³¹P NMR Chemical Shifts of Phosphorus Pr Acidity Scales for Solid and Liquid Catalysts

Chemical Reviews 117, 12475-12531

DOI: 10.1021/acs.chemrev.7b00289

Citation Report

#	Article	IF	CITATIONS
2	Perillyl alcohol preparation from β-pinene oxide using Fe-modified zeolite beta. Research on Chemical Intermediates, 2018, 44, 3971-3984.	1.3	18
3	Distinguishing Active Site Identity in Sn-Beta Zeolites Using ³¹ P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catalysis, 2018, 8, 3076-3086.	5.5	51
4	Recent progress in investigations of surface structure and properties of solid oxide materials with nuclear magnetic resonance spectroscopy. Chinese Chemical Letters, 2018, 29, 747-751.	4.8	18
5	Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface. Chemical Physics Letters, 2018, 703, 1-7.	1.2	10
6	Mapping Al Distributions in SSZ-13 Zeolites from ²³ Na Solid-State NMR Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2018, 122, 9973-9979.	1.5	21
7	Differentiating surface titanium chemical states of anatase TiO ₂ functionalized with various groups. Chemical Science, 2018, 9, 2493-2500.	3.7	31
8	Unveiling chain–chain interactions in CO 2 -based crystalline stereocomplexed polycarbonates by solid-state NMR spectroscopy and DFT calculations. Journal of Energy Chemistry, 2018, 27, 361-366.	7.1	2
9	A solvent-free, one-step synthesis of sulfonic acid group-functionalized mesoporous organosilica with ultra-high acid concentrations and excellent catalytic activities. Green Chemistry, 2018, 20, 1020-1030.	4.6	38
10	Fabrication and Evaluation of Multiâ€Walled Carbon Nanotubes Supported Novel Catalyst for Select Conversion of Cellulose to 5â€Hydroxymethylfurfural. Energy Technology, 2018, 6, 1633-1641.	1.8	10
11	Efficient Hydrolysis of Cyclohexyl Acetate to Cyclohexanol Catalyzed by Dual-SO ₃ H-Functionalized Heteropolyacid-Based Solid Acids. Industrial & Engineering Chemistry Research, 2018, 57, 5207-5214.	1.8	23
12	Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 2018, 19, 1249-1297.	1.0	60
13	Simultaneous Characterization of Solid Acidity and Basicity of Metal Oxide Catalysts via the Solid-State NMR Technique. Journal of Physical Chemistry C, 2018, 122, 24094-24102.	1.5	20
14	Scalable Preparation of Micro-Meso-Macroporous Polymeric Solid Acids Spheres From Controllable Sulfonation of Commercial XAD-4 Resin. Industrial & Engineering Chemistry Research, 2018, 57, 14080-14087.	1.8	7
15	Lewis Acidity and Basicity of Mixed Chlorometallate Ionic Liquids: Investigations from Surface Analysis and Fukui Function. Molecules, 2018, 23, 2516.	1.7	9
16	Influence of Al Coordinates on Hierarchical Structure and T Atoms Redistribution during Base Leaching of ZSM-5. Industrial & Engineering Chemistry Research, 0, , .	1.8	4
17	Validation of pH Standards and Estimation of the Activity Coefficients of Hydrogen and Chloride Ions in an Ionic Liquid, Ethylammonium Nitrate. Journal of Physical Chemistry B, 2018, 122, 10593-10599.	1.2	2
18	Solid-State ³¹ P Nuclear Magnetic Resonance Study of Interlayer Hydroxide Surfaces of Kaolinite Probed with an Interlayer Triethylphosphine Oxide Monolayer. Langmuir, 2018, 34, 12694-12701.	1.6	26
19	Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: Coke, diffusion, and acidic site accessibility. Journal of Catalysis, 2018, 367, 306-314.	3.1	67

