Journal of Ophthalmology, 2019, 7, 257-259.	2.5	6
73	Diagnosis and treatment of myasthenia gravis. Current Opinion in Rheumatology, 2019, 31, 623-633.	4.3	40
74	The Muscle Is Not a Passive Target in Myasthenia Gravis. Frontiers in Neurology, 2019, 10, 1343.	2.4	10
75	Immunotherapy in myasthenia gravis in the era of biologics. Nature Reviews Neurology, 2019, 15, 113-124.	10.1	123
76	Sensitivity of MGâ€ADL for generalized weakness in myasthenia gravis. European Journal of Neurology, 2019, 26, 947-950.	3.3	10
77	High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. Journal of Neurology, 2019, 266, 699-706.	3.6	56

#	Article	IF	CITATIONS
78	Eculizumab improved weakness and taste disorder in thymoma-associated generalized myasthenia gravis with anti-striational antibodies: A case report. ENeurologicalSci, 2019, 14, 72-73.	1.3	7
79	EQâ€5Dâ€5L and SFâ€6D health utility index scores in patients with myasthenia gravis. European Journal of Neurology, 2019, 26, 452-459.	3.3	12
80	Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor–experienced adult patients with PNH: the 302 study. Blood, 2019, 133, 540-549.	1.4	239
81	Sample size calculation and blinded recalculation for analysis of covariance models with multiple random covariates. Journal of Biopharmaceutical Statistics, 2020, 30, 143-159.	0.8	3
82	Robotic-Extended Rethymectomy for Refractory Myasthenia Gravis: A Case Series. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 593-602.	0.6	6
83	Immunosuppressive and immunomodulatory therapies for neuromuscular diseases. Part II: New and novel agents. Muscle and Nerve, 2020, 61, 17-25.	2.2	14
84	Maintenance immunosuppression in myasthenia gravis, an update. Journal of the Neurological Sciences, 2020, 410, 116648.	0.6	43
85	Emerging therapies for autoimmune myasthenia gravis: Towards treatment without corticosteroids. Neuromuscular Disorders, 2020, 30, 111-119.	0.6	21
86	Frequency and clinical features of treatment-refractory myasthenia gravis. Journal of Neurology, 2020, 267, 1004-1011.	3.6	22
87	Temporal correlation between serum CH50 level and symptom severity of myasthenia gravis during eculizumab therapy. Clinical Neurology and Neurosurgery, 2020, 189, 105630.	1.4	8
88	Ocular myasthenia gravis: updates on an elusive target. Current Opinion in Neurology, 2020, 33, 55-61.	3.6	12
89	Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here?. Frontiers in Immunology, 2020, 11, 2021.	4.8	35
90	Complement 5 Inhibition Ameliorates Hepatic Ischemia/reperfusion Injury in Mice, Dominantly via the C5a-mediated Cascade. Transplantation, 2020, 104, 2065-2077.	1.0	14
91	Complement in neurological disorders and emerging complement-targeted therapeutics. Nature Reviews Neurology, 2020, 16, 601-617.	10.1	163
92	Severe worsening of myasthenic symptoms after the eculizumab discontinuation. Journal of Neuroimmunology, 2020, 349, 577424.	2.3	5
93	Eculizumab as a promising treatment in thymoma-associated myasthenia gravis. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642093203.	3.5	8
94	Myasthenia Gravis Treatment Updates. Current Treatment Options in Neurology, 2020, 22, 1.	1.8	7
95	Management of Juvenile Myasthenia Gravis. Frontiers in Neurology, 2020, 11, 743.	2.4	37

#	Article	IF	Citations
96	Expanding the Role of the Pharmacist: Immunoglobulin Therapy and Disease Management in Neuromuscular Disorders. Journal of Pharmacy Practice, 2020, , 089719002093821.	1.0	1
97	DescripciÃ ³ n de una serie de pacientes con miastenia gravis refractaria. NeurologÃa, 2023, 38, 256-261.	0.7	0
98	CompLement C5 Antibodies for decreasing brain injury after aneurysmal Subarachnoid Haemorrhage (CLASH): study protocol for a randomised controlled phase II clinical trial. Trials, 2020, 21, 969.	1.6	7
99	Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: A proof-of-concept study. EClinicalMedicine, 2020, 28, 100590.	7.1	129
100	Is the treatment of myasthenia gravis improving?. Neurology, 2020, 95, 509-510.	1.1	0
101	Eculizumab in the treatment of neuromyelitis optica spectrum disorder. Immunotherapy, 2020, 12, 1053-1066.	2.0	7
102	Consistent improvement with eculizumab across muscle groups in myasthenia gravis. Annals of Clinical and Translational Neurology, 2020, 7, 1327-1339.	3.7	16
103	Intravenous immunoglobulins may prevent prednisone-exacerbation in myasthenia gravis. Scientific Reports, 2020, 10, 13497.	3.3	7
104	Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals, 2020, 13, 341.	3.8	15
105	Long-term use and remission of granulomatosis with polyangiitis with the oral C5a receptor inhibitor avacopan. BMJ Case Reports, 2020, 13, e236236.	0.5	11
106	Progress in the therapy of myasthenia gravis: getting closer to effective targeted immunotherapies. Current Opinion in Neurology, 2020, 33, 545-552.	3.6	40
107	From Traditional to Targeted Immunotherapy in Myasthenia Gravis: Prospects for Research. Frontiers in Neurology, 2020, 11, 981.	2.4	19
108	Pharmacodynamic Properties of Subcutaneous Immunoglobulin in Myasthenia Gravis: Sub-analyses From an Open-Label Trial. Frontiers in Neurology, 2020, 11, 921.	2.4	3
109	The Inhibition of Complement System in Formal and Emerging Indications: Results from Parallel One-Stage Pairwise and Network Meta-Analyses of Clinical Trials and Real-Life Data Studies. Biomedicines, 2020, 8, 355.	3.2	10
110	A crisis in <scp>US</scp> drug pricing: Consequences for patients with neuromuscular diseases, physicians, and society, part 2. Muscle and Nerve, 2020, 62, 573-578.	2.2	5
111	Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. Expert Review of Precision Medicine and Drug Development, 2020, 5, 317-329.	0.7	2
112	Healthâ€related quality of life and treatment strategies in myasthenia gravis. Clinical and Experimental Neuroimmunology, 2020, 11, 209-217.	1.0	7
113	Monoclonal Antibody-Based Therapies for Myasthenia Gravis. BioDrugs, 2020, 34, 557-566.	4.6	22

