Optimizing Optical Absorption, Exciton Dissociation, an Carbon Nitride with Ultrahigh Solar Hydrogen Product

Angewandte Chemie - International Edition 56, 13445-13449 DOI: 10.1002/anie.201706870

Citation Report

#	Article	IF	CITATIONS
1	Solar to Chemical Energy Conversion. Lecture Notes in Energy, 2016, , .	0.2	19
2	Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices. Nanoscale, 2017, 9, 16586-16590.	2.8	20
3	One-step hydrothermal synthesis of a novel 3D BiFeWO _x /Bi ₂ WO ₆ composite with superior visible-light photocatalytic activity. Green Chemistry, 2018, 20, 3014-3023.	4.6	51
4	Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 231, 234-241.	10.8	227
5	Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47, 2298-2321.	18.7	488
6	New 2D Carbon Nitride Organic Materials Synthesis with Hugeâ€Application Prospects in CN Photocatalyst. Small, 2018, 14, e1704138.	5.2	47
7	Polymeric Carbon Nitride with Localized Aluminum Coordination Sites as a Durable and Efficient Photocatalyst for Visible Light Utilization. ACS Catalysis, 2018, 8, 4241-4256.	5.5	118
8	Preparation and characterization of expanded g-C3N4 via rapid microwave-assisted synthesis. Diamond and Related Materials, 2018, 83, 109-117.	1.8	13
9	Carbon nitride creates thioamides in high yields by the photocatalytic Kindler reaction. Green Chemistry, 2018, 20, 838-842.	4.6	61
10	Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy, 2018, 47, 66-73.	8.2	71
11	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468.	5.8	199
12	Enhanced Charge Separation Efficiency Accelerates Hydrogen Evolution from Water of Carbon Nitride and 3,4,9,10-Perylene-tetracarboxylic Dianhydride Composite Photocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 3515-3521.	4.0	35
13	Toward a rational photocatalyst design: a new formation strategy of co-catalyst/semiconductor heterostructures <i>via in situ</i> exsolution. Chemical Communications, 2018, 54, 1505-1508.	2.2	39
14	Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 227, 153-160.	10.8	139
15	Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Applied Catalysis B: Environmental, 2018, 236, 99-106.	10.8	99
16	Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Applied Catalysis B: Environmental, 2018, 232, 330-339.	10.8	123
17	A "waiting―carbon nitride radical anion: a charge storage material and key intermediate in direct C–H thiolation of methylarenes using elemental sulfur as the "S―source. Chemical Science, 2018, 9, 3584-3591.	3.7	94
18	A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie - International Edition, 2018, 57, 1186-1192.	7.2	161

#	Article	IF	CITATIONS
19	A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie, 2018, 130, 1200-1206.	1.6	26
20	Cobalt manganese spinel as an effective cocatalyst for photocatalytic water oxidation. Applied Catalysis B: Environmental, 2018, 224, 886-894.	10.8	78
21	Preparation of TiO ₂ /Bi ₂ WO ₆ nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode. Environmental Science: Nano, 2018, 5, 327-337.	2.2	80
22	Realizing the regulated carrier separation and exciton generation of Bi ₂₄ O ₃₁ Cl ₁₀ <i>via</i> a carbon doping strategy. Journal of Materials Chemistry A, 2018, 6, 24350-24357.	5.2	39
23	Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications, 2018, 9, 4968.	5.8	244
24	Tuning Nitrogen Content in Graphitic Carbon Nitride by Isonicotinic acid for Highly Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2018, 11, 1045.	1.8	9
25	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	6.6	883
26	Enhancement of Catalytic Properties by Adjusting Molecular Diffusion in Nanoporous Catalysts. Advances in Catalysis, 2018, , 1-47.	0.1	3
27	Single Pt Atom with Highly Vacant d-Orbital for Accelerating Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2018, 1, 6082-6088.	2.5	93
28	Metal-Free Graphitic Carbon Nitride Photocatalyst Goes Into Two-Dimensional Time. Frontiers in Chemistry, 2018, 6, 551.	1.8	41
29	Ordered graphitic carbon nitride tubular bundles with efficient electron-hole separation and enhanced photocatalytic performance for hydrogen generation. Applied Catalysis A: General, 2018, 566, 200-206.	2.2	21
30	Few Layered BiOBr with Expanded Interlayer Spacing and Oxygen Vacancies for Efficient Decomposition of Real Oil Field Produced Wastewater. ACS Sustainable Chemistry and Engineering, 2018, 6, 13739-13746.	3.2	54
31	Engineering the High Concentration of N _{3C} Nitrogen Vacancies Toward Strong Solar Light-Driven Photocatalyst-Based g-C ₃ N ₄ . ACS Applied Energy Materials, 2018, 1, 4716-4723.	2.5	45
32	Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.	8.2	732
33	Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 2018, 8, 9790-9808.	5.5	165
34	Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Applied Catalysis B: Environmental, 2018, 236, 428-435.	10.8	108
35	Photochemical Construction of Carbonitride Structures for Red‣ight Redox Catalysis. Angewandte Chemie - International Edition, 2018, 57, 8674-8677.	7.2	93
36	Facile preparation of porous carbon nitride for visible light photocatalytic reduction and oxidation applications. Journal of Materials Science, 2018, 53, 11315-11328.	1.7	13

