Shape Memory Alloy-Based Soft Gripper with Variable S Grasping

Soft Robotics 4, 379-389

DOI: 10.1089/soro.2016.0081

Citation Report

#	Article	IF	CITATIONS
1	Soft Tendril-Inspired Grippers: Shape Morphing of Programmable Polymer–Paper Bilayer Composites. ACS Applied Materials & Damp; Interfaces, 2018, 10, 10419-10427.	4.0	118
2	A Partially Filled Jamming Gripper for Underwater Recovery of Objects Resting on Soft Surfaces. , 2018, , .		13
3	Development of a Hybrid Gripper with Soft Material and Rigid Structures. , 2018, , .		11
4	A Double-jaw Hand that Mimics A Mouth of the Moray Eel. , 2018, , .		3
5	A flex-rigid soft robot for flipping locomotion. , 2018, , .		0
6	Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation. Materials, 2018, 11, 2324.	1.3	41
7	Soft robot with a novel variable friction design actuated by SMA and electromagnet. Smart Materials and Structures, 2018, 27, 115020.	1.8	9
8	Miniature Robot with Actuators Based on CU-AL-NI Shape Memory Single Crystals. , 2018, , .		O
9	Soft Robotic Grippers. Advanced Materials, 2018, 30, e1707035.	11.1	1,097
10	Mechanical assembly of soft deployable structures and robots. , 2018, , .		0
10	Mechanical assembly of soft deployable structures and robots., 2018,,. New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer Science, 2019,, 51-63.	1.0	0
	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer	1.0	·
11	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer Science, 2019, , 51-63. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper.		1
11	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer Science, 2019, , 51-63. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. Scientific Reports, 2019, 9, 11251. Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented with Electroadhesion Functionality. Soft	1.6	1
11 12 13	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer Science, 2019, , 51-63. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. Scientific Reports, 2019, 9, 11251. Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented with Electroadhesion Functionality. Soft Robotics, 2019, 6, 701-712.	1.6	1 111 49
11 12 13	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer Science, 2019, , 51-63. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. Scientific Reports, 2019, 9, 11251. Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented with Electroadhesion Functionality. Soft Robotics, 2019, 6, 701-712. An Inchworm-inspired Crawling Robot. Journal of Bionic Engineering, 2019, 16, 582-592. A Soft Actuator with Tunable Mechanical Configurations for Object Grasping Based on Sensory	1.6	1 111 49 22
11 12 13 14	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. Lecture Notes in Computer Science, 2019, , 51-63. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. Scientific Reports, 2019, 9, 11251. Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented with Electroadhesion Functionality. Soft Robotics, 2019, 6, 701-712. An Inchworm-inspired Crawling Robot. Journal of Bionic Engineering, 2019, 16, 582-592. A Soft Actuator with Tunable Mechanical Configurations for Object Grasping Based on Sensory Feedback. , 2019, , . A Periodic Deformation Mechanism of a Soft Actuator for Crawling and Grasping. Advanced Materials	1.6 4.6 2.7	1 111 49 22 5