#	Article	IF	CITATIONS
114	Autologous hematopoietic stem-cell transplantation in neurological disorders: current approach and future directions. Expert Review of Neurotherapeutics, 2020, 20, 1299-1313.	2.8	7
115	C3, C5a and anti-acetylcholine receptor antibody as severity biomarkers in myasthenia gravis. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642093569.	3.5	19
116	Concomitant Immunosuppressive Therapy Use in Eculizumab-Treated Adults With Generalized Myasthenia Gravis During the REGAIN Open-Label Extension Study. Frontiers in Neurology, 2020, 11, 556104.	2.4	17
117	Immunopathology of Autoimmune Myasthenia Gravis: Implications for Improved Testing Algorithms and Treatment Strategies. Frontiers in Neurology, 2020, 11, 596621.	2.4	7
118	Outcome Measures in Clinical Trials of Patients With Myasthenia Gravis. Frontiers in Neurology, 2020, 11, 596382.	2.4	32
119	Response to eculizumab in patients with myasthenia gravis recently treated with chronic IVIg: a subgroup analysis of REGAIN and its open-label extension study. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642091178.	3.5	16
120	Comparison Between Rituximab Treatment for New-Onset Generalized Myasthenia Gravis and Refractory Generalized Myasthenia Gravis. JAMA Neurology, 2020, 77, 974.	9.0	65
121	Correlation of Quantitative Myasthenia Gravis and Myasthenia Gravis Activities of Daily Living scales in the MGTX study. Muscle and Nerve, 2020, 62, 261-266.	2.2	15
122	Development of an anti-human complement C6 monoclonal antibody that inhibits the assembly of membrane attack complexes. Blood Advances, 2020, 4, 2049-2057.	5.2	10
123	Clinical features of <scp>LRP4</scp> /agrinâ€antibody–positive myasthenia gravis: A multicenter study. Muscle and Nerve, 2020, 62, 333-343.	2.2	46
124	Update on immuneâ€mediated therapies for myasthenia gravis. Muscle and Nerve, 2020, 62, 579-592.	2.2	9
125	Efficacy and safety of rituximab in myasthenia gravis: a French multicentre realâ€life study. European Journal of Neurology, 2020, 27, 2277-2285.	3.3	24
126	Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine, 2020, 56, 102822.	6.1	17
127	Infectious Risks Associated with Biologics Targeting Janus Kinase-Signal Transducer and Activator of Transcription Signaling and Complement Pathway for Inflammatory Diseases. Infectious Disease Clinics of North America, 2020, 34, 271-310.	5.1	4
128	Multifocal motor neuropathy. , 2020, , 85-108.		3
129	Complement Inhibitor Therapy for Myasthenia Gravis. Frontiers in Immunology, 2020, 11, 917.	4.8	39
130	â€~Minimal symptom expression' in patients with acetylcholine receptor antibody-positive refractory generalized myasthenia gravis treated with eculizumab. Journal of Neurology, 2020, 267, 1991-2001.	3.6	30
131	Complement deposition at the neuromuscular junction in seronegative myasthenia gravis. Acta Neuropathologica, 2020, 139, 1119-1122.	7.7	20

#	Article	IF	CITATIONS
132	Antibodyâ€mediated complement activation in pathology and protection. Immunology and Cell Biology, 2020, 98, 305-317.	2.3	54
133	What's in the Neuromuscular Junction Literature?. Journal of Clinical Neuromuscular Disease, 2020, 21, 195-204.	0.7	2
135	Rituximab as Adjunct Maintenance Therapy for Refractory Juvenile Myasthenia Gravis. Pediatric Neurology, 2020, 111, 40-43.	2.1	7
136	Novel Treatments in Myasthenia Gravis. Frontiers in Neurology, 2020, 11, 538.	2.4	54
137	Therapeutic and Diagnostic Challenges in Myasthenia Gravis. Neurologic Clinics, 2020, 38, 577-590.	1.8	5
138	Minimal manifestation status and prednisone withdrawal in the MGTX trial. Neurology, 2020, 95, e755-e766.	1.1	17
139	Eculizumab for the treatment of myasthenia gravis. Expert Opinion on Biological Therapy, 2020, 20, 991-998.	3.1	10
140	A Practical Approach to Managing Patients With Myasthenia Gravis—Opinions and a Review of the Literature. Frontiers in Neurology, 2020, 11, 604.	2.4	52
141	Clinical Effects of the Self-administered Subcutaneous Complement Inhibitor Zilucoplan in Patients With Moderate to Severe Generalized Myasthenia Gravis. JAMA Neurology, 2020, 77, 582.	9.0	126
142	Antigen specific B cells in myasthenia gravis patients. Immunological Medicine, 2020, 43, 65-71.	2.6	5
143	Newer Immunotherapies for the Treatment of Acute Neuromuscular Disease in the Critical Care Unit. Current Treatment Options in Neurology, 2020, 22, 7.	1.8	8
144	242nd ENMC International Workshop: Diagnosis and management of juvenile myasthenia gravis Hoofddorp, the Netherlands, 1–3 March 2019. Neuromuscular Disorders, 2020, 30, 254-264.	0.6	12
145	Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Frontiers in Immunology, 2020, 11, 776.	4.8	59
146	Suitable indications of eculizumab for patients with refractory generalized myasthenia gravis. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642090420.	3.5	34
147	International Consensus Guidance for Management of Myasthenia Gravis. Neurology, 2021, 96, 114-122.	1.1	272
148	New therapies for neuromyelitis optica spectrum disorder. Lancet Neurology, The, 2021, 20, 60-67.	10.2	86
149	Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension. Neurology, 2021, 96, e610-e618.	1.1	46
150	Update in immunosuppressive therapy of myasthenia gravis. Autoimmunity Reviews, 2021, 20, 102712.	5.8	38

#	Article	IF	CITATIONS
151	Update in the Management of Myasthenia Gravis and Lambert-Eaton Myasthenic Syndrome. Neurologic Clinics, 2021, 39, 133-146.	1.8	13
152	Review of indications for immunoglobulin (IG) use: Narrowing the gap between supply and demand. Transfusion Clinique Et Biologique, 2021, 28, 96-122.	0.4	26
153	Performance of different criteria for refractory myasthenia gravis. European Journal of Neurology, 2021, 28, 1375-1384.	3.3	9
154	Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity. Blood, 2021, 137, 443-455.	1.4	55
155	Treatment of refractory myasthenia gravis by doubleâ€filtration plasmapheresis and rituximab: A case series of nine patients and literature review. Journal of Clinical Apheresis, 2021, 36, 348-363.	1.3	5
156	Clinical Experience with Eculizumab in Treatment-Refractory Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis. Journal of Neuromuscular Diseases, 2021, 8, 287-294.	2.6	16
157	Feasibility and safety of tailored dosing schedule for eculizumab based on therapeutic drug monitoring: Lessons from a prospective multicentric study. British Journal of Clinical Pharmacology, 2021, 87, 2236-2246.	2.4	10
158	Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. Journal of Neurology, 2021, 268, 1580-1591.	3.6	34
159	Changes in serum complements and their regulators in generalized myasthenia gravis. European Journal of Neurology, 2021, 28, 314-322.	3.3	8
160	Role of complement and potential of complement inhibitors in myasthenia gravis and neuromyelitis optica spectrum disorders: a brief review. Journal of Neurology, 2021, 268, 1643-1664.	3.6	18
161	Autoimmune Diseases of the Neuromuscular Junction: Myasthenia Gravis and Lambert-Eaton Myasthenic Syndrome. , 2021, , 309-320.		0
162	Eculizumab-Associated <i>Moraxella lacunata</i> Bacteremia and Systemic Inflammatory Response Syndrome in a Toddler with Atypical Hemolytic Uremic Syndrome. Clinical Medicine Insights Pediatrics, 2021, 15, 117955652199236.	1.4	3
163	Safety and effectiveness of eculizumab in Japanese patients with generalized myasthenia gravis: interim analysis of post-marketing surveillance. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110019.	3.5	20
166	Acute Respiratory Failure in Neuromuscular Disorders. , 2021, , 317-343.		0
167	The Benefits of Complement Measurements for the Clinical Practice. Methods in Molecular Biology, 2021, 2227, 1-20.	0.9	2
168	Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells, 2021, 10, 148.	4.1	18
169	Monoclonal Antibodies as Neurological Therapeutics. Pharmaceuticals, 2021, 14, 92.	3.8	35
171	Advances in treating myasthenia gravis. , 2021, , 243-264.		0