#	Article	IF	CITATIONS
37	Photochemical Construction of Carbonitride Structures for Red‣ight Redox Catalysis. Angewandte Chemie, 2018, 130, 8810-8813.	1.6	28
38	Ionothermal Synthesis of Triazine–Heptazineâ€Based Copolymers with Apparent Quantum Yields of 60 % at 420â€nm for Solar Hydrogen Production from "Sea Waterâ€. Angewandte Chemie - International Edition, 2018, 57, 9372-9376.	7.2	369
39	Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides. ACS Nano, 2018, 12, 5221-5227.	7.3	194
40	Bandgap Engineering of Organic Semiconductors for Highly Efficient Photocatalytic Water Splitting. Advanced Energy Materials, 2018, 8, 1801084.	10.2	127
41	Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 238, 161-167.	10.8	49
42	Synthesis of g-C3N4/BiOI/BiOBr heterostructures for efficient visible-light-induced photocatalytic and antibacterial activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 14300-14310.	1.1	40
43	Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. Angewandte Chemie - International Edition, 2018, 57, 15936-15947.	7.2	339
44	Haloid acid induced carbon nitride semiconductors for enhanced photocatalytic H2 evolution and reduction of CO2 under visible light. Carbon, 2018, 138, 465-474.	5.4	41
45	Perovskite-structured CaTiO ₃ coupled with g-C ₃ N ₄ as a heterojunction photocatalyst for organic pollutant degradation. Beilstein Journal of Nanotechnology, 2018, 9, 671-685.	1.5	116
46	Nitrogen Containing Linear Poly(phenylene) Derivatives for Photo-catalytic Hydrogen Evolution from Water. Chemistry of Materials, 2018, 30, 5733-5742.	3.2	88
47	Photoredoxkatalytische organische Umwandlungen an heterogenen Kohlenstoffnitriden. Angewandte Chemie, 2018, 130, 16164-16176.	1.6	55
48	A dual-reaction-center Fenton-like process on –Cî€,N–Cu linkage between copper oxides and defect-containing g-C ₃ N ₄ for efficient removal of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 17819-17828.	5.2	73
49	Perovskite Oxide LaNiO ₃ Nanoparticles for Boosting H ₂ Evolution over Commercial CdS with Visible Light. Chemistry - A European Journal, 2018, 24, 18512-18517.	1.7	69
50	Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Science China Chemistry, 2018, 61, 1205-1213.	4.2	50
51	Where do photogenerated holes at the g-C ₃ N ₄ /water interface go for water splitting: H ₂ O or OH ^{â^'} ?. Nanoscale, 2018, 10, 15624-15631.	2.8	39
52	Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Applied Catalysis B: Environmental, 2018, 238, 592-598.	10.8	171
53	Leafâ€Mosaicâ€Inspired Vineâ€Like Graphitic Carbon Nitride Showing High Light Absorption and Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801139.	10.2	115
54	Fe ₂ O ₃ /C–C ₃ N ₄ -Based Tight Heterojunction for Boosting Visible-Light-Driven Photocatalytic Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 10436-10444.	3.2	61

