A gravitational-wave standard siren measurement of th

Nature 551, 85-88 DOI: 10.1038/nature24471

Citation Report

#	Article	IF	CITATIONS
1	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
2	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
3	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
4	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	3.0	392
5	The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817. Astrophysical Journal Letters, 2017, 848, L31.	3.0	100
6	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
7	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
8	Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817. Astrophysical Journal Letters, 2017, 850, L19.	3.0	631
9	Lanthanides or Dust in Kilonovae: Lessons Learned from GW170817. Astrophysical Journal Letters, 2017, 849, L19.	3.0	22
10	Stability of effective thin-shell wormholes under Lorentz symmetry breaking supported by dark matter and dark energy. European Physical Journal Plus, 2017, 132, 1.	1.2	18
11	Neutron Star Merger Seen and Heard. Physics Magazine, 2017, 10, .	0.1	0
12	Slewing mirror telescope of the UFFO-pathfinder: first report on performance in space. Optics Express, 2017, 25, 29143.	1.7	4
13	Observations of GW170817 by DESGW and the DECam GW-EM Collaboration. Proceedings of the International Astronomical Union, 2017, 13, 72-79.	0.0	0
14	Cosmology with Gravitational Waves in DES and LSST. Proceedings of the International Astronomical Union, 2017, 13, 65-71.	0.0	0
15	Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers. Astrophysical Journal Letters, 2018, 854, L25.	3.0	15
16	First cosmological constraints combining Planck with the recent gravitational-wave standard siren measurement of the Hubble constant. Physical Review D, 2018, 97, .	1.6	19
17	<i>H</i> ₀ from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 051-051.	1.9	177
18	Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars. Physical Review D, 2018, 97, .	1.6	192

#	Article	IF	CITATIONS
19	Gravitational-wave astronomy: delivering on the promises. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170279.	1.6	13
20	The promises of gravitational-wave astronomy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180105.	1.6	1
21	Peering beyond the horizon with standard sirens and redshift drift. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 002-002.	1.9	13
22	On the cosmological gravitational waves and cosmological distances. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 778, 332-338.	1.5	3
23	Estimation of the gravitational wave polarizations from a nontemplate search. Physical Review D, 2018, 97, .	1.6	7
24	Determining the Lorentz Factor and Viewing Angle of GRB 170817A. Astrophysical Journal Letters, 2018, 852, L1.	3.0	20
25	The promising dawn of multimessenger astronomy. Science Bulletin, 2018, 63, 2-4.	4.3	66
26	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
27	Prompt emission from the counter jet of a short gamma-ray burst. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	3
28	Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology. Physical Review D, 2018, 97, .	1.6	95
29	Updated observational constraints on quintessence dark energy models. Physical Review D, 2018, 97, .	1.6	31
30	Localization of transient gravitational wave sources: beyond triangulation. Classical and Quantum Gravity, 2018, 35, 105002.	1.5	21
31	Characterization of low-significance gravitational-wave compact binary sources. Physical Review D, 2018, 98, .	1.6	10
32	Characterization of binary black holes by heterogeneous gravitational-wave networks. Physical Review D, 2018, 98, .	1.6	16
33	Gamma radiation as a source of information about the characteristics of celestial bodies. E3S Web of Conferences, 2018, 63, 00002.	0.2	0
34	Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches. Classical and Quantum Gravity, 2018, 35, 155017.	1.5	32
35	LIGO and Gravitational Waves II: Nobel Lecture, December 8, 2017. Annalen Der Physik, 2019, 531, 1800357.	0.9	4
36	Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3871-3878.	1.6	157

#	Article	IF	CITATIONS
37	Advanced Virgo results and the dawn of gravitational multimessenger astronomy. Nuclear and Particle Physics Proceedings, 2018, 303-305, 86-91.	0.2	0
38	Observational constraints on the free parameters of an interacting Bose–Einstein gas as a dark-energy model. General Relativity and Gravitation, 2018, 50, 1.	0.7	1
39	Circularly polarized EM radiation from GW binary sources. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	1.9	9
40	Fast and accurate sensitivity estimation for continuous-gravitational-wave searches. Physical Review D, 2018, 98, .	1.6	48
41	Dark Energy in Light of Multi-Messenger Gravitational-Wave Astronomy. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	146
42	Nobel Lecture: LIGO and gravitational waves II. Reviews of Modern Physics, 2018, 90, .	16.4	9
43	Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis. Astrophysical Journal, 2018, 869, 130.	1.6	327
45	Measuring cosmic distances with standard sirens. Physics Today, 2018, 71, 34-40.	0.3	2
46	Can accelerated expansion of the universe be due to spacetime vorticity?. Modern Physics Letters A, 2018, 33, 1850240.	0.5	0
47	Scattered Short Gamma-Ray Bursts as Electromagnetic Counterparts to Gravitational Waves and Implications of GW170817 and GRB 170817A. Astrophysical Journal, 2018, 867, 39.	1.6	14
48	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40.	0.9	0
49	Binary neutron star mergers and third generation detectors: Localization and early warning. Physical Review D, 2018, 97, .	1.6	62
50	Inner Workings: How fast is the universe expanding? Clashing measurements may point to new physics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9810-9812.	3.3	1
51	Does the Hubble constant tension call for new physics?. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 025-025.	1.9	186
52	Dark energy constraints in light of Pantheon SNe Ia, BAO, cosmic chronometers and CMB polarization and lensing data. Physical Review D, 2018, 97, .	1.6	10
53	An interacting new holographic dark energy in the framework of fractal cosmology. Astrophysics and Space Science, 2018, 363, 1.	0.5	17
54	Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation. Physical Review D, 2018, 98, .	1.6	46
55	Constraining the time variation of Newton's constant <i>G</i> with gravitational-wave standard sirens and supernovae. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 052-052.	1.9	53

ARTICLE IF CITATIONS # A two per cent Hubble constant measurement from standard sirens within five years. Nature, 2018, 562, 13.7 282 56 545-547. New parametrized equation of state for dark energy surveys. Physical Review D, 2018, 98, . 1.6 Limits on the number of spacetime dimensions from GW170817. Journal of Cosmology and 58 1.9 89 Astroparticle Physics, 2018, 2018, 048-048. Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations. 59 Astrophysical Journal, 2018, 858, 79. Precise peculiar velocities from gravitational waves accompanied by electromagnetic signals and 60 1.6 6 cosmological applications. Physical Review D, 2018, 98, . Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory. Physical Review D, 2018, 97, . 1.6 62 Price of shifting the Hubble constant. Physical Review D, 2018, 97, . 1.6 44 Localization of binary neutron star mergers with second and third generation gravitational-wave 1.6 detectors. Physical Review D, 2018, 97, . THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 64 1.2 56 2018, 62, 662-682. A More Accurate and Competitive Estimative of H0 in Intermediate Redshifts. Brazilian Journal of Physics, 2018, 48, 521-530. Measuring the Hubble constant: Gravitational wave observations meet galaxy clustering. Physical 66 1.6 42 Review D, 2018, 98, . \$\$Lambda \$\$CDM: Much More Than We Expected, but Now Less Than What We Want. Foundations of Physics, 2018, 48, 1261-1278. Status of Neutrino Properties and Future Prospectsâ€"Cosmological and Astrophysical Constraints. 68 1.0 102 Frontiers in Physics, 2018, 5, . Gravitational probes of dark matter physics. Physics Reports, 2018, 761, 1-60. Gravitational wave constraints on dark sector models. Physical Review D, 2018, 98, . 70 1.6 43 Measuring the Hubble Constant with Neutron Star Black Hole Mergers. Physical Review Letters, 2018, 121,021303. Lecture Notes in Cosmology. UNITEXT for Physics, 2018, , . 72 0.130 Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 0, , .