#	Article	IF	Citations
19	Design and Validation of a Reconfigurable Robotic End-Effector Based on Shape Memory Alloys. IEEE/ASME Transactions on Mechatronics, 2019, 24, 293-303.	3.7	43
20	A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator. International Journal of Mechanical Sciences, 2019, 159, 74-80.	3.6	60
21	Fabric-Based Soft Grippers Capable of Selective Distributed Bending for Assistance of Daily Living Tasks., 2019,,.		8
22	Smart material composites for discrete stiffness materials. Smart Materials and Structures, 2019, 28, 074007.	1.8	13
23	FifoBots: Foldable Soft Robots for Flipping Locomotion. Soft Robotics, 2019, 6, 532-559.	4.6	12
24	Colour-tunable 50% strain sensor using surface-nanopatterning of soft materials via nanoimprinting with focused ion beam milling process. CIRP Annals - Manufacturing Technology, 2019, 68, 595-598.	1.7	18
25	A Modular Soft Wall-Climbing Robot Using Electromagnetic Actuator. , 2019, , .		1
26	Design and Preliminary Testing of a Continuum Assistive Robotic Manipulator. Robotics, 2019, 8, 84.	2.1	4
27	Investigation on the Cooperative Grasping Capabilities of Human Thumb and Index Finger. Frontiers in Neurorobotics, 2019, 13, 92.	1.6	4
28	Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. Nanomaterials, 2019, 9, 1704.	1.9	12
29	Industrial Applications for Shape Memory Alloys. , 2022, , 254-266.		11
30	Dynamic analysis on hub–beam system with transient stiffness variation. International Journal of Mechanical Sciences, 2019, 151, 692-702.	3.6	11
31	Soft grasping mechanisms composed of shape memory polymer based self-bending units. Composites Part B: Engineering, 2019, 164, 198-204.	5.9	55
32	Design and Modelling of Flex-Rigid Soft Robot for Flipping Locomotion. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 379-388.	2.0	8
33	Optimal control scheme for pneumatic soft actuator under comparison of proportional and PWM-solenoid valves. Photonic Network Communications, 2019, 37, 153-163.	1.4	15
34	A Novel Fabric-Based Versatile and Stiffness-Tunable Soft Gripper Integrating Soft Pneumatic Fingers and Wrist. Soft Robotics, 2019, 6, 1-20.	4.6	95
35	Application of SMA spring tendons for improved grasping performance. Smart Materials and Structures, 2019, 28, 035006.	1.8	17
36	Design, Analysis, and Grasping Experiments of a Novel Soft Hand: Hybrid Actuator Using Shape Memory Alloy Actuators, Motors, and Electromagnets. Soft Robotics, 2020, 7, 396-407.	4.6	18

#	Article	IF	Citations
37	Hybrid Jamming for Bioinspired Soft Robotic Fingers. Soft Robotics, 2020, 7, 292-308.	4.6	91
38	A bio-inspired soft-rigid hybrid actuator made of electroactive dielectric elastomers. Applied Materials Today, 2020, 21, 100814.	2.3	12
39	A Hybrid, Wearable Exoskeleton Glove Equipped With Variable Stiffness Joints, Abduction Capabilities, and a Telescopic Thumb. IEEE Access, 2020, 8, 173345-173358.	2.6	24
40	A Soft Five-Fingered Hand Actuated by Shape Memory Alloy Wires: Design, Manufacturing, and Evaluation. Frontiers in Robotics and Al, 2020, 7, 608841.	2.0	15
41	Visual–tactile object recognition of a soft gripper based on faster Region-based Convolutional Neural Network and machining learning algorithm. International Journal of Advanced Robotic Systems, 2020, 17, 172988142094872.	1.3	13
42	Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric Actuators. Advanced Intelligent Systems, 2020, 2, 2000069.	3.3	24
43	Development of flexible universal gripper for handling light weight parts of arbitrary shape. Materials Today: Proceedings, 2020, 28, 2591-2598.	0.9	4
44	Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers. Frontiers in Robotics and Al, 2020, 7, 601274.	2.0	6
45	FEMM Examination of the Gripper with Magnetorheological Cushion. , 2020, , .		1
46	Beyond Human Hand: Shape-Adaptive and Reversible Magnetorheological Elastomer-Based Robot Gripper Skin. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44147-44155.	4.0	21
47	Experimental Investigation and Modeling of the Dynamic Resistance Response of Carbon Particleâ€Filled Polymers. Macromolecular Materials and Engineering, 2020, 305, 2000361.	1.7	23
48	Circular Shell Gripper for Handling Food Products. Soft Robotics, 2021, 8, 542-554.	4.6	51
49	Research development of soft manipulator: A review. Advances in Mechanical Engineering, 2020, 12, 168781402095009.	0.8	26
50	A variable structure pneumatic soft robot. Scientific Reports, 2020, 10, 18778.	1.6	24
51	Bioâ€Inspired Conformable and Helical Soft Fabric Gripper with Variable Stiffness and Touch Sensing. Advanced Materials Technologies, 2020, 5, 2000724.	3.0	64
52	Biomedical soft robots: current status and perspective. Biomedical Engineering Letters, 2020, 10, 369-385.	2.1	47
53	Movement Detection in Soft Robotic Gripper Using Sinusoidally Embedded Fiber Optic Sensor. Sensors, 2020, 20, 1312.	2.1	17
54	Damping effect of particle-jamming structure for soft actuators with 3D-printed particles. Smart Materials and Structures, 2020, 29, 095012.	1.8	10

