Strain-controlled electrocatalysis on multimetallic nan

Nature Reviews Materials

2,

DOI: 10.1038/natrevmats.2017.59

Citation Report

#	Article	IF	CITATIONS
1	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	3.4	34
2	Palladium-based nanoelectrocatalysts for renewable energy generation and conversion. Materials Today Nano, 2018, 1, 29-40.	4.6	26
3	How strain can break the scaling relations of catalysis. Nature Catalysis, 2018, 1, 263-268.	34.4	261
4	Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications. ACS Applied Materials & Interfaces, 2018, 10, 15720-15732.	8.0	115
5	Design and synthesis of conductive carbon polyhedrons enriched with Mn-Oxide active-centres for oxygen reduction reaction. Electrochimica Acta, 2018, 272, 169-175.	5.2	47
6	High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications. Journal of Membrane Science, 2018, 552, 51-60.	8.2	79
7	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	13.7	193
8	Three-Decker Strategy Based on Multifunctional Layered Double Hydroxide to Realize High-Performance Hydroxide Exchange Membranes for Fuel Cell Applications. ACS Applied Materials & Interfaces, 2018, 10, 18246-18256.	8.0	29
9	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.	17.4	183
10	Unconventional morphologies of CoO nanocrystals <i>via</i> controlled oxidation of cobalt oleate precursors. Chemical Communications, 2018, 54, 3867-3870.	4.1	6
11	Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of Catalysis, 2018, 361, 168-176.	6.2	69
12	Adatom decorated shape-controlled metal nanoparticles: Advanced electrocatalysts for energy conversion. Current Opinion in Electrochemistry, 2018, 9, 121-128.	4.8	10
13	Ultrasmall PtNi Bimetallic Nanoclusters for Oxygen Reduction Reaction in Alkaline Media. International Journal of Electrochemical Science, 2018, 13, 4438-4454.	1.3	5
14	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	9.1	68
15	Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction. Materials Today Nano, 2018, 3, 54-68.	4.6	32
16	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	5.6	20
17	Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts toward Oxygen Reduction Reaction in Alkaline Media. ACS Catalysis, 2018, 8, 11287-11295.	11.2	129
18	Ultrathin and Edge-Enriched Holey Nitride Nanosheets as Bifunctional Electrocatalysts for the Oxygen and Hydrogen Evolution Reactions. ACS Catalysis, 2018, 8, 9686-9696.	11.2	71

#	Article	IF	CITATIONS
19	Surface and Near-Surface Engineering of PtCo Nanowires at Atomic Scale for Enhanced Electrochemical Sensing and Catalysis. Chemistry of Materials, 2018, 30, 6660-6667.	6.7	32
20	In situ coating of a continuous mesoporous bimetallic PtRu film on Ni foam: a nanoarchitectured self-standing all-metal mesoporous electrode. Journal of Materials Chemistry A, 2018, 6, 12744-12750.	10.3	45
21	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	11.7	225
22	Ultrathin PtPdâ€Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. Advanced Materials, 2018, 30, e1802136.	21.0	107
23	One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. Nanoscale, 2018, 10, 16087-16093.	5.6	22
24	Particle Shape Control <i>via</i> Etching of Core@Shell Nanocrystals. ACS Nano, 2018, 12, 9186-9195.	14.6	11
25	Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters. Catalysts, 2018, 8, 65.	3.5	64
26	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	38.1	222
27	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	11.9	285
28	Intermetallic <i>hcp</i> -PtBi/ <i>fcc</i> -Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catalysis, 2018, 8, 5581-5590.	11.2	153
29	Atomic‣cale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Advanced Materials, 2018, 30, e1707301.	21.0	148
30	Trimetallic Au@PtPd Mesoporous Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 4891-4898.	5.1	24
31	Strained Nickel Phosphide Nanosheet Array. ACS Applied Materials & Interfaces, 2018, 10, 30029-30034.	8.0	20
32	A Review of Preciousâ€Metalâ€Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Znâ^'Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.	14.9	524
33	PdRu alloy nanoparticles of solid solution in atomic scale: Size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol. Journal of Catalysis, 2018, 364, 183-191.	6.2	34
34	Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Current Opinion in Electrochemistry, 2018, 8, 135-146.	4.8	60
35	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	14.2	64
36	Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Materials Today, 2019, 22, 108-131.	14.2	92

ARTICLE IF CITATIONS # Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. 37 10.3 30 Journal of Materials Chemistry A, 2019, 7, 20478-20493. Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis. Accounts of 15.6 84 Chemical Research, 2019, 52, 3384-3396. In Situ Modification of a Delafossite-Type PdCoO₂ Bulk Single Crystal for Reversible 39 17.4 34 Hydrogen Sorption and Fast Hydrogen Evolution. ACS Energy Letters, 2019, 4, 2185-2191. Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel 41 34.4 760 cells for transportation. Nature Catalysis, 2019, 2, 578-589. Enhancing Câ
 ${\rm C}^{\rm *C}$ Bond Scission for Efficient Ethanol Oxidation using Ptlr Nanocube Electrocatalysts. ACS Catalysis, 2019, 9, 7618-7625. 11.2 79 Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt–Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding. ACS Applied Materials & amp; Interfaces, 2019, 11, 43 8.0 40 26789-26797. Catalytic Activity Boosting of Nickel Sulfide toward Oxygen Evolution Reaction via Confined 44 5.1 Overdoping Engineering. ACS Applied Energy Materials, 2019, 2, 5363-5372. Defect Dynamics at a Single Pt Nanoparticle during Catalytic Oxidation. Nano Letters, 2019, 19, 45 9.1 20 5044-5052. Monitoring and Modeling the Variation of Electrochemical Current Induced by Dynamic Strain at Gold Surfaces. Journal of the Electrochemical Society, 2019, 166, H480-H484. Co₃O₄ Nanoparticles with Ultrasmall Size and Abundant Oxygen Vacancies 47 14.9 108 for Boosting Oxygen Involved Reactions. Advanced Functional Materials, 2019, 29, 1903444. Platinum Porous Nanosheets with High Surface Distortion and Pt Utilization for Enhanced Oxygen 14.9 96 Reduction Catalysis. Advanced Functional Materials, 2019, 29, 1904429. Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. 49 2.0 30 Angewandte Chemie, 2019, 131, 15617-15623. Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019, 13, 13225-13234. 14.6 Porous Nitrogenâ€Doped Carbons as Effective Catalysts for Oxygen Reduction Reaction Synthesized 51 3.4 15 from Cellulose and Polyamide. ChemElectroChem, 2019, 6, 5735-5743. Tungstenâ€Doped L1₀â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell 150 Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477. Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient 53 11.2 96 Electrocatalysis. ACS Catalysis, 2019, 9, 11242-11254. Modulating the surface segregation of PdCuRu nanocrystals for enhanced all-pH hydrogen evolution 54 electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 20151-20157.

#	Article	IF	CITATIONS
55	Accurate Control of Core–Shell Upconversion Nanoparticles through Anisotropic Strain Engineering. Advanced Functional Materials, 2019, 29, 1903295.	14.9	59
56	CO Gas Induced Phase Separation in PtPb@Pt Catalyst and Formation of Ultrathin Pb Nanosheets Probed by In Situ Transmission Electron Microscopy. Small, 2019, 15, e1903122.	10.0	15
57	Lattice Tetragonality and Local Strain Depending on Shape of Gold Nanoparticles. Microscopy and Microanalysis, 2019, 25, 2122-2123.	0.4	1
58	Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. Nano Letters, 2019, 19, 6876-6885.	9.1	95
59	Bimetallic Composition-Promoted Electrocatalytic Hydrodechlorination Reaction on Silver–Palladium Alloy Nanoparticles. ACS Catalysis, 2019, 9, 10803-10811.	11.2	115
60	Defect Engineering in Photocatalytic Nitrogen Fixation. ACS Catalysis, 2019, 9, 9739-9750.	11.2	286
61	Bifunctional Electrocatalytic Activity of Bis(iminothiolato)nickel Monolayer for Overall Water Splitting. Journal of Physical Chemistry C, 2019, 123, 25651-25656.	3.1	17
62	PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574, 81-85.	27.8	935
63	Direct Growth of Highly Strained Pt Islands on Branched Ni Nanoparticles for Improved Hydrogen Evolution Reaction Activity. Journal of the American Chemical Society, 2019, 141, 16202-16207.	13.7	113
64	Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today, 2019, 28, 100774.	11.9	81
65	Tuning the oxygen evolution reaction on a nickel–iron alloy <i>via</i> active straining. Nanoscale, 2019, 11, 426-430.	5.6	52
66	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	10.3	128
67	Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. Journal of Energy Chemistry, 2019, 39, 182-187.	12.9	74
68	A bio-inspired 3D quasi-fractal nanostructure for an improved oxygen evolution reaction. Chemical Communications, 2019, 55, 357-360.	4.1	5
69	An efficient ultrathin PtFeNi Nanowire/Ionic liquid conjugate electrocatalyst. Applied Catalysis B: Environmental, 2019, 256, 117828.	20.2	40
70	An anion exchange reaction: an effective approach to prepare alloyed Co–Fe bimetallic disulfide for improving the electrocatalytic activity. Chemical Communications, 2019, 55, 7615-7618.	4.1	3
71	Inorganic Cyanogels and Their Derivatives for Electrochemical Energy Storage and Conversion. , 2019, 1, 158-170.		57
72	Enhancing catalytic activity of tungsten disulfide through topology. Applied Catalysis B: Environmental, 2019, 256, 117802.	20.2	26

#	Article	IF	CITATIONS
73	Structure-Related Electrocatalytic Performance of N/C-Supported Fe _{1–<i>x</i>} Ni _{<i>x</i>} Nanoparticles toward Oxygen Reduction. Journal of Physical Chemistry C, 2019, 123, 16250-16256.	3.1	5
74	PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy. Journal of Catalysis, 2019, 374, 101-109.	6.2	44
75	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640.	10.3	24
76	One-nanometer-thick platinum-based nanowires with controllable surface structures. Nano Research, 2019, 12, 1721-1726.	10.4	18
77	Understanding the strain effect of Au@Pd nanocatalysts by <i>in situ</i> surface-enhanced Raman spectroscopy. Chemical Communications, 2019, 55, 8824-8827.	4.1	11
78	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	12.2	79
79	Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 14908-14917.	7.1	90
80	When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Applied Catalysis B: Environmental, 2019, 253, 271-277.	20.2	70
81	Strain Effect on the Dissociation of Water Molecules on Silicene: Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 11591-11601.	3.1	17
82	Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.	24.0	197
83	Electric-field-aligned functionalized-layered double hydroxide/polyphenyl ether composite membrane for ion transport. International Journal of Hydrogen Energy, 2019, 44, 13852-13863.	7.1	17
84	Atomically Resolved Anisotropic Electrochemical Shaping of Nano-electrocatalyst. Nano Letters, 2019, 19, 4919-4927.	9.1	33
85	Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27, 69-90.	14.2	289
88	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	19.5	127
89	Stringing MOF-derived nanocages: a strategy for the enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 8284-8291.	10.3	53
90	Accelerating electrochemistry with metal nanowires. Current Opinion in Electrochemistry, 2019, 16, 19-27.	4.8	28
91	Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts toward Hydrogen Evolution in Both Alkaline and Acidic Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 7804-7811.	6.7	48
92	Direct Oneâ€pot Synthesis of Carbon Supported Agâ€Pt Alloy Nanoparticles as High Performance Electrocatalyst for Fuel Cell Application. Fuel Cells, 2019, 19, 169-176.	2.4	7