#	Article	IF	CITATIONS
20	Excellent Performances of Dealuminated Hâ€Beta Zeolites from Organotemplateâ€Free Synthesis in Conversion of Biomassâ€derived 2,5â€Dimethylfuran to Renewable <i>p</i> â€Xylene. ChemSusChem, 2018, 11, 3803-3811.	3.6	43
21	Origin and Structural Characteristics of Tri-coordinated Extra-framework Aluminum Species in Dealuminated Zeolites. Journal of the American Chemical Society, 2018, 140, 10764-10774.	6.6	113
22	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
23	A green and efficient hydration of alkynes catalyzed by hierarchically porous poly(ionic liquid)s solid strong acids. Applied Catalysis A: General, 2018, 564, 56-63.	2.2	31
24	Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT. Journal of CO2 Utilization, 2018, 26, 160-170.	3.3	35
25	Reaction Route and Mechanism of the Direct N-Alkylation of Sulfonamides on Acidic Mesoporous Zeolite β-Catalyst. ACS Catalysis, 2018, 8, 9043-9055.	5.5	25
26	A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice. Angewandte Chemie - International Edition, 2018, 57, 13800-13804.	7.2	64
27	A Heterogeneous Metalâ€Free Catalyst for Hydrogenation: Lewis Acid–Base Pairs Integrated into a Carbon Lattice. Angewandte Chemie, 2018, 130, 13996-14000.	1.6	6
28	Acidity and alkylation activity of 12-tungstophosphoric acid supported on ionic liquid-functionalized SBA-15. Catalysis Today, 2019, 327, 10-18.	2.2	19
29	Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids. Green Energy and Environment, 2019, 4, 49-55.	4.7	80
30	A perspective on catalysis in solid acids. Journal of Catalysis, 2019, 375, 524-530.	3.1	28
31	Confinement of BrÃ,nsted acidic ionic liquids into covalent organic frameworks as a catalyst for dehydrative formation of isosorbide from sorbitol. Green Chemistry, 2019, 21, 4792-4799.	4.6	36
32	Solidâ€state NMR studies of the acidity of functionalized metal–organic framework UiOâ€66 materials. Magnetic Resonance in Chemistry, 2020, 58, 1091-1098.	1.1	7
33	Conformational Mobility and Proton Transfer in Hydrogen-Bonded Dimers and Trimers of Phosphinic and Phosphoric Acids. Journal of Physical Chemistry A, 2019, 123, 6761-6771.	1.1	13
34	Synergistic interaction of anions and cations in preparation of VPO catalysts promoted by polyoxometalate-ionic liquids. Applied Catalysis A: General, 2019, 582, 117106.	2.2	21
35	Design of Lewis Acid Centers in Bundlelike Boron Nitride for Boosting Adsorptive Desulfurization Performance. Industrial & Engineering Chemistry Research, 2019, 58, 13303-13312.	1.8	47
36	Solventâ€Free Production of Isosorbide from Sorbitol Catalyzed by a Polymeric Solid Acid. ChemSusChem, 2019, 12, 4986-4995.	3.6	18
37	Origin of weak Lewis acids on silanol nests in dealuminated zeolite Beta. Journal of Catalysis, 2019, 380, 204-214.	3.1	53

#	Article	IF	CITATIONS
38	Chiral Discrimination by a Binuclear Pd Complex Sensor Using ³¹ P{ ¹ H} NMR. Analytical Chemistry, 2019, 91, 14591-14596.	3.2	7
39	Insight into Threeâ€Coordinate Aluminum Species on Ethanolâ€toâ€Olefin Conversion over ZSMâ€5 Zeolites. Angewandte Chemie, 2019, 131, 18229-18236.	1.6	7
40	Insight into Threeâ€Coordinate Aluminum Species on Ethanolâ€toâ€Olefin Conversion over ZSMâ€5 Zeolites. Angewandte Chemie - International Edition, 2019, 58, 18061-18068.	7.2	51
41	Hydrogen peroxide adducts of triarylphosphine oxides. Dalton Transactions, 2019, 48, 14312-14325.	1.6	27
42	The acidic nature of "NMR-invisible―tri-coordinated framework aluminum species in zeolites. Chemical Science, 2019, 10, 10159-10169.	3.7	78
43	Production of 5-Hydroxymethylfurfural from Glucose in Water by Using Transition Metal-Oxide Nanosheet Aggregates. Catalysts, 2019, 9, 818.	1.6	13
44	Structures and Dynamics of Secondary and Tertiary Alkylphosphine Oxides Adsorbed on Silica. Chemistry - an Asian Journal, 2019, 14, 2704-2711.	1.7	22
45	Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chemical Science, 2019, 10, 5875-5883.	3.7	37
46	Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 8689-8693.	6.6	57
47	Isobutane alkylation with 2-butene in novel ionic liquid/solid acid catalysts. Fuel, 2019, 252, 316-324.	3.4	22
48	The cooperative effect of Lewis and BrĄ̃nsted acid sites on Sn-MCM-41 catalysts for the conversion of 1,3-dihydroxyacetone to ethyl lactate. Green Chemistry, 2019, 21, 3383-3393.	4.6	26
49	Self-solidification ionic liquids as heterogeneous catalysts for biodiesel production. Green Chemistry, 2019, 21, 3182-3189.	4.6	35
50	Dehydration of 1,5â€Pentanediol over ZrO ₂ â€ZnO Mixed Oxides. ChemistrySelect, 2019, 4, 3123-3130.	0.7	6
51	H/D reactivity and acidity of BrĄnsted acid sites of MWW zeolites: Comparison with MFI zeolite. Applied Catalysis A: General, 2019, 575, 180-186.	2.2	10
52	Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts. Communications Chemistry, 2019, 2, .	2.0	59
53	Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science and Technology, 2019, 9, 6308-6317.	2.1	1
54	Selective synthesis and stabilization of peroxides <i>via</i> phosphine oxides. New Journal of Chemistry, 2019, 43, 17174-17181.	1.4	16
55	Rational Design of Metal Oxide Solid Acids for Sugar Conversion. Catalysts, 2019, 9, 907.	1.6	12