#	ARTICLE	IF	CITATIONS
55	A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness. International Journal of Advanced Robotic Systems, 2020, 17, 172988142090781.	1.3	42
56	A High-Payload Proprioceptive Hybrid Robotic Gripper With Soft Origamic Actuators. IEEE Robotics and Automation Letters, 2020, 5, 3003-3010.	3.3	27
57	Self-locking mechanism for variable stiffness rigid–soft gripper. Smart Materials and Structures, 2020, 29, 035033.	1.8	39
58	Modeling and experimental study on dielectric elastomers incorporating humidity effect. Europhysics Letters, 2020, 129, 57002.	0.7	7
59	Shape memory materials for electrically-powered soft machines. Journal of Materials Chemistry B, 2020, 8, 4539-4551.	2.9	52
60	Twisted-and-Coiled Actuators with Free Strokes Enable Soft Robots with Programmable Motions. Soft Robotics, 2021, 8, 213-225.	4.6	50
61	Soft Humanoid Hands with Large Grasping Force Enabled by Flexible Hybrid Pneumatic Actuators. Soft Robotics, 2021, 8, 175-185.	4.6	45
62	State of the art in processing of shape memory alloys with electrical discharge machining: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 333-366.	1.5	30
63	Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects. International Journal of Mechanical Sciences, 2021, 193, 106181.	3.6	33
64	An ultrafast response and precisely controllable soft electromagnet actuator based on Ecoflex rubber film filled with neodymium-iron-boron. Journal of Micromechanics and Microengineering, 2021, 31, 025010.	1.5	4
65	Flexoskeleton Fingers: 3D Printed Reconfigurable Ridges Enabling Multi-Functional and Low-Cost Underactuated Grasping. IEEE Robotics and Automation Letters, 2021, 6, 3971-3978.	3.3	8
66	Versatile Soft Robot Gripper Enabled by Stiffness and Adhesion Tuning via Thermoplastic Composite. Soft Robotics, 2022, 9, 189-200.	4.6	23
67	Advances in multistable composite structures and their applications., 2021,, 421-463.		0
68	Theoretical modelling of soft robotic gripper with bioinspired fibrillar adhesives. Mechanics of Advanced Materials and Structures, 2022, 29, 2250-2266.	1.5	9
69	Soft pneumatic gripper integrated with multiâ€configuration and variableâ€stiffness functionality. Cognitive Computation and Systems, 2021, 3, 70-77.	0.8	4
70	A reconfigurable soft wall-climbing robot actuated by electromagnet. International Journal of Advanced Robotic Systems, 2021, 18, 172988142199228.	1.3	8
71	Adjustable Compliance Soft Sensor via an Elastically Inflatable Fluidic Dome. Sensors, 2021, 21, 1970.	2.1	9
72	A Gas–Ribbon-Hybrid Actuated Soft Finger with Active Variable Stiffness. Soft Robotics, 2022, 9, 250-265.	4.6	11