#	Article	IF	CITATIONS
74	Testing Gravitational Memory Generation with Compact Binary Mergers. Physical Review Letters, 2018, 121, 071102.	2.9	24
75	How gravitational waves could solve some of the Universe's deepest mysteries. Nature, 2018, 556, 164-168.	13.7	3
76	Conservative cosmology: combining data with allowance for unknown systematics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 002-002.	1.9	31
77	Analysis of the YuRawa gravitational potential in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 50="" 617<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>7 Td.6stret</td><td>chy¤"false">)</td></mml:mo)></mml:mo </mmi:math 	7 T d.6 stret	ch y¤ "false">)
78	2016, 97, . Gravitational waves from spinning binary black holes at the leading post-Newtonian orders at all orders in spin. Physical Review D, 2018, 97, .	1.6	15
79	Inherently stable effective field theory for dark energy and modified gravity. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 041-041.	1.9	11
80	GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era. Experimental Astronomy, 2019, 48, 77-95.	1.6	38
81	Standard sirens with a running Planck mass. Physical Review D, 2019, 99, .	1.6	71
82	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
83	Observing the Dark Sector. Universe, 2019, 5, 137.	0.9	6
84	Lecture Notes on Gravitational Waves. Journal of Physics: Conference Series, 2019, 1263, 012008.	0.3	3
85	A Hubble constant measurement from superluminal motion of the jet in GW170817. Nature Astronomy, 2019, 3, 940-944.	4.2	201
86	Listening to the sound of dark sector interactions with gravitational wave standard sirens. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 037-037.	1.9	77
87	Detectability of neutron star merger afterglows. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2405-2411.	1.6	27
88	Binary Neutron Star (BNS) Merger: What We Learned from Relativistic Ejecta of GW/GRB 170817A. Physics, 2019, 1, 194-228.	0.5	2
89	A stranger in a strange land: a perspective on archaeological responses to the palaeogenetic revolution from an archaeologist working amongst palaeogeneticists. World Archaeology, 2019, 51, 586-601.	0.5	37
90	Cosmological Tests of Gravity. Annual Review of Astronomy and Astrophysics, 2019, 57, 335-374.	8.1	111
91	Astrophysical science metrics for next-generation gravitational-wave detectors. Classical and Quantum Gravity, 2019, 36, 245010.	1.5	27

#	Article	IF	CITATIONS
92	Probing cosmic anisotropy with GW/FRB as upgraded standard sirens. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 016-016.	1.9	8
93	Gravitational-wave follow-up with CTA after the detection of GRBs in the TeV energy domain. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3476-3482.	1.6	10
94	Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope. Physical Review D, 2019, 99, .	1.6	39
95	Parametric variogram matrices incorporating both bounded and unbounded functions. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1669-1679.	1.9	5
96	Strong gravitational lensing of explosive transients. Reports on Progress in Physics, 2019, 82, 126901.	8.1	93
97	The constraint ability of Hubble parameter by gravitational wave standard sirens on cosmological parameters. European Physical Journal C, 2019, 79, 1.	1.4	3
98	Model-independent measurement of the absolute magnitude of Type Ia supernovae with gravitational-wave sources. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 009-009.	1.9	9
99	Continuous Gravitational Waves from Neutron Stars: Current Status and Prospects. Universe, 2019, 5, 217.	0.9	71
100	Observational constraints on interacting Tsallis holographic dark energy model. European Physical Journal C, 2019, 79, 1.	1.4	55
101	Cosmological parameter estimation with future gravitational wave standard siren observation from the Einstein Telescope. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 068-068.	1.9	37
102	Constraining the neutron-matter equation of state with gravitational waves. Physical Review D, 2019, 100, .	1.6	31
103	Dark sector evolution in Horndeski models. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	1.9	12
104	Convolutional neural networks: A magic bullet for gravitational-wave detection?. Physical Review D, 2019, 100, .	1.6	79
105	Quantum-bias cosmology: Acceleration from holographic information capacity. Physical Review D, 2019, 100, .	1.6	2
106	Calibrating gravitational-wave detectors with GW170817. Classical and Quantum Gravity, 2019, 36, 125002.	1.5	9
107	Exploring the sensitivity of gravitational wave detectors to neutron star physics. Physical Review D, 2019, 99, .	1.6	78
108	Multi-messenger EOS constraints using binary NS mergers. Annals of Physics, 2019, 410, 167925.	1.0	2
109	Constraints on the interacting vacuum–geodesic CDM scenario. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3423-3438.	1.6	82

#	Article	IF	CITATIONS
110	A year in the life of GW170817: the rise and fall of a structured jet from a binary neutron star merger. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	90
111	A measurement of the Hubble constant from angular diameter distances to two gravitational lenses. Science, 2019, 365, 1134-1138.	6.0	44
112	Tensions between the early and late Universe. Nature Astronomy, 2019, 3, 891-895.	4.2	738
113	Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nature Reviews Physics, 2019, 1, 600-608.	11.9	53
114	Serendipitous discoveries of kilonovae in the LSST main survey: maximizing detections of sub-threshold gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4260-4273.	1.6	26
115	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
116	Optical properties of high-quality oxide coating materials used in gravitational-wave advanced detectors. JPhys Materials, 2019, 2, 035004.	1.8	26
117	Multimessenger parameter estimation of GW170817. European Physical Journal A, 2019, 55, 1.	1.0	158
118	Dark matter decaying in the late Universe can relieve the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub> tension. Physical Review D, 2019, 99, .</mml:math 	1.6	139
119	Ultralight boson cloud depletion in binary systems. Physical Review D, 2019, 99, .	1.6	54
120	The mystery of the cosmic ages. Nature Astronomy, 2019, 3, 384-385.	4.2	2
121	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> tension as a hint for a transition in gravitational theory. Physical Review D, 2019, 99, .	1.6	60
122	Quantifying the evidence for the current speed-up of the Universe with low and intermediate-redshift data. A more model-independent approach. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 026-026.	1.9	27
123	Joint cosmological inference of standard sirens and gravitational wave weak lensing. Physical Review D, 2019, 99, .	1.6	24
124	An optimised gravitational wave follow-up strategy with the Australian Square Kilometre Array Pathfinder. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	10
125	Dynamical system analysis of quintessence models with exponential potential — Revisited. Modern Physics Letters A, 2019, 34, 1950069.	0.5	0
126	An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	227
127	The local and distant Universe: stellar ages and <i>H</i> ₀ . Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	1.9	48

#	Article	IF	CITATIONS
128	Constraining power of cosmological observables: Blind redshift spots and optimal ranges. Physical Review D, 2019, 99, .	1.6	20
129	Probing the pre-BBN universe with gravitational waves from cosmic strings. Journal of High Energy Physics, 2019, 2019, 1.	1.6	101
130	Binaries as Sources of Gravitational Waves. , 2019, , 191-207.		0
131	Gravitational-Wave Astronomy by Precision Laser Interferometry. Springer Series in Chemical Physics, 2019, , 89-105.	0.2	0
132	Cosmologically viable generalized Einstein-aether theories. Physical Review D, 2019, 99, .	1.6	12
133	New probe of dark matter-induced fifth force with neutron star inspirals. Physical Review D, 2019, 99, .	1.6	16
134	Prospects for Resolving the Hubble Constant Tension with Standard Sirens. Physical Review Letters, 2019, 122, 061105.	2.9	143
135	Unbiased Hubble constant estimation from binary neutron star mergers. Physical Review D, 2019, 100, .	1.6	50
136	Probing Massive Black Hole Binary Populations with LISA. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	44
137	The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. Astronomy and Astrophysics, 2019, 628, L7.	2.1	43
138	Revisiting scalar and tensor perturbations in a nonlocal gravity. Physical Review D, 2019, 100, .	1.6	5
139	Waveform systematics for binary neutron star gravitational wave signals: Effects of spin, precession, and the observation of electromagnetic counterparts. Physical Review D, 2019, 100, .	1.6	23
140	Parallelized inference for gravitational-wave astronomy. Physical Review D, 2019, 100, .	1.6	62
141	Physics of eccentric binary black hole mergers: A numerical relativity perspective. Physical Review D, 2019, 100, .	1.6	26
142	Higher order gravitational-wave modes with likelihood reweighting. Physical Review D, 2019, 100, .	1.6	52
143	Binary neutron star mergers: Effects of spin and post-merger dynamics. Physical Review D, 2019, 100, .	1.6	27
144	Jet Propagation in Neutron Star Mergers and GW170817. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	35
145	Gravitational waves and higher dimensions: Love numbers and Kaluza-Klein excitations. Physical Review D, 2019, 100, .	1.6	28

	CITATION R	EPORT	
#	Article	IF	CITATIONS
146	Cosmic Expansion History from Line-Intensity Mapping. Physical Review Letters, 2019, 123, 251301.	2.9	28
147	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
148	Quantum expander for gravitational-wave observatories. Light: Science and Applications, 2019, 8, 118.	7.7	21
149	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	27
150	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
151	Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Physical Review D, 2019, 99, .	1.6	144
152	Stochastic gravitational wave backgrounds. Reports on Progress in Physics, 2019, 82, 016903.	8.1	176
153	Revisiting Ryskin's model of cosmic acceleration. Astroparticle Physics, 2020, 114, 77-79.	1.9	2
154	Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nature Astronomy, 2020, 4, 26-31.	4.2	31
155	Kilonovae. Living Reviews in Relativity, 2020, 23, 1.	8.2	268
156	Neutron star masses in <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e1456" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn>2Physics of the Dark Universe, 2020, 27, 100411.</mml:mn></mml:mrow></mml:msup></mml:math>	ıl:mn> <td>ml:mrow></td>	ml:mrow>
157	Revisiting the coincidence problem in f(R) gravitation. New Astronomy, 2020, 77, 101351.	0.8	13
158	The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3904-3927.	1.6	53
159	Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3395-3402.	1.6	52
160	Scrutinizing various phenomenological interactions in the context of holographic Ricci dark energy models. European Physical Journal C, 2020, 80, 1.	1.4	17
161	Hunting for the host galaxy groups of binary black holes and the application in constraining Hubble constant. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1786-1800.	1.6	25
162	A thousand days after the merger: Continued X-ray emission from GW170817. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5643-5651.	1.6	79
163	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447