# 56	ARTICLE 1H–31P HETCOR NMR elucidates the nature of acid sites in zeolite HZSM-5 probed with trimethylphosphine oxide. Chemical Communications, 2019, 55, 12635-12638.	IF 2.2	CITATIONS 23
57	Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: From the perspective of molecular adsorption and diffusion. Journal of Catalysis, 2019, 369, 335-344.	3.1	54
58	Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties. Fuel, 2019, 240, 270-277.	3.4	51
59	Selective catalytic synthesis of glycerol monolaurate over silica gel-based sulfonic acid functionalized ionic liquid catalysts. Chemical Engineering Journal, 2019, 359, 733-745.	6.6	25
60	Generation of Phosphonium Sites on Sulfated Zirconium Oxide: Relationship to BrĄ̃nsted Acid Strength of Surface â^'OH Sites. Journal of the American Chemical Society, 2019, 141, 1484-1488.	6.6	25
61	Acidic ionic liquid-functionalized mesoporous melamine-formaldehyde polymer as heterogeneous catalyst for biodiesel production. Fuel, 2019, 239, 886-895.	3.4	68
62	Coating mesoporous ZSM-5 by thin microporous Silicalite-1 shell: Formation of core/shell structure, improved hydrothermal stability and outstanding catalytic performance. Catalysis Today, 2020, 339, 312-320.	2.2	21
63	NMR Spectroscopic Characterization of Flameâ€Made Amorphous Silicaâ€Alumina for Cyclohexanol and Glyceraldehyde Conversion. ChemCatChem, 2020, 12, 287-293.	1.8	7
64	Recent advances in computational ³¹ P NMR: Part 1. Chemical shifts. Magnetic Resonance in Chemistry, 2020, 58, 478-499.	1.1	28
65	Al(ORF)3 (RF = C(CF3)3) activated silica: a well-defined weakly coordinating surface anion. Chemical Science, 2020, 11, 1510-1517.	3.7	23
66	Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367, 193-197.	6.0	470
67	Unravelling the true active site for CeO2-catalyzed dephosphorylation. Applied Catalysis B: Environmental, 2020, 264, 118508.	10.8	31
68	Sulphated alumina tungstic acid (SATA): a highly efficient and novel heterogeneous mesostructured catalyst for the synthesis of pyrazole carbonitrile derivatives and evaluation of green metrics. RSC Advances, 2020, 10, 818-827.	1.7	11
69	Developing BrÃ,nsted–Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. Journal of Industrial and Engineering Chemistry, 2020, 92, 200-209.	2.9	18
70	Unraveling the Reaction Mechanism and Active Sites of Metal–Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies. ACS Sustainable Chemistry and Engineering, 2020, 8, 16143-16155.	3.2	19
71	Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids. Energy, 2020, 211, 118631.	4.5	22
72	Analysis and control of acid sites in zeolites. Applied Catalysis A: General, 2020, 606, 117795.	2.2	81
73	Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nature Protocols, 2020, 15, 3527-3555.	5.5	54

CITATION REPORT

#	Article	IF	CITATIONS
74	Study of interactions between BrĄ̃nsted acids and triethylphosphine oxide in solution by ³¹ P NMR: evidence for 2 : 1 species. Physical Chemistry Chemical Physics, 2020, 22, 24351-24358.	1.3	13
75	1H-NMR-based metabolomics for cancer targeting and metabolic engineering –A review. Process Biochemistry, 2020, 99, 112-122.	1.8	27
76	Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catalysis, 2020, 10, 8788-8814.	5.5	75
77	Novel Strategy for the Synthesis of Ultraâ€Stable Singleâ€Site Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 19553-19560.	7.2	61
78	Evolution of a Metalâ€Organic Framework into a BrÃ,nsted Acid Catalyst for Glycerol Dehydration to Acrolein. ChemSusChem, 2020, 13, 5073-5079.	3.6	31
79	Novel Strategy for the Synthesis of Ultraâ€Stable Singleâ€Site Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie, 2020, 132, 19721-19728.	1.6	10
80	Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose Isomerisation. Angewandte Chemie, 2020, 132, 20192-20198.	1.6	6
81	Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose Isomerisation. Angewandte Chemie - International Edition, 2020, 59, 20017-20023.	7.2	31
82	Spectroscopic Signature of Lewis Acidic Framework and Extraframework Sn Sites in Beta Zeolites. ACS Catalysis, 2020, 10, 14135-14146.	5.5	67
83	Insight into the effects of acid characteristics on the catalytic performance of Sn-MFI zeolites in the transformation of dihydroxyacetone to methyl lactate. Journal of Catalysis, 2020, 391, 386-396.	3.1	17
84	Waterâ€Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Shipâ€inâ€aâ€Bottle Strategy for Acidity Identification and Catalyst Modification. Angewandte Chemie - International Edition, 2020, 59, 20672-20681.	7.2	26
85	Waterâ€Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Shipâ€inâ€aâ€Bottle Strategy for Acidity Identification and Catalyst Modification. Angewandte Chemie, 2020, 132, 20853-20862.	1.6	5
86	Impact of acid site speciation and spatial gradients on zeolite catalysis. Journal of Catalysis, 2020, 391, 56-68.	3.1	66
87	Di(hydroperoxy)cycloalkane Adducts of Triarylphosphine Oxides: A Comprehensive Study Including Solid-State Structures and Association in Solution. Inorganic Chemistry, 2020, 59, 13719-13732.	1.9	10
88	Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catalysis, 2020, 10, 11822-11840.	5.5	94
89	Accelerating Biodiesel Catalytic Production by Confined Activation of Methanol over High-Concentration Ionic Liquid-Grafted UiO-66 Solid Superacids. ACS Catalysis, 2020, 10, 11848-11856.	5.5	32
90	Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds. Chemical Science, 2020, 11, 10225-10235.	3.7	23
91	Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO2 Nanorods. Nanomaterials, 2020, 10, 1530.	1.9	6