#	Article	IF	Citations
73	Bioâ€Inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 2021, 8, 2002017.	5.6	68
74	Honeycomb Jamming: An Enabling Technology of Variable Stiffness Reconfiguration. Soft Robotics, 2021, 8, 720-734.	4.6	9
75	Development and Grasp Stability Estimation of Sensorized Soft Robotic Hand. Frontiers in Robotics and AI, 2021, 8, 619390.	2.0	10
76	A Structure for Fast Stiffness-Variation and Omnidirectional-Steering Continuum Manipulator. IEEE Robotics and Automation Letters, 2021, 6, 755-762.	3.3	13
77	A Universal Soft Gripper with the Optimized Fin Ray Finger. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 889-899.	2.7	20
78	A Bioinspired Composite Finger With Self-Locking Joints. IEEE Robotics and Automation Letters, 2021, 6, 1391-1398.	3.3	13
79	Shape memory alloy based 3D printed composite actuators with variable stiffness and large reversible deformation. Sensors and Actuators A: Physical, 2021, 321, 112598.	2.0	38
80	Comparison of Dexterous Task Performance in Virtual Reality and Real-World Environments. Frontiers in Virtual Reality, 2021, 2, .	2.5	5
81	3D printing of magnetically actuated miniature soft robots. , 2021, , .		2
82	Highâ€Displacement, Fiberâ€Reinforced Shape Memory Alloy Soft Actuator with Integrated Sensors and Its Equivalent Network Model. Advanced Intelligent Systems, 2021, 3, 2000221.	3.3	19
83	Data-driven sliding mode control of shape memory alloy actuators with prescribed performance. Smart Materials and Structures, 2021, 30, 065012.	1.8	6
84	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	3.3	55
85	Bioinspired Soft Robotic Fingers with Sequential Motion Based on Tendon-Driven Mechanisms. Soft Robotics, 2022, 9, 531-541.	4.6	7
86	Adjustable stiffness elastic composite soft actuator for fast-moving robots. Science China Technological Sciences, 2021, 64, 1663-1675.	2.0	12
87	Control of a Rehabilitation Robotic Device Driven by Antagonistic Soft Actuators. Actuators, 2021, 10, 123.	1.2	7
88	A Wide-Range Stiffness-Tunable Soft Actuator Inspired by Deep-Sea Glass Sponges. Soft Robotics, 2022, 9, 625-637.	4.6	9
89	Multimode Grasping Soft Gripper Achieved by Layer Jamming Structure and Tendon-Driven Mechanism. Soft Robotics, 2022, 9, 233-249.	4.6	41
90	Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Soft Robotics, 2022, 9, 309-323.	4.6	19

#	Article	IF	CITATIONS
91	Design and Feasibility Tests of a Lightweight Soft Gripper for Compliant and Flexible Envelope Grasping. Soft Robotics, 2022, 9, 376-385.	4.6	6
92	A Human-Inspired Soft Finger with Dual-Mode Morphing Enabled by Variable Stiffness Mechanism. Soft Robotics, 2022, 9, 399-411.	4.6	28
93	Friction Prediction and Validation of a Variable Stiffness Lower Limb Exosuit Based on Finite Element Analysis. Actuators, 2021, 10, 151.	1.2	2
94	A Hybrid Jamming Structure Combining Granules and a Chain Structure for Robotic Applications. Soft Robotics, 2022, 9, 669-679.	4.6	8
95	Soft Directional Adhesion Gripper Fabricated by 3D Printing Process for Gripping Flexible Printed Circuit Boards. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 1151-1163.	2.7	13
96	A Novel Pressure-Controlled Revolute Joint with Variable Stiffness. Soft Robotics, 2022, 9, 723-733.	4.6	9
97	Soft Gripper with EGaln Soft Sensor for Detecting Grasp Status. Applied Sciences (Switzerland), 2021, 11, 6957.	1.3	8
98	Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nature Communications, 2021, 12, 4517.	5.8	82
99	Double-layered electrohydraulic actuator for bi-directional bending motion of soft gripper., 2021,,.		2
100	Soft Gripper Design Based on the Integration of Flat Dry Adhesive, Soft Actuator, and Microspine. IEEE Transactions on Robotics, 2021, 37, 1065-1080.	7.3	36
101	Bending Stiffness-Directed Fabricating of Kevlar Aerogel-Confined Organic Phase-Change Fibers. ACS Nano, 2021, 15, 15180-15190.	7.3	56
102	Development of a novel robotic hand with soft materials and rigid structures. Industrial Robot, 2021, 48, 823-835.	1.2	4
103	Soft Robotics: Morphology and Morphology-inspired Motion Strategy. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1500-1522.	8.5	24
104	A 3D-Printed Fin Ray Effect Inspired Soft Robotic Gripper with Force Feedback. Micromachines, 2021, 12, 1141.	1.4	18
105	Model-Free Tracking Control with Prescribed Performance for a Shape Memory Alloy-Based Robotic Hand. Applied Sciences (Switzerland), 2021, 11, 9040.	1.3	1
106	EPM–MRE: Electropermanent Magnet–Magnetorheological Elastomer for Soft Actuation System and Its Application to Robotic Grasping. IEEE Robotics and Automation Letters, 2021, 6, 8181-8188.	3.3	10
107	High-Speed, Helical and Self-Coiled Dielectric Polymer Actuator. Actuators, 2021, 10, 15.	1.2	9
108	Modeling and control of a finger-like mechanism using bending shape memory alloys. Microsystem Technologies, 2021, 27, 2481-2492.	1.2	19