#	Article	IF	CITATIONS
172	Complement-5 Inhibition Deters Progression of Fulminant Hepatitis to Acute Liver Failure in Murine Models. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1351-1367.	4.5	6
173	Benefits of eculizumab in AQP4+ neuromyelitis optica spectrum disorder: Subgroup analyses of the randomized controlled phase 3 PREVENT trial. Multiple Sclerosis and Related Disorders, 2021, 47, 102641.	2.0	26
174	Chemical synthesis and characterisation of the complement C5 inhibitory peptide zilucoplan. Amino Acids, 2021, 53, 143-147.	2.7	12
175	Benefit and danger from immunotherapy in myasthenia gravis. Neurological Sciences, 2021, 42, 1367-1375.	1.9	7
176	Eculizumab during Pregnancy in a Patient with Treatment-Refractory Myasthenia Gravis: A Case Report. Case Reports in Neurology, 2021, 13, 65-72.	0.7	12
177	Pure red cell aplasia and reâ€aggravation of myasthenia gravis as a result of early reduction of steroid and immunosuppressant after starting eculizumab: A case report. Clinical and Experimental Neuroimmunology, 2021, 12, 175-178.	1.0	0
178	Longâ€Term Safety and Efficacy of Eculizumab in Aquaporinâ€4 <scp>IgGâ€Positive NMOSD</scp> . Annals of Neurology, 2021, 89, 1088-1098.	5.3	55
179	Congenital myasthenic syndrome in China: genetic and myopathological characterization. Annals of Clinical and Translational Neurology, 2021, 8, 898-907.	3.7	13
180	Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells, 2021, 10, 533.	4.1	19
181	Long-term outcomes and prognostic factors in generalized myasthenia gravis. Journal of Neurology, 2021, 268, 3781-3788.	3.6	9
182	Recent advances in the treatment of neuromyelitis optica spectrum disorders. Current Opinion in Rheumatology, 2021, 33, 233-239.	4.3	3
183	Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacological Reviews, 2021, 73, 792-827.	16.0	97
184	Complement C3 polymorphism is associated with the susceptibility of myasthenia gravis in Chinese adult patients. Journal of Neuroimmunology, 2021, 353, 577487.	2.3	3
185	Zilucoplan: An Investigational Complement C5 Inhibitor for the Treatment of Acetylcholine Receptor Autoantibody–Positive Generalized Myasthenia Gravis. Expert Opinion on Investigational Drugs, 2021, 30, 483-493.	4.1	32
186	Comparison of Corticosteroid Tapering Regimens in Myasthenia Gravis. JAMA Neurology, 2021, 78, 426.	9.0	24
187	Chronic low-dose intravenous immunoglobulins as steroid-sparing therapy in myasthenia gravis. Journal of Neurology, 2021, 268, 3871-3877.	3.6	5
188	Rituximab in Myasthenia Gravis - Where do we stand?. Expert Opinion on Biological Therapy, 2021, 21, 1013-1023.	3.1	5
189	The role of innate immunity in myasthenia gravis. Autoimmunity Reviews, 2021, 20, 102800.	5.8	3

#	Article	IF	CITATIONS
190	Longâ€ŧerm efficacy of eculizumab in refractory generalized myasthenia gravis: responder analyses. Annals of Clinical and Translational Neurology, 2021, 8, 1398-1407.	3.7	22
191	Fc-Receptor Targeted Therapies for the Treatment of Myasthenia gravis. International Journal of Molecular Sciences, 2021, 22, 5755.	4.1	14
193	Eculizumab in Asian patients with anti-aquaporin-lgG-positive neuromyelitis optica spectrum disorder: A subgroup analysis from the randomized phase 3 PREVENT trial and its open-label extension. Multiple Sclerosis and Related Disorders, 2021, 50, 102849.	2.0	7
194	Diffuse Gonococcal Infection (DGI) in a Patient with Treatment-Refractory Acetylcholine Receptor Antibody-Positive (AChR+) Generalized Myasthenia Gravis (gMG) Treated with Eculizumab. Case Reports in Neurological Medicine, 2021, 2021, 1-3.	0.4	1
195	Myasthenia gravis exacerbation in association with antibody overshoot following plasmapheresis. Muscle and Nerve, 2021, 64, 483-487.	2.2	7
196	The use of eculizumab in ventilatorâ€dependent myasthenia gravis patients. Muscle and Nerve, 2021, 64, 212-215.	2.2	13
198	Emerging drugs for the treatment of myasthenia gravis. Expert Opinion on Emerging Drugs, 2021, 26, 259-270.	2.4	6
199	Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2021, 20, 526-536.	10.2	194
200	Clinical experience with maintenance therapeutic plasma exchange in refractory generalized myasthenia gravis. Journal of Clinical Apheresis, 2021, 36, 727-736.	1.3	3
201	Rethinking the utility of acetylcholine receptor antibody titer as a pharmacodynamic biomarker for myasthenia gravis. Muscle and Nerve, 2021, 64, 385-387.	2.2	1
202	Targeted molecular therapy for myasthenia gravis. Lancet Neurology, The, 2021, 20, 499-500.	10.2	2
203	Comparison of the United Kingdom and United States approaches to approval of new neuromuscular therapies. Muscle and Nerve, 2021, 64, 641-650.	2.2	2
205	Zytux in Refractory Myasthenia Gravis: A Multicenter, Open-Labeled, Clinical Trial Study of Effectiveness and Safety of a Rituximab Biosimilar. Frontiers in Neurology, 2021, 12, 682622.	2.4	4
206	Clinical Efficacy and Safety of Eculizumab for Treating Myasthenia Gravis. Frontiers in Immunology, 2021, 12, 715036.	4.8	10
207	Patient-Reported Symptom Severity in a Nationwide Myasthenia Gravis Cohort. Neurology, 2021, 97, .	1.1	28
208	A Rare Presentation of a Rare Disease: Oropharyngeal Dysphagia as The Main Manifestation of Myasthenia Gravis. Cureus, 2021, 13, e16880.	0.5	2
209	Novel Immunological and Therapeutic Insights in Guillain-Barré Syndrome and CIDP. Neurotherapeutics, 2021, 18, 2222-2235.	4.4	19
210	Eculizumab in refractory generalized myasthenia gravis previously treated with rituximab: subgroup analysis of <scp>REGAIN</scp> and its extension study. Muscle and Nerve, 2021, 64, 662-669.	2.2	11