#	Article	IF	CITATIONS
93	Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles. Nano Research, 2019, 12, 1187-1192.	10.4	21
94	Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25.	2.6	8
95	Core-Shell Architecture Advances Oxygen Electrocatalysis. CheM, 2019, 5, 260-262.	11.7	11
96	Defect engineering in earth-abundant electrocatalysts for CO ₂ and N ₂ reduction. Energy and Environmental Science, 2019, 12, 1730-1750.	30.8	439
97	Strain Engineering Electrocatalysts for Selective CO ₂ Reduction. ACS Energy Letters, 2019, 4, 980-986.	17.4	115
98	Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry - A European Journal, 2019, 25, 9799-9815.	3.3	41
99	One-Nanometer-Thick Pt ₃ Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catalysis, 2019, 9, 4488-4494.	11.2	126
100	Ru@Pt Core–Shell Nanoparticles: Impact of the Atomic Ordering of the Ru Metal Core on the Electrocatalytic Activity of the Pt Shell. ACS Sustainable Chemistry and Engineering, 2019, 7, 9007-9016.	6.7	36
101	Enhancing electrocatalysis for hydrogen production over CoP catalyst by strain: a density functional theory study. Physical Chemistry Chemical Physics, 2019, 21, 9137-9140.	2.8	15
102	Advanced Catalysts Derived from Compositionâ€Segregated Platinum–Nickel Nanostructures: New Opportunities and Challenges. Advanced Functional Materials, 2019, 29, 1808161.	14.9	38
103	Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 2019, 29, 1808367.	14.9	298
104	Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Advanced Materials, 2019, 31, e1804567.	21.0	279
105	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	21.0	470
106	Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. Advanced Materials, 2019, 31, e1803503.	21.0	81
107	Intrinsic strain-induced segregation in multiply twinned Cu–Pt icosahedra. Physical Chemistry Chemical Physics, 2019, 21, 4802-4809.	2.8	9
108	Transitionâ€Metalâ€Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 2019, 31, e1900510.	21.0	449
109	Unusual strain effect of a Pt-based L1 ₀ face-centered tetragonal core in core/shell nanoparticles for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2019, 21, 6477-6484.	2.8	22
110	Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science, 2019, 363, 870-874.	12.6	384

#	Article	IF	CITATIONS
111	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	47.7	1,591
112	Tuning Surface Lattice Strain toward a Pt–Skin CoPt _{<i>x</i>} Truncated Octahedron for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 29722-29728.	3.1	15
113	Tuning two-dimensional phase formation through epitaxial strain and growth conditions: silica and silicate on Ni _x Pd _{1â^'x} (111) alloy substrates. Nanoscale, 2019, 11, 21340-21353.	5.6	11
114	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to <i>in situ</i> XAFS characterization. Nanoscale, 2019, 11, 20301-20306.	5.6	33
115	Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. Nanoscale, 2019, 11, 20392-20410.	5.6	11
117	Compressive Strain in Core–Shell Au–Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS Applied Materials & Interfaces, 2019, 11, 46902-46911.	8.0	25
118	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. Matter, 2019, 1, 1494-1518.	10.0	316
119	Dynamic Tuning of a Thin Film Electrocatalyst by Tensile Strain. Scientific Reports, 2019, 9, 15906.	3.3	21
120	Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films. Physical Chemistry Chemical Physics, 2019, 21, 21596-21602.	2.8	2
121	Invigorating the catalytic performance of CoP through interfacial engineering by Ni ₂ P precipitation. Journal of Materials Chemistry A, 2019, 7, 26177-26186.	10.3	13
122	Probing the surface sensitivity of dimethyl ether oxidation on epitaxially-grown PtRh(1 0 0) alloys: Insights into the challenge of improving on Pt(1 0 0). Journal of Catalysis, 2019, 369, 405-414.	6.2	3
123	Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation: A tale of two strategies. Applied Catalysis B: Environmental, 2019, 245, 325-333.	20.2	45
124	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. CheM, 2019, 5, 445-459.	11.7	354
125	Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Advanced Functional Materials, 2019, 29, 1806419.	14.9	223
126	Selfâ€Assembly of Nanoparticles into Twoâ€Dimensional Arrays for Catalytic Applications. ChemPhysChem, 2019, 20, 23-30.	2.1	20
127	Multimetallic Electrocatalyst Stabilized by Atomic Ordering. Joule, 2019, 3, 9-10.	24.0	10
128	N-Doped Sandwich-Structured Mo ₂ C@C@Pt Interface with Ultralow Pt Loading for pH-Universal Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 4047-4056.	8.0	79
129	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	38.1	350

#	Article	IF	CITATIONS
130	Fully Tensile Strained Pd ₃ Pb/Pd Tetragonal Nanosheets Enhance Oxygen Reduction Catalysis. Nano Letters, 2019, 19, 1336-1342.	9.1	109
131	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 2019, 3, 124-135.	24.0	326
132	Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Science Bulletin, 2019, 64, 54-62.	9.0	33
133	Strain engineering the D-band center for Janus MoSSe edge: Nitrogen fixation. Journal of Energy Chemistry, 2019, 33, 155-159.	12.9	32
134	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	47.7	436
135	Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Science Bulletin, 2020, 65, 97-104.	9.0	42
136	Bimetallene advances oxygen electrocatalysis. Science China Chemistry, 2020, 63, 147-148.	8.2	3
137	Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochimica Acta, 2020, 330, 135119.	5.2	53
138	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	5.5	9
139	Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction. Angewandte Chemie, 2020, 132, 4602-4610.	2.0	16
140	Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 4572-4580.	13.8	42
141	Strain effects on Co,N co-decorated graphyne catalysts for overall water splitting electrocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 2457-2465.	2.8	32
142	Tuning the surface segregation composition of a PdCo alloy by the atmosphere for increasing electrocatalytic activity. Sustainable Energy and Fuels, 2020, 4, 380-386.	4.9	13
143	Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media. Sustainable Energy and Fuels, 2020, 4, 1654-1664.	4.9	23
144	Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 2020, 31, 100833.	11.9	52
145	Understanding the Role of Nanoscale Heterointerfaces in Core/Shell Structures for Water Splitting: Covalent Bonding Interaction Boosts the Activity of Binary Transition-Metal Sulfides. ACS Applied Materials & Interfaces, 2020, 12, 6250-6261.	8.0	42
146	Precious metal nanocrystals for renewable energy electrocatalysis: structural design and controlled synthesis. Dalton Transactions, 2020, 49, 267-273.	3.3	9
147	A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Applied Catalysis B: Environmental, 2020, 265, 118582.	20.2	31

#	Article	IF	CITATIONS
148	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. Journal of Power Sources, 2020, 450, 227615.	7.8	29
149	Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nature Catalysis, 2020, 3, 55-63.	34.4	124
150	Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5, .	0.8	1
151	Evidence for interfacial geometric interactions at metal–support interfaces and their influence on the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8, 1368-1377.	10.3	25
152	Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. Journal of Catalysis, 2020, 381, 427-433.	6.2	30
153	Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 2020, 819, 153346.	5.5	253
154	Effect of IrO ₆ Octahedron Distortion on the OER Activity at (100) IrO ₂ Thin Film. ACS Catalysis, 2020, 10, 806-817.	11.2	52
155	Identifying Electrocatalytic Sites of the Nanoporous Copper–Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte. ACS Energy Letters, 2020, 5, 192-199.	17.4	209
156	Optimizing the activity and selectivity of glycerol oxidation over core-shell electrocatalysts. Journal of Catalysis, 2020, 381, 130-138.	6.2	23
157	Catalytic activity trends from pure Pd nanoclusters to M@PdPt (M = Co, Ni, and Cu) core-shell nanoclusters for the oxygen reduction reaction: A first-principles analysis. International Journal of Hydrogen Energy, 2020, 45, 13738-13745.	7.1	14
158	O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Molecular Catalysis, 2020, 483, 110705.	2.0	44
159	Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. Journal of the American Chemical Society, 2020, 142, 17812-17827.	13.7	134
160	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	13.7	111
161	Controlling palladium morphology in electrodeposition from nanoparticles to dendrites <i>via</i> the use of mixed solvents. Nanoscale, 2020, 12, 21757-21769.	5.6	9
162	Shedding Light on the Role of Misfit Strain in Controlling Core–Shell Nanocrystals. Advanced Materials, 2020, 32, e2004142.	21.0	89
163	Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study. Journal of Catalysis, 2020, 391, 414-423.	6.2	42
164	In-situ regulation of formic acid oxidation via elastic strains. Journal of Catalysis, 2020, 389, 631-635.	6.2	10
165	Regulation of oxygen reduction reaction by the magnetic effect of L10-PtFe alloy. Applied Catalysis B: Environmental, 2020, 278, 119332.	20.2	34

#	Article	IF	CITATIONS
166	Dopant-Assisted Control of the Crystallite Domain Size in Hollow Ternary Iridium Alloy Octahedral Nanocages toward the Oxygen Evolution Reaction. Cell Reports Physical Science, 2020, 1, 100260.	5.6	14
167	Dynamic Core–Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Accounts of Chemical Research, 2020, 53, 2913-2924.	15.6	79
168	Continuous Surface Strain Tuning for NiFe-Layered Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Engineering Chemistry Research, 2020, 59, 19897-19906.	3.7	0
169	Pore wall functionalized ultrasonically synthesized cooperative MOF for luminescence sensing of 2,4,6-trinitrophenol. Journal of Solid State Chemistry, 2020, 291, 121622.	2.9	19
170	Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews, 2020, 49, 6443-6514.	38.1	407
171	Effect of Synthesis Conditions on the Physical and Electrocatalytic Properties of Ru@Pt Nanoparticles. ACS Applied Energy Materials, 2020, 3, 8423-8436.	5.1	6
172	Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions. Journal of the American Chemical Society, 2020, 142, 14688-14701.	13.7	231
173	Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction. Nano Letters, 2020, 20, 6807-6814.	9.1	82
174	Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect. Nano Research, 2020, 13, 3130-3136.	10.4	13
175	Anisotropic Strain Tuning of L1 ₀ Ternary Nanoparticles for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 19209-19216.	13.7	76
176	Facile Route to Constructing Ternary Nanoalloy Bifunctional Oxygen Cathode for Metal-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 1153-1160.	2.6	5
177	Lattice‧train Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	21.0	158
178	Assembly of Bimetallic PdAg Nanosheets and Their Enhanced Electrocatalytic Activity toward Ethanol Oxidation. Langmuir, 2020, 36, 11094-11101.	3.5	56
179	High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catalysis, 2020, 10, 11280-11306.	11.2	308
180	Parallel Nanoimprint Forming of One-Dimensional Chiral Semiconductor for Strain-Engineered Optical Properties. Nano-Micro Letters, 2020, 12, 160.	27.0	8
181	Lowâ€Dimensional Metallic Nanomaterials for Advanced Electrocatalysis. Advanced Functional Materials, 2020, 30, 2006317.	14.9	140
182	Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Frontiers of Physics, 2020, 15, 1.	5.0	20
183	Probing the Irregular Lattice Strainâ€Induced Electronic Structure Variations on Late Transition Metals for Boosting the Electrocatalyst Activity, Small, 2020, 16, e2002434	10.0	15

#	Article	IF	CITATIONS
184	Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Research, 2020, 13, 3088-3097.	10.4	50
185	Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. ACS Nano, 2020, 14, 11570-11578.	14.6	84
186	A universal strategy to continuously tune the properties of materials through internal strain. RSC Advances, 2020, 10, 39967-39972.	3.6	0
187	High-Index-Facet- and High-Surface-Energy Nanocrystals of Metals and Metal Oxides as Highly Efficient Catalysts. Joule, 2020, 4, 2562-2598.	24.0	136
188	Recent Advances in the Application of Structuralâ€Phase Engineering Strategies in Electrochemical Nitrogen Reduction Reaction. Advanced Materials Interfaces, 2020, 7, 2001215.	3.7	10
189	Shaojun Guo. Angewandte Chemie, 2020, 132, 15924-15924.	2.0	0
190	Strain Influences the Hydrogen Evolution Activity and Absorption Capacity of Palladium. Angewandte Chemie, 2020, 132, 12290-12296.	2.0	9
191	Highâ€Performance Bismuthâ€Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angewandte Chemie, 2020, 132, 13995-14003.	2.0	22
192	A Humidityâ€Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis. Small, 2020, 16, e2001743.	10.0	36
193	Lattice-compressed and N-doped Co nanoparticles to boost oxygen reduction reaction for zinc-air batteries. Applied Surface Science, 2020, 525, 146491.	6.1	17
194	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	11.2	228
195	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	19.5	112
196	Epitaxially Strained CeO ₂ /Mn ₃ O ₄ Nanocrystals as an Enhanced Antioxidant for Radioprotection. Advanced Materials, 2020, 32, e2001566.	21.0	79
197	Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nature Reviews Materials, 2020, 5, 440-459.	48.7	118
198	Shaojun Guo. Angewandte Chemie - International Edition, 2020, 59, 15792-15792.	13.8	0
199	Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 6393-6405.	10.3	63
200	A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Research, 2020, 13, 638-645.	10.4	70
201	Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 2057-2068.	4.1	13