#	Article	IF	CITATIONS
55	Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach. Applied Catalysis B: Environmental, 2018, 238, 465-470.	10.8	207
56	Multifunctional C-Doped CoFe ₂ O ₄ Material as Cocatalyst to Promote Reactive Oxygen Species Generation over Magnetic Recyclable C–CoFe/Ag–AgX Photocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 11968-11978.	3.2	42
57	Visible-light-driven activity and synergistic mechanism of TiO ₂ @g-C ₃ N ₄ heterostructured photocatalysts fabricated through a facile and green procedure for various toxic pollutants removal. Nanotechnology, 2018, 29, 315601.	1.3	28
58	Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn ₂ S ₄ Nanosheets for Photocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 18529-18534.	1.7	116
59	Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 17591-17601.	1.1	48
60	Tuning the Intrinsic Properties of Carbon Nitride for High Quantum Yield Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1800820.	5.6	92
61	Structureâ€Mediated Charge Separation in Boron Carbon Nitride for Enhanced Photocatalytic Oxidation of Alcohol. ChemSusChem, 2018, 11, 3949-3955.	3.6	46
62	Core-shell Ag2CrO4/N-CQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities. Applied Catalysis B: Environmental, 2018, 239, 525-536.	10.8	147
63	Ultrastable and Efficient Visible-Light-Driven Hydrogen Production Based on Donor–Acceptor Copolymerized Covalent Organic Polymer. ACS Applied Materials & Interfaces, 2018, 10, 30698-30705.	4.0	83
64	Ionothermal Synthesis of Triazine–Heptazineâ€Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from "Sea Waterâ€, Angewandte Chemie, 2018, 130, 9516-9520) ^{1.6}	73
65	A significant enhancement of catalytic performance by adjusting catalyst wettability. Science China Materials, 2018, 61, 1137-1142.	3.5	22
66	Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. Journal of Materials Chemistry A, 2018, 6, 11994-12003.	5.2	93
67	Phosphorus Doped Carbon Nitride Nanotubes by Sequential Cation-Exchanging Reaction with Enhanced Photocatalytic Hydrogen Evolution. Journal of Nano Research, 0, 53, 76-85.	0.8	3
68	Singleâ€Atom Engineering of Directional Charge Transfer Channels and Active Sites for Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1802169.	7.8	287
69	Bismuth Vanadate with Electrostatically Anchored 3D Carbon Nitride Nanoâ€networks as Efficient Photoanodes for Water Oxidation. ChemSusChem, 2018, 11, 2510-2516.	3.6	25
70	Anchoring Active Pt ²⁺ /Pt ⁰ Hybrid Nanodots on g ₃ N ₄ Nitrogen Vacancies for Photocatalytic H ₂ Evolution. ChemSusChem, 2019, 12, 2029-2034.	3.6	54
71	Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angewandte Chemie, 2019, 131, 6198-6211.	1.6	19
72	Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2019, 58, 6138-6151.	7.2	205