#	Article	IF	CITATIONS
211	Treatment and Management of Disorders of the Neuromuscular Junction. , 2022, , 446-491.		1
212	Principles and Guidelines of Immunotherapy in Neuromuscular Disorders. , 2022, , 143-159.		0
214	Survival, Prognosis, and Clinical Feature of Refractory Myasthenia Gravis: a 15-year Nationwide Cohort Study. Journal of Korean Medical Science, 2021, 36, e242.	2.5	2
215	Update on therapy of chronic immune-mediated neuropathies. Neurological Sciences, 2022, 43, 605-614.	1.9	13
216	Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. Journal of Clinical Investigation, 2019, 129, 2000-2013.	8.2	81
217	Complementopathies and precision medicine. Journal of Clinical Investigation, 2020, 130, 2152-2163.	8.2	70
218	Myasthenia Gravis and Congenital Myasthenic Syndromes. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 1767-1784.	0.8	29
219	Safety of an Abbreviated Transition Period When Switching From Intravenous Immunoglobulin to Eculizumab in Patients with Treatment-Refractory Myasthenia Gravis: A Case Series. American Journal of Case Reports, 2019, 20, 965-970.	0.8	6
220	Successful Transition from Plasma Exchange to Eculizumab in Acetylcholine Receptor Antibody- and Muscle-Specific Kinase (MuSK) Antibody-Negative Myasthenia Gravis: A Case Report. American Journal of Case Reports, 2020, 21, e921431.	0.8	4
221	<p>Complement Inhibition for the Treatment of Myasthenia Gravis</p> . ImmunoTargets and Therapy, 2020, Volume 9, 317-331.	5.8	27
222	Retrospective Analysis of Eculizumab in Patients with Acetylcholine Receptor Antibody-Negative Myasthenia Gravis: A Case Series. Journal of Neuromuscular Diseases, 2020, 7, 269-277.	2.6	9
223	Examining the Impact of Refractory Myasthenia Gravis on Healthcare Resource Utilization in the United States: Analysis of a Myasthenia Gravis Foundation of America Patient Registry Sample. Journal		

#	Apticie	IE	CITATIONS
#	The role of pharmacotherapy in the treatment of myasthenia gravis. Klinicka Farmakologie A Farmacie	IF	CHATIONS
231	2018, 32, 8-12.	0.2	0
232	Immunglobuline und Immunsuppressiva. , 2019, , 741-748.		0
233	Myasthenia Gravis – Optimal Treatment in Severe Disease. European Neurological Review, 2019, 14, 81.	0.5	1
234	Immunologic Disorders of Neuromuscular Junction and Muscle. Current Clinical Neurology, 2020, , 285-298.	0.2	0
235	Immunglobuline und Immunsuppressiva. , 2020, , 593-600.		0
237	Miastenia e sindromi miasteniche. EMC - Neurologia, 2020, 20, 1-26.	0.0	0
238	The emerging role of complement in neuromuscular disorders. Seminars in Immunopathology, 2021, 43, 817-828.	6.1	9
239	Exacerbation Rate in Generalized Myasthenia Gravis and Its Predictors. European Neurology, 2021, 84, 43-48.	1.4	11
240	Overview of new developments in mysthenia gravis therapy. Advances in Clinical Neuroscience & Rehabilitation: ACNR, 2020, 19, 28-30.	0.1	0
242	History of myasthenia gravis revisited. Noropsikiyatri Arsivi, 2020, 58, 154-162.	0.3	1
243	Endplattenerkrankungen. , 2020, , 89-112.		0
245	Eculizumab Pharmacokinetics and Pharmacodynamics in Patients With Neuromyelitis Optica Spectrum Disorder. Frontiers in Neurology, 2021, 12, 696387.	2.4	12
246	A patient with generalized myasthenia gravis facing an impending crisis triggered by early fastâ€acting treatment. Clinical and Experimental Neuroimmunology, 0, , .	1.0	1
247	Eculizumab Pharmacokinetics and Pharmacodynamics in Patients With Generalized Myasthenia Gravis. Frontiers in Neurology, 2021, 12, 696385.	2.4	8
248	Myasthenic Crisis - Comorbidities, Complications, Long-Term Outcomes: The Challenges. Annals of Indian Academy of Neurology, 2019, 22, 472-473.	0.5	2
249	Eculizumab treatment for myasthenia gravis subgroups: 2021 update. Journal of Neuroimmunology, 2022, 362, 577767.	2.3	4
250	How Cost-Effective Are New Drugs for Myasthenia Gravis?. Neurology Today: an Official Publication of the American Academy of Neurology, 2021, 21, 1,16-17.	0.0	0
251	Pharmacological Management of Myasthenia Gravis: A Century of Expert Opinions in Cecil Textbook of Medicine. American Journal of Therapeutics, 2021, 28, e631-e637.	0.9	0

#	Article	IF	CITATIONS
252	Burden of disease in myasthenia gravis: taking the patient's perspective. Journal of Neurology, 2022, 269, 3050-3063.	3.6	44
253	Efficacy and Safety of Immunotherapies in Refractory Myasthenia Gravis: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 2021, 12, 725700.	2.4	8
254	Phase 2 Trial of Rituximab in Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis. Neurology, 2022, 98, .	1.1	51
255	Current and Upcoming Treatment Modalities in Myasthenia Gravis. Journal of Clinical Neuromuscular Disease, 2021, 23, 75-99.	0.7	3
256	Advances and challenges in the treatment of myasthenia gravis. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110654.	3.5	23
257	Immunglobuline und Immunsuppressiva. , 2021, , 499-507.		0
258	Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Advances in Immunology, 2021, 152, 1-81.	2.2	7
259	Neonatal Fc Receptor–Targeted Therapies in Neurology. Neurotherapeutics, 2022, 19, 729-740.	4.4	13
260	Berberine attenuates experimental autoimmune myasthenia gravis via rebalancing the T cell subsets. Journal of Neuroimmunology, 2022, 362, 577787.	2.3	4
261	Utilization of MGâ€ADL in myasthenia gravis clinical research and care. Muscle and Nerve, 2022, 65, 630-639.	2.2	19
262	Immunosuppression in Multiple Sclerosis and Other Neurologic Disorders. Handbook of Experimental Pharmacology, 2021, , 245-265.	1.8	1
263	Antibody Therapies in Autoimmune Encephalitis. Neurotherapeutics, 2022, 19, 823-831.	4.4	18
264	Paraneoplastic Autoimmune Neurological Syndromes and the Role of Immune Checkpoint Inhibitors. Neurotherapeutics, 2022, 19, 848-863.	4.4	10
265	A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats via Immune Modulation. Frontiers in Immunology, 2022, 13, 746068.	4.8	2
266	Different Monoclonal Antibodies in Myasthenia Gravis: A Bayesian Network Meta-Analysis. Frontiers in Pharmacology, 2021, 12, 790834.	3.5	5
267	Drugâ€refractory myasthenia gravis: Clinical characteristics, treatments, and outcome. Annals of Clinical and Translational Neurology, 2022, 9, 122-131.	3.7	13
268	Compstatins: the dawn of clinical C3-targeted complement inhibition. Trends in Pharmacological Sciences, 2022, 43, 629-640.	8.7	31
269	Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. Lancet Neurology, The, 2022, 21, 189-202.	10.2	41