#	Article	IF	CITATIONS
109	3D PRINTING TO INTEGRATE ACTUATORS INTO COMPOSITES. Additive Manufacturing, 2020, 35, 101290.	1.7	7
110	Effect of 3D printing raster angle on reversible thermo-responsive composites using PLA/paper bilayer. Smart Materials and Structures, 2020, 29, 105016.	1.8	17
111	A magneto-active soft gripper with adaptive and controllable motion. Smart Materials and Structures, 2021, 30, 015024.	1.8	27
112	Design and Implementation of Bio-Inspired Soft Robotic Grippers. , 2019, , .		7
113	Design and Analysis of a Novel Lightweight, Versatile Soft-rigid Robot. , 2021, , .		1
114	Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper. Science Robotics, 2021, 6, eabi6774.	9.9	38
115	Electro-pneumatic dielectric elastomer actuator incorporating tunable bending stiffness. Physical Review Research, 2020, 2, .	1.3	5
116	Three-Fingered Soft Pneumatic Gripper Integrating Joint-Tuning Capability. Soft Robotics, 2022, 9, 948-959.	4.6	12
117	Design and Simulation of Two-Fingered Soft Robotics Gripper using VoxCAD., 2021, , .		2
118	Development of a biomimetic transradial prosthetic arm with shape memory alloy muscle wires. Engineering Research Express, 2020, 2, 035041.	0.8	10
119	Adhesion of beams with subsurface elastic heterogeneity. Journal of the Mechanics and Physics of Solids, 2022, 159, 104713.	2.3	4
120	Review of soft fluidic actuators: classification and materials modeling analysis. Smart Materials and Structures, 2022, 31, 013001.	1.8	31
121	Laminar Jamming Flexure Joints for the Development of Variable Stiffness Robot Grippers and Hands. , 2020, , .		11
122	The Effects of 600°C Annealing and Tensile Plastic Deformation on Mechanical Properties of Cu ₆₂ Zn ₃₈ and (Cu ₆₂ Zn ₃₈)97.5Al _{2.5} Shape Memory Alloys. SSRN Electronic Journal, O, , .	0.4	0
123	Structural design and analysis of a flexible circular soft gripper. , 2021, , .		0
124	Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots. Soft Robotics, 2022, 9, 1001-1013.	4.6	11
125	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29
126	A lightweight variable stiffness knee exoskeleton driven by shape memory alloy. Industrial Robot, 2022, 49, 994-1007.	1.2	11