#	Article	IF	CITATIONS
73	Optimizing electronic structure and charge transport of sulfur/potassium coâ€doped graphitic carbon nitride with efficient photocatalytic hydrogen evolution performance. Applied Organometallic Chemistry, 2019, 33, e5163.	1.7	16
74	Effect of controlling the number of fused rings on polymer photocatalysts for visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 22924-22929.	5.2	51
75	Design and synthesis of La3+-, Sb3+-doped MOF-In2S3@FcDc-TAPT COFs hybrid materials with enhanced photocatalytic activity. Journal of Materials Science, 2019, 54, 14690-14706.	1.7	17
76	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. Angewandte Chemie - International Edition, 2019, 58, 14950-14954.	7.2	120
77	Synthesis of nobleâ€metalâ€free ternary K ₇ HNb ₆ O ₁₉ /Cd _{0.5} Zn _{0.5} S/gâ€C _{3tandem heterojunctions for efficient photocatalytic performance under visible light. Applied Organometallic Chemistry, 2019, 33, e5178.}	>N _{4 1.7}	
78	Influence of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 12322-12328.	6.6	61
79	Freestanding Hierarchical Carbon Nitride/Carbon-Paper Electrode as a Photoelectrocatalyst for Water Splitting and Dye Degradation. ACS Applied Materials & Interfaces, 2019, 11, 29139-29146.	4.0	24
80	Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Applied Surface Science, 2019, 495, 143432.	3.1	77
81	Alkali-metal-oxides coated ultrasmall Pt sub-nanoparticles loading on intercalated carbon nitride: Enhanced charge interlayer transportation and suppressed backwark reaction for overall water splitting. Journal of Catalysis, 2019, 377, 72-80.	3.1	30
82	An Improved Metalâ€ŧo‣igand Charge Transfer Mechanism for Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 4221-4228.	3.6	24
83	Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis. Journal of Catalysis, 2019, 375, 361-370.	3.1	55
84	Amorphous Bimetallic Cobalt Nickel Sulfide Cocatalysts for Significantly Boosting Photocatalytic Hydrogen Evolution Performance of Graphitic Carbon Nitride: Efficient Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 26898-26908.	4.0	110
85	Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. Journal Physics D: Applied Physics, 2019, 53, 015502.	1.3	28
86	Insight into the Enhanced Hydrogen Evolution Activity of 2,4-Diaminopyrimidine-Doped Graphitic Carbon Nitride Photocatalysts. Journal of Physical Chemistry C, 2019, 123, 2228-2237.	1.5	25
87	Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule, 2019, 3, 2792-2805.	11.7	189
88	Regulating Polymerization in Graphitic Carbon Nitride To Improve Photocatalytic Activity. Chemistry of Materials, 2019, 31, 9188-9199.	3.2	57
89	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. Angewandte Chemie, 2019, 131, 15092-15096.	1.6	19
90	Ionic Carbon Nitrides in Solar Hydrogen Production and Organic Synthesis: Exciting Chemistry and Economic Advantages. ChemCatChem, 2019, 11, 6166-6176.	1.8	56

#	Article	IF	CITATIONS
91	Ternary heterostructural BiOBr0.510.5/BiOBr/BiOI engineering for efficient photocatalytic NO removal via synergistic effects of enhanced carrier and exciton photocatalysis. Journal of Materials Science: Materials in Electronics, 2019, 30, 19154-19163.	1.1	6
92	Merging Singleâ€Atomâ€Dispersed Iron and Graphitic Carbon Nitride to a Joint Electronic System for Highâ€Efficiency Photocatalytic Hydrogen Evolution. Small, 2019, 15, e1905166.	5.2	80
93	Fully Conjugated Covalent Organic Polymer with Carbon-Encapsulated Ni ₂ P for Highly Sustained Photocatalytic H ₂ Production from Seawater. ACS Applied Materials & Interfaces, 2019, 11, 41313-41320.	4.0	71
94	Potassiumâ€lonâ€Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visibleâ€Lightâ€Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie, 2019, 131, 16797-16803.	1.6	26
95	Potassiumâ€lonâ€Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visibleâ€Lightâ€Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2019, 58, 16644-16650.	7.2	356
96	Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 556, 324-334.	5.0	20
97	Enhanced Photocatalytic Activity of Aerogel Composed of Crooked Carbon Nitride Nanolayers with Nitrogen Vacancies. ACS Applied Materials & Interfaces, 2019, 11, 34922-34929.	4.0	30
98	Structure Tuning of Polymeric Carbon Nitride for Solar Energy Conversion: From Nano to Molecular Scale. CheM, 2019, 5, 2775-2813.	5.8	78
99	Visible-light induced emulsion photopolymerization with carbon nitride as a stabilizer and photoinitiator. Polymer Chemistry, 2019, 10, 5315-5323.	1.9	44
100	Metal-Oxide-Mediated Subtractive Manufacturing of Two-Dimensional Carbon Nitride for High-Efficiency and High-Yield Photocatalytic H ₂ Evolution. ACS Nano, 2019, 13, 11294-11302.	7.3	109
101	Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 349-355.	10.8	136
102	Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2490-2496.	5.2	84
103	Template-free synthesis of salmon pink tube-shaped structure carbon nitride with enhanced visible light photocatalytic activity. RSC Advances, 2019, 9, 3396-3402.	1.7	8
104	Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. Journal of Materials Chemistry A, 2019, 7, 5209-5213.	5.2	89
105	Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40, 867-874.	6.9	73
106	Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy. Applied Catalysis B: Environmental, 2019, 256, 117860.	10.8	142
107	Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Applied Surface Science, 2019, 492, 166-176.	3.1	59
108	Preparation of Lowâ€Dimensional Bismuth Tungstate (Bi 2 WO 6) Photocatalyst by Electrospinning. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900035.	0.8	8