#	Article	IF	CITATIONS
270	Evolution of Anti-B Cell Therapeutics in Autoimmune Neurological Diseases. Neurotherapeutics, 2022, 19, 691-710.	4.4	21
271	Antibody Therapies in Autoimmune Neuromuscular Junction Disorders: Approach to Myasthenic Crisis and Chronic Management. Neurotherapeutics, 2022, 19, 897-910.	4.4	15
272	The Complement System in the Central Nervous System: From Neurodevelopment to Neurodegeneration. Biomolecules, 2022, 12, 337.	4.0	12
274	Myasthenia gravis complement activity is independent of autoantibody titer and disease severity. PLoS ONE, 2022, 17, e0264489.	2.5	3
275	Current Treatment of Myasthenia Gravis. Journal of Clinical Medicine, 2022, 11, 1597.	2.4	35
276	A Randomized Open-Labeled Trial of Methotrexate as a Steroid-Sparing Agent for Patients With Generalized Myasthenia Gravis. Frontiers in Immunology, 2022, 13, 839075.	4.8	4
277	Rituximab Therapy in the Treatment of Juvenile Myasthenia Gravis: The French Experience. Neurology, 2022, , 10.1212/WNL.0000000000200288.	1.1	10
278	Eculizumab versus rituximab in generalised myasthenia gravis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 548-554.	1.9	19
279	Minimal Manifestations With Eculizumab Therapy in a Patient With Refractory Generalized Seropositive Myasthenia Gravis. Journal of Clinical Neuromuscular Disease, 2022, 23, 170-173.	0.7	1
280	Immunomodulatory effects and clinical benefits of intravenous immunoglobulin in myasthenia gravis. Expert Review of Neurotherapeutics, 2022, 22, 313-318.	2.8	2
281	Generalized myasthenia gravis patients infected with COVID-19 should continue eculizumab. Neurological Sciences, 2022, , 1.	1.9	6
283	The Role of the Complement System in Chronic Inflammatory Demyelinating Polyneuropathy: Implications for Complement-Targeted Therapies. Neurotherapeutics, 2022, 19, 864-873.	4.4	16
284	Soliris to Stop Immune-Mediated Death in COVID-19 (SOLID-C19)—A Compassionate-Use Study of Terminal Complement Blockade in Critically III Patients with COVID-19-Related Adult Respiratory Distress Syndrome. Viruses, 2021, 13, 2429.	3.3	11
285	Next-generation antibody-based therapies in neurology. Brain, 2022, 145, 1229-1241.	7.6	11
286	Complement Inhibition in Myasthenia Gravis and Neuromyelitis Optica Spectrum Disorder. Canadian Journal of Neurological Sciences, 2021, , 1-9.	0.5	5
287	Quality of Life in Myasthenia Gravis and Correlation of MG-QOL15 with Other Functional Scales. Journal of Clinical Medicine, 2022, 11, 2189.	2.4	7
288	Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmunity Reviews, 2022, 21, 103104.	5.8	7
292	Myasthenic crisis $\hat{a} \in \hat{C}$ Comorbidities, complications, long-term outcomes: The challenges. Annals of Indian Academy of Neurology, 2019, 22, 472.	0.5	6

	CITA	tion Report	
#	Article	IF	Citations
293	Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis. , 2022, $1, .$		55
294	A mild course of COVID-19 infection in a generalized Myasthenia gravis patient under eculizumab treatment. Neurological Sciences, 2022, , 1.	1.9	3
295	Anti-complement Agents for Autoimmune Neurological Disease. Neurotherapeutics, 2022, 19, 711-728.	4.4	4
296	The humanistic burden of myasthenia gravis: A systematic literature review. Journal of the Neurological Sciences, 2022, 437, 120268.	0.6	17
297	Therapie der Myasthenie und myasthener Syndrome. , 2021, , 199-210.		0
298	Heterogeneity of Acetylcholine Receptor Autoantibody–Mediated Complement Activity in Patients With Myasthenia Gravis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	21
299	Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals. Drugs, 2022, 82, 865-887.	10.9	36
300	Safety and effectiveness of eculizumab in Japanese patients with generalized myasthenia gravis: Analysis of 1â€year postmarketing surveillance. Clinical and Experimental Neuroimmunology, 2022, 13, 280-289.	1.0	2
301	Academic and Employment Status in Patients With Generalized Myasthenia Gravis Treated With Eculizumab: A Case Series. Journal of Clinical Neuromuscular Disease, 2022, 23, 210-218.	0.7	2
302	Ravulizumab in patients with generalised myasthenia gravis. , 0, , .		0
303	Oneâ€year followâ€up of disease burden and medication changes in patients with myasthenia gravis: Fr the <scp>MG</scp> Patient Registry. Muscle and Nerve, 2022, 66, 411-420.	om 2.2	5
304	Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy. Biomedicines, 2022, 10, 1360.	3.2	1
305	Role of complement, anti-complement therapeutics, and other targeted immunotherapies in myasthenia gravis. Expert Review of Clinical Immunology, 2022, 18, 691-701.	3.0	25
306	Safety and outcomes of eculizumab for acetylcholine receptorâ€positive generalized myasthenia gravis in clinical practice. Muscle and Nerve, 0, , .	2.2	0
307	Major advances in neuromuscular disorders in the past two decades. Lancet Neurology, The, 2022, 21, 585-587.	10.2	2
308	Molecular Therapy in Myasthenia Gravis. Touch Reviews in Neurology, 2022, 18, 49.	0.2	0
309	Development of infections among the patients with myasthenia gravis undergoing immunotherapy. Clinical and Experimental Neuroimmunology, 0, , .	1.0	0
310	Practical Management for Use of Eculizumab in the Treatment of Severe, Refractory, Non-Thymomatous, AChR + Generalized Myasthenia Gravis: A Systematic Review. Therapeutics and Clinical Risk Management, 0, Volume 18, 699-719.	2.0	2

		CITATION REPORT		
#	Article		IF	CITATIONS
311	Seronegative autoimmune diseases: A challenging diagnosis. Autoimmunity Reviews, 2	2022, 21, 103143.	5.8	26
312	Autoimmunity to acetylcholine receptor channels. Neurology and Clinical Neuroscience	e, O, , .	0.4	0
313	Myasthenia gravis in clinical practice. Arquivos De Neuro-Psiquiatria, 2022, 80, 257-26	5.	0.8	6
314	Total Plasma Exchange in Neuromuscular Junction Disorders—A Single-Center, Retros of the Efficacy, Safety and Potential Diagnostic Properties in Doubtful Diagnosis. Journ Medicine, 2022, 11, 4383.	spective Analysis al of Clinical	2.4	2
315	Novel pathophysiological insights in autoimmune myasthenia gravis. Current Opinion i 2022, 35, 586-596.	n Neurology,	3.6	12
316	Managing Myasthenia Gravis with Eculizumab Monotherapy Through Pregnancy. Cana Neurological Sciences, 2023, 50, 803-805.	dian Journal of	0.5	1
317	Complement and myasthenia gravis. Molecular Immunology, 2022, 151, 11-18.		2.2	5
318	Myasthenia gravis in pregnancy – a multidisciplinary approach. Obstetrica Si Ginecol	ogie, 2022, 2, 18.	0.1	0
319	The Acute and Emergency Management of Neuromuscular Junction Disorders. , 2022,	, 235-265.		0
320	Overview of Myasthenia Gravis Subgroups and its influence on Pregnancy and their Tre Advances. Pharmacophore, 2022, 13, 19-30.	eatment	1.2	0
321	Efficacy and Safety of Rituximab for New-Onset Generalized Myasthenia Gravis. JAMA N 79, 1105.	Veurology, 2022,	9.0	41
322	Knowledge mapping of targeted immunotherapy for myasthenia gravis from 1998 to 2 AÂbibliometricAanalysis. Frontiers in Immunology, 0, 13, .	1022:	4.8	6
323	What are the pharmacotherapeutic considerations for the treatment of myasthenia gra Opinion on Pharmacotherapy, 2022, 23, 1471-1474.	avis?. Expert	1.8	3
324	Rituximab in Newly Diagnosed Generalized Myasthenia Gravis. JAMA Neurology, 0, , .		9.0	0
325	Risk and course of COVID-19 in immunosuppressed patients with myasthenia gravis. Jo Neurology, 2023, 270, 1-12.	ournal of	3.6	6
326	Receptor clustering and pathogenic complement activation in myasthenia gravis deper between antibodies with multiple subunit specificities. Acta Neuropathologica, 2022, 2	nd on synergy 144, 1005-1025.	7.7	10
327	Discovery of functionally distinct anti-C7 monoclonal antibodies and stratification of a AChR positive Myasthenia Gravis patients. Frontiers in Immunology, 0, 13, .	nti-nicotinic	4.8	1
328	Neuropharmacology in the Intensive Care Unit. Critical Care Clinics, 2022, , .		2.6	0