#	Article	IF	CITATIONS
202	Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters. Journal of the American Chemical Society, 2020, 142, 7036-7046.	13.7	542
203	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	47.7	806
204	Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale, 2020, 12, 8687-8692.	5.6	16
205	Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8143-8170.	10.3	180
206	Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst. New Journal of Chemistry, 2020, 44, 6818-6824.	2.8	12
207	Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Advanced Functional Materials, 2020, 30, 1909260.	14.9	274
208	Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. Journal of Colloid and Interface Science, 2020, 570, 72-79.	9.4	14
209	Surface Strain-Induced Collective Switching of Ensembles of Molecules on Metal Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 2277-2283.	4.6	4
210	Strain-modulated Ni3Al alloy promotes oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 844, 156094.	5.5	21
211	Strain engineering for Janus palladium-gold bimetallic nanoparticles: Enhanced electrocatalytic performance for oxygen reduction reaction and zinc-air battery. Chemical Engineering Journal, 2020, 389, 124240.	12.7	40
212	Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Research, 2020, 13, 646-652.	10.4	12
213	Strain modulation of phase transformation of noble metal nanomaterials. InformaÄnÃ-Materiály, 2020, 2, 715-734.	17.3	38
214	Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. Journal of Catalysis, 2020, 383, 164-171.	6.2	125
215	Metal-free two-dimensional phosphorus carbide as an efficient electrocatalyst for hydrogen evolution reaction comparable to platinum. Nano Energy, 2020, 71, 104603.	16.0	52
216	Spin Regulation on 2D Pd–Fe–Pt Nanomeshes Promotes Fuel Electrooxidations. Nano Letters, 2020, 20, 1967-1973.	9.1	67
217	Interlaced Pd–Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 5368-5373.	5.6	35
218	Promoting heterogeneous catalysis beyond catalyst design. Chemical Science, 2020, 11, 1456-1468.	7.4	66
219	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308

#	Article	IF	CITATIONS
220	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	47.7	158
221	Lavender-Like Ga-Doped Pt ₃ Co Nanowires for Highly Stable and Active Electrocatalysis. ACS Catalysis, 2020, 10, 3018-3026.	11.2	75
222	Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. Chinese Journal of Catalysis, 2020, 41, 739-755.	14.0	84
223	External and Internal Interface-Controlled Trimetallic PtCuNi Nanoframes with High Defect Density for Enhanced Electrooxidation of Liquid Fuels. Chemistry of Materials, 2020, 32, 1581-1594.	6.7	41
224	Fineâ€Tuning Intrinsic Strain in Pentaâ€Twinned Pt–Cu–Mn Nanoframes Boosts Oxygen Reduction Catalysis. Advanced Functional Materials, 2020, 30, 1910107.	14.9	108
226	In Situ Induction of Strain in Iron Phosphide (FeP ₂) Catalyst for Enhanced Hydroxide Adsorption and Water Oxidation. Advanced Functional Materials, 2020, 30, 1907791.	14.9	55
227	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	19.5	560
228	Highâ€Performance Bismuthâ€Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angewandte Chemie - International Edition, 2020, 59, 13891-13899.	13.8	179
229	Stacking faults triggered strain engineering of ZIF-67 derived Ni-Co bimetal phosphide for enhanced overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118951.	20.2	76
230	Integrated design for electrocatalytic carbon dioxide reduction. Catalysis Science and Technology, 2020, 10, 2711-2720.	4.1	92
231	Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 8195-8217.	10.3	64
232	Strain Influences the Hydrogen Evolution Activity and Absorption Capacity of Palladium. Angewandte Chemie - International Edition, 2020, 59, 12192-12198.	13.8	28
233	Boosting the acidic electrocatalytic nitrogen reduction performance of MoS ₂ by strain engineering. Journal of Materials Chemistry A, 2020, 8, 10426-10432.	10.3	59
234	Lattice Strain Measurement of Core@Shell Electrocatalysts with 4D Scanning Transmission Electron Microscopy Nanobeam Electron Diffraction. ACS Catalysis, 2020, 10, 5529-5541.	11.2	39
235	Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 5691-5697.	11.2	120
236	Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49, 3072-3106.	38.1	609
237	Bonding–antibonding state transition induces multiple electron modulations toward oxygen reduction reaction electrocatalysis. New Journal of Chemistry, 2020, 44, 8191-8197.	2.8	6
238	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	10.3	33

#	Article	IF	CITATIONS
239	High-entropy alloys: emerging materials for advanced functional applications. Journal of Materials Chemistry A, 2021, 9, 663-701.	10.3	196
240	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie - International Edition, 2021, 60, 122-141.	13.8	64
241	Spiny Pd/PtFe core/shell nanotubes with rich high-index facets for efficient electrocatalysis. Science Bulletin, 2021, 66, 44-51.	9.0	54
242	Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chemical Reviews, 2021, 121, 649-735.	47.7	388
243	Toward expanding the realm of high entropy materials to platinum group metals: A review. Journal of Alloys and Compounds, 2021, 851, 156838.	5.5	52
244	Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 408, 127297.	12.7	27
245	Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Science Bulletin, 2021, 66, 85-96.	9.0	127
246	A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors. Journal of Colloid and Interface Science, 2021, 583, 351-361.	9.4	9
247	Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. Journal of Colloid and Interface Science, 2021, 587, 581-589.	9.4	10
248	Noble-Metal Nanoframes and Their Catalytic Applications. Chemical Reviews, 2021, 121, 796-833.	47.7	115
249	Non-aqueous solution synthesis of Pt-based nanostructures for fuel cell catalysts. Materials Today Energy, 2021, 19, 100616.	4.7	10
250	Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews, 2021, 429, 213649.	18.8	6
251	Interface Engineering of Air Electrocatalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2002762.	19.5	129
252	Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts. Journal of Power Sources, 2021, 485, 229340.	7.8	21
253	Computational Methods in Heterogeneous Catalysis. Chemical Reviews, 2021, 121, 1007-1048.	47.7	198
254	Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chemical Communications, 2021, 57, 11-26.	4.1	19
255	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	14.9	86
256	Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensileâ€ £ trained Palladium Porous Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 4474-4478.	13.8	116

#	Article	IF	CITATIONS
257	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie, 2021, 133, 3327-3335.	2.0	189
258	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 3290-3298.	13.8	254
259	Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensile‣trained Palladium Porous Nanosheets. Angewandte Chemie, 2021, 133, 4524-4528.	2.0	28
260	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie, 2021, 133, 124-143.	2.0	11
261	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	4.1	5
262	Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. National Science Review, 2021, 8, nwaa224.	9.5	125
263	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	47.7	269
264	Heterogeneous Electrocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2021, 4, 1034-1044.	5.1	31
265	Self-reconstruction mediates isolated Pt tailored nanoframes for highly efficient catalysis. Journal of Materials Chemistry A, 2021, 9, 22501-22508.	10.3	5
266	Doping and strain effect on hydrogen evolution reaction catalysts of NiP ₂ . Wuli Xuebao/Acta Physica Sinica, 2021, 70, 148802-148802.	0.5	0
267	Bromine anion mediated epitaxial growth of core–shell Pd@Ag towards efficient electrochemical CO ₂ reduction. Materials Chemistry Frontiers, 2021, 5, 4327-4333.	5.9	12
268	Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO ₂ Electroreduction. Nano Letters, 2021, 21, 1003-1010.	9.1	32
269	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	5.3	18
270	Understanding the enhanced catalytic activity of high entropy alloys: from theory to experiment. Journal of Materials Chemistry A, 2021, 9, 19410-19438.	10.3	43
271	Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development. Advanced Science, 2021, 8, 2003534.	11.2	44
272	Electrode materials viewed with transmission electron microscopy. , 2021, , .		0
273	Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy and Environmental Science, 2021, 14, 3717-3756.	30.8	98
274	First-Principles Study of C–C Coupling Pathways for CO ₂ Electrochemical Reduction Catalyzed by Cu(110). Journal of Physical Chemistry C, 2021, 125, 2464-2476.	3.1	21

#	Article	IF	CITATIONS
275	Reconstructing two-dimensional defects in CuO nanowires for efficient CO ₂ electroreduction to ethylene. Chemical Communications, 2021, 57, 8276-8279.	4.1	20
276	In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regeneration. Chemical Communications, 2021, 57, 5454-5457.	4.1	2
277	High-Throughput 3D Ensemble Characterization of Individual Core–Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS Nano, 2021, 15, 4066-4076.	14.6	17
278	The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochemical Energy Reviews, 2021, 4, 146-168.	25.5	30
279	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	13.8	265
280	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	2.0	60
281	Subnanoscale Platinum by Repeated UV Irradiation: From One and Few Atoms to Clusters for the Automotive PEMFC. ACS Applied Materials & amp; Interfaces, 2021, 13, 8395-8404.	8.0	10
282	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 53, 77-81.	12.9	77
283	Synthesis of Core@Shell Cuâ€Ni@Ptâ€Cu Nanoâ€Octahedra and Their Improved MOR Activity. Angewandte Chemie - International Edition, 2021, 60, 7675-7680.	13.8	58
284	Synthesis of Core@Shell Cuâ€Ni@Ptâ€Cu Nanoâ€Octahedra and Their Improved MOR Activity. Angewandte Chemie, 2021, 133, 7753-7758.	2.0	6
285	Resolving the nanoparticles' structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. IScience, 2021, 24, 102102.	4.1	57
286	Superconductivity and High-Pressure Performance of 2D Mo ₂ C Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2219-2225.	4.6	3
287	Methanol electrooxidation on core-shell Ag@Pd catalysts. Electrochemistry Communications, 2021, 123, 106917.	4.7	15
288	Univariate Lattice Parameter Modulation of Single-Crystal-like Anatase TiO ₂ Hierarchical Nanowire Arrays to Improve Photoactivity. Chemistry of Materials, 2021, 33, 1489-1497.	6.7	22
289	Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. Nano Research, 2022, 15, 145-152.	10.4	14
290	Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today, 2021, 48, 115-134.	14.2	96
291	Superwetting behaviors at the interface between electrode and electrolyte. Cell Reports Physical Science, 2021, 2, 100374.	5.6	22
292	Co nanocluster strain-engineered by atomic Ru for efficient and stable oxygen reduction catalysis. Materials Today Physics, 2021, 17, 100338.	6.0	12

#	Article	IF	CITATIONS
293	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 8243-8250.	13.8	163
294	A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 2021, 2, 56-75.	10.7	141
295	A Tensileâ€Strained Pt–Rh Singleâ€Atom Alloy Remarkably Boosts Ethanol Oxidation. Advanced Materials, 2021, 33, e2008508.	21.0	111
296	Rareâ€Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials, 2021, 33, e2005988.	21.0	84
297	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie, 2021, 133, 8324-8331.	2.0	18
298	Steric Hindrance―and Work Functionâ€Promoted High Performance for Electrochemical CO Methanation on Antisite Defects of MoS 2 and WS 2. ChemSusChem, 2021, 14, 2255-2261.	6.8	6
299	High Pressure Nitrogen-Infused Ultrastable Fuel Cell Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 5525-5531.	11.2	22
300	<scp>Ptâ€based</scp> Intermetallic Nanocatalysts for Promoting the Oxygen Reduction Reaction. Bulletin of the Korean Chemical Society, 2021, 42, 724-736.	1.9	17
301	Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H ₂ Evolution over Black TiO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 18758-18771.	8.0	127
302	Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Metals, 2021, 40, 2354-2368.	7.1	47
303	Dopants in the Design of Noble Metal Nanoparticle Electrocatalysts and their Effect on Surface Energy and Coordination Chemistry at the Nanocrystal Surface. Advanced Energy Materials, 2021, 11, 2100265.	19.5	25
304	Bragg Coherent Diffraction Imaging for <i>In Situ</i> Studies in Electrocatalysis. ACS Nano, 2021, 15, 6129-6146.	14.6	24
305	Oxygen-rich PdSnCu nanocrystals with particle connection features as enhanced catalysts for ethanol oxidation reaction. Nanotechnology, 2021, 32, 325704.	2.6	3
306	Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nature Energy, 2021, 6, 614-623.	39.5	274
307	How Strain Alters CO ₂ Electroreduction on Model Cu(001) Surfaces. ACS Catalysis, 2021, 11, 6662-6671.	11.2	23
308	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	6.3	43
309	Copperâ€Based Plasmonic Catalysis: Recent Advances and Future Perspectives. Advanced Materials, 2021, 33, e2008145.	21.0	131
310	NiCoFeP Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc–Air Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000104.	5.8	18