#	Article	IF	CITATIONS
92	Enhancing hydrothermal stability of framework Al in ZSM-5: From the view on the transformation between P and Al species by solid-state NMR spectroscopy. Chinese Journal of Chemical Engineering, 2020, 28, 3052-3060.	1.7	7
93	Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules: An update. Annual Reports on NMR Spectroscopy, 2020, , 65-149.	0.7	2
94	Recent Advances in Solid-State Nuclear Magnetic Resonance Techniques for Materials Research. Annual Review of Materials Research, 2020, 50, 493-520.	4.3	18
95	A study on the acidity of sulfated CuO layers grown by surface reconstruction of Cu ₂ O with specific exposed facets. Catalysis Science and Technology, 2020, 10, 3985-3993.	2.1	7
96	Chemical state tuning of surface Ce species on pristine CeO ₂ with 2400% boosting in peroxidase-like activity for glucose detection. Chemical Communications, 2020, 56, 7897-7900.	2.2	15
97	Probing the BrÃֻnsted Acidity of the External Surface of Faujasiteâ€Type Zeolites. ChemPhysChem, 2020, 21, 1873-1881.	1.0	30
98	Surface-Protection-Induced Controllable Restructuring of Pores and Acid Sites of the Nano-ZSM-5 Catalyst and Its Influence on the Catalytic Conversion of Methanol to Hydrocarbons. Langmuir, 2020, 36, 3737-3749.	1.6	16
99	Differentiating Surface Ce Species among CeO ₂ Facets by Solid-State NMR for Catalytic Correlation. ACS Catalysis, 2020, 10, 4003-4011.	5.5	59
100	Active Site Formation in WO _{<i>x</i>} Supported on Spherical Silica Catalysts for Lewis Acid Transformation to BrÃ,nsted Acid Activity. Journal of Physical Chemistry C, 2020, 124, 15935-15943.	1.5	10
101	Pd/Lewis Acid Synergy in Macroporous Pd@Naâ€ZSMâ€5 for Enhancing Selective Conversion of Biomass. ChemCatChem, 2020, 12, 5364-5368.	1.8	9
102	Adsorption and isomerization of amino acids within zeolites: Impacts of acidity, amine functionalization, pore topology and sidechains. Molecular Catalysis, 2020, 493, 111088.	1.0	1
103	Disentangling different modes of mobility for triphenylphosphine oxide adsorbed on alumina. Journal of Chemical Physics, 2020, 152, 054718.	1.2	15
104	From One to Two: Acidic Proton Spatial Networks in Porous Zeolite Materials. Chemistry of Materials, 2020, 32, 1332-1342.	3.2	35
105	Local Acid Strength of Solutions and Its Quantitative Evaluation Using Excess Infrared Nitrile Probes. Journal of Physical Chemistry Letters, 2020, 11, 1007-1012.	2.1	18
106	Design of nitrogen-doped graphitized 2D hierarchical porous carbons as efficient solid base catalysts for transesterification to biodiesel. Green Chemistry, 2020, 22, 903-912.	4.6	26
107	Câ°'C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSMâ€5 Zeolite. Angewandte Chemie - International Edition, 2020, 59, 6529-6534.	7.2	34
108	Fabrication of a solid superacid with temperature-regulated silica-isolated biochar nanosheets. Chinese Journal of Catalysis, 2020, 41, 698-709.	6.9	4
109	Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Applied Catalysis B: Environmental, 2020, 268, 118732.	10.8	36