#	Article	IF	CITATIONS
330	The complement system in antineutrophil cytoplasmic antibody-associated vasculitis: pathogenic player and therapeutic target. Current Opinion in Rheumatology, 2023, 35, 31-36.	4.3	3
331	Efgartigimod for generalized myasthenia gravis with or without anti-acetylcholine receptor antibodies: a worldwide and Japanese perspective. Expert Review of Clinical Immunology, 2022, 18, 1207-1215.	3.0	4
332	New Targeted Agents in Myasthenia Gravis and Future Therapeutic Strategies. Journal of Clinical Medicine, 2022, 11, 6394.	2.4	8
333	Real-world utilization patterns of intravenous immunoglobulin in adults with generalized myasthenia gravis in the United States. Journal of the Neurological Sciences, 2022, 443, 120480.	0.6	1
334	Diagnosing myasthenia gravis using orthoptic measurements: assessing extraocular muscle fatiguability. Journal of Neurology, Neurosurgery and Psychiatry, 2023, 94, 151-151.	1.9	2
335	The best and worst of times in therapy development for myasthenia gravis. Muscle and Nerve, 2023, 67, 12-16.	2.2	4
336	Myasthenia gravis: What does a pharmacist need to know?. American Journal of Health-System Pharmacy, 0, , .	1.0	1
337	Anti-pan-neurofascin antibodies induce subclass-related complement activation and nodo-paranodal damage. Brain, 2023, 146, 1932-1949.	7.6	11
338	Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multiâ€protein cascade of the complement system. Immunological Reviews, 2023, 313, 376-401.	6.0	6
339	The Myasthenia Gravis Activities of Daily Living score and associated factors to distinguish the refractory phase in generalized myasthenia gravis patients with 5 years or more disease duration. Clinical Neurology, 2022, 62, 915-921.	0.1	0
340	Costs and Utilization of New-to-Market Neurologic Medications. Neurology, 2023, 100, .	1.1	8
341	Myasthenia Gravis and Lambert-Eaton Myasthenic Syndrome: New Developments in Diagnosis and Treatment. Neuropsychiatric Disease and Treatment, 0, Volume 18, 3001-3022.	2.2	7
342	Comparative the efficacy and acceptability of immunosuppressive agents for myasthenia gravis: A protocol for systematic review and network meta-analysis. Medicine (United States), 2022, 101, e31454.	1.0	0
343	Diagnosis and Management of Myasthenia Gravis. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1615-1642.	0.8	2
344	Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis. Molecular Therapy - Nucleic Acids, 2023, 31, 339-351.	5.1	3
345	Analysis of influencing factors of postoperative myasthenic crisis in 564 patients with myasthenia gravis in a single center. Thoracic Cancer, 2023, 14, 517-523.	1.9	3
346	The Japanese clinical guidelines 2022 for myasthenia gravis and Lambert–Eaton myasthenic syndrome. Clinical and Experimental Neuroimmunology, 2023, 14, 19-27.	1.0	10
348	Analysis of influencing factors of perioperative myasthenic crisis in 387 myasthenia gravis patients without thymoma in a single center. Journal of Cardiothoracic Surgery, 2023, 18, .	1.1	0

ARTICLE IF CITATIONS Autoantibody detection by a live cell-based assay in conventionally antibody-tested triple seronegative 349 0.6 1 Myasthenia gravis. Neuromuscular Disorders, 2023, 33, 139-144. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs, 2023, 83, 135-158. Effectiveness of early cycles of fast-acting treatment in generalised myasthenia gravis. Journal of 351 1.9 10 Neurology, Neurosurgery and Psychiatry, 2023, 94, 467-473. Epidemiology and treatment of myasthenia gravis: a retrospective study using a large insurance claims dataset in Gérmany. Neuromuscular Disorders, 2023, 33, 324-333. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): a randomised, 354 10.2 40 double-blind, placebo-controlled, phase 3 study. Lancet Neurology, The, 2023, 22, 395-406. New therapies for autoimmune myasthenia gravis. Lancet Neurology, The, 2023, 22, 368-369. 10.2 Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a 356 randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurology, The, 2023, 22, 10.2 43 383-394. Myasthenia gravis: Frequently asked questions. Cleveland Clinic Journal of Medicine, 2023, 90, 103-113. 1.3 358 Immunglobuline und Immunsuppressiva., 2022, , 439-447. 0 Ocular Myasthenia Gravis: A Current Overview. Eye and Brain, 0, Volume 15, 1-13. 2.5 Complement activation profiles in <scp>antiâ€acetylcholine receptor</scp> positive myasthenia gravis. 360 3 3.3 European Journal of Neurology, 2023, 30, 1409-1416. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and 21.8 Neuroinflammation. Annual Review of Immunology, 2023, 41, 431-452. An update of the pharmacological treatment options for generalized myasthenia gravis in adults with 362 1.0 2 anti–acetylcholine receptor antibodies. American Journal of Health-System Pharmacy, 2023, 80, 652-662. The case for complement component 5 as a target in neurodegenerative disease. Expert Opinion on 3.4 Therapeutic Targets, 2023, 27, 97-109. Treatment considerations in myasthenia gravis for the pregnant patient. Expert Review of 364 2.8 5 Neurotherapeutics, 2023, 23, 169-177. Incidence, Prevalence, Hospitalization Rates, and Treatment Patterns in Myasthenia Gravis: A 10-Year Real-World Data Analysis of German Claims Data. Neuroepidemiology, 2023, 57, 121-128. Biological therapies for myasthenia gravis. Expert Opinion on Biological Therapy, 2023, 23, 253-260. 366 3.15 Mediastinaltumoren. Springer Reference Medizin, 2023, , 1-24.