#	Article	IF	CITATIONS
164	Gravity in the infrared and effective nonlocal models. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 010-010.	1.9	29
165	Cosmological inference using gravitational wave standard sirens: A mock data analysis. Physical Review D, 2020, 101, .	1.6	95
166	Gravity in the era of equality: Towards solutions to the Hubble problem without fine-tuned initial conditions. Physical Review D, 2020, 102, .	1.6	73
167	Using machine learning for transient classification in searches for gravitational-wave counterparts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1320-1331.	1.6	10
168	Systematic Uncertainty of Standard Sirens from the Viewing Angle of Binary Neutron Star Inspirals. Physical Review Letters, 2020, 125, 201301.	2.9	28
169	Dark Energy: is it â€~just' Einstein's Cosmological Constant ĥ?. Contemporary Physics, 2020, 61, 132-145.	0.8	3
170	Neutron star mergers and how to study them. Living Reviews in Relativity, 2020, 23, 1.	8.2	31
171	A nontrivial footprint of standard cosmology in the future observations of low-frequency gravitational waves. General Relativity and Gravitation, 2020, 52, 1.	0.7	3
172	Quantifying the impacts of future gravitational-wave data on constraining interacting dark energy. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 038-038.	1.9	20
173	A novel method of measuring cosmological distances using broad-line regions of quasars. Science Bulletin, 2020, 65, 1419-1421.	4.3	10
174	The Physics of Kilonovae. Frontiers in Physics, 2020, 8, .	1.0	5
175	Stability analysis for cosmological models in f(T,ÂB) gravity. European Physical Journal C, 2020, 80, 1.	1.4	42
176	Modelling double neutron stars: radio and gravitational waves. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1587-1610.	1.6	36
177	An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1841-1852.	1.6	20
178	Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO. Physical Review D, 2020, 102, .	1.6	42
179	The Tension over the Hubble-Lemaitre Constant. , 0, , .		0
180	Constraining properties of neutron star merger outflows with radio observations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2449-2464.	1.6	10
181	Imprints of the redshift evolution of double neutron star merger rate on the signal-to-noise ratio distribution. Monthly Notices of the Royal Astronomical Society, 2020, 496, 523-531.	1.6	2

#	Article	IF	CITATIONS
182	Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2703-2718.	1.6	57
183	Implications of the search for optical counterparts during the second part of the Advanced LIGO's and Advanced Virgo's third observing run: lessons learned for future follow-up observations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1181-1196.	1.6	39
184	A crucial test of the phantom closed cosmological model. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L101-L104.	1.2	6
185	Prospects of probing dark energy with eLISA: Standard versus null diagnostics. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2896-2907.	1.6	4
186	The expansion of the universe in binary star systems. Physics of the Dark Universe, 2020, 30, 100732.	1.8	2
187	Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the spin orientation. Physical Review D, 2020, 102, .	1.6	12
188	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	0.7	198
189	Measuring the Hubble constant with a sample of kilonovae. Nature Communications, 2020, 11, 4129.	5.8	35
190	Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment. Physical Review D, 2020, 102, .	1.6	9
191	Rapid parameter estimation of gravitational waves from binary neutron star coalescence using focused reduced order quadrature. Physical Review D, 2020, 102, .	1.6	34
192	A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 012-012.	1.9	24
193	The Hubble constant from eight time-delay galaxy lenses. Monthly Notices of the Royal Astronomical Society, 2020, 501, 784-801.	1.6	38
194	Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA. Physical Review D, 2020, 102, .	1.6	12
195	Gravitational-wave inference in the catalog era: Evolving priors and marginal events. Physical Review D, 2020, 102, .	1.6	21
196	H0LiCOW – XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using <i>HST</i> and Subaru deep imaging. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1406-1419.	1.6	10
197	Strong lensing as a giant telescope to localize the host galaxy of gravitational wave event. Monthly Notices of the Royal Astronomical Society, 2020, 497, 204-209.	1.6	25
198	Bayesian inference for compact binary coalescences with <scp>bilby</scp> : validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3295-3319.	1.6	213
199	Evolution of inspiralling neutron star binaries: Effects of tidal interactions and orbital eccentricities. Physical Review D, 2020, 102, .	1.6	7

ARTICLE IF CITATIONS # Model independent perspectives on coupled dark energy and the swampland. Physical Review D, 2020, 200 1.6 7 102, . Neutron-star tidal deformability and equation-of-state constraints. General Relativity and 159 Gravitation, 2020, 52, 1. Strong lensing time delay constraints on dark energy: a forecast. Journal of Cosmology and 202 1.9 7 Astroparticle Physics, 2020, 2020, 057-057. Electromagnetic counterparts to gravitational wave events from <i>Gaia</i>. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3264-3273. Gravitational Waves from Coalescing Binaries. Synthesis Lectures on Wave Phenomena in the Physical 204 0.0 0 Sciences, 2020, 2, 1-115. The impact of peculiar velocities on the estimation of the Hubble constant from gravitational wave standard sirens. Monthly Notices of the Royal Astronomical Society, 2020, 495, 90-97. 1.6 Gaussian processes reconstruction of modified gravitational wave propagation. Physical Review D, 206 1.6 37 2020, 101, . Forecasting the interaction in dark matter-dark energy models with standard sirens from the Einstein 1.9 telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 021-021. 208 O3 highlights. Nature Reviews Physics, 2020, 2, 222-223. 11.9 3 Science case for the Einstein telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 209 050-050. The Hubble constant tension with next-generation galaxy surveys. Journal of Cosmology and 210 1.9 23 Astroparticle Physics, 2020, 2020, 053-053. Evolution of the electric field along null rays for arbitrary observers and spacetimes. Physical 1.6 Review D, 2020, 101, . Latest evidence for a late time vacuum–geodesic CDM interaction. Physics of the Dark Universe, 2020, 212 1.8 22 29, 100583. HOLiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3 if tension between early- and 1.6 late-Universe probes. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1420-1439. High accuracy on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1313 214 altimg="si162.svg"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow>< constraints from gravitational wave lensing events. Physics of the Dark Universe, 2020, 28, 100517. Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens 34 from Taiji. Science Bulletin, 2020, 65, 1340-1348. A measurement of the Hubble constant from Type II supernovae. Monthly Notices of the Royal 216 1.6 50 Astronomical Society, 2020, 496, 3402-3411. Propagation of axial gravitational waves in Rastall gravity. Physics of the Dark Universe, 2020, 30, 1.8 100630.

#	Article	IF	CITATIONS
218	A new cosmological probe using super-massive black hole shadows *. Chinese Physics C, 2020, 44, 055101.	1.5	23
219	Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes. Physical Review D, 2020, 101, .	1.6	46
220	The key role of magnetic fields in binary neutron star mergers. General Relativity and Gravitation, 2020, 52, 1.	0.7	48
221	Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4860-4892.	1.6	12
222	Dynamic scheduling: target of opportunity observations of gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4366-4371.	1.6	11
223	Some optimizations on detecting gravitational wave using convolutional neural network. Frontiers of Physics, 2020, 15, 1.	2.4	21
224	Tsallis holographic dark energy in fractal universe. Modern Physics Letters A, 2020, 35, 2050107.	0.5	19
225	Forecasts on the speed of gravitational waves at high <i>z</i> . Journal of Cosmology and Astroparticle Physics, 2020, 2020, 015-015.	1.9	26
226	Will cosmic gravitational wave sirens determine the Hubble constant?. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 019-019.	1.9	10
227	Oscillating scalar fields and the Hubble tension: A resolution with novel signatures. Physical Review D, 2020, 101, .	1.6	183
228	Prospect for constraining holographic dark energy with gravitational wave standard sirens from the Einstein Telescope. European Physical Journal C, 2020, 80, 1.	1.4	25
229	The evidence of cosmic acceleration and observational constraints. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 059-059.	1.9	33
230	Binary Neutron Star Mergers After GW170817. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	19
231	A Brief Overview of Black Hole-Neutron Star Mergers. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	35
232	Asymmetric mass ratios for bright double neutron-star mergers. Nature, 2020, 583, 211-214.	13.7	38
233	Measuring <i>H</i> ₀ with pulsar timing arrays. Classical and Quantum Gravity, 2020, 37, 085013.	1.5	2
234	Optimizing gravitational waves follow-up using galaxies stellar mass. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4768-4779.	1.6	28
235	Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3419-3434.	1.6	35