#	Article	IF	CITATIONS
110	Câ^'C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSMâ€5 Zeolite. Angewandte Chemie, 2020, 132, 6591-6596.	1.6	5
111	Complementary interpretation of <i>E</i> _T (30) polarity parameters of ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 9954-9966.	1.3	21
112	Modulation of Selfâ€5eparating Molecular Catalysts for Highly Efficient Biomass Transformations. Chemistry - A European Journal, 2020, 26, 11900-11908.	1.7	9
113	Functionalized Biochar with Superacidity and Hydrophobicity as a Highly Efficient Catalyst in the Synthesis of Renewable High-Density Fuels. ACS Sustainable Chemistry and Engineering, 2020, 8, 7785-7794.	3.2	24
114	Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions. Chinese Journal of Catalysis, 2021, 42, 297-309.	6.9	25
115	Seleniumâ€NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. Asian Journal of Organic Chemistry, 2021, 10, 91-128.	1.3	16
116	Thermal desorption of trimethylphosphine (TMP) on the HY zeolite followed by FT-IR and 31P MAS NMR. Journal of Solid State Chemistry, 2021, 294, 121862.	1.4	7
117	Precisely regulating the BrÃ,nsted acidity and catalytic reactivity of novel allylic C–H acidic catalysts. Fuel, 2021, 289, 119845.	3.4	1
118	The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts. Materials Chemistry Frontiers, 2021, 5, 4254-4271.	3.2	13
119	Surface matrix curing of inorganic CsPbI ₃ perovskite quantum dots for solar cells with efficiency over 16%. Energy and Environmental Science, 2021, 14, 4599-4609.	15.6	96
120	One-pot fructose conversion into 5-ethoxymethylfurfural using a sulfonated hydrophobic mesoporous organic polymer as a highly active and stable heterogeneous catalyst. Catalysis Science and Technology, 2021, 11, 5816-5826.	2.1	7
121	Effect of Copper State in Cu/H-ZSM-5 on Methane Activation by BrÃ,nsted Acid Sites, Studied by 1H MAS NMR In Situ Monitoring the H/D Hydrogen Exchange of the Alkane with BrÃ,nsted Acid Sites. Journal of Physical Chemistry C, 2021, 125, 2182-2193.	1.5	16
122	NO _x reduction consequences of lanthanide-substituted vanadates functionalized with S or P poisons under oxidative environments. Journal of Materials Chemistry A, 2021, 9, 8350-8371.	5.2	19
123	Surface Structures and Their Reactions in Transition Metal Oxides. New Developments in NMR, 2021, , 460-482.	0.1	0
124	Surface acidity of tin dioxide nanomaterials revealed with ³¹ P solid-state NMR spectroscopy and DFT calculations. RSC Advances, 2021, 11, 25004-25009.	1.7	3
125	Fully recyclable BrÃ,nsted acid catalyst systems. Green Chemistry, 2021, 23, 1266-1273.	4.6	13
127	Surface Coordination Chemistry of Nanomaterials and Catalysis. , 2021, , 204-227.		1
128	MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catalysis, 2021, 11, 2366-2396.	5.5	63

#	Article	IF	CITATIONS
129	Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica–Alumina toward Biorefining. Jacs Au, 2021, 1, 262-271.	3.6	7
130	Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation. Journal of Catalysis, 2021, 395, 105-116.	3.1	34
131	Acidity and Local Confinement Effect in Mordenite Probed by Solid-State NMR Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 2413-2422.	2.1	17
132	A theoretical study on the feed ratio of dimethyl ether carbonylation on H-MOR zeolites. Molecular Physics, 2021, 119, e1896044.	0.8	3
133	Confinement-Driven "Flexible―Acidity Properties of Porous Zeolite Catalysts with Varied Probe-Assisted Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 11580-11590.	1.5	8
134	One-step fabrication of polymeric self-solidifying ionic liquids as the efficient catalysts for biodiesel production. Journal of Cleaner Production, 2021, 292, 125967.	4.6	17
135	Effect of Adsorbed Water Molecules on the Surface Acidity of Niobium and Tantalum Oxides Studied by MAS NMR. Journal of Physical Chemistry C, 2021, 125, 9330-9341.	1.5	5
136	Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches. Accounts of Chemical Research, 2021, 54, 2421-2433.	7.6	21
137	Influence of Trimethylphosphine Oxide Loading on the Measurement of Zeolite Acidity by Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 9497-9506.	1.5	15
138	Synergy of Extraframework Al ³⁺ Cations and BrĄ̃nsted Acid Sites on Hierarchical ZSM-5 Zeolites for Butanol-to-Olefin Conversion. Journal of Physical Chemistry C, 2021, 125, 11665-11676.	1.5	12
139	Qualitative and Quantitative Analysis of Acid Properties for Solid Acids by Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 10179-10197.	1.5	21
140	Al-functionalized mesoporous SBA-15 with enhanced acidity for hydroisomerization of n-octane. Fuel Processing Technology, 2021, 215, 106765.	3.7	13
141	Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. Jacs Au, 2021, 1, 786-794.	3.6	12
142	Electronicâ€State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO ₂ Near Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 16149-16155.	7.2	9
143	Electronic‣tate Manipulation of Surface Titanium Activates Dephosphorylation Over TiO ₂ Near Room Temperature. Angewandte Chemie, 2021, 133, 16285-16291.	1.6	11
144	Induced Active Sites by Adsorbate in Zeotype Materials. Journal of the American Chemical Society, 2021, 143, 8761-8771.	6.6	19
145	A Cationic Polymerization Strategy to Design Sulfonated Micro–Mesoporous Polymers as Efficient Adsorbents for Ammonia Capture and Separation. Macromolecules, 2021, 54, 7010-7020.	2.2	16
146	Comparative study of HSOA-/SOA2- versus H3â^BPO4B- functionalities anchored on TiO2-supported antimony oxide-vanadium oxide-cerium oxide composites for low-temperature NOX activation. Journal of Hazardous Materials, 2021, 416, 125780.	6.5	11