#	Article	IF	CITATIONS
127	A review of soft manipulator research, applications, and opportunities. Journal of Field Robotics, 2022, 39, 281-311.	3.2	46
128	Bioinspired Multifunctional Mechanoreception of Soft–Rigid Hybrid Actuator Fingers. Advanced Intelligent Systems, 2022, 4, .	3.3	5
129	Lie group analysis method for wall climbing robot systems. Indian Journal of Physics, 0, , 1.	0.9	1
130	Highâ€Speed Antagonistic Shape Memory Actuator for High Ambient Temperatures. Advanced Engineering Materials, 0, , .	1.6	4
131	Development of a 4D hand gripping aid using a knitted shape memory alloy and evaluation of finger-bending angles in elderly women. Fashion and Textiles, 2022, 9, .	1.3	4
132	A Soft Robotic Gripper Based on Bioinspired Fingers. , 2021, 2021, 4570-4573.		0
133	Stiffness Control for a Soft Robotic Finger based on Reinforcement Learning for Robust Grasping. , 2021, , .		2
134	From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Science Robotics, 2021, 6, eabi9773.	9.9	49
135	Equipping New SMA Artificial Muscles With Controllable MRF Exoskeletons for Robotic Manipulators and Grippers. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4585-4596.	3.7	6
138	Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robotics, 2023, 10, 119-128.	4.6	13
139	Decade of bio-inspired soft robots: a review. Smart Materials and Structures, 2022, 31, 073002.	1.8	34
140	A flexible gripper with a wide-range variable stiffness structure based on shape memory alloy. Industrial Robot, 2022, 49, 1190-1201.	1.2	5
141	Experimental analysis of fiber-reinforced laminated composite plates with embedded SMA wire actuators. Composite Structures, 2022, 292, 115678.	3.1	8
142	Modular Assembly of Soft Machines via Multidirectional Reclosable Fasteners. Advanced Intelligent Systems, 2022, 4, .	3.3	3
143	An adjustable robotic tool for nut running operations. Procedia CIRP, 2022, 107, 191-195.	1.0	0
144	Structural analysis of bending soft pneumatic network actuators for various designs using the finite element method. World Journal of Engineering, 2022, ahead-of-print, .	1.0	1
145	Active vibration control of flexible thin-walled beam using multi-layer planar dielectric elastomer actuator. JVC/Journal of Vibration and Control, 2023, 29, 2854-2867.	1.5	1
146	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access, 2022, 10, 59442-59485.	2.6	72

#	Article	IF	CITATIONS
147	Hinged Adaptive Fiber-Rubber Composites Driven by Shape Memory Alloys—Development and Simulation. Materials, 2022, 15, 3830.	1.3	2
148	A flexible and smart shape memory alloy composite sheet based on efficient and bidirectional thermal management. International Journal of Smart and Nano Materials, 2022, 13, 315-329.	2.0	2
149	A Proprioceptive Soft Robot Module Based on Supercoiled Polymer Artificial Muscle Strings. Polymers, 2022, 14, 2265.	2.0	6
150	A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots. International Journal of Advanced Robotic Systems, 2022, 19, 172988062211049.	1.3	11
151	Flexure Variable Stiffness Actuators. Advanced Intelligent Systems, 2022, 4, .	3.3	2
152	Shape-reversible 4D printing aided by shape memory alloys. , 2022, , 387-406.		2
153	Multi-Dimensional Proprioception and Stiffness Tuning for Soft Robotic Joints. , 2022, , .		1
154	Network of selectively compliant actuators based on shape memory alloys and polymers for a reconfigurable sandwich panel. Journal of Intelligent Material Systems and Structures, 0, , 1045389X2211092.	1.4	0
155	Design, kinematic modeling and evaluation of a novel soft prosthetic hand with abduction joints. Medicine in Novel Technology and Devices, 2022, 15, 100151.	0.9	1
156	A Variable Stiffness Soft Actuator with a Center Skeleton and Pin-Socket Jamming Layers. Lecture Notes in Computer Science, 2022, , 325-332.	1.0	1
157	A Practical Model of Hybrid Robotic Hands for Grasping Applications Based on Bioinspired Form. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	2.0	2
158	Modelling of a shape memory alloy actuator for feedforward hysteresis compensator considering load fluctuation. CAAI Transactions on Intelligence Technology, 2022, 7, 549-560.	3.4	8
159	Design and Development of a Multi-Functional Bioinspired Soft Robotic Actuator via Additive Manufacturing. Biomimetics, 2022, 7, 105.	1.5	6
160	A Two-Finger Soft Gripper Based on Bistable Mechanism. IEEE Robotics and Automation Letters, 2022, 7, 11330-11337.	3.3	5
161	Design and Modeling of a Dexterous Robotic Hand Based on Dielectric Elastomer Actuator and Origami Structure. Lecture Notes in Computer Science, 2022, , 587-599.	1.0	0
162	Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications. Soft Matter, 2022, 18, 7699-7734.	1.2	25
163	A Novel Discrete Variable Stiffness Gripper Based on the Fin Ray Effect. Lecture Notes in Computer Science, 2022, , 791-802.	1.0	4
164	Particle filter based self sensing Shape Memory Alloy wire actuator under external cooling. Mechanical Systems and Signal Processing, 2023, 185, 109779.	4.4	1