#	ARTICLE	IF	CITATIONS
236	Effective field theory of dark energy: A review. Physics Reports, 2020, 857, 1-63.	10.3	113
237	Measuring Gravity at Cosmological Scales. Universe, 2020, 6, 20.	0.9	25
238	Prospects of joint detections of neutron star mergers and short GRBs with Gaussian structured jets. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1633-1639.	1.6	11
239	Exploring the "L–Îf―Relation of H ii Galaxies and Giant Extragalactic H ii Regions Acting as Standard Candles. Astrophysical Journal, 2020, 888, 113.	1.6	20
240	Implications of the search for optical counterparts during the first six months of the Advanced LIGO's and Advanced Virgo's third observing run: possible limits on the ejecta mass and binary properties. Monthly Notices of the Royal Astronomical Society, 2020, 492, 863-876.	1.6	71
241	Black hole shadow as a <i>standard ruler</i> in cosmology. Classical and Quantum Gravity, 2020, 37, 065016.	1.5	43
242	Standard siren speeds: improving velocities in gravitational-wave measurements of HO. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3803-3815.	1.6	42
243	Beyond two-point statistics: using the minimum spanning tree as a tool for cosmology. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1709-1726.	1.6	20
244	Dependence of gravitational wave transient rates on cosmic star formation and metallicity evolution history. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L6-L10.	1.2	48
245	Evolution of Quasiperiodic Structures in a Non-Ideal Hydrodynamic Description of Phase Transitions. Universe, 2020, 6, 42.	0.9	2
246	Updated parameter estimates for GW190425 using astrophysical arguments and implications for the electromagnetic counterpart. Monthly Notices of the Royal Astronomical Society, 2020, 494, 190-198.	1.6	37
247	Lensing efficiency for gravitational wave mergers. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3359-3363.	1.6	15
248	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
249	Corrections to the gravitational wave phasing. Physical Review D, 2020, 101, .	1.6	4
250	Improved early warning of compact binary mergers using higher modes of gravitational radiation: a population study. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1612-1622.	1.6	7
251	Machine Learning the Cosmic Curvature in a Model-independent Way. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	23
252	Testing the general theory of relativity using gravitational wave propagation from dark standard sirens. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1136-1144.	1.6	50
253	Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. , 2021, , 1-27.		3

#	Article	IF	CITATIONS
254	Determining the Hubble constant without the sound horizon: Measurements from galaxy surveys. Physical Review D, 2021, 103, .	1.6	46
255	Optimization of linear transducer calibration system using laser interferometer based on the Abbe principle. IOP Conference Series: Materials Science and Engineering, 0, 980, 012049.	0.3	1
256	Mergers of Binary Neutron Star Systems: A Multimessenger Revolution. Frontiers in Astronomy and Space Sciences, 2021, 7, .	1.1	16
257	The LISA-Taiji Network: Precision Localization of Coalescing Massive Black Hole Binaries. Research, 2021, 2021, 6014164.	2.8	24
258	Cosmological constraints on late-Universe decaying dark matter as a solution to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub> tension. Physical Review D, 2021, 103, .</mml:math 	1.6	36
259	The phenomenology of dynamical neutron star tides. Monthly Notices of the Royal Astronomical Society, 2021, 503, 533-539.	1.6	18
260	China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Communications Physics, 2021, 4, .	2.0	26
261	Toward observing neutron star collapse with gravitational wave detectors. Physical Review D, 2021, 103, .	1.6	9
262	Hubble constant and sound horizon from the late-time Universe. Physical Review D, 2021, 103, .	1.6	11
263	Early dark energy in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mi>k</mml:mi></mml:math> -essence. Physical Review D, 2021, 103, .	1.6	24
264	Gravitational wave friction in light of GW170817 and GW190521. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043-043.	1.9	24
265	Accurate precision cosmology with redshift unknown gravitational wave sources. Physical Review D, 2021, 103, .	1.6	79
266	The Advanced Virgo photon calibrators. Classical and Quantum Gravity, 2021, 38, 075007.	1.5	20
267	Ground-based gravitational wave detection and its implications. Journal of the Korean Physical Society, 2021, 78, 975-984.	0.3	0
268	Neutron conversion–diffusion: a new model for structured short gamma-ray burst jets compatible with GRB 170817. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2499-2513.	1.6	7
269	Newtonian calibrator tests during the Virgo O3 data taking. Classical and Quantum Gravity, 2021, 38, 075012.	1.5	11
270	Mapping the inhomogeneous Universe with standard sirens: degeneracy between inhomogeneity and modified gravity theories. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3179-3193.	1.6	9
271	Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Classical and Quantum Gravity, 2021, 38, 085013.	1.5	15

#	Article	IF	CITATIONS
272	Interpreting binary neutron star mergers: describing the binary neutron star dynamics, modelling gravitational waveforms, and analyzing detections. General Relativity and Gravitation, 2021, 53, 1.	0.7	67
273	Physical approach to the marginalization of LIGO calibration uncertainties. Physical Review D, 2021, 103, .	1.6	27
274	Modeling of Accelerating Universe with Bulk Viscous Fluid in Bianchi V Spaceâ€Time. Fortschritte Der Physik, 2021, 69, 2100007.	1.5	18
275	GW170817 event rules out general relativity in favor of vector gravity. European Physical Journal: Special Topics, 2021, 230, 1149-1166.	1.2	1
276	Optimizing serendipitous detections of kilonovae: cadence and filter selection. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2822-2831.	1.6	16
277	Ghost dark energy in Rastall theory. Modern Physics Letters A, 2021, 36, 2150090.	0.5	2
278	Testing F(R) Gravity with the Simulated Data of Gravitational Waves from the Einstein Telescope. Astrophysical Journal, 2021, 911, 135.	1.6	16
279	Statistical and systematic uncertainties in extracting the source properties of neutron star-black hole binaries with gravitational waves. Physical Review D, 2021, 103, .	1.6	12
280	Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 2021, 3, 344-366.	11.9	96
281	Testing the quasar Hubble diagram with LISA standard sirens. Physical Review D, 2021, 103, .	1.6	30
282	Deep learning approach to Hubble parameter. Computer Physics Communications, 2021, 261, 107809.	3.0	11
283	Observational constraint on the dark energy scalar field *. Chinese Physics C, 2021, 45, 045103.	1.5	6
284	SPHINCS_BSSN: a general relativistic smooth particle hydrodynamics code for dynamical spacetimes. Classical and Quantum Gravity, 2021, 38, 115002.	1.5	15
285	Hubble parameter estimation via dark sirens with the LISA-Taiji network. National Science Review, 2022, 9, nwab054.	4.6	22
286	Prospects for Measuring the Hubble Constant with Neutron-Star–Black-Hole Mergers. Physical Review Letters, 2021, 126, 171102.	2.9	19
287	Measuring <i>H</i> O using X-ray and SZ effect observations of dynamically relaxed galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1062-1076.	1.6	11
288	Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Physical Review D, 2021, 103, .	1.6	527
289	Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal. Physical Review D, 2021, 103, .	1.6	20

#	Article	IF	CITATIONS
290	Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events. Physical Review D, 2021, 103, .	1.6	16
291	Gravitational-wave detector networks: standard sirens on cosmology and modified gravity theory. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 044.	1.9	25
292	Probing gravity and growth of structure with gravitational waves and galaxies' peculiar velocity. Physical Review D, 2021, 103, .	1.6	16
293	Sky localization of space-based gravitational wave detectors. Physical Review D, 2021, 103, .	1.6	15
294	Reliability of parameter estimates in the first observing run of Advanced LIGO. Physical Review D, 2021, 103, .	1.6	1
295	Uncertain times: the redshift–time relation from cosmology and stars. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2764-2783.	1.6	26
296	Calibration of the Advanced Spectral Leakage scheme for neutron star merger simulations, and extension to smoothed-particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2575-2593.	1.6	8
297	Testing hilltop supernatural inflation with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 056.	1.9	2
298	High angular resolution gravitational wave astronomy. Experimental Astronomy, 2021, 51, 1441-1470.	1.6	21
299	Gravitational-wave cosmological distances in scalar-tensor theories of gravity. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 050.	1.9	14
300	The first 5 years of gravitational-wave astrophysics. Science, 2021, 372, .	6.0	8
301	Comparison of different approaches to the quasi-static approximation in Horndeski models. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017.	1.9	14
302	Probing modified gravitational-wave propagation through tidal measurements of binary neutron star mergers. Physical Review D, 2021, 103, .	1.6	9
303	Do LIGO/Virgo Black Hole Mergers Produce AGN Flares? The Case of GW190521 and Prospects for Reaching a Confident Association. Astrophysical Journal Letters, 2021, 914, L34.	3.0	39
304	Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations. Physical Review D, 2021, 103, .	1.6	43
305	Cosmological Parameter Inference with Bayesian Statistics. Universe, 2021, 7, 213.	0.9	18
306	The Heraklion Extragalactic Catalogue (HECATE): a value-added galaxy catalogue for multimessenger astrophysics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1896-1915.	1.6	17
307	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097