#	Article	IF	CITATIONS
311	Application of Supra Molecular Immaterialness Adsorbent in Indoor Volatile Organic Compounds Control in Hot and Humid Areas. Integrated Ferroelectrics, 2021, 216, 231-246.	0.7	1
312	Fundamental Concepts of Bragg Coherent Diffraction Imaging Enabling to Reveal the 3D Displacement and Strain Field in Materials. Nihon Kessho Gakkaishi, 2021, 63, 143-150.	0.0	0
313	Surface/Nearâ€Surface Structure of Highly Active and Durable Ptâ€Based Catalysts for Oxygen Reduction Reaction: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2100025.	5.8	4
314	Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nature Communications, 2021, 12, 3021.	12.8	397
315	PdCoNi alloy nanoparticles decorated, nitrogen-doped carbon nanotubes for highly active and durable oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 411, 128527.	12.7	26
316	Recent advances in porous nanostructures for cancer theranostics. Nano Today, 2021, 38, 101146.	11.9	24
317	Strain engineering of two-dimensional materials for advanced electrocatalysts. Materials Today Nano, 2021, 14, 100111.	4.6	35
318	Direct Integration of Strainedâ€Pt Catalysts into Protonâ€Exchangeâ€Membrane Fuel Cells with Atomic Layer Deposition. Advanced Materials, 2021, 33, e2007885.	21.0	10
319	Facile Seed-Mediated Growth of Ultrathin AuCu Shells on Pd Nanocubes and Their Enhanced Nitrophenol Degradation Reactions. Journal of Physical Chemistry C, 2021, 125, 13759-13769.	3.1	8
320	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	14.9	123
321	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	11.3	29
322	Strengthening nitrogen affinity on CuAu@Cu core–shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288, 119999.	20.2	35
323	Advanced Research Progress on Highâ€Efficient Utilization of Pt Electrocatalysts in Fuel Cells. Energy Technology, 2021, 9, 2100227.	3.8	8
324	Engineering Platinum–Cobalt Nanoâ€alloys in Porous Nitrogenâ€Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19216-19221.	2.0	9
325	Extreme mixing in nanoscale transition metal alloys. Matter, 2021, 4, 2340-2353.	10.0	102
326	Growth Dynamics of Vertical and Lateral Layered Double Hydroxide Nanosheets during Electrodeposition. Nano Letters, 2021, 21, 5977-5983.	9.1	18
327	Engineering Platinum–Cobalt Nanoâ€alloys in Porous Nitrogenâ€Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19068-19073.	13.8	149
328	Emerging Dualâ€Atomicâ€Site Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	21.0	226

#	Article	IF	CITATIONS
329	Atomic Regulation of PGM Electrocatalysts for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2021, 9, 699861.	3.6	6
330	Modulating oxygen electronic orbital occupancy of Cr-based MXenes via transition metal adsorbing for optimal HER activity. International Journal of Hydrogen Energy, 2021, 46, 25457-25467.	7.1	7
331	Electrochemically Induced Strain Evolution in Pt–Ni Alloy Nanoparticles Observed by Bragg Coherent Diffraction Imaging. Nano Letters, 2021, 21, 5945-5951.	9.1	14
332	Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis. ACS Nano, 2021, 15, 12077-12085.	14.6	6
333	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	9.9	47
334	Modulating 3d Orbitals of Ni Atoms on Niâ€Pt Edge Sites Enables Highlyâ€Efficient Alkaline Hydrogen Evolution. Advanced Energy Materials, 2021, 11, 2101789.	19.5	30
335	Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	86
336	Galvanic Transformation Dynamics in Heterostructured Nanoparticles. Advanced Functional Materials, 2021, 31, 2105866.	14.9	7
337	Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts, 2021, 11, 1050.	3.5	20
338	DFT study on ORR catalyzed by bimetallic Pt-skin metals over substrates of Ir, Pd and Au. Nano Materials Science, 2023, 5, 287-292.	8.8	12
339	Intermetallic FePt@PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angewandte Chemie, 2021, 133, 22070-22075.	2.0	43
340	Engineering unique Fe(SexS1â^'x)2 nanorod bundles for boosting oxygen evolution reaction. Chemical Engineering Journal, 2021, 418, 129426.	12.7	29
341	Intermetallic FePt@PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21899-21904.	13.8	66
342	WS2 moirel•superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nature Communications, 2021, 12, 5070.	12.8	152
343	Strain tuned efficient heterostructure photoelectrodes. Chinese Chemical Letters, 2022, 33, 1450-1454.	9.0	3
344	A bimetallic nanocatalyst for light-free oxygen sensitization therapy. Cell Reports Physical Science, 2021, 2, 100538.	5.6	2
345	Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews, 2021, 2, .	5.7	8
346	Bifunctional heterostructured nitrogen and phosphorus co-doped carbon-layer-encapsulated Co2P electrocatalyst for efficient water splitting. Cell Reports Physical Science, 2021, 2, 100586.	5.6	13

#	Article	IF	CITATIONS
347	Efficient CO2 electroreduction on Pd-based core-shell nanostructure with tensile strain. Journal of Electroanalytical Chemistry, 2021, 896, 115205.	3.8	4
348	Isolating the contributions of surface Sn atoms in the bifunctional behaviour of PtSn CO oxidation electrocatalysts. Electrochimica Acta, 2021, 390, 138811.	5.2	6
349	Applied Machine Learning for Developing Nextâ€Generation Functional Materials. Advanced Functional Materials, 2021, 31, 2104195.	14.9	28
350	Unsymmetrical Heterogeneous Au–Ag Nanocrystals as Catalysts, Sensors, and Drug Carriers. ACS Applied Nano Materials, 0, , .	5.0	6
351	Mechanochemistry-induced biaxial compressive strain engineering in MXenes for boosting lithium storage kinetics. Nano Energy, 2021, 87, 106053.	16.0	16
352	Atomic-Scale Design of High-Performance Pt-Based Electrocatalysts for Oxygen Reduction Reaction. Frontiers in Chemistry, 2021, 9, 753604.	3.6	11
353	Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. Composites Part B: Engineering, 2021, 220, 108986.	12.0	35
354	Compressive Strain in Nâ€Doped Palladium/Amorphous obalt (II) Interface Facilitates Alkaline Hydrogen Evolution. Small, 2021, 17, e2103798.	10.0	15
355	One-Pot Synthesis of Ternary Alloy Hollow Nanostructures with Controlled Morphologies for Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 45538-45546.	8.0	10
356	Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells. Science Bulletin, 2021, 66, 2207-2216.	9.0	49
357	Aminoclay/MWCNT supported spherical Pt nanoclusters with enhanced dual-functional electrocatalytic performance for oxygen reduction and methanol oxidation reactions. Applied Surface Science, 2021, 565, 150511.	6.1	13
358	Strain evolution in nanoporous gold during catalytic CH4 pyrolysis by in situ gas-phase transmission electron microscopy. Scripta Materialia, 2021, 204, 114146.	5.2	2
359	Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chemical Engineering Journal, 2021, 426, 131227.	12.7	23
360	Boosting hydrogen evolution electrocatalysis through defect engineering: A strategy of heat and cool shock. Chemical Engineering Journal, 2021, 426, 131524.	12.7	17
361	Ultrasmall Pt2Sr alloy nanoparticles as efficient bifunctional electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. Journal of Energy Chemistry, 2022, 64, 315-322.	12.9	28
362	Revealing the role of mo doping in promoting oxygen reduction reaction performance of Pt3Co nanowires. Journal of Energy Chemistry, 2022, 66, 16-23.	12.9	36
363	Electrocatalytic Ethanol Oxidation on Cobalt–Bismuth Nanoparticle-Decorated Reduced Graphene Oxide (Co–Bi@rGO): Reaction Pathway Investigation toward Direct Ethanol Fuel Cells. Journal of Physical Chemistry C, 2021, 125, 2345-2356.	3.1	34
364	Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy and Environmental Science, 2021, 14, 5035-5043.	30.8	39

#	Article	IF	CITATIONS
365	Enriching the branching of Au@PdAu core–shell nanocrystals using a syringe pump: kinetics control meets lattice mismatch. CrystEngComm, 2021, 23, 2582-2589.	2.6	3
366	Unravelling the cooperative role of lattice strain on MnO ₂ /TiO ₂ and MnO ₂ /ZnO catalysts for the fast decomposition of hydrogen peroxide. New Journal of Chemistry, 2021, 45, 9944-9958.	2.8	2
367	Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Science China Materials, 2021, 64, 1671-1678.	6.3	18
368	The Advanced Designs of Highâ€Performance Platinumâ€Based Electrocatalysts: Recent Progresses and Challenges. Advanced Materials Interfaces, 2018, 5, 1800486.	3.7	55
369	Boosting Both Electrocatalytic Activity and Durability of Metal Aerogels via Intrinsic Hierarchical Porosity and Continuous Conductive Network Backbone Preservation. Advanced Energy Materials, 2021, 11, 2002276.	19.5	24
370	Boosting Oxygen Electroreduction over Strained Silver. ACS Applied Materials & amp; Interfaces, 2020, 12, 57134-57140.	8.0	3
371	Synthesis of Structurally Stable and Highly Active PtCo ₃ Ordered Nanoparticles through an Easily Operated Strategy for Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 827-835.	8.0	13
372	Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Letters, 2020, 5, 3672-3680.	17.4	50
373	Key role of antibonding electron transfer in bonding on solid surfaces. Physical Review Materials, 2019, 3, .	2.4	22
374	Understanding the formation of multiply twinned structure in decahedral intermetallic nanoparticles. IUCrJ, 2019, 6, 447-453.	2.2	13
375	Structural Regulation of Pdâ€Based Nanoalloys for Advanced Electrocatalysis. Small Science, 2021, 1, 2100061.	9.9	48
376	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	25.5	86
377	Effects of lattice strain on noble metal (110) surface: Missing row reconstruction and adsorption properties. Applied Physics Letters, 2021, 119, 141604.	3.3	1
378	Descriptors for the Evaluation of Electrocatalytic Reactions: dâ€Band Theory and Beyond. Advanced Functional Materials, 2022, 32, 2107651.	14.9	154
379	Surface unsaturated WOx activating PtNi alloy nanowires for oxygen reduction reaction. Journal of Colloid and Interface Science, 2022, 607, 1928-1935.	9.4	22
380	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	10.0	49
381	Identification of Active Sites in Pt–Co Bimetallic Catalysts for CO Oxidation. ACS Applied Energy Materials, 2021, 4, 11151-11161.	5.1	13
382	PtPd Nanonets Derived from Pd@PtPd RDs as High-Performance Catalysts for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 10968-10975.	5.1	10

#	Article	IF	CITATIONS
383	Electrochemical Strain Dynamics in Noble Metal Nanocatalysts. Journal of the American Chemical Society, 2021, 143, 17068-17078.	13.7	22
384	Implications of Surface Strain for Enhanced Carbon Dioxide Reduction on Copper-Silver Alloys. Journal of the Electrochemical Society, 2020, 167, 126509.	2.9	3
385	Preparation of <i>fcc</i> â€2Hâ€ <i>fcc</i> Heterophase Pd@Ir Nanostructures for Highâ€Performance Electrochemical Hydrogen Evolution. Advanced Materials, 2022, 34, e2107399.	21.0	48
386	Outstanding Oxygen Reduction Reaction Catalytic Performance of In–PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 2021, 33, 8895-8903.	6.7	17
387	Thermo-chemo-mechanical stress analysis in a thin-electrolyte plate of all-solid-state battery. Applications in Engineering Science, 2021, , 100073.	0.8	0
388	Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chemical Communications, 2021, 57, 12898-12913.	4.1	21
389	Highâ€Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small, 2022, 18, e2104339.	10.0	82
390	In Situ/Operando Insights into the Stability and Degradation Mechanisms of Heterogeneous Electrocatalysts. Small, 2022, 18, e2104205.	10.0	14
391	Rationalization of Nonlinear Adsorption Energy–Strain Relations and BrÃ,nsted–Evans–Polanyi and Transition State Scaling Relationships under Strain. Journal of Physical Chemistry Letters, 2021, 12, 11578-11584.	4.6	4
392	Manipulation on Two-Dimensional Amorphous Nanomaterials for Enhanced Electrochemical Energy Storage and Conversion. Nanomaterials, 2021, 11, 3246.	4.1	7
393	Promoting propane dehydrogenation via strain engineering on iridium single-atom catalyst. Fuel, 2022, 311, 122580.	6.4	8
394	Controlled Hydrolysis of a Nickel–Ammonia Complex on Pt Nanoparticles for the Preparation of Highly Active and Stable PtNi/C Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 7504-7512.	3.7	6
395	Dopingâ€Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for Highâ€Temperature Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	14.9	45
396	Vertex-Directed and Asymmetric Metal Overgrowth of Intermetallic Pd ₃ Pb@PtNi Nanocubes for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2021, 4, 12490-12497.	5.0	4
397	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Advanced Science, 2022, 9, e2104363.	11.2	21
398	Selfâ€Supporting Bimetallic Ptâ€Ni Aerogel as Electrocatalyst for Ethanol Oxidation Reaction. ChemistrySelect, 2021, 6, 12696-12701.	1.5	4
399	Systematic Approach to Designing a Highly Efficient Core–Shell Electrocatalyst for N ₂ O Reduction. ACS Catalysis, 2021, 11, 15089-15097.	11.2	9
400	Atomic‣evel Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	12.0	29