#	Article	IF	CITATIONS
165	Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nature Communications, 2022, 13 , .	5.8	29
166	Optimal design and experimental validation of 3D printed soft pneumatic actuators. Smart Materials and Structures, 2022, 31, 115010.	1.8	3
167	Dielectric elastomer actuators for artificial muscles: A comprehensive review of soft robot explorations., 2022, 1, 308-324.		5
168	Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	7
169	A lightweight flexible semi-cylindrical valve for seamless integration in soft robots based on the giant electrorheological fluid. Sensors and Actuators A: Physical, 2022, 347, 113905.	2.0	5
170	A Variable Stiffness Electroadhesive Gripper Based on Low Melting Point Alloys. Polymers, 2022, 14, 4469.	2.0	1
171	A Biomimetic Softâ€Rigid Hybrid Finger with Autonomous Lateral Stiffness Enhancement. Advanced Intelligent Systems, 2022, 4, .	3.3	5
172	Optimal Variable Stiffness Control and Its Applications in Bionic Robotic Joints: A Review. Journal of Bionic Engineering, 2023, 20, 417-435.	2.7	1
173	3D printing of soft grippers with multimaterial design: Towards shape conformance and tunable rigidity. Materials Today: Proceedings, 2022, 70, 525-530.	0.9	3
174	Controlled actuation, adhesion, and stiffness in soft robots: A review. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 106, .	2.0	7
175	4D Multiscale Origami Soft Robots: A Review. Polymers, 2022, 14, 4235.	2.0	10
176	An Improved Four-Pin Gripper for Robust 2.5-D Form-Closure Grasp. IEEE/ASME Transactions on Mechatronics, 2023, 28, 1500-1511.	3.7	2
177	A Soft, Fast and Versatile Electrohydraulic Gripper with Capacitive Object Size Detection. Advanced Functional Materials, 2023, 33, .	7.8	18
178	The Novel Variable Stiffness Composite Systems with Characteristics of Repeatable High Load Bearing and Response Rate. Journal of Bionic Engineering, 0, , .	2.7	0
179	A novel shape memory alloy actuated soft gripper imitated hand behavior. Frontiers of Mechanical Engineering, 2022, 17, .	2.5	5
180	Development of a 4D Printed Variable Stiffness Gripper. , 2022, , .		0
181	One-shot additive manufacturing of robotic finger with embedded sensing and actuation. International Journal of Advanced Manufacturing Technology, 2023, 124, 467-485.	1.5	15
182	An Omnidirectional Encircled Deployable Polyhedral Gripper for Contactless Delicate Midwater Creatures Sampling. Advanced Engineering Materials, 2023, 25, .	1.6	4