#	Article	IF	CITATIONS
147	What Is Being Measured with P-Bearing NMR Probe Molecules Adsorbed on Zeolites?. Journal of the American Chemical Society, 2021, 143, 13616-13623.	6.6	27
148	Recovery of Phosphoric Acid and Calcium Phosphate from Dephosphorization Slag. Journal of Chemical Engineering of Japan, 2021, 54, 467-471.	0.3	6
149	Characterization of the acidity and basicity of green solvents by NMR techniques. Magnetic Resonance Letters, 2021, 1, 81-88.	0.7	12
150	Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane dehydrogenation. Journal of Catalysis, 2021, 404, 760-770.	3.1	16
151	In situ spectroscopic insights into the redox and acid-base properties of ceria catalysts. Chinese Journal of Catalysis, 2021, 42, 2122-2140.	6.9	12
152	Di(hydroperoxy)adamantane adducts: synthesis, characterization and application as oxidizers for the direct esterification of aldehydes. Dalton Transactions, 2021, 50, 15296-15309.	1.6	7
153	Accurate heteronuclear distance measurements at all magic-angle spinning frequencies in solid-state NMR spectroscopy. Chemical Science, 2021, 12, 11554-11564.	3.7	12
154	Highly Active Silver ion-Exchanged Silicotungstic Acid Catalysts for Selective Esterification of Glycerol with Lauric Acid. Catalysis Letters, 2020, 150, 3584-3597.	1.4	7
155	A Method for the Selective Quantification of BrÃ,nsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites. Journal of Physical Chemistry C, 2021, 125, 515-525.	1.5	14
156	Application of ammonia probe-assisted solid-state NMR technique in zeolites and catalysis. Magnetic Resonance Letters, 2022, 2, 28-37.	0.7	8
157	Supported MoO _{<i>x</i>} and WO _{<i>x</i>} Solid Acids for Biomass Valorization: Interplay of Coordination Chemistry, Acidity, and Catalysis. ACS Catalysis, 2021, 11, 13603-13648.	5.5	38
158	Probe-assisted NMR: Recent progress on the surface study of crystalline metal oxides with various terminated facets. Magnetic Resonance Letters, 2022, 2, 9-16.	0.7	23
159	Conversion of levulinic acid to γ-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and BrÃ,nsted acid sites. Molecular Catalysis, 2021, 515, 111925.	1.0	10
160	Multifunctional heteroatom zeolites: construction and applications. Frontiers of Chemical Science and Engineering, 2021, 15, 1462-1486.	2.3	9
161	What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
162	What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angewandte Chemie, 2022, 134, .	1.6	10
163	Molecular design and experimental study of cellulose conversion to 5-hydroxymethylfurfural catalyzed by different ratios of BrÃ,nsted/Lewis acid ionic liquids. Carbohydrate Polymers, 2022, 278, 118936.	5.1	11
164	Direct Synthesis of Dimethyl Ether on Bifunctional Catalysts Based on Cu–ZnO(Al) and Supported H ₃ PW ₁₂ O ₄₀ : Effect of Physical Mixing on Bifunctional Interactions and Activity. Industrial & Engineering Chemistry Research, 2021, 60, 18853-18869.	1.8	9