#	ARTICLE	IF	CITATIONS
308	Reconstructing teleparallel gravity with cosmic structure growth and expansion rate data. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 015.	1.9	31
309	GstLAL: A software framework for gravitational wave discovery. SoftwareX, 2021, 14, 100680.	1.2	37
310	Identifying when precession can be measured in gravitational waveforms. Physical Review D, 2021, 103, .	1.6	18
311	Multimessenger Detection Rates and Distributions of Binary Neutron Star Mergers and Their Cosmological Implications. Astrophysical Journal, 2021, 916, 54.	1.6	28
312	Short gamma-ray burst jet propagation in binary neutron star merger environments. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3483-3498.	1.6	16
313	Measuring cosmological parameters with a luminosity–time correlation of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2021, 507, 730-742.	1.6	35
314	Relieving the H ₀ tension with a new interacting dark energy model. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 005.	1.9	39
315	A new comparison between holographic dark energy and standard \$\$varLambda \$\$-cosmology in the context of cosmography method. European Physical Journal C, 2021, 81, 1.	1.4	3
316	In the realm of the Hubble tension—a review of solutions [*] . Classical and Quantum Gravity, 2021, 38, 153001.	1.5	816
317	<scp>Bilby</scp> -MCMC: an MCMC sampler for gravitational-wave inference. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2037-2051.	1.6	25
318	Calibrating systematic errors in the distance determination with the luminosity–distance space large-scale structure of dark sirens and its potential applications. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3381-3386.	1.6	1
319	Cosmology with LIGO/Virgo dark sirens: Hubble parameter and modified gravitational wave propagation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 026.	1.9	62
320	Accelerating parameter estimation of gravitational waves from compact binary coalescence using adaptive frequency resolutions. Physical Review D, 2021, 104, .	1.6	16
321	Cosmology with standard sirens at cosmic noon. Physical Review D, 2021, 104, .	1.6	21
322	Advanced Virgo: Status of the Detector, Latest Results and Future Prospects. Universe, 2021, 7, 322.	0.9	15
323	Constraining cosmological parameters from strong lensing with DECIGO and B-DECIGO sources. Monthly Notices of the Royal Astronomical Society, 2021, 507, 761-771.	1.6	6
324	<i>Swift</i> /UVOT follow-up of gravitational wave alerts in the O3 era. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1296-1317.	1.6	15
325	Distinguish the f(T) model from \$\$Lambda \$\$CDM model with Gravitational Wave observations. European Physical Journal C, 2021, 81, 1.	1.4	5

#	Article	IF	CITATIONS
326	Biases in parameter estimation from overlapping gravitational-wave signals in the third-generation detector era. Physical Review D, 2021, 104, .	1.6	25
327	Peculiar velocities in the local Universe: comparison of different models and the implications for H0 and dark matter. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2697-2713.	1.6	14
328	Unveiling the gravitational universe at \hat{l} ¼-Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	1.6	88
329	Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade. Astroparticle Physics, 2021, 131, 102606.	1.9	37
330	Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence. Astrophysical Journal, 2021, 919, 82.	1.6	16
331	Sterile neutrinos. Physics Reports, 2021, 928, 1-63.	10.3	92
332	Fundamental physics using the temporal gravitational wave background. Physical Review D, 2021, 104, .	1.6	11
333	Toward optomechanical parametric instability prediction in ground-based gravitational wave detectors. Applied Optics, 2021, 60, 8540.	0.9	2
334	Probing the nature of black holes: Deep in the mHz gravitational-wave sky. Experimental Astronomy, 2021, 51, 1385-1416.	1.6	29
335	Using gravitational wave parallax to measure the Hubble parameter with pulsar timing arrays. Physical Review D, 2021, 104, .	1.6	8
336	Re-evaluation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si11.svg"><mml:msub><mml:mstyle mathvariant="normal"><mml:mi>l©</mml:mi><mml:mi>k</mml:mi></mml:mstyle </mml:msub></mml:math> of the normalised Friedmann-Lemaître-Robertson-Walker model: Implications for Hubble constant	0.8	2
338	determinations. New Astronomy, 2021, 88, 101609. A combined analysis of the <i>H</i> O late time direct measurements and the impact on the Dark Energy sector. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2065-2073.	1.6	78
339	Gravitational-wave cosmology with extreme mass-ratio inspirals. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4512-4531.	1.6	26
340	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
341	New methods to assess and improve LIGO detector duty cycle. Classical and Quantum Gravity, 2020, 37, 175008.	1.5	5
342	Cosmological viable models in <i>f</i> (<i>T</i> , <i>B</i>) theory as solutions to the <i>H</i> _{0} tension. Classical and Quantum Gravity, 2020, 37, 165002.	1.5	63
343	Constraining teleparallel gravity through Gaussian processes. Classical and Quantum Gravity, 2020, 38, 055007.	1.5	48
344	Forecast for cosmological parameter estimation with gravitational-wave standard siren observation from the Cosmic Explorer. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 051-051.	1.9	41

#	Article	IF	CITATIONS
345	Testing the violation of the equivalence principle in the electromagnetic sector and its consequences in <i>f</i> (<i>T</i>) gravity. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 047-047.	1.9	19
346	Constraints on the distance duality relation with standard sirens. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 019-019.	1.9	29
347	Sterile neutrino self-interactions: <i>H</i> _O tension and short-baseline anomalies. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 029-029.	1.9	37
348	Searching for cross-correlation between stochastic gravitational-wave background and galaxy number counts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1666-1672.	1.6	19
349	Gravitational-wave astronomy with a physical calibration model. Physical Review D, 2020, 102, .	1.6	28
350	Standardizing kilonovae and their use as standard candles to measure the Hubble constant. Physical Review Research, 2020, 2, .	1.3	35
351	Confronting inflation models with the coming observations on primordial gravitational waves. European Physical Journal C, 2020, 80, 1.	1.4	3
352	A model-independent constraint on the Hubble constant with gravitational waves from the Einstein Telescope. International Journal of Modern Physics D, 2020, 29, 2050105.	0.9	5
353	The Binary–Host Connection: Astrophysics of Gravitational-Wave Binaries from Host Galaxy Properties. Astrophysical Journal, 2020, 905, 21.	1.6	17
354	Fast Parameter Estimation of Binary Mergers for Multimessenger Follow-up. Astrophysical Journal Letters, 2020, 905, L9.	3.0	15
355	El-CID: a filter for gravitational-wave electromagnetic counterpart identification. Monthly Notices of the Royal Astronomical Society, 2021, 509, 914-930.	1.6	6
356	A New Physics Would Explain What Looks Like an Irreconcilable Tension between the Values of Hubble Constants and Allows <i>H₀</i> to Be Calculated Theoretically Several Ways. Journal of Modern Physics, 2021, 12, 1656-1707.	0.3	1
357	Formation and evolution of binary neutron stars: mergers and their host galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1557-1586.	1.6	17
358	Growth of massive black hole seeds by migration of stellar and primordial black holes: gravitational waves and stochastic background. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 035.	1.9	6
359	Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers. Universe, 2021, 7, 394.	0.9	3
360	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	1.6	12
361	On measuring the Hubble constant with X-ray reverberation mapping of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2021, 509, 619-633.	1.6	3
362	Is GW170817 a multimessenger neutron star-primordial black hole merger?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 019.	1.9	9