#	Article	IF	CITATIONS
109	Zn-doped tri-s-triazine crystalline carbon nitrides for efficient hydrogen evolution photocatalysis. Applied Catalysis A: General, 2019, 582, 117118.	2.2	38
110	Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019, 374, 1064-1075.	6.6	218
111	Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2019, 553, 59-70.	5.0	26
112	Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 2019, 152, 40-58.	5.4	54
113	Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. Chemical Communications, 2019, 55, 7756-7759.	2.2	29
114	Well-dispersed CoSx nanoparticles modified tubular sulfur doped carbon nitride for enhanced photocatalytic H2 production activity. International Journal of Hydrogen Energy, 2019, 44, 14550-14560.	3.8	29
115	Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory. Journal of the American Chemical Society, 2019, 141, 9063-9071.	6.6	264
116	The true liquid crystal phases of 2D polymeric carbon nitride and macroscopic assembled fibers. Materials Horizons, 2019, 6, 1726-1732.	6.4	9
117	Microscopic Revelation of Charge-Trapping Sites in Polymeric Carbon Nitrides for Enhanced Photocatalytic Activity by Correlating with Chemical and Electronic Structures. ACS Applied Materials & Interfaces, 2019, 11, 19087-19095.	4.0	22
118	Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. Advanced Functional Materials, 2019, 29, 1901024.	7.8	44
119	Green synthesis of ultrathin edge-activated foam-like carbon nitride nanosheets for enhanced photocatalytic performance under visible light irradiation. Sustainable Energy and Fuels, 2019, 3, 1764-1775.	2.5	18
120	Semiâ€heterogene duale Nickel…Photokatalyse mit Kohlenstoffnitriden: Veresterung von Carbonsären mit Arylhalogeniden. Angewandte Chemie, 2019, 131, 9676-9681.	1.6	20
121	Semiâ€heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 9575-9580.	7.2	108
122	Enhancing Visibleâ€Light Hydrogen Evolution Performance of Crystalline Carbon Nitride by Defect Engineering. ChemSusChem, 2019, 12, 3257-3262.	3.6	101
123	Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Applied Materials Today, 2019, 15, 494-524.	2.3	393
124	Graphene oxide in carbon nitride: from easily processed precursors to a composite material with enhanced photoelectrochemical activity and long-term stability. Journal of Materials Chemistry A, 2019, 7, 11718-11723.	5.2	30
125	Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chemical Engineering Journal, 2019, 371, 706-718.	6.6	100
126	Copper Phosphide-Enhanced Lower Charge Trapping Occurrence in Graphitic-C ₃ N ₄ for Efficient Noble-Metal-Free Photocatalytic H ₂	4.0	83