#	Article	IF	CITATIONS
165	The challenge of silanol species characterization in zeolites. Inorganic Chemistry Frontiers, 2022, 9, 1125-1133.	3.0	29
166	Determination of acid structures on the surface of sulfated monoclinic and tetragonal zirconia through experimental and theoretical approaches. Catalysis Science and Technology, 2022, 12, 596-605.	2.1	7
167	Reactivity of internal vs. external BrÃ,nsted acid sites in nanosponge MFI: H/D exchange kinetic study. Microporous and Mesoporous Materials, 2022, 332, 111717.	2.2	1
168	Anchoring Boron Atom to the Specific Tetrahedral Sites of Borosilicate MFI by Imidazolium-based Molecules. CrystEngComm, 0, , .	1.3	1
169	Phosphine oxides as NMR and IR spectroscopic probes for the estimation of the geometry and energy of POâ< H–A hydrogen bonds. Physical Chemistry Chemical Physics, 2022, 24, 7121-7133.	1.3	2
170	Nuclear magnetic resonance in metabolomics. , 2022, , 149-218.		2
171	Covalently tethering disulfonic acid moieties onto polyoxometalate boosts acid strength and catalytic performance for hydroxyalkylation/alkylation reaction. Science China Chemistry, 2022, 65, 699-709.	4.2	2
172	Design of plate-like H[Ga]MFI zeolite catalysts for high-performance methanol-to-propylene reaction. Microporous and Mesoporous Materials, 2022, 333, 111767.	2.2	14
173	Evaluation of Zeolite Acidity by ³¹ P MAS NMR Spectroscopy of Adsorbed Phosphine Oxides: Quantitative or Not?. ACS Omega, 2022, 7, 12318-12328.	1.6	2
174	Correlation of BrÃnsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion. Fuel, 2022, 320, 123729.	3.4	8
175	Hydrogen-Catalyzed Acid Transformation for the Hydration of Alkenes and Epoxy Alkanes over Co–N Frustrated Lewis Pair Surfaces. Journal of the American Chemical Society, 2021, 143, 21294-21301.	6.6	33
176	Bifunctional Role of Hydrogen in Aqueous Hydrogenative Ring Rearrangement of Furfurals over Co@Co-NC. ACS Sustainable Chemistry and Engineering, 2022, 10, 7321-7329.	3.2	7
177	Thermal Alteration in Adsorption Sites over SAPOâ€34 Zeolite. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
178	Chemoselective nitrilation of dimethyl adipate with ammonia over carbon encapsulated WO _{<i>x</i>} catalysts under continuous flow conditions. Catalysis Science and Technology, 2022, 12, 3982-3991.	2.1	6
179	Thermal Alteration in Adsorption Sites over SAPOâ \in 34 Zeolite. Angewandte Chemie, 0, , .	1.6	1
181	Bulk-to-nano regulation of layered metal oxide gears H2O2 activation pathway for its stoichiometric utilization in selective oxidation reaction. Applied Catalysis B: Environmental, 2022, 313, 121461.	10.8	11
182	The coordination chemistry of oxide and nanocarbon materials. Dalton Transactions, 2022, 51, 8557-8570.	1.6	7
183	Acidity scales of deep eutectic solvents based on IR and NMR. Physical Chemistry Chemical Physics, 2022, 24, 16973-16978.	1.3	16

#	Article	IF	CITATIONS
184	Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. Journal of the American Chemical Society, 2022, 144, 10377-10385.	6.6	23
185	Quantitatively Mapping the Distribution of Intrinsic Acid Sites in Mordenite Zeolite by High-Field ²³ Na Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2022, 13, 5186-5194.	2.1	6
186	Impact of Adsorption Configurations on Alcohol Dehydration over Alumina Catalysts. Journal of Physical Chemistry C, 2022, 126, 10073-10080.	1.5	6
187	Origin of enhanced reversible Na ion storage in hard carbon anodes through p-type molecular doping. Journal of Materials Chemistry A, 2022, 10, 16506-16513.	5.2	5
188	New insights into the interaction of triethylphosphine oxide with silica surface: exchange between different surface species. Physical Chemistry Chemical Physics, 2022, 24, 16755-16761.	1.3	1
189	Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas. Separation and Purification Technology, 2022, 298, 121676.	3.9	19
190	Facet-Dependent Activity of CeO ₂ Nanozymes Regulate the Fate of Human Neural Progenitor Cell via Redox Homeostasis. ACS Applied Materials & Interfaces, 2022, 14, 35423-35433.	4.0	11
191	The Distance between Minima of Electron Density and Electrostatic Potential as a Measure of Halogen Bond Strength. Molecules, 2022, 27, 4848.	1.7	7
192	High-fidelity control of spin ensemble dynamics via artificial intelligence: from quantum computing to NMR spectroscopy and imaging. , 2022, 1, .		4
193	Introducing a Novel Method for Probing Accessibility, Local Environment, and Spatial Distribution of Oxidative Sites on Solid Catalysts Using Trimethylphosphine. Journal of Physical Chemistry C, 2022, 126, 13213-13223.	1.5	5
194	Probing the nature of Lewis acid sites on oxide surfaces with ³¹ P(CH ₃) ₃ NMR: a theoretical analysis. Physical Chemistry Chemical Physics, 2022, 24, 19773-19782.	1.3	1
195	NMR of catalytic sites. , 2022, , .		0
196	Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nature Communications, 2022, 13, .	5.8	19
197	Structural and Acidic Characteristics of Multiple Zr Defect Sites in UiO-66 Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 9295-9302.	2.1	12
198	H ⁺ â^'H ^{â^'} Pairs in Partially Oxidized MAX Phases for Bifunctional Catalytic Conversion of Furfurals into Linear Ketones. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
199	Novel Magnetically-Recoverable Solid Acid Catalysts with a Hydrophobic Layer in Protecting the Active Sites from Water Poisoning. Processes, 2022, 10, 1738.	1.3	0
200	Elucidating the Nature of the External Acid Sites of ZSMâ€5 Zeolites Using NMR Probe Molecules. Chemistry - A European Journal, 2022, 28, .	1.7	5
201	H+â€H―Pairs in Partial Oxidized MAX Phases for Bifunctional Catalytic Conversion of Furfurals into Linear Ketones. Angewandte Chemie, 0, , .	1.6	Ο