#	Article	IF	CITATIONS
363	Detectability of gravitational higher order modes in the third-generation era. Physical Review D, 2021, 104, .	1.6	7
364	Cosmology with Love: Measuring the Hubble constant using neutron star universal relations. Physical Review D, 2021, 104, .	1.6	20
366	Basics on the Observations of Gravitational Waves. Astronomy and Astrophysics Library, 2018, , 489-536.	0.2	0
368	Review of the Mysteries of Galactic Dark Matter. Modern Physics, 2018, 08, 162-176.	0.1	2
369	A Possible Solution to the Disagreement about the Hubble Constant II. Journal of Modern Physics, 2020, 11, 1215-1235.	0.3	0
370	Double end-mirror sloshing cavity for optical dilution of thermal noise in mechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1643.	0.9	1
371	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	1.5	6
372	Initial results from the LIGO Newtonian calibrator. Physical Review D, 2021, 104, .	1.6	10
373	Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929. Classical and Quantum Gravity, 2021, 38, 235004.	1.5	36
374	ASAS-SN search for optical counterparts of gravitational-wave events from the third observing run of Advanced LIGO/Virgo. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3427-3440.	1.6	14
375	Determining the Cosmological Constant Using Gravitational Wave Observations. Journal of Modern Physics, 2020, 11, 1-8.	0.3	2
376	Method for electromechanical modeling of Johnson noise in Advanced LIGO. Classical and Quantum Gravity, 2021, 38, 025014.	1.5	2
377	Searching for low radio-frequency gravitational wave counterparts in wide-field LOFAR data. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5018-5029.	1.6	5
378	Gravitational-Wave Observations by Advanced LIGO and Virgo. Journal of Physics: Conference Series, 2020, 1468, 012218.	0.3	0
379	Experimental Study of Nuclear Equation of State Using Heavy Ion Collisions at RIKEN-RIBF. , 2020, , .		0
380	Unbiased likelihood-free inference of the Hubble constant from light standard sirens. Physical Review D, 2021, 104, .	1.6	9
381	The Gravitational-wave physics II: Progress. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	54
382	Constraining the host galaxy halos of massive black holes from LISA event rates. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 055-055.	1.9	6

	Сітатіої	n Report	
#	Article	IF	CITATIONS
383	Electromagnetic Counterparts of Gravitational Waves in the Hz-kHz Range. , 2021, , 1-45.		0
384	Gravitational waves from spinning neutron stars as not-quite-standard sirens. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5179-5187.	1.6	10
385	Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves. Galaxies, 2021, 9, 104.	1,1	4
386	How can gravitational-wave standard sirens and 21-cm intensity mapping jointly provide a precise late-universe cosmological probe?. Physical Review D, 2021, 104, .	1.6	24
387	Characterising the Extended Morphologies of BL Lacertae Objects at 144 MHz with LOFAR. Astrophysical Journal, Supplement Series, 2021, 257, 30.	3.0	5
388	Small-scale clumping at recombination and the Hubble tension. Physical Review D, 2021, 104, .	1.6	14
389	The science case for LIGO-India. Classical and Quantum Gravity, 2022, 39, 025004.	1.5	48
390	A buyer's guide to the Hubble constant. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	83
394	No-go guide for the Hubble tension: Late-time solutions. Physical Review D, 2022, 105, .	1.6	33
395	A new measurement of the Hubble constant using fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2022, 511, 662-667.	1.6	31
396	The Gravitational-wave Optical Transient Observer (GOTO): prototype performance and prospects for transient science. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2405-2422.	1.6	18
397	Calculating black hole shadows: Review of analytical studies. Physics Reports, 2022, 947, 1-39.	10.3	172
398	Discovering gravitational waves with Advanced LIGO. Contemporary Physics, 2020, 61, 229-255.	0.8	1
399	Polar modes of gravitational waves in Rastall cosmology. Classical and Quantum Gravity, 2021, 38, 025008.	1.5	8
401	Measuring the Hubble constant with black sirens. Physical Review D, 2022, 105, .	1.6	20
402	Graviton Mass in the Era of Multi-Messenger Astronomy. Universe, 2022, 8, 83.	0.9	1
403	Imprint of early dark energy in stochastic gravitational wave background. Physical Review D, 2022, 105,	1.6	6
404	Skynet's New Observing Mode: The Campaign Manager. Publications of the Astronomical Society of the Pacific, 2022, 134, 015001.	1.0	2

#	Article	IF	CITATIONS
405	Light scalars in neutron star mergers. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 006.	1.9	8
406	Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications. Physical Review Research, 2022, 4, .	1.3	13
407	Space-borne atom interferometric gravitational wave detections. Part II. Dark sirens and finding the one. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 042.	1.9	4
408	Graviton mass from X-COP galaxy clusters. Journal of High Energy Astrophysics, 2022, 33, 37-43.	2.4	1
409	Black hole and cosmological analysis of BF sequestered gravity. Physical Review D, 2022, 105, .	1.6	3
410	Gravitational waves from the birth of the universe with extended General Relativity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 825, 136901.	1.5	7
411	Multiband gravitational wave cosmology with stellar origin black hole binaries. Physical Review D, 2022, 105, .	1.6	8
412	A pixelated approach to galaxy catalogue incompleteness: improving the dark siren measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1127-1140.	1.6	21
413	Malaise and remedy of binary boson-star initial data. Classical and Quantum Gravity, 2022, 39, 074001.	1.5	18
414	Optimizing Cadences with Realistic Light-curve Filtering for Serendipitous Kilonova Discovery with Vera Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 258, 5.	3.0	12
415	Jet launching from merging magnetized binary neutron stars with realistic equations of state. Physical Review D, 2021, 104, .	1.6	7
417	Inferring the Properties of a Population of Compact Binaries in Presence of Selection Effects. , 2021, , 1-60.		22
418	Autonomous Real-Time Science-Driven Follow-up of Survey Transients. Lecture Notes in Computer Science, 2022, , 59-72.	1.0	1
419	Improved early-warning estimates of luminosity distance and orbital inclination of compact binary mergers using higher modes of gravitational radiation. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3798-3809.	1.6	1
420	Neural network reconstruction of late-time cosmology and null tests. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 023.	1.9	23
421	Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Progress in Particle and Nuclear Physics, 2022, 125, 103948.	5.6	175
422	Constraining the Hubble constant to a precision of about 1% using multi-band dark standard siren detections. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	23
423	Measuring the sound horizon and absolute magnitude of SNIa by maximizing the consistency between low-redshift data sets. Physical Review D, 2022, 105, .	1.6	12

#	Article	IF	CITATIONS
424	Host galaxies and electromagnetic counterparts to binary neutron star mergers across the cosmic time: detectability of GW170817-like events. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2654-2668.	1.6	13
425	GWSkyNet-Multi: A Machine-learning Multiclass Classifier for LIGO–Virgo Public Alerts. Astrophysical Journal, 2022, 927, 232.	1.6	4
426	Sensing the performance enhancement via asymmetric gain optimization in the atom-light hybrid interferometer. Optics Express, 2022, 30, 11514.	1.7	1
427	å®ä¼2"物ç†èµ·æ⁰引力波的宇宙å¦åº"甓. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, ,	.0.2	0
428	Toward Calibration of the Global Network of Gravitational Wave Detectors with Sub-Percent Absolute and Relative Accuracy. Galaxies, 2022, 10, 42.	1.1	1
429	Gravitational waves from global cosmic strings and cosmic archaeology. Journal of High Energy Physics, 2022, 2022, 1.	1.6	25
430	Cosmology and modified gravitational wave propagation from binary black hole population models. Physical Review D, 2022, 105, .	1.6	25
431	A joint ranking statistic for multi-messenger astronomical searches with gravitational waves. Classical and Quantum Gravity, 2022, 39, 085010.	1.5	2
432	Early Warnings of Binary Neutron Star Coalescence Using the SPIIR Search. Astrophysical Journal Letters, 2022, 927, L9.	3.0	7
433	A Systematic Exploration of Kilonova Candidates from Neutron Star Mergers during the Third Gravitational-wave Observing Run. Astrophysical Journal, 2022, 927, 50.	1.6	6
434	Parametric instability in the neutron star extreme matter observatory. Classical and Quantum Gravity, 2022, 39, 085007.	1.5	1
435	An 8Âper cent determination of the Hubble constant from localized fast radio bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L1-L5.	1.2	31
436	Is local H ₀ at odds with dark energy EFT?. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 004.	1.9	46
437	Parameter estimation with gravitational waves. Reviews of Modern Physics, 2022, 94, .	16.4	30
438	r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events. Nature Reviews Physics, 2022, 4, 306-318.	11.9	18
439	Coalescence of black hole–neutron star binaries. Living Reviews in Relativity, 2021, 24, 1.	8.2	29
440	The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas. Universe, 2021, 7, 496.	0.9	7
441	Enhancing high frequency sensitivity of gravitational wave detectors with a Sagnac interferometer. Physical Review D, 2021, 104, .	1.6	2