		CITATION RE	EPORT	
#	Article		IF	Citations
368	Orphan Drugs in Neurology—A Narrative Review. Journal of Personalized Medicine, 20	23, 13, 420.	2.5	1
369	Knowledge mapping of global trends for myasthenia gravis development: A bibliometric Frontiers in Immunology, 0, 14, .	s analysis.	4.8	1
370	Ravulizumab in Aquaporinâ€4–Positive Neuromyelitis Optica Spectrum Disorder. Ann 2023, 93, 1053-1068.	als of Neurology,	5.3	29
371	Ravulizumab for the treatment of myasthenia gravis. Expert Opinion on Biological Thera 235-241.	ıpy, 2023, 23,	3.1	1
372	Principles of Therapeutic Apheresis in Neurological Disease. Transfusion Medicine and H 2023, 50, 88-97.	lemotherapy,	1.6	2
374	Novel Immunotherapies for Myasthenia Gravis. ImmunoTargets and Therapy, 0, Volume	12, 25-45.	5.8	11
375	A series of patients with refractory myasthenia gravis. NeurologÃa (English Edition), 202	23, , .	0.4	0
376	Ocular Myasthenia Gravis. Current Treatment Options in Neurology, 0, , .		1.8	0
377	Addressing Outcome Measure Variability in Myasthenia Gravis Clinical Trials. Neurology 442-451.	, 2023, 101,	1.1	3
378	Characterization of multivalent complexes formed in the presence of more than one co antibody to terminal complement component C5. PLoS ONE, 2023, 18, e0284502.	nventional	2.5	1
379	Myasthenia gravis, respiratory function, and respiratory tract disease. Journal of Neurolo 270, 3329-3340.	ogy, 2023,	3.6	1
380	Long-term efficacy and safety of ravulizumab in adults with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis: results from the phaseÂ3 CHAMPION extension. Journal of Neurology, 2023, 270, 3862-3875.	MG open-label	3.6	16
381	Conventional and emerging treatments and controversies in myasthenia gravis. Expert Neurotherapeutics, 2023, 23, 445-456.	Review of	2.8	2
382	Impact of social determinants of health on individuals living with generalized myasthen implications for patient support programs. Frontiers in Public Health, 0, 11, .	a gravis and	2.7	1
383	Efficacy of innovative therapies in myasthenia gravis: A systematic review, metaâ€analy metaâ€analysis. European Journal of Neurology, 2023, 30, 3854-3867.	sis and network	3.3	16
384	MOGAD patient autoantibodies induce complement, phagocytosis, and cellular cytotox 2023, 8, .	icity. JCI Insight,	5.0	4
385	Pharmacological and clinical profile of ravulizumab 100 mg/mL formulation for paroxysmocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Expert Review of Cl Pharmacology, 2023, 16, 401-410.	nal inical	3.1	0
387	Future perspectives in myasthenia gravis (Review). International Journal of Epigenetics,	2023, 3, .	0.5	0

#	Article	IF	CITATIONS
388	Anti-complement 5 antibody ameliorates antibody-mediated rejection after liver transplantation in rats. Frontiers in Immunology, 0, 14, .	4.8	4
389	Complement therapeutics are coming of age in rheumatology. Nature Reviews Rheumatology, 2023, 19, 470-485.	8.0	2
390	Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathologica, 2023, 146, 319-336.	7.7	5
391	é‡ç—‡ç‹ç"j力症è ^{·₂} ç™,ã,¬ã,₿f‰ãf©ã,₿f³ã₱å‰é•―ã,¬ã,₿f‰ãf©ã,₿f³2022改è¨,ã₱ãfã,₿f³ãf^―. Clinical	Neurology	v , ⊉ 023, 63,
393	Attitudes and Beliefs Toward Thymectomy in the Myasthenia Gravis Patient Registry. Journal of Clinical Neuromuscular Disease, 2023, 24, 222-228.	0.7	0
394	Eculizumab treatment alters the proteometabolome beyond the inhibition of complement. JCI Insight, 2023, 8, .	5.0	1
395	Starting eculizumab as rescue therapy in refractory myasthenic crisis. Neurological Sciences, 2023, 44, 3707-3709.	1.9	8
396	Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurology, The, 2023, 22, 578-590.	10.2	30
397	Myasthenia gravis. Update on diagnosis and therapy. Medicina ClÃnica (English Edition), 2023, , .	0.2	0
398	Real-world safety profile of eculizumab in patients with paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, or generalized myasthenia gravis: an integrated analysis of post-marketing surveillance in Japan. International Journal of Hematology, 2023, 118, 419-431.	1.6	5
399	Eculizumab as a promising rescue therapy for acute exacerbations of myasthenia gravis. Neurological Sciences, 0, , .	1.9	0
400	New and emerging treatments for myasthenia gravis. , 2023, 2, e000241.		4
401	Myasthenia gravis and congenital myasthenic syndromes. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 635-652.	1.8	2
402	Zilucoplan, a macrocyclic peptide inhibitor of human complement component 5, uses a dual mode of action to prevent terminal complement pathway activation. Frontiers in Immunology, 0, 14, .	4.8	3
403	Mediastinaltumoren. Springer Reference Medizin, 2023, , 669-692.	0.0	0
404	Advancements in targeted therapies for generalized acetylcholine receptor antibody positive myasthenia gravis: Beginnings of a paradigm shift. European Journal of Neurology, 2023, 30, 3644-3645.	3.3	0
405	Long-term efficacy and safety of leflunomide combined with low-dose prednisone in treatment of myasthenia gravis: a retrospective study. Acta Neurologica Belgica, 2024, 124, 175-182.	1.1	0
406	Efficacy and safety of zilucoplan in Japanese patients with generalized myasthenia gravis: A subgroup analysis of the phase III randomized <scp>RAISE</scp> study. Clinical and Experimental Neuroimmunology, 2024, 15, 45-54.	1.0	0

#	Article	IF	Citations
407	Disease-Based Prognostication: Myasthenia Gravis. Seminars in Neurology, 0, , .	1.4	0
408	Serum immunoglobulin <scp>G</scp> level reduction is a predictor of shortâ€ŧerm improvement in patients with myasthenia gravis undergoing plasmapheresis. Therapeutic Apheresis and Dialysis, 2024, 28, 131-140.	0.9	0
409	The role of C5a receptors in autoimmunity. Immunobiology, 2023, 228, 152413.	1.9	1
410	A Quick Glance at the Therapeutic Approaches for Neuromuscular Disorders. , 2023, , 329-344.		0
411	Safety and pharmacodynamic efficacy of eculizumab in aneurysmal subarachnoid hemorrhage (CLASH): A phase 2a randomized clinical trial. European Stroke Journal, 0, , .	5.5	0
412	Serious Bacterial Infections Associated with Eculizumab: A Pharmacovigilance Study. Internal Medicine, 2024, 63, 1061-1066.	0.7	0
413	Measuring treatment adverse event burden in myasthenia gravis: Singleâ€center prospective evaluation utilizing the Adverse Event Unit (AEU). Muscle and Nerve, 0, , .	2.2	1
414	Current drug treatment of myasthenia gravis. Current Opinion in Neurology, 2023, 36, 410-415.	3.6	1
415	Novel treatment for myasthenia gravis. Neurologie Pro Praxi, 2023, 24, 286-292.	0.1	0
416	The economic burden of individuals living with generalized myasthenia gravis and facing social determinants of health challenges. Frontiers in Public Health, 0, 11, .	2.7	0
417	Activation of the classical complement pathway in myasthenia gravis with acetylcholine receptor antibodies. Muscle and Nerve, 2023, 68, 798-804.	2.2	0
421	Role of complement in myasthenia gravis. Frontiers in Neurology, 0, 14, .	2.4	0
422	Female sex and overweight are associated with a lower quality of life in patients with myasthenia gravis: a single center cohort study. BMC Neurology, 2023, 23, .	1.8	2
423	Impact of Ravulizumab on Patient Outcomes and Quality of Life in Generalized Myasthenia Gravis. Patient Related Outcome Measures, 0, Volume 14, 305-312.	1.2	0
424	Score fluctuation might be associated with a higher placebo rate in the RAISE trial. Lancet Neurology, The, 2023, 22, 982.	10.2	1
425	Score fluctuation might be associated with a higher placebo rate in the RAISE trial – Authors' reply. Lancet Neurology, The, 2023, 22, 982-983.	10.2	0
426	Targeting synapse function and loss for treatment of neurodegenerative diseases. Nature Reviews Drug Discovery, 2024, 23, 23-42.	46.4	10
427	Immune Checkpoint Inhibition–Related Myasthenia-Myositis-Myocarditis Responsive to Complement Blockade. Neurology: Neuroimmunology and NeuroInflammation, 2024, 11, .	6.0	1