#	Article	IF	CITATIONS
401	Direct Observation of Three-Dimensional Atomic Structure of Twinned Metallic Nanoparticles and Their Catalytic Properties. Nano Letters, 2022, 22, 665-672.	9.1	17
402	Interface Engineering Between Multiâ€Elemental Alloy Nanoparticles and a Carbon Support Toward Stable Catalysts. Advanced Materials, 2022, 34, e2106436.	21.0	30
403	Nanoscale Design of Pdâ€Based Electrocatalysts for Oxygen Reduction Reaction Enhancement in Alkaline Media. Small Structures, 2022, 3, .	12.0	40
404	Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane. Journal of Membrane Science, 2022, 644, 120185.	8.2	20
405	Modulation rate on adsorption and catalysis of 2D Pt: the effects of adsorbate-induced surface stress. Catalysis Science and Technology, 2022, 12, 1458-1465.	4.1	0
407	High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy and Environmental Science, 2022, 15, 278-286.	30.8	81
408	Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.	2.8	2
409	Synergistic Effects of Crystal Phase and Strain for N ₂ Dissociation on Ru(0001) Surfaces with Multilayered Hexagonal Close-Packed Structures. ACS Omega, 2022, 7, 4492-4500.	3.5	4
410	Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 3251-3263.	14.6	94
411	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. Small, 2022, 18, e2105831.	10.0	31
412	Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discussions, 2021, 233, 10-32.	3.2	12
413	Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes. Energy and Environmental Science, 2022, 15, 1234-1242.	30.8	42
414	Functional group scission-induced lattice strain in chiral macromolecular metal-organic framework arrays for electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2022, 307, 121151.	20.2	31
415	Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. Journal of Alloys and Compounds, 2022, 904, 164084.	5.5	29
416	Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation. Journal of Energy Chemistry, 2022, 69, 44-53.	12.9	31
417	Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. Journal of Energy Chemistry, 2022, 68, 721-751.	12.9	58
418	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	14.2	34
419	Strainâ€Activated Copper Catalyst for pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	14.9	46

#	Article	IF	CITATIONS
420	Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coordination Chemistry Reviews, 2022, 459, 214388.	18.8	38
421	Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Transactions, 2022, 51, 7763-7774.	3.3	5
422	Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chemical Science, 2022, 13, 3819-3825.	7.4	26
423	Atomically ordered Pt ₃ Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. Journal of Materials Chemistry A, 2022, 10, 7399-7408.	10.3	26
424	N-doping induced lattice-strained porous Pdlr bimetallene for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 8364-8370.	10.3	19
425	Application of advanced nuclear analytical techniques for the electrocatalyst's characterization: Paving the path for mechanistic investigations. Current Opinion in Electrochemistry, 2022, 33, 100958.	4.8	1
426	Theoretical Screening of Transition Metal-Embedded Ti ₂ N for High-Efficiency Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 4152-4160.	6.7	10
427	Governing Interlayer Strain in Bismuth Nanocrystals for Efficient Ammonia Electrosynthesis from Nitrate Reduction. ACS Nano, 2022, 16, 4795-4804.	14.6	76
428	Electroâ€Reconstructionâ€Induced Strain Regulation and Synergism of Agâ€Inâ€S toward Highly Efficient CO ₂ Electrolysis to Formate. Advanced Functional Materials, 2022, 32, .	14.9	41
429	Recent advances in rare-earth-based materials for electrocatalysis. Chem Catalysis, 2022, 2, 967-1008.	6.1	75
430	Efficient solution of particle shape functions for the analysis of powder total scattering data. Journal of Applied Crystallography, 2022, 55, 329-339.	4.5	2
431	Strain Engineering: A Boosting Strategy for Photocatalysis. Advanced Materials, 2022, 34, e2200868.	21.0	82
432	Facet-Defined Strain-Free Spinel Oxide for Oxygen Reduction. Nano Letters, 2022, 22, 3636-3644.	9.1	3
433	Review—Recent Progress in Highly Efficient Oxygen Reduction Electrocatalysts: From Structural Engineering to Performance Optimization. Journal of the Electrochemical Society, 2022, 169, 034512.	2.9	5
434	Corrosion Chemistry of Electrocatalysts. Advanced Materials, 2022, 34, e2200840.	21.0	43
435	Ni ²⁺ â€Directed Anisotropic Growth of PtCu Nested Skeleton Cubes Boosting Electroreduction of Oxygen. Advanced Science, 2022, 9, e2104927.	11.2	14
436	Nitrogen Plasma Modified Carbons for PEMFC with Increased Interaction with Catalyst and Ionomer. Journal of the Electrochemical Society, 2022, 169, 044502.	2.9	4
437	Amorphous CoV Phosphate Nanosheets as Efficient Oxygen Evolution Electrocatalyst. Chemistry - an Asian Journal, 2022, , .	3.3	1

.,		15	Circum
Ŧ	ARTICLE	IF	CITATIONS
438	Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemCatChem, 0, , .	3.7	6
439	CO induced phase-segregation to construct robust and efficient IrRux@Ir core-shell electrocatalyst towards acidic oxygen evolution. Journal of Power Sources, 2022, 528, 231189.	7.8	19
440	Electronic Structure Engineering of Singleâ€Atom Ru Sites via Co–N4 Sites for Bifunctional pHâ€Universal Water Splitting. Advanced Materials, 2022, 34, e2110103.	21.0	199
441	Defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite as a novel multifunctional electrocatalyst for oxygen reduction reaction and overall water splitting. Materials Today Chemistry, 2022, 24, 100799.	3.5	8
442	Monodisperse PdBi Nanoparticles with a Face-Centered Cubic Structure for Highly Efficient Ethanol Oxidation. ACS Applied Energy Materials, 2022, 5, 1282-1290.	5.1	25
443	Preparation of Au@Pd Core–Shell Nanorods with <i>fcc</i> -2H- <i>fcc</i> Heterophase for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2022, 144, 547-555.	13.7	88
444	Review of the Hydrogen Evolution Reaction—A Basic Approach. Energies, 2021, 14, 8535.	3.1	22
445	Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	72
446	Laser-ablation assisted strain engineering of gold nanoparticles for selective electrochemical CO ₂ reduction. Nanoscale, 2022, 14, 7702-7710.	5.6	8
447	Optimizing the synergy between alloy and alloy–oxide interface for CO oxidation in bimetallic catalysts. Nanoscale, 2022, 14, 7303-7313.	5.6	6
448	The Influence of Nanoconfinement on Electrocatalysis. Angewandte Chemie, 0, , .	2.0	6
449	Ordering Degree-Dependent Activity of Pt ₃ M (M = Fe, Mn) Intermetallic Nanoparticles for Electrocatalytic Methanol Oxidation. Journal of Physical Chemistry Letters, 2022, 13, 3549-3555.	4.6	7
450	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	3.3	6
451	The Influence of Nanoconfinement on Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
452	Insight into the effects of the crystal phase of Ru over ultrathin Ru@Pt core–shell nanosheets for methanol electrooxidation. Nanoscale, 2022, 14, 8096-8102.	5.6	10
453	Improving catalytic efficiency via tailoring macroscopic elasticity of nanoporous materials. Journal of Materials Science, 2022, 57, 8648-8657.	3.7	1
454	Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nano-Micro Letters, 2022, 14, 112.	27.0	104
455	One-pot synthesis of NiPt core–shell nanoparticles toward efficient oxygen reduction reaction. Journal of Solid State Electrochemistry, 2022, 26, 1381-1388.	2.5	2

#	Article	IF	CITATIONS
456	Pt–Pd Bimetallic Aerogel as High-Performance Electrocatalyst for Nonenzymatic Detection of Hydrogen Peroxide. Catalysts, 2022, 12, 528.	3.5	10
457	Magnetic-Field-Induced Strain Enhances Electrocatalysis of FeCo Alloys on Anode Catalysts for Water Splitting. Metals, 2022, 12, 800.	2.3	4
458	Bringing into play automated electron microscopy data processing for understanding nanoparticulate electrocatalysts' structure–property relationships. Current Opinion in Electrochemistry, 2022, 35, 101052.	4.8	4
459	Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Research, 2022, 15, 5792-5815.	10.4	242
460	Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	35
461	Activating ruthenium dioxide via compressive strain achieving efficient multifunctional electrocatalysis for Znâ€air batteries and overall water splitting. InformaÄnÃ-Materiály, 2022, 4, .	17.3	25
462	Improved photoelectrocatalytic degradation of methylene blue by Ti3C2Tx/Bi12TiO20 composite anodes. Ceramics International, 2022, 48, 24943-24952.	4.8	4
463	Impact of different metallic forms of nickel on hydrogen evolution reaction. Scripta Materialia, 2022, 218, 114829.	5.2	2
464	Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction. Nature Communications, 2022, 13, .	12.8	11
465	Strained Pt(221) Facet in a PtCo@Pt-Rich Catalyst Boosts Oxygen Reduction and Hydrogen Evolution Activity. ACS Applied Materials & amp; Interfaces, 2022, 14, 25246-25256.	8.0	27
466	Biaxially Compressive Strain in Ni/Ru Core/Shell Nanoplates Boosts Li–CO ₂ Batteries. Advanced Materials, 2022, 34, .	21.0	36
467	CeO ₂ Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells. ACS Catalysis, 2022, 12, 7014-7029.	11.2	33
468	Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. Journal of Materials Chemistry A, 2022, 10, 19067-19089.	10.3	27
469	Growth mechanisms from tetrahedral seeds to multiply twinned Au nanoparticles revealed by atomistic simulations. Nanoscale Horizons, 2022, 7, 883-889.	8.0	15
470	Cu-based bimetallic catalysts for CO2 reduction reaction. , 2022, 1, 100023.		20
471	Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 7406-7414.	11.2	40
472	Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. , 2022, 1, e9120017.		53
473	Dimensionalâ€Transformation of Ternaryâ€Alloy through the Manipulation of Reduction Kinetics. Advanced Functional Materials, 2022, 32, .	14.9	2

#	Article	IF	CITATIONS
474	Strain-boosted hyperoxic graphene oxide efficiently loading and improving performances of microcystinase. IScience, 2022, 25, 104611.	4.1	2
475	Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coordination Chemistry Reviews, 2022, 469, 214669.	18.8	79
476	Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for PEMFCs. ACS Applied Materials & Interfaces, 2022, 14, 30692-30703.	8.0	3
477	Nonâ€Precious Metalâ€Doped Carbon Materials Derived From Porphyrinâ€Based Porous Organic Polymers for Oxygen Reduction Electrocatalysis. ChemPlusChem, 2022, 87, .	2.8	0
478	Core–Shell CuPd@NiPd Nanoparticles: Coupling Lateral Strain with Electronic Interaction toward High-Efficiency Electrocatalysis. ACS Catalysis, 2022, 12, 9092-9100.	11.2	40
479	Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. EScience, 2022, 2, 405-415.	41.6	70
480	ZIFâ€Mg(OH) ₂ Dual Template Assisted Self onfinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell. Advanced Energy Materials, 2022, 12, .	19.5	24
481	Tensile strained PdNi bimetallene for energy-efficient hydrogen production integrated with formate oxidation. Chemical Engineering Journal, 2022, 450, 137995.	12.7	13
482	3D Structural Determination of Core-shell Nanoparticles. Microscopy and Microanalysis, 2022, 28, 216-216.	0.4	0
483	Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective. Nanomaterials, 2022, 12, 2480.	4.1	24
484	Hydrogenated Boride-Assisted Gram-Scale Production of Platinum–Palladium Alloy Nanoparticles on Carbon Black for PEMFC Cathodes: A Study from a Practical Standpoint. ACS Applied Materials & Interfaces, 2022, 14, 34750-34760.	8.0	11
485	Channelâ€rich Pt0.23Mn0.42Ni0.35 ternary alloyÂnanocatalysts for efficient hydrogen evolution. ChemElectroChem, 0, , .	3.4	1
486	Robust Analysis of 4e [–] Versus 6e [–] Reduction of Nitrogen on Metal Surfaces and Single-Atom Alloys. Journal of Physical Chemistry C, 2022, 126, 12994-13003.	3.1	0
487	Strainâ€Induced Structure Evolution of Multimetallic Nanoplates. Advanced Functional Materials, 2022, 32, .	14.9	10
488	2D/0D hierarchical heterostructures prepared via facetâ€selective epitaxial growth of triangular Rh nanoplates on 2Hâ€Pd nanoparticles. Natural Sciences, 2022, 2, .	2.1	5
489	Strain-Regulated Pd/Cu Core/Shell Icosahedra for Tunable Syngas Electrosynthesis from CO ₂ . Chemistry of Materials, 2022, 34, 7995-8003.	6.7	12
490	Recent Advances of Singleâ€Atomâ€Alloy for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12,	19.5	50
491	Design principle of electrocatalysts for the electrooxidation of organics. CheM, 2022, 8, 2594-2629.	11.7	44