#	Article	IF	CITATIONS
443	A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19abanrhr. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2152-2157.	1.6	14
444	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350
445	Simulating neutron star mergers with the Lagrangian Numerical Relativity code SPHINCS_BSSN. European Physical Journal A, 2022, 58, 1.	1.0	8
446	Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission. Galaxies, 2022, 10, 60.	1.1	3
447	Impact of \$\$H_0\$\$ priors on f(T) late time cosmology. European Physical Journal Plus, 2022, 137, .	1.2	14
448	Considering light–matter interactions in the Friedmann equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	3
449	MASTER Real-Time Multi-Message Observations of High Energy Phenomena. Universe, 2022, 8, 271.	0.9	7
450	Implementing a new recovery scheme for primitive variables in the general relativistic magnetohydrodynamic code Spritz. Physical Review D, 2022, 105, .	1.6	2
451	Gravitational waves in models with multicritical-point principle. European Physical Journal C, 2022, 82, .	1.4	1
452	Multi-Messenger Constraints on the Hubble Constant through Combination of Gravitational Waves, Gamma-Ray Bursts and Kilonovae from Neutron Star Mergers. Universe, 2022, 8, 289.	0.9	13
453	Supernovae and their cosmological implications. Rivista Del Nuovo Cimento, 2022, 45, 549-586.	2.0	3
454	Exploring compact binary merger host galaxies and environments with <tt>zELDA</tt> . Monthly Notices of the Royal Astronomical Society, 2022, 514, 2716-2735.	1.6	12
455	GLADE+Â: an extended galaxy catalogue for multimessenger searches with advanced gravitational-wave detectors. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1403-1411.	1.6	25
456	No slip gravity in light of LISA standard sirens. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1274-1281.	1.6	5
458	Electromagnetic counterparts to massive black-hole mergers. Living Reviews in Relativity, 2022, 25, .	8.2	26
459	A dynamical dark energy solution to Hubble tension in the light of the multimessenger era. Revista Mexicana De FÃsica, 2022, 68, .	0.2	0
460	Hubble distancing: focusing on distance measurements in cosmology. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 002.	1.9	5
461	Testing Quantum Gravity in the Multi-Messenger Astronomy Era. Universe, 2022, 8, 321.	0.9	1

#	Article	IF	CITATIONS
462	Using neutrino oscillations to measure <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e701" altimg="si7.svg"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>0Physics of the Dark Universe, 2022, 37, 101063.</mml:mn></mml:mrow></mml:msub></mml:math 	l:mn> <td>nl:mrow></td>	nl:mrow>
463	Measuring Cosmological Parameters with Gravitational Waves. , 2022, , 1821-1871.		Ο
464	Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. , 2022, , 1793-1819.		0
465	Inferring the Properties of a Population of Compact Binaries in Presence of Selection Effects. , 2022, , 1709-1768.		0
466	Space-Based Gravitational WaveObservatories. , 2022, , 85-155.		0
467	Electromagnetic Counterparts of Gravitational Waves in the Hz-kHz Range. , 2022, , 947-991.		0
468	Critical Tests of Leading Gamma Ray Burst Theories. Universe, 2022, 8, 350.	0.9	5
469	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	8.2	82
470	From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity. Symmetry, 2022, 14, 1331.	1.1	50
471	The use of hypermodels to understand binary neutron star collisions. Nature Astronomy, 2022, 6, 961-967.	4.2	5
472	Data-driven predictive modeling of Hubble parameter. Physica Scripta, 2022, 97, 085011.	1.2	2
473	Turbulent magnetic field amplification in binary neutron star mergers. Physical Review D, 2022, 106, .	1.6	26
474	Incorporating a Radiative Hydrodynamics Scheme in the Numerical-Relativity Code BAM. Universe, 2022, 8, 370.	0.9	3
475	Sensitivity of the Hubble Constant Determination to Cepheid Calibration. Astrophysical Journal, 2022, 933, 212.	1.6	25
476	\$\$H_0\$\$ tension or M overestimation?. European Physical Journal C, 2022, 82, .	1.4	2
477	Challenges for <mml:math <br="" altimg="si238.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e11032"><mml:mi mathvariant="normal">ĥ</mml:mi></mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246
478	High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models. Physical Review D, 2022, 106, .	1.6	2
479	Electromagnetic self-force on a charged particle on Kerr spacetime: Equatorial circular orbits. Physical Review D, 2022, 106, .	1.6	3

#	Article	IF	CITATIONS
480	Realistic Detection and Early Warning of Binary Neutron Stars with Decihertz Gravitational-wave Observatories. Astrophysical Journal, 2022, 934, 84.	1.6	6
481	Late-time interacting cosmologies and the Hubble constant tension. Physical Review D, 2022, 106, .	1.6	23
482	Modelling the host galaxies of binary compact object mergers with observational scaling relations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3297-3317.	1.6	13
483	<tt>KilonovaNet</tt> : Surrogate models of kilonova spectra with conditional variational autoencoders. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1137-1148.	1.6	5
484	Gravitational waves and electromagnetic transients. Journal of Astrophysics and Astronomy, 2022, 43,	0.4	1
485	Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. Physical Review Letters, 2022, 129, .	2.9	21
486	Computational challenges for multimodal astrophysics. Nature Computational Science, 2022, 2, 479-485.	3.8	1
487	Does nonstationary noise in LIGO and Virgo affect the estimation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub> ?. Physical Review D. 2022, 106.</mml:math 	1.6	2
488	Neutron Star Binary Mergers: The Legacy of GW170817 and Future Prospects. Universe, 2022, 8, 459.	0.9	1
489	Gravitational Waves from Coalescing Binaries. Synthesis Lectures on Wave Phenomena in the Physical Sciences, 2020, , 7-36.	0.0	0
490	Revealing the late-time transition of <i>H</i> O: relieve the Hubble crisis. Monthly Notices of the Royal Astronomical Society, 2022, 517, 576-581.	1.6	12
491	Constraining the Hubble constant and its lower limit from the proper motion of extragalactic radio jets. Monthly Notices of the Royal Astronomical Society, 2022, 517, 447-457.	1.6	1
492	Measuring the Hubble constant with double gravitational wave sources in pulsar timing. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1242-1263.	1.6	2
493	Rapid localization of gravitational wave hosts with FIGARO. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 517, L5-L10.	1.2	4
494	Constraining Einstein-dilaton models using joint gravitational-wave and electromagnetic observations. Physical Review D, 2022, 106, .	1.6	0
495	Self-Similar Solutions of a Gravitating Dark Fluid. Mathematics, 2022, 10, 3220.	1.1	2
496	Preinflation without matter from <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e788" altimg="si5.svg"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi>< General Relativity, Physics of the Dark Universe, 2022, 37, 101117</mml:mrow></mml:mrow></mml:math>	1.8 mmi:mo>)	<
497	Toward a gravitational theory based on mass-induced accelerated space expansion. Physics Essays, 2022, 35, 258-265.	0.1	1

#	Article	IF	CITATIONS
498	A Reanalysis of the Latest SH0ES Data for H0: Effects of New Degrees of Freedom on the Hubble Tension. Universe, 2022, 8, 502.	0.9	15
499	Search for Coincident Gravitational-wave and Fast Radio Burst Events from 4-OGC and the First CHIME/FRB Catalog. Astrophysical Journal, 2022, 937, 89.	1.6	4
500	Quantifying effects of inhomogeneities and curvature on gravitational wave standard siren measurements of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>H</mml:mi><mml:mo stretchy="false">(<mml:mi>z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math> . Physical Review D, 2022, 106	1.6	4
501	Searching for dark clumps with gravitational-wave detectors. Physical Review D, 2022, 106, .	1.6	8
502	ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors. Classical and Quantum Gravity, 2022, 39, 215008.	1.5	6
503	Current and future constraints on cosmology and modified gravitational wave friction from binary black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	17
504	Inferring binary black holes stellar progenitors with gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3432-3444.	1.6	3
505	First-order phase transition and fate of false vacuum remnants. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 030.	1.9	14
506	Search for Coincident Gravitational Waves and Long Gamma-Ray Bursts from 4-OGC and the Fermi-GBM/Swift-BAT Catalog. Astrophysical Journal Letters, 2022, 939, L14.	3.0	2
507	The lure of sirens: joint distance and velocity measurements with third-generation detectors. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5449-5462.	1.6	8
508	Optical superluminal motion measurement in the neutron-star merger GW170817. Nature, 2022, 610, 273-276.	13.7	24
509	The Dark Energy Survey Supernova Program results: type Ia supernova brightness correlates with host galaxy dust. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1985-2004.	1.6	14
510	Deep Learning–based Search for Microlensing Signature from Binary Black Hole Events in GWTC-1 and -2. Astrophysical Journal, 2022, 938, 157.	1.6	3
511	Teleparallel gravity: from theory to cosmology. Reports on Progress in Physics, 2023, 86, 026901.	8.1	109
512	Systematic error in the internal friction measurement of coatings for gravitational wave detectors. Physical Review D, 2022, 106, .	1.6	0
513	Gravitational waves as waveguides. European Physical Journal Plus, 2022, 137, .	1.2	1
514	Eccentricity of Long Inspiraling Compact Binaries Sheds Light on Dark Sirens. Physical Review Letters, 2022, 129, .	2.9	11
515	Publisher's Note:. Astroparticle Physics, 2023, 147, 102794.	1.9	14