#	Article	IF	CITATIONS
428	Real-life study to assess effectiveness and safety of eculizumab in patients with neuromyelitis optica spectrum disorders in France: protocol for ECUP4, an observational study. Frontiers in Neurology, 0, 14, .	2.4	0
429	Ravulizumab in Myasthenia Gravis: A Review of the Current Evidence. Neuropsychiatric Disease and Treatment, 0, Volume 19, 2639-2655.	2.2	0
430	Efficacy and safety of the innovative monoclonal antibodies in adults with generalized myasthenia gravis: a Bayesian network analysis. Frontiers in Immunology, 0, 14, .	4.8	0
431	Long-term functional outcome and quality of life 2.5Âyears after thrombolysis in acute ischemic stroke. Neurological Research and Practice, 2023, 5, .	2.0	1
432	Myopathien (Myasthenia gravis, chronisch progressive externe Ophthalmoplegie, Muskeldystrophien). , 2023, , 273-281.		0
433	Complement in human disease: approved and up-and-coming therapeutics. Lancet, The, 2024, 403, 392-405.	13.7	3
434	Plasma Exchange versus Intravenous Immunoglobulin in Worsening Myasthenia Gravis: A Systematic Review and Meta-Analysis with Special Attention to Faster Relapse Control. Biomedicines, 2023, 11, 3180.	3.2	1
435	Burden of illness and costs in patients with myasthenia gravis currently receiving treatment in the <scp>United States</scp> . Muscle and Nerve, 0, , .	2.2	0
437	Healthcare resource utilization, costs and treatment associated with myasthenia gravis exacerbations among patients with myasthenia gravis in the USA: a retrospective analysis of claims data. Journal of Comparative Effectiveness Research, 0, , .	1.4	0
438	Exacerbation of Thymoma-Associated Myasthenia Gravis Following Efgartigimod Treatment Related to Anti-acetylcholine Receptor Antibody Overshoot: A Report of Two Cases. Cureus, 2023, , .	0.5	0
439	Refocusing generalized myasthenia gravis: Patient burden, disease profiles, and the role of evolving therapy. European Journal of Neurology, 0, , .	3.3	0
440	Characterization of the bispecific VHH antibody gefurulimab (ALXN1720) targeting complement component 5, and designed for low volume subcutaneous administration. Molecular Immunology, 2024, 165, 29-41.	2.2	0
441	Guideline for the management of myasthenic syndromes. Therapeutic Advances in Neurological Disorders, 2023, 16, .	3.5	3
442	Mapping current trends and hotspots in myasthenia gravis from 2003 to 2022: a bibliometric analysis. Frontiers in Neurology, 0, 14, .	2.4	0
443	Complement and MHC patterns can provide the diagnostic framework for inflammatory neuromuscular diseases. Acta Neuropathologica, 2024, 147, .	7.7	1
444	Functional long-term outcome following endovascular thrombectomy in patients with acute ischemic stroke. Neurological Research and Practice, 2024, 6, .	2.0	0
445	Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nature Reviews Neurology, 2024, 20, 84-98.	10.1	4
446	Myasthenia Gravis Treatment: From Old Drugs to Innovative Therapies with a Climpse into the Future. CNS Drugs, 2024, 38, 15-32.	5.9	0

#	Article	IF	CITATIONS
447	Novel uses of complement inhibitors in myasthenia gravis— <scp>Two</scp> case reports. Muscle and Nerve, 2024, 69, 368-372.	2.2	0
448	Novel Pathogenic C5 Gene Variants in a Patient with Neisseria Meningitis and Diffuse Cutaneous HSV-1 Infection. Journal of Clinical Immunology, 2024, 44, .	3.8	0
449	A New Era in the Treatment of Myasthenia Gravis: Six New Medications in The Last 6 Years. Current Treatment Options in Neurology, 2024, 26, 79-96.	1.8	0
450	Registered trials on novel therapies for myasthenia gravis: a cross-sectional study on ClinicalTrials.gov. Scientific Reports, 2024, 14, .	3.3	0
451	Eculizumab led to beneficial clinical course in a patient with generalized myasthenia gravis who developed COVID 19-associated pneumonia. Clinical Neurology, 2024, 64, 109-112.	0.1	0
452	The Efficacy and Safety of Different Targeted Drugs for the Treatment of Generalized Myasthenia Gravis: A Systematic Review and Bayesian Network Meta-analysis. CNS Drugs, 2024, 38, 93-104.	5.9	0
453	Eculizumab as Additional Rescue Therapy in Myasthenic Crisis. , 2024, 3, 40-47.		0
454	Generalized myasthenia gravis with acetylcholine receptor antibodies: A guidance for treatment. European Journal of Neurology, 2024, 31, .	3.3	0
455	Comparative effectiveness of azathioprine and mycophenolate mofetil for myasthenia gravis (PROMISE-MG): a prospective cohort study. Lancet Neurology, The, 2024, 23, 267-276.	10.2	1
457	An angel or a devil? Current view on the role of CD8+ T cells in the pathogenesis of myasthenia gravis. Journal of Translational Medicine, 2024, 22, .	4.4	0
458	Immunglobuline und Immunsuppressiva. , 2023, , 471-479.		0
459	Eculizumab in myasthenia gravis: A review. Saudi Journal of Ophthalmology, 2024, 38, 34-40.	0.3	0
460	Dramatic improvement in refractory myasthenia gravis with eculizumab treatment: a case report. Journal of Neurology, 2024, 271, 2902-2905.	3.6	0
461	Triple-fusion protein (TriFu): A potent, targeted, enzyme-like inhibitor of all three complement activation pathways. Journal of Biological Chemistry, 2024, 300, 105784.	3.4	0
462	B cell lineage reconstitution underlies CAR-T cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Molecular Medicine, 2024, 16, 966-987.	6.9	0
463	Role of C5 inhibitors in neuromyelitis optica spectrum disorders with seropositive anti-aquaporin-4 antibody: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 2024, 85, 105524.	2.0	0
464	Myasthenia gravis—Pathophysiology, diagnosis, and treatment. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2024, , 283-305.	1.8	0
465	The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. Journal of Drug Targeting, 0, , 1-14.	4.4	0

#	Article	IF	CITATIONS
466	Real-World experience with efgartigimod in patients with myasthenia gravis. Journal of Neurology, 0, ,	3.6	0
467	Expert consensus recommendations for improving and standardising the assessment of patients with generalised myasthenia gravis. European Journal of Neurology, 0, , .	3.3	0
469	<scp>FARSâ€ADL</scp> across Ataxias: Construct Validity, Sensitivity to Change, and Minimal Important Change. Movement Disorders, 0, , .	3.9	0
470	MuSK Myasthenia Gravis—Potential Pathomechanisms and Treatment Directed against Specific Targets. Cells, 2024, 13, 556.	4.1	0
471	Promising therapies for the treatment of myasthenia gravis. Expert Opinion on Pharmacotherapy, 2024, 25, 395-408.	1.8	0
472	The CIC-1 chloride channel inhibitor NMD670 improves skeletal muscle function in rat models and patients with myasthenia gravis. Science Translational Medicine, 2024, 16, .	12.4	0