	CITATION	Report	
#	Article	IF	CITATIONS
202	Moisture Effect on the Threshold Switching of TOPO-Stabilized Sub-10 nm HfO ₂ Nanocrystals in Nanoscale Devices. Journal of Physical Chemistry C, 2022, 126, 18571-18579.	1.5	3
203	Synergistic promotion for CO2 absorption and solvent regeneration by fine waste red mud particles on in amine-based carbon capture: Performance and mechanism. Separation and Purification Technology, 2023, 304, 122380.	3.9	8
204	BrÃ,nsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. Journal of Catalysis, 2022, 416, 375-386.	3.1	3
205	Insight into the Acidity and Catalytic Performance on Butane Isomerization of Thermal Stable Sulfated Monoclinic Zirconia. Processes, 2022, 10, 2693.	1.3	0
207	Tailoring and Identifying BrÃ,nsted Acid Sites on Metal Oxo-Clusters of Metal–Organic Frameworks for Catalytic Transformation. ACS Central Science, 2023, 9, 27-35.	5.3	6
208	Adsorbate-driven dynamic active sites in stannosilicate zeolites. Fundamental Research, 2023, , .	1.6	2
209	Efficient oneâ€pot tandem conversion of saccharides to 2,5â€dimethylfuran by adjusting the wettability of <scp>2DMOF</scp> catalysts. AICHE Journal, 0, , .	1.8	0
210	Empirical Hydrogen Bonding Donor (HBD) Parameters of Organic Solvents Using Solvatochromic Probes – A Critical Evaluation. ChemPhysChem, 2023, 24, .	1.0	7
211	Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis. Journal of Materials Chemistry A, 2023, 11, 2528-2543.	5.2	4
212	Developing ordered mesoporous silica superacids for high-precision adsorption and separation of ammonia. Chemical Engineering Journal, 2023, 457, 141263.	6.6	6
213	Insight into the strong Brönsted acid sites on isolated WOx-modified Pt/zirconium phosphate for glycerol efficient hydrodeoxygenation. Applied Catalysis B: Environmental, 2023, 325, 122342.	10.8	1
214	Relationship between the 13C chemical shifts of adsorbed mesityl oxide and acid strength of solid acid catalysts. Carbon Letters, 2023, 33, 947-956.	3.3	2
215	Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry, 2023, 5, 334-347.	0.9	3
216	Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chemical Communications, 2023, 59, 4115-4127.	2.2	5
217	Preparation of Carbonâ€Supported Tungsten Carbides: Comparative Determination of Surface Composition and Influence on Cellulose Transformation into Glycols. ChemCatChem, 0, , .	1.8	0
218	Direct quantification of oxygen vacancy on the TiO2 surface by 31P solid-state NMR. Chem Catalysis, 2023, 3, 100556.	2.9	1
219	Direct synthesis of propylene glycol methyl ether from propylene using an Al-TS-1 catalyst: Ti–Al synergy. New Journal of Chemistry, 2023, 47, 7810-7818.	1.4	0
220	Molecular Influences on the Quantification of Lewis Acidity with Phosphine Oxide Probes. Inorganic Chemistry, 2023, 62, 9765-9780.	1.9	6

#	Article	IF	CITATIONS
221	Identity, Evolution, and Acidity of Partially Framework-Coordinated Al Species in Zeolites Probed by TMP ³¹ P-NMR and FTIR. ACS Catalysis, 2023, 13, 4960-4970.	5.5	4
222	Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. Advanced Materials, 2024, 36, .	11.1	5
227	High-Field Nuclear Magnetic Resonance (NMR) Spectroscopy. Springer Handbooks, 2023, , 757-785.	0.3	0
246	Recent advancements of CeO2-enabled liquid acid/base catalysis. Catalysis Science and Technology, 0, , .	2.1	0