#	Article	IF	CITATIONS
516	D-term inflation in braneworld models: Consistency with cosmic-string bounds and early-time Hubble tension resolving models. Physical Review D, 2022, 106, .	1.6	7
517	Dark-siren cosmology with Decihertz gravitational-wave detectors. Physics of the Dark Universe, 2022, 38, 101136.	1.8	5
518	Gravitational waves in f(R, T)-rainbow gravity: even modes and the Huygens principle. Physica Scripta, 2022, 97, 125013.	1.2	1
519	<pre><mml:math altimg="si4.svg" display="inline" id="d1e3704" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>T</mml:mi>< Gravity in the late Universe in the context of local measurements. Physics of the Dark Universe, 2023, 39. 101153.</mml:mrow></mml:mrow></mml:math></pre>	mml:mo> 1.8	,
520	X- and Gamma-Ray Astrophysics in the Era of Multi-messenger Astronomy. , 2022, , 1-31.		2
521	Modern Cosmology, an Amuse-Gueule. , 2022, , 37-70.		2
522	Missed opportunities: GRB 211211A and the case for continual gravitational-wave coverage with a single observatory. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5483-5489.	1.6	5
523	Uncertainty and Bias of Cosmology and Astrophysical Population Model from Statistical Dark Sirens. Astrophysical Journal, 2022, 941, 174.	1.6	1
524	On the detection of the electromagnetic counterparts from lensed gravitational wave events by binary neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6183-6198.	1.6	7
525	A roadmap of gravitational wave data analysis. Nature Astronomy, 2022, 6, 1356-1363.	4.2	5
526	Using simulated Tianqin gravitational wave data and electromagnetic wave data to study the coincidence problem and Hubble tension problem*. Chinese Physics C, 2023, 47, 035103.	1.5	3
527	Solving the \$\$H_{0}\$\$ tension in f(T) gravity through Bayesian machine learning. European Physical Journal C, 2022, 82, .	1.4	8
528	Nanohertz gravitational wave astronomy during SKA era: An InPTA perspective. Journal of Astrophysics and Astronomy, 2022, 43, .	0.4	8
529	Unveiling the Universe with emerging cosmological probes. Living Reviews in Relativity, 2022, 25, .	8.2	64
530	The new discontinuous Galerkin methods based numerical relativity program Nmesh. Classical and Quantum Gravity, 2023, 40, 025004.	1.5	3
531	Neural network reconstruction of H'(z) and its application in teleparallel gravity. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 029.	1.9	6
532	A better reconciliation of Hubble tension in the dark energy scalar field. Research in Astronomy and Astrophysics, 0, , .	0.7	0
533	Debiasing standard siren inference of the Hubble constant with marginal neural ratio estimation. Monthly Notices of the Royal Astronomical Society, 2023, 520, 1-13.	1.6	3

#	Article	IF	CITATIONS
534	Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 006.	1.9	17
535	Prospects for the Observation of Continuous Gravitational Waves from Spinning Neutron Stars Lensed by the Galactic Supermassive Black Hole. Astrophysical Journal Letters, 2023, 942, L31.	3.0	3
536	Simultaneous inference of neutron star equation of state and the Hubble constant with a population of merging neutron stars. Physical Review D, 2022, 106, .	1.6	12
537	Forecasting constraints on deviations from general relativity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>Q</mml:mi><mml:mo stretchy="false">)</mml:mo> gravity with standard sirens. Physical Review D. 2022, 106, .</mml:mo </mml:math 	1.6	15
538	Strategy and Results of MASTER Network Follow-Up Observations of LIGO and Virgo Gravitational Wave Events within the Observational Sets O1, O2, and O3. Astronomy Reports, 2022, 66, 1118-1253.	0.2	2
539	Possible Discrimination of Black Hole Origins from the Lensing Rate of DECIGO and B-DECIGO Sources. Astrophysical Journal, 2023, 943, 29.	1.6	2
540	Primordial gravity waves in a rainbow background. General Relativity and Gravitation, 2023, 55, .	0.7	2
541	The Late Afterglow of GW170817/GRB 170817A: A Large Viewing Angle and the Shift of the Hubble Constant to a Value More Consistent with the Local Measurements. Astrophysical Journal, 2023, 943, 13.	1.6	10
542	Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers. Astroparticle Physics, 2023, 149, 102819.	1.9	10
543	Three-stage Collapse of the Long Gamma-Ray Burst from GRB 160625B Prompt Multiwavelength Observations. Astrophysical Journal, 2023, 943, 181.	1.6	2
544	Breaking bad degeneracies with Love relations: Improving gravitational-wave measurements through universal relations. Physical Review D, 2023, 107, .	1.6	2
545	On the homogeneity of SnIa absolute magnitude in the Pantheon+Âsample. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5110-5125.	1.6	12
546	Hubble Tension: The Evidence of New Physics. Universe, 2023, 9, 94.	0.9	30
547	Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature, 2023, 614, 436-439.	13.7	16
548	Moving gravitational wave sources at cosmological distances: Impact on the measurement of the Hubble constant. Physical Review D, 2023, 107, .	1.6	2
549	Neutrino transport in general relativistic neutron star merger simulations. Living Reviews in Solar Physics, 2023, 9, .	5.0	12
550	Focus point on tensions in cosmology from early to late universe: the value of the Hubble constant and the question of dark energy. European Physical Journal Plus, 2023, 138, .	1.2	2
551	Let there be light: Illuminating kilonovae with the radiative transfer code POSSIS. Proceedings of the International Astronomical Union, 2020, 16, 241-244.	0.0	0

#	Article	IF	CITATIONS
552	Neutron Star Equation of State Constraints from <i>NICER</i> and Multimessenger Gravitational Wave Observations. Proceedings of the International Astronomical Union, 2020, 16, 10-18.	0.0	0
553	Parameter estimation of eccentric gravitational waves with a decihertz observatory and its cosmological implications. Physical Review D, 2023, 107, .	1.6	4
554	Measuring neutron star distances and properties with gravitational-wave parallax. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1924-1930.	1.6	7
555	Pseudoplane-wave gravitational calibrator for gravitational wave observatories. Physical Review D, 2023, 107, .	1.6	0
556	Chasing supermassive black hole merging events with <i>Athena</i> and <i>LISA</i> . Monthly Notices of the Royal Astronomical Society, 2023, 521, 2577-2592.	1.6	4
557	Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 024.	1.9	13
558	The General Property of Tracking and Thawing Models and Their Observational Constraints. Universe, 2023, 9, 146.	0.9	0
559	Correlation of structure growth index with current cosmic acceleration: Constraints on dark energy models. International Journal of Modern Physics D, 0, , .	0.9	0
560	Detecting cosmological gravitational wave background after removal of compact binary coalescences in future gravitational wave detectors. Physical Review D, 2023, 107, .	1.6	6
561	Re-estimation of the Hubble's Constant Based on Analyzing Other Cosmological Parameters and Intergalactic Parallax Ranging. , 0, 38, 270-280.		0
562	New Observational H(z) Data from Full-spectrum Fitting of Cosmic Chronometers in the LEGA-C Survey. Astrophysical Journal, Supplement Series, 2023, 265, 48.	3.0	13
563	Joint constraints on cosmological parameters using future multi-band gravitational wave standard siren observations*. Chinese Physics C, 2023, 47, 065104.	1.5	9
564	Multi-messenger Astronomy. Springer Proceedings in Physics, 2023, , 255-266.	0.1	0
565	Constraining the number of spacetime dimensions from GWTC-3 binary black hole mergers. Physical Review D, 2023, 107, .	1.6	3
582	Theory Testing in Gravitational-Wave Astrophysics. Synthese Library, 2023, , 57-79.	0.1	0
600	Multi-messenger from Compact Binary Mergers. , 2023, , .		0
606	Scientific discovery in the age of artificial intelligence. Nature, 2023, 620, 47-60.	13.7	113
610	Dynamics and Equation of State Dependencies of Relevance for Nucleosynthesis in Supernovae and Neutron Star Mergers. , 2023, , 4005-4102.		0

#	Article	IF	CITATIONS
664	X- and Gamma-Ray Astrophysics in the Era of Multi-messenger Astronomy. , 2024, , 5335-5365.		0