#	ARTICLE	IF	CITATIONS
183	Multi-mode Soft Composite Bending Actuators Based on Glass fiber Textiles Interwoven with Shape Memory Alloy Wires: Development and use in the Preparation of Soft Grippers. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1263-1280.	2.7	2
184	A novel dual-stage shape memory alloy actuated gripper. Industrial Robot, 2023, 50, 326-336.	1.2	2
185	One-Shot 3D Printed Soft Device Actuated Using Metal-Filled Channels and Sensed with Embedded Strain Gauge. 3D Printing and Additive Manufacturing, 0, , .	1.4	5
186	Active-Cooling-in-the-Loop Controller Design and Implementation for an SMA-Driven Soft Robotic Tentacle. IEEE Transactions on Robotics, 2023, 39, 2325-2341.	7. 3	11
187	Hybrid Robotic Grasping With a Soft Multimodal Gripper and a Deep Multistage Learning Scheme. IEEE Transactions on Robotics, 2023, 39, 2379-2399.	7.3	10
188	A Bioinspired Gripper with Sequential Motion and Mutable Posture Enabled by Antagonistic Mechanism. Advanced Intelligent Systems, 2023, 5, .	3.3	2
189	A dual-mode and enclosing soft robotic gripper with stiffness-tunable and high-load capacity. Sensors and Actuators A: Physical, 2023, 354, 114294.	2.0	6
190	Layer jamming: Modeling and experimental validation. International Journal of Mechanical Sciences, 2023, 251, 108325.	3.6	3
191	Research on effects of different internal structures on the grasping performance of Fin Ray soft grippers. Robotica, 0, , 1-16.	1.3	2
192	Novel Bionic Soft Robotic Hand With Dexterous Deformation and Reliable Grasping. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-10.	2.4	3
193	Design and performance analysis of magnetorheological grease flexible manipulator gripper. Journal of Mechanical Science and Technology, 2023, 37, 1243-1254.	0.7	2
194	A Passively Conforming Soft Robotic Gripper with Three-Dimensional Negative Bending Stiffness Fingers. Soft Robotics, 2023, 10, 556-567.	4.6	3
195	Static modeling and experimental analysis of three-degree-of-freedom pneumatic flexible arm. AIP Advances, 2023, 13, 035014.	0.6	0
196	Ultrafast Shapeâ€Reconfigurable Chiral Mechanical Metamaterial based on Prestressed Bistable Shells. Advanced Functional Materials, 2023, 33, .	7.8	6
197	In Situ Reconfigurable Continuum Robot with Varying Curvature Enabled by Programmable Tensegrity Building Blocks. Advanced Intelligent Systems, 2023, 5, .	3.3	2
198	Electrically Controlled Liquid Crystal Elastomer Surfaces for Dynamic Wrinkling. Advanced Intelligent Systems, 2024, 6, .	3.3	1
199	Programmable Design and Fabrication of 3D Variable–Stiffness Structure Based on Patterned Grapheneâ€Heating Network. Advanced Intelligent Systems, 0, , .	3.3	1
200	Two-Way Shape Memory Effect of a Shape Memory Composite Strip. Applied Sciences (Switzerland), 2023, 13, 4715.	1.3	0

#	Article	IF	CITATIONS
201	A Palm-Shape Variable-Stiffness Gripper Based on 3D-Printed Fabric Jamming. IEEE Robotics and Automation Letters, 2023, 8, 3238-3245.	3.3	6
202	Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic Gripper via Stiffness Control. Robotics, 2023, 12, 59.	2.1	2
203	Evaluation of Surface Damage of Strawberry Grasped by Manipulator Based on Vision and Hyperspectral Data Analysis. Journal of Food Processing and Preservation, 2023, 2023, 1-10.	0.9	0
204	Transforming Soft Robotics: Laminar Jammers Unlocking Adaptive Stiffness Potential in Pneunet Actuators. ECS Journal of Solid State Science and Technology, 2023, 12, 047007.	0.9	2
205	Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Advanced Materials, 2023, 35, .	11.1	14
212	Variable Kinematics enabled by Layer Jamming Transition in a Soft Bending Actuator. , 2023, , .		1
214	Hydraulic Modulation of Silicone Knuckles for Variable Control of Joint Stiffness., 2023,,.		0
215	Design and fabrication of multi-pouch inflatable holding structure with higher payload., 2023,,.		0
220	A Soft Hybrid-Actuated Continuum Robot Based on Dual Origami Structures. , 2023, , .		0
221	A Silicone-sponge-based Variable-stiffness Device. , 2023, , .		0
222	Additive Manufacturing for Soft Electromagnetic Robots: Experimental Study to Reduce Vibration. Lecture Notes in Networks and Systems, 2023, , 564-575.	0.5	0
227	Serial Chain Hinge Support for Soft, Robust and Effective Grasp. , 2023, , .		0
229	A Novel Soft-Rigid Hybrid Actuator with Vertebrae. , 2023, , .		0
237	Folding for Stiffening: A Novel Corrugated Electro-Adhesive Clutch. , 2023, , .		0
244	Processing and Applications of Shape Memory Alloys. Advances in Chemical and Materials Engineering Book Series, 2024, , 151-165.	0.2	0