#	Article	IF	CITATIONS
492	Twin boundaries boost the hydrogen evolution reaction on the solid solution of nickel and tungsten. Fuel, 2022, 330, 125510.	6.4	4
493	Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries. Applied Catalysis B: Environmental, 2022, 319, 121937.	20.2	14
494	Etching-assisted synthesis of single atom Ni-tailored Pt nanocatalyst enclosed by high-index facets for active and stable oxygen reduction catalysis. Nano Energy, 2022, 103, 107800.	16.0	13
495	Nitrogen-doped carbon nanotubes filled with Fe3C nanowires for efficient electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130095.	4.7	Ο
496	Interface charge induced self-assembled (Co(OH)2)4@La(OH)3 heterojunction derived from Co4-MOF@La(HCO2)3 to boost oxygen evolution reaction. Chemical Engineering Journal, 2023, 451, 138743.	12.7	8
497	Vacancy and strain engineering of Co3O4 for efficient water oxidation. Journal of Colloid and Interface Science, 2023, 629, 346-354.	9.4	7
498	Robust oxygen electrocatalysis enabled by bulk nitrogen-doped hierarchical structure cobalt carbide. Journal of Materials Chemistry A, 2022, 10, 20924-20933.	10.3	4
499	Electronic structure engineering for electrochemical water oxidation. Journal of Materials Chemistry A, 2022, 10, 20218-20241.	10.3	75
500	Heterostructure from heteromixture: unusual OER activity of FeP and CoP nanostructures on physical mixing. Journal of Materials Chemistry A, 2022, 10, 22354-22362.	10.3	19
501	Electrocatalyst design for the conversion of energy molecules: electronic state modulation and mass transport regulation. Chemical Communications, 2022, 58, 10907-10924.	4.1	11
502	Synergistic Hybrid Electrocatalysts of Platinum Alloy and Single-Atom Platinum for an Efficient and Durable Oxygen Reduction Reaction. ACS Nano, 2022, 16, 14121-14133.	14.6	55
503	Metal Carbideâ€Based Cocatalysts for Photocatalytic Solarâ€ŧoâ€Fuel Conversion. Small Structures, 2022, 3, .	12.0	17
504	The action mechanisms and structures designs of F-containing functional materials for high performance oxygen electrocatalysis. Journal of Energy Chemistry, 2023, 76, 377-397.	12.9	12
505	Pt Atomic Layers with Tensile Strain and Rich Defects Boost Ethanol Electrooxidation. Nano Letters, 2022, 22, 7563-7571.	9.1	37
506	Tuning Electronic Structure and Composition of FeNi Nanoalloys for Enhanced Oxygen Evolution Electrocatalysis via a General Synthesis Strategy. Small, 2022, 18, .	10.0	9
507	Recent Progress in High Entropy Alloys for Electrocatalysts. Electrochemical Energy Reviews, 2022, 5,	25.5	45
508	Hot Carrier Lifetimes and Electrochemical Water Dissociation Enhanced by Nickel Doping of a Plasmonic Electrocatalyst. Nano Letters, 2022, 22, 7819-7825.	9.1	13
509	Coalescence of Au–Pd Nanoropes and their Application as Enhanced Electrocatalysts for the Oxygen Reduction Reaction. Small, 2022, 18, .	10.0	5

#	Article	IF	CITATIONS
510	Highâ€Resolution Electron Tomography of Ultrathin Boerdijk–Coxeter–Bernal Nanowire Enabled by Superthin Metal Surface Coating. Small, 2022, 18, .	10.0	4
511	Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Topics in Catalysis, 2023, 66, 149-181.	2.8	4
512	Boron-Doped Platinum-Group Metals in Electrocatalysis: A Perspective. ACS Catalysis, 2022, 12, 12750-12764.	11.2	31
513	Local structure analysis and structure mining for design of photocatalytic metal oxychloride intergrowths. Journal of Materials Chemistry A, 2022, 10, 23212-23221.	10.3	1
514	Local Structure Insight into Hydrogen Evolution Reaction with Bimetal Nanocatalysts. Journal of the American Chemical Society, 2022, 144, 20298-20305.	13.7	13
515	Dynamic Lattice Distortion in Metallic Nanocrystals. Acta Materialia, 2022, , 118491.	7.9	0
516	Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS Nano, 2022, 16, 17847-17890.	14.6	48
517	Machine Learning Captures Synthetic Intuitions for Hollow Nanostructures. ACS Applied Nano Materials, 2022, 5, 17095-17104.	5.0	1
518	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	10.4	10
519	A general approach to high-entropy metallic nanowire electrocatalysts. Matter, 2023, 6, 193-205.	10.0	28
520	Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures. Nature Communications, 2022, 13, .	12.8	10
521	Gold-catalyzed reduction of metal ions for core-shell structures with subnanometer shells. Cell Reports Physical Science, 2022, 3, 101105.	5.6	3
522	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	3.7	11
523	Emerging two-dimensional metallenes: Recent advances in structural regulations and electrocatalytic applications. Chinese Journal of Catalysis, 2022, 43, 2802-2814.	14.0	9
524	Strain related new sciences and devices in low-dimensional binary oxides. Nano Energy, 2022, 104, 107917.	16.0	4
525	Improving the ORR performance by enhancing the Pt oxidation resistance. Journal of Catalysis, 2022, 416, 311-321.	6.2	13
526	Engineering of plasmonic gold nanocrystals through pulsed laser irradiation. Applied Physics Letters, 2022, 121, 200502.	3.3	1
527	Multifunctional catalytic activity of Cu3N (001) surface: A first-principles study. ChemPhysMater, 2022, , .	2.8	2

#	Article	IF	CITATIONS
528	Role of Surface Strain at Nanocrystalline Pt{110} Facets in Oxygen Reduction Catalysis. Nano Letters, 2022, 22, 9115-9121.	9.1	13
529	Density functional theory study of active sites and reaction mechanism of ORR on Pt surfaces under anhydrous conditions. Chinese Journal of Catalysis, 2022, 43, 3126-3133.	14.0	4
530	Porous Nanoarchitectures of Nonprecious Metal Borides: From Controlled Synthesis to Heterogeneous Catalyst Applications. ACS Catalysis, 2022, 12, 14773-14793.	11.2	62
531	Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy. Science Advances, 2022, 8, .	10.3	7
532	Zinc Intercalated Lattice Expansion of Ultrafine Platinum–Nickel Oxygen Reduction Catalyst for PEMFC. Advanced Functional Materials, 2023, 33, .	14.9	17
533	In-situ imaging of strain-induced enhancement of hydrogen evolution activity on the extruded MoO2 sheets. Nano Research, 2023, 16, 5419-5426.	10.4	3
534	Bulkâ€like Pt(100)â€oriented Ultrathin Surface: Combining the Merits of Single Crystals and Nanoparticles to Boost Oxygen Reduction Reaction. Angewandte Chemie, 0, , .	2.0	1
535	Bulkâ€like Pt(100)â€oriented Ultrathin Surface: Combining the Merits of Single Crystals and Nanoparticles to Boost Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
536	Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution. Nano Research, 2023, 16, 4650-4655.	10.4	10
537	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	11.2	10
538	Monodispersed ultrathin twisty PdBi alloys nanowires assemblies with tensile strain enhance C2+ alcohols electrooxidation. Journal of Energy Chemistry, 2023, 79, 279-290.	12.9	9
539	Flattening bent Janus nanodiscs expands lattice parameters. CheM, 2023, 9, 948-962.	11.7	3
540	Heterointerface and Tensile Strain Effects Synergistically Enhances Overall Waterâ€ S plitting in Ru/RuO ₂ Aerogels. Small, 2023, 19, .	10.0	36
541	Latticeâ€6train Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. Advanced Materials, 2023, 35, .	21.0	34
542	Tailored Heterojunction Active Sites for Oxygen Electrocatalyst Promotion in Zincâ€Air Batteries. Small, 2023, 19, .	10.0	19
543	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.		0
544	Size and near-surface engineering in weak-oxidative confined space to fabricate 4 nm L10-PtCo@Pt nanoparticles for oxygen reduction reaction. Nano Research, 2023, 16, 6622-6631.	10.4	7
545	New Conceptual Catalyst on Spatial Highâ€Entropy Alloy Heterostructures for Highâ€Performance Liâ€O ₂ Batteries. Small, 2023, 19,	10.0	15

#	Article	IF	CITATIONS
546	PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. IScience, 2023, 26, 105890.	4.1	10
547	Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells. Chinese Journal of Catalysis, 2023, 45, 17-26.	14.0	14
548	A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment. Applied Catalysis A: General, 2023, 651, 119013.	4.3	13
549	Renovating phase constitution and construction of Pt nanocubes for electrocatalysis of methanol oxidation via a solvothermal-induced strong metal-support interaction. Applied Catalysis B: Environmental, 2023, 325, 122383.	20.2	13
550	Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products. ACS Nano, 2023, 17, 346-354.	14.6	10
551	High-Indexed Intermetallic Pt ₃ Sn Nanozymes with High Activity and Specificity for Sensitive Immunoassay. Nano Letters, 2023, 23, 267-275.	9.1	20
552	Recent progress on the electroreduction of carbon dioxide to C1 liquid products. Current Opinion in Electrochemistry, 2023, 38, 101219.	4.8	3
553	Oxidation of metals and formation of defects by theoretical modeling. , 2023, , 129-160.		0
554	Scalable production of an intermetallic Pt–Co electrocatalyst for high-power proton-exchange-membrane fuel cells. Energy and Environmental Science, 2023, 16, 1146-1154.	30.8	14
555	Curved Porous PdCu Metallene as a High-Efficiency Bifunctional Electrocatalyst for Oxygen Reduction and Formic Acid Oxidation. ACS Applied Materials & Interfaces, 2023, 15, 5198-5208.	8.0	14
556	Copper and silver nanowires for CO ₂ electroreduction. Nanoscale, 2023, 15, 3693-3703.	5.6	6
557	Iridium-based electrocatalysts for the acidic oxygen evolution reaction: engineering strategies to enhance the activity and stability. Materials Chemistry Frontiers, 2023, 7, 1248-1267.	5.9	6
558	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Atomically Dispersed Sn Protuberance. Angewandte Chemie, 0, , .	2.0	0
559	Composition-Dependent Near-Surface Structure of High-Entropy Alloy Catalysts for the Semihydrogenation of Alkynes. Journal of Physical Chemistry C, 0, , .	3.1	0
560	Atomic phosphorus induces tunable lattice strain in high entropy alloys and boosts alkaline water splitting. Nano Energy, 2023, 110, 108380.	16.0	18
561	Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy, 2023, 110, 108362.	16.0	24
562	Recent progress of Ni-based catalysts for methanol electrooxidation reaction in alkaline media. , 2023, 2, 100055.		16
563	Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis. Nature Communications, 2023, 14, .	12.8	18

#	Article	IF	CITATIONS
565	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Atomically Dispersed Sn Protuberance. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
566	In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical Engineering Journal, 2023, 461, 141939.	12.7	26
567	Visualizing Catalytic Dynamics Process via Synchrotron Radiation Multiâ€īechniques. Advanced Materials, 0, , 2205346.	21.0	7
568	Opportunities in the design of metal@oxide core-shell nanoparticles. Advances in Physics: X, 2023, 8, .	4.1	ο
569	Modulating the electronic structure of hollow <scp>Cu</scp> / <scp>Cu₃P</scp> heteroâ€nanoparticles to boost the oxygen reduction performance in longâ€lasting Znâ€air battery. EcoMat, 2023, 5, .	11.9	7
570	Phosphorus Optimized Metastable Hexagonalâ€Closeâ€Packed Phase Nickel for Efficient Hydrogen Peroxide Production in Neutral Media. Advanced Functional Materials, 2023, 33, .	14.9	6
571	Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nature Communications, 2023, 14, .	12.8	38
572	A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials, 2023, 58, 287-298.	18.0	20
573	Anisotropic strain variations during the confined growth of Au nanowires. Applied Physics Letters, 2023, 122, .	3.3	2
574	Enhancing Selective Electrochemical CO ₂ Reduction by In Situ Constructing Tensile-Strained Cu Catalysts. ACS Catalysis, 2023, 13, 4711-4718.	11.2	14
575	Dissolvable templates to prepare Pt-based porous metallic glass for the oxygen reduction reaction. Nanoscale, 2023, 15, 6802-6811.	5.6	2
576	Highly Stable Pt-Based Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Materials, 2023, 16, 2590.	2.9	4
577	One-dimensional metal-organic frameworks: Synthesis, structure and application in electrocatalysis. , 2023, 1, 100010.		2
578	Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst. Journal of Physical Chemistry Letters, 2023, 14, 3146-3151.	4.6	5
579	Scalable and Controllable Synthesis of Ptâ€Ni Bunchedâ€Nanocages Aerogels as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2023, 13, .	19.5	19
580	Moiré Superlattice Structure in Twoâ€Dimensional Catalysts: Synthesis, Property and Activity. Small, 2023, 19, .	10.0	2
581	Cuâ€Doped Heterointerfaced Ru/RuSe ₂ Nanosheets with Optimized H and H ₂ O Adsorption Boost Hydrogen Evolution Catalysis. Advanced Materials, 2023, 35, .	21.0	26
582	Atomic understanding of the strain-induced electrocatalysis from DFT calculation: progress and perspective. Physical Chemistry Chemical Physics, 2023, 25, 12565-12586.	2.8	9

#	Article	IF	CITATIONS
583	Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. CheM, 2023, 9, 2161-2177.	11.7	14
584	Dealloying of Pt ₁ Bi ₂ intermetallic toward optimization of electrocatalysis on a Bi-continuous nanoporous core–shell structure. Chemical Communications, 0, , .	4.1	0
585	Strainâ€Regulated Pt–NiO@Ni Subâ€Micron Particles Achieving Bifunctional Electrocatalysis for Zinc–Air Battery. Small, 2023, 19, .	10.0	6
586	Metal Alloysâ€ S tructured Electrocatalysts: Metal–Metal Interactions, Coordination Microenvironments, and Structural Property–Reactivity Relationships. Advanced Materials, 2023, 35, .	21.0	23
587	Rare earth-based nanomaterials in electrocatalysis. Coordination Chemistry Reviews, 2023, 489, 215204.	18.8	16
588	Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. EScience, 2023, 3, 100141.	41.6	27
589	Tailored Lattice Compressive Strain of Ptâ€ s kins by the L1 ₂ â€Pt ₃ M Intermetallic Core for Highly Efficient Oxygen Reduction. Advanced Materials, 2023, 35, .	21.0	15
590	Strain-activated porous helical-spiny-like PtCu with exposed high-index facets for efficient alkaline hydrogen evolution. Materials Today Chemistry, 2023, 30, 101581.	3.5	0
591	Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation. Advanced Materials, 2023, 35, .	21.0	13
592	Alloy Catalysts for Electrocatalytic CO ₂ Reduction. Small Methods, 2023, 7, .	8.6	8
593	Design strategies of electrocatalysts for acidic oxygen evolution reaction. EnergyChem, 2023, 5, 100104.	19.1	5
594	Improving the Hydrogen Oxidation Reaction Rate of Ru by Active Hydrogen in the Ultrathin Pd Interlayer. Journal of the American Chemical Society, 2023, 145, 12717-12725.	13.7	14
595	Pdâ€Enrichedâ€Core/Ptâ€Enrichedâ€Shell Highâ€Entropy Alloy with Faceâ€Centred Cubic Structure for C ₁ and C ₂ Alcohol Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
596	Stable Strain State of Singleâ€īwinned AgPdF Nanoalloys under Formate Oxidation Reaction. Small Structures, 0, , .	12.0	0
597	Pdâ€Enrichedâ€Core/Ptâ€Enrichedâ€Shell Highâ€Entropy Alloy with Faceâ€Centred Cubic Structure for C ₁ and C ₂ Alcohol Oxidation. Angewandte Chemie, 2023, 135, .	2.0	1
598	Free-standing high-entropy alloy plate for efficient water oxidation catalysis: structure/composition evolution and implication of high-valence metals. Chemical Engineering Journal, 2023, 469, 144015.	12.7	7
599	Mnâ€Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzerâ€Based H ₂ â€Production. Advanced Materials, 2023, 35, .	21.0	6
600	Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. Advanced Materials, 0, , .	21.0	36

#	Article	IF	CITATIONS
601	Interface engineering of bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Materials Chemistry Frontiers, 2023, 7, 4281-4303.	5.9	4
602	Unconventional Bilateral Compressive Strained Ni–Ir Interface Synergistically Accelerates Alkaline Hydrogen Oxidation. Journal of the American Chemical Society, 2023, 145, 13805-13815.	13.7	15
603	Enrichment of reactants and intermediates for electrocatalytic CO ₂ reduction. Chemical Society Reviews, 2023, 52, 4343-4380.	38.1	31
604	Structure-activity relationship of tri-metallic Pt-based nanocatalysts for methanol oxidation reaction. Coordination Chemistry Reviews, 2023, 493, 215280.	18.8	10
605	Heterojunction Engineering for Electrocatalytic Applications. ACS Applied Energy Materials, 2023, 6, 7737-7784.	5.1	5
606	First-principles study of 2H-Mo ₂ C-based MXenes under biaxial strain as Li-battery anodes. Physical Chemistry Chemical Physics, 2023, 25, 19612-19619.	2.8	3
607	Research progress in graphene based single atom catalysts in recent years. Fuel Processing Technology, 2023, 250, 107879.	7.2	4
608	Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity. Nature Communications, 2023, 14, .	12.8	14
609	Cuprous sulfide intermediate assisted synthesis of PtCu ₃ intermetallic electrocatalysts in multigram scale for oxygen reduction. Inorganic Chemistry Frontiers, 2023, 10, 3359-3366.	6.0	1
610	Strategies for improving stability of Pt-based catalysts for oxygen reduction reaction. , 2023, 2, 100058.		5
611	Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst. Chinese Journal of Catalysis, 2023, 48, 195-204.	14.0	2
612	Integrating Low Pt-Based Ternary NiRuPt Nanoalloy on Hybrid TiO ₂ -Based Oxide–Carbon Composite for Enhanced Ethanol Oxidation. Journal of Physical Chemistry Letters, 2023, 14, 4631-4637.	4.6	11
613	Enhanced nitrogen electroreduction performance by the reorganization of local coordination environment of supported single atom on N(O)-dual-doped graphene. Nano Research, 2023, 16, 9099-9106.	10.4	2
614	Structure Dynamics of Carbon-Supported Platinum-Neodymium Nanoalloys during the Oxygen Reduction Reaction. ACS Catalysis, 2023, 13, 7417-7427.	11.2	3
615	Copper nanodot-embedded nitrogen and fluorine co-doped porous carbon nanofibers as advanced electrocatalysts for rechargeable zinc-air batteries. Journal of Colloid and Interface Science, 2023, 647, 163-173.	9.4	4
616	Exploring the Strain Effect in Single Particle Electrochemistry using Pd Nanocrystals. Angewandte Chemie - International Edition, 2023, 62, .	13.8	15
617	Opportunities and challenges of strain engineering for advanced electrocatalyst design. Nano Research, 2023, 16, 8655-8669.	10.4	6
618	Exploring the Strain Effect in Single Particle Electrochemistry using Pd Nanocrystals. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
619	Understanding palladium–tellurium cluster formation on WTe2: From a kinetically hindered distribution to thermodynamically controlled monodispersity. , 2023, 2, .		0
620	High-Entropy Materials as the Catalysts for Valorization of Biomass and Biomass-Derived Platform Compounds. ACS Sustainable Chemistry and Engineering, 2023, 11, 10203-10218.	6.7	3
621	Rational Design and Structural Regulation of Robust Catalysts for Electrocatalytic Hydrodechlorination: From Nanostructures to Single Atoms. ACS Catalysis, 2023, 13, 9633-9655.	11.2	9
622	Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chemical Reviews, 2023, 123, 9676-9717.	47.7	6
623	Structural Transformation of Unconventional-Phase Materials. ACS Nano, 2023, 17, 12935-12954.	14.6	5
624	Activating self-supported NiPd electrodes by laser-direct-writing for efficient hydrogen evolution reaction. Materials Chemistry Frontiers, 0, , .	5.9	0
625	Lattice Strain Engineering of Ni ₂ P Enables Efficient Catalytic Hydrazine Oxidationâ€Assisted Hydrogen Production. Advanced Materials, 2023, 35, .	21.0	26
626	Periodic anti-phase boundaries and crystal superstructures in PtCu3 nanoparticles as fuel cell electrocatalysts. Materials Today Nano, 2023, 23, 100377.	4.6	1
627	EELS Clustering in Strained Nanocrystal using Machine Learning: A Case Study of Core/Shell Nanocrystal with Uniform Grain Boundary Defects. Microscopy and Microanalysis, 2023, 29, 1925-1926.	0.4	0
628	Understanding the role of metal–organic frameworks in cancer treatment. New Journal of Chemistry, 2023, 47, 15407-15421.	2.8	2
629	Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures. Molecules, 2023, 28, 5720.	3.8	1
630	Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. Nano-Micro Letters, 2023, 15, .	27.0	11
631	Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt. Journal of the American Chemical Society, 2023, 145, 17643-17655.	13.7	32
632	Review of Emerging Atomically Precise Composite Siteâ€Based Electrocatalysts. Advanced Energy Materials, 2023, 13, .	19.5	4
633	Mechanical-Effect descriptor for oxygen reduction reaction and hydrogen evolution reaction on Single-Atomic Ni-Graphene catalysts. Fuel, 2024, 355, 129496.	6.4	0
634	Lattice strain of Cu nanocrystals modulates CO adsorption energy. Chem Catalysis, 2023, 3, 100708.	6.1	0
635	Intrinsic Strain-Mediated Ultrathin Ceria Nanoantioxidant. Journal of the American Chemical Society, 2023, 145, 19086-19097.	13.7	10
636	Defect-Rich SnO ₂ Nanofiber as an Oxygen-Defect-Driven Photoenergy Shield against UV Light Cell Damage. ACS Applied Materials & Interfaces, 2023, 15, 42868-42880.	8.0	1

#	Article	IF	CITATIONS
637	Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials. Nanomaterials, 2023, 13, 2378.	4.1	1
638	Misoriented high-entropy iridium ruthenium oxide for acidic water splitting. Science Advances, 2023, 9, .	10.3	5
639	Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. , 2023, 42, 100160.		0
640	Hydrogen-induced p-d orbital hybridization and tensile strain of PdGa single-atom alloy metallene boosts complete electrooxidation of ethanol. Applied Catalysis B: Environmental, 2024, 342, 123377.	20.2	1
641	Multifunctional High Entropy Alloys Enabled by Severe Lattice Distortion. Advanced Materials, 0, , .	21.0	8
642	Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction. Journal of Colloid and Interface Science, 2023, 652, 1006-1015.	9.4	6
643	Pbâ€Modified Ultrathin RuCu Nanoflowers for Active, Stable, and COâ€resistant Alkaline Electrocatalytic Hydrogen Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
644	Pbâ€Modified Ultrathin RuCu Nanoflowers for Active, Stable, and COâ€resistant Alkaline Electrocatalytic Hydrogen Oxidation. Angewandte Chemie, 2023, 135, .	2.0	0
645	Solution-free synthesis of MXene composite hybrid nanostructures by rapid Joule heating. Journal of Materials Chemistry A, 2023, 11, 22295-22303.	10.3	0
646	Structural engineering of catalysts for ammonia electrosynthesis from nitrate: recent advances and challenges. , 2024, 2, 202-219.		2
647	Atomic Distance Engineering in Metal Catalysts to Regulate Catalytic Performance. Advanced Materials, 2024, 36, .	21.0	9
648	Ultrastructure and Surface Composition of Glutathione-Terminated Ultrasmall Silver, Gold, Platinum, and Alloyed Silver–Platinum Nanoparticles (2 nm). Inorganic Chemistry, 2023, 62, 17470-17485.	4.0	1
649	Electrochemical Dealloying of Ni-Rich Pt–Ni Nanoparticle Network for Robust Oxygen-Reduction Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2023, 11, 15460-15469.	6.7	2
650	Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 1906-1913.	4.9	1
651	Rare Earth-Based Alloy Nanostructure for Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 13804-13815.	11.2	2
652	Lattice strain induced d-band centre engineering enabled pseudocapacitive energy storage in 2D hypo–hyper electronic V-NiCo ₂ O ₄ for asymmetric supercapacitors. Nanoscale, 2023, 15, 18368-18382.	5.6	1
653	Optimization strategies of high-entropy alloys for electrocatalytic applications. Chemical Science, 2023, 14, 12850-12868.	7.4	15
654	Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc-air battery application. Energy Advances, 0,	3.3	0

#	Article	IF	CITATIONS
655	Tensile Strain-Mediated Spinel Ferrites Enable Superior Oxygen Evolution Activity. Journal of the American Chemical Society, 2023, 145, 24218-24229.	13.7	16
656	Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Physical Chemistry Chemical Physics, 2023, 25, 30172-30187.	2.8	1
657	Strain engineering of two-dimensional materials for energy storage and conversion applications. , 0, 3, .		2
658	Tuning intrinsic strain in PtCuCr nanoframes boosts electro-oxidation of liquid fuels. Chemical Engineering Science, 2024, 284, 119486.	3.8	0
659	Niâ€Doped RuPt Nanoalloy on Acidâ€Treated Carbon for pHâ€Universal Hydrogen Evolution Reaction. Advanced Sustainable Systems, 2024, 8, .	5.3	1
660	Tailoring grain boundaries and doping on Cu-based electrocatalyst for efficient CO2 reduction reaction. Applied Surface Science, 2024, 645, 158912.	6.1	0
661	Structure-driven tuning of O and CO adsorption on AuCu nanoparticles: A density functional theory study. Physical Review B, 2023, 108, .	3.2	1
662	Role of Transition Metals in Pt Alloy Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2023, 13, 14874-14893.	11.2	2
663	Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chemical Reviews, 2023, 123, 12507-12593.	47.7	9
664	Ferromagnetic L1 ₂ â€Pt ₃ Co Nanowires with Spinâ€Polarized Orbitals for Fast and Selective Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2024, 34, .	14.9	1
665	Local structural environment of single-atom catalysts. Inorganic Chemistry Frontiers, 0, , .	6.0	1
666	Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid. , 0, , .		0
667	Valueâ€Added Aqueous Metalâ€Redox Bicatalyst Batteries. Advanced Energy Materials, 0, , .	19.5	0
668	Defect Engineering of 2D Copper Tin Composite Nanosheets Realizing Promoted Electrosynthesis Performance of Hydrogen Peroxide. Small, 0, , .	10.0	0
669	Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction. Nano-Micro Letters, 2024, 16, .	27.0	4
670	Stateâ€ofâ€ŧheâ€Art Twoâ€Dimensional Metal Phosphides for High Performance Lithiumâ€ion Batteries: Progress and Prospects. ChemSusChem, 0, , .	6.8	1
671	Enhanced HER Efficiency of Monolayer MoS ₂ via S Vacancies and Nanoâ€Cones Array Induced Strain Engineering. Small, 0, , .	10.0	0
672	MnF ₂ Surface Modulated Hollow Carbon Nanorods on Porous Carbon Nanofibers as Efficient Biâ€Functional Oxygen Catalysis for Rechargeable Zinc–Air Batteries. Small, 0, , .	10.0	0

#	Article	IF	CITATIONS
673	Ultrathin porous PdCu metallenezymes as oxidase mimics for colorimetric analysis. Mikrochimica Acta, 2024, 191, .	5.0	1
674	Breaking linear scaling relations by strain engineering on MXene for boosting N2 electroreduction. Journal of Colloid and Interface Science, 2024, 658, 114-126.	9.4	1
675	Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO. Physical Chemistry Chemical Physics, 2023, 25, 33031-33037.	2.8	1
676	Resolving Atomic-Scale Structure and Chemical Coordination in High-Entropy Alloy Electrocatalysts for Structure–Function Relationship Elucidation. ACS Nano, 2023, 17, 22299-22312.	14.6	1
677	Symmetryâ€Induced Regulation of Pt Strain Derived from Pt ₃ Ga Intermetallic for Boosting Oxygen Reduction Reaction. Advanced Materials, 2024, 36, .	21.0	1
678	Atomic Three-Dimensional Investigations of Pd Nanocatalysts for Acetylene Semi-hydrogenation. Journal of the American Chemical Society, 0, , .	13.7	0
679	The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure–property relationships of Pt-based fuel cells electrocatalysts. Inorganic Chemistry Frontiers, 0, , .	6.0	1
680	Small-angle X-ray scattering simulations on a single Pt nanoparticle system: An analysis of structural characteristics. Computational Materials Science, 2024, 233, 112709.	3.0	0
681	Ultrathin PdPtP Nanodendrites as High-activity Electrocatalysts toward Alcohol Oxidation. Chemical Communications, 0, , .	4.1	0
682	Recent advances in Ru/Ir-based electrocatalysts for acidic oxygen evolution reaction. Applied Catalysis B: Environmental, 2024, 343, 123584.	20.2	5
683	Local tensile strain boosts the electrocatalytic ammonia oxidation reaction. Chemical Communications, 0, , .	4.1	0
684	Strainâ€Dependent Activity‣tability Relations in RuO ₂ and IrO ₂ Oxygen Evolution Catalysts. ChemElectroChem, 0, , .	3.4	0
685	Nâ€Doping Effects On Electrocatalytic Water Splitting of Nonâ€Noble Highâ€Entropy Alloy Nanoparticles Prepared by Inert Gas Condensation. Small, 0, , .	10.0	0
686	Rareâ€earth Elementâ€based Electrocatalysts Designed for CO2 Electroâ€reduction. ChemSusChem, 0, , .	6.8	0
687	Recent research progresses of Sn/Bi/Inâ€based electrocatalysts for electroreduction CO2 to formate. Chemistry - A European Journal, 0, , .	3.3	0
688	Lowâ€Electronegativity Mnâ€Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
689	Lowâ€Electronegativity Mnâ€Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability. Angewandte Chemie, 2024, 136, .	2.0	0
690	Recent advances and perspective on transition metal heterogeneous catalysts for efficient electrochemical water splitting. , 2024, 3, 4-31.		0

#	Article	IF	CITATIONS
691	Enhancing CO ₂ electroreduction performance through transition metal atom doping and strain engineering in γ-GeSe: a first-principles study. Physical Chemistry Chemical Physics, 2024, 26, 3560-3568.	2.8	0
692	Progresses on high-entropy nano-catalysts for electrochemical energy conversion reactions. Journal of Materials Chemistry A, 2024, 12, 3230-3250.	10.3	0
693	High-efficiency CO2 conversion via mechano-driven dynamic strain engineering of ZnO nanostructures. Nano Energy, 2024, 121, 109258.	16.0	3
694	Singleâ€Atom Alloys Materials for CO ₂ and CH ₄ Catalytic Conversion. Advanced Materials, 2024, 36, .	21.0	0
695	Site-selective sulfur anchoring produces sintering-resistant intermetallic ORR electrocatalysts for membrane electrode assemblies. Journal of Colloid and Interface Science, 2024, 660, 916-922.	9.4	0
696	Tungsten–Iron–Ruthenium Ternary Alloy Immobilized into the Inner Nickel Foam for Highâ€Currentâ€Density Water Oxidation. Small, 0, , .	10.0	0
697	Operando imaging in electrocatalysis: insights into microstructural materials design. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
698	Carbon-Extraction-Induced Biaxial Strain Tuning of Carbon-Intercalated Iridium Metallene for Hydrogen Evolution Catalysis. Nano Letters, 2024, 24, 1602-1610.	9.1	0
699	Strain engineering in electrocatalysis: Strategies, characterization, and insights. Nano Research, 2024, 17, 3603-3621.	10.4	0
700	Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production. Nano-Micro Letters, 2024, 16, .	27.0	0
701	Kirkendall oxidation tailors lattice strain in transition metal oxides for efficient oxygen electrocatalysis. Matter, 2024, 7, 1245-1258.	10.0	1
702	Tailoring atomic strain environment for high-performance acidic oxygen reduction by Fe-Ru dual atoms communicative effect. Matter, 2024, 7, 1517-1532.	10.0	0
703	Strain effect induced Pd nanoparticles decorated Pd2+-doped Co3O4 nanosheets for efficient electrocatalytic ethanol oxidation and oxygen reduction reactions. Molecular Catalysis, 2024, 556, 113902.	2.0	0
704	Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. Advanced Materials, 0, , .	21.0	0
705	Atomic Ordering Engineering of Precious Metal Alloys in Liquid Phase Synthesis. Nano Letters, 2024, 24, 2328-2336.	9.1	0
706	Surface Strain Effect on Electrocatalytic Hydrogen Evolution Reaction of Pt-Based Intermetallics. ACS Catalysis, 2024, 14, 2917-2923.	11.2	0
707	Controlled Growth of Metal Atom Arrays on Graphdiyne for Seawater Oxidation. Journal of the American Chemical Society, 2024, 146, 5669-5677.	13.7	0
708	Revisiting the Role of Seed Size for the Synthesis of Highly Uniform Sub-10 nm Length Gold Nanorods. Chemistry of Materials, 2024, 36, 1982-1997.	6.7	0

#	Article	IF	CITATIONS
709	Monodisperse Sea-Urchin-like Nanodendrites and Nanoparticles of Multicomponent Pd-Based Alloys for Enhanced C ₂ Alcohol Oxidation Activity. Chemistry of Materials, 2024, 36, 2124-2137.	6.7	1
710	Mechanistic understanding of thermodynamic metastability of core-shell catalysts in the polymer electrolyte fuel cell catalyst layer durability. Chemical Engineering Journal, 2024, 484, 149672.	12.7	1
711	Theoretical investigation on the strain engineering control of TiC as tunable high-efficiency bifunctional cathode materials for Lithium–Sulfur batteries. Applied Surface Science, 2024, 656, 159714.	6.1	0
712	Structure-driven tuning of catalytic properties of core–shell nanostructures. Nanoscale, 2024, 16, 5870-5892.	5.6	Ο
713	Strain-Engineered Ru-NiCr LDH Nanosheets Boosting Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2024, 14, 3466-3474.	11.2	0
714	The role of strain in oxygen evolution reaction. Journal of Energy Chemistry, 2024, 93, 322-344.	12.9	ο
715	Unlocking the Potential of High Entropy Alloys in Electrochemical Water Splitting: A Review. Small, 0, , .	10.0	0
716	Boron-alloyed porous network platinum nanospheres for efficient oxygen reduction in proton exchange membrane fuel cells. Chemical Engineering Journal, 2024, 485, 149998.	12.7	Ο
717	Coupled compressive-tensile stains boosting both activity and durability of NiMo electrode for alkaline water/seawater hydrogen evolution at high current densities. Chemical Engineering Journal, 2024, 485, 150044.	12.7	0
718	Boosting overall saline water splitting by constructing a strainâ€engineered highâ€entropy electrocatalyst. , 2024, 6, .		0
719	Surface control of Ni-Al2O3 dry reforming of methane catalyst by composition segregation. Journal of CO2 Utilization, 2024, 81, 102721.	6.8	0
720	Synergy of compress strain and antioxidant of platinum-copper for enhanced the oxygen reduction performance. Nano Materials Science, 2024, , .	8.8	0
721	Mastering the Lattice Strain in Bismuthâ€Based Electrocatalysts for Efficient CO ₂ â€ŧoâ€Formate Conversion. Advanced Functional Materials, 0, , .	14.9	0
722	Progress of Pt and iron-group transition metal alloy catalysts with high ORR activity for PEMFCs. Journal of Electroanalytical Chemistry, 2024, 959, 118165.	3.8	Ο
723	Optimizing the intermediates adsorbability and revealing the dynamic reconstruction of Co6Fe3S8 solid solution for bifunctional water splitting. Journal of Colloid and Interface Science, 2024, 664, 329-337.	9.4	0
724	Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting. Chinese Journal of Catalysis, 2024, 58, 37-85.	14.0	0
725	Assembled RhRuFe Trimetallene for Water Electrolysis. Small Methods, 0, , .	8.6	0
726	Multiscale Regulation of Ordered PtCu Intermetallic Electrocatalyst for Highly Durable Oxygen Reduction Reaction. Nano Letters, 2024, 24, 3994-4001.	9.1	0

#	Article	IF	CITATIONS
727	Constructing strain in electrocatalytic materials for CO ₂ reduction reactions. Green Chemistry, 2024, 26, 4449-4467.	9.0	0