#	Article	IF	CITATIONS
127	Three-Dimensional Branched Crystal Carbon Nitride with Enhanced Intrinsic Peroxidase-Like Activity: A Hypersensitive Platform for Colorimetric Detection. ACS Applied Materials & Interfaces, 2019, 11, 17467-17474.	4.0	29
128	Fast photogenerated electron transfer in N-GQDs/PTI/ZnO-QDs ternary heterostructured nanosheets for photocatalytic H2 evolution under visible light. Applied Surface Science, 2019, 485, 361-367.	3.1	12
129	Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve their visible-light photocatalytic activity. Nanoscale, 2019, 11, 6876-6885.	2.8	128
130	Polymeric Donor–Acceptor Heterostructures for Enhanced Photocatalytic H ₂ Evolution without Using Pt Cocatalysts. Chemistry - A European Journal, 2019, 25, 6102-6107.	1.7	33
131	Crystallization, cyanamide defect and ion induction of carbon nitride: Exciton polarization dissociation, charge transfer and surface electron density for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2019, 251, 206-212.	10.8	76
132	A "ship-in-a-bottle―strategy to fabricate highly crystallized nanoporous graphitic C ₃ N ₄ microspheres under pressurized conditions. Journal of Materials Chemistry A, 2019, 7, 8952-8959.	5.2	37
133	Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde. Applied Catalysis B: Environmental, 2019, 252, 24-32.	10.8	72
134	Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticles, Single Atoms, and Molecular Complexes. Small, 2019, 15, e1900772.	5.2	84
135	Remarkable Enhancement in Solar Oxygen Evolution from MoSe ₂ /Ag ₃ PO ₄ Heterojunction Photocatalyst via In Situ Constructing Interfacial Contact. ACS Sustainable Chemistry and Engineering, 2019, 7, 8466-8474.	3.2	92
136	Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chemical Engineering Journal, 2019, 370, 1077-1086.	6.6	143
137	Enhanced charge separation and transport efficiency induced by vertical slices on the surface of carbon nitride for visible-light-driven hydrogen evolution. RSC Advances, 2019, 9, 4404-4414.	1.7	3
138	Designing Defective Crystalline Carbon Nitride to Enable Selective CO ₂ Photoreduction in the Gas Phase. Advanced Functional Materials, 2019, 29, 1900093.	7.8	254
139	Halogenation of aromatic hydrocarbons by halide anion oxidation with poly(heptazine imide) photocatalyst. Applied Catalysis B: Environmental, 2019, 248, 211-217.	10.8	49
140	Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P,) Tj ETQq1 1 0.784314 84-94.	rgBT /Ove 10.8	erlock 10 Tí 300
141	Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution. Applied Catalysis B: Environmental, 2019, 248, 423-429.	10.8	47
142	Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H ₂ O ₂ production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chemical Communications, 2019, 55, 13279-13282.	2.2	37
143	One-step scalable synthesis of honeycomb-like g-C ₃ N ₄ with broad sub-bandgap absorption for superior visible-light-driven photocatalytic hydrogen evolution. RSC Advances, 2019, 9, 32674-32682.	1.7	20
144	Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production. Applied Catalysis B: Environmental, 2019, 245, 197-206.	10.8	62

#	Article	IF	CITATIONS
145	Photocatalytic Hydrogen Evolution from Water Using Fluorene and Dibenzothiophene Sulfone-Conjugated Microporous and Linear Polymers. Chemistry of Materials, 2019, 31, 305-313.	3.2	173
146	Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 2019, 245, 87-99.	10.8	543
147	Polydopamine and Barbituric Acid Coâ€Modified Carbon Nitride Nanospheres for Highly Active and Selective Photocatalytic CO ₂ Reduction. European Journal of Inorganic Chemistry, 2019, 2019, 2058-2064.	1.0	14
148	Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations. Advanced Science, 2019, 6, 1801403.	5.6	67
149	Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2019, 244, 240-249.	10.8	295
150	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 3433-3437.	7.2	311
151	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO ₂ Reduction. Angewandte Chemie, 2019, 131, 3471-3475.	1.6	56
152	Conjugated donor-acceptor polymer photocatalysts with electron-output "tentacles―for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245, 596-603.	10.8	187
153	Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angewandte Chemie, 2019, 131, 6225-6236.	1.6	378
154	Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 6164-6175.	7.2	481
155	Facile and Scalable Fabrication of Porous gâ€C 3 N 4 Nanosheets with Nitrogen Defects and Oxygenâ€Doping for Synergistically Promoted Visible Light Photocatalytic H 2 Evolution. Energy Technology, 2019, 7, 1800886.	1.8	16
156	Porous graphitic carbon nitride with lamellar structure: Facile synthesis via in-site supramolecular self-assembly in alkaline solutions and superior photocatalytic activity. Advanced Powder Technology, 2019, 30, 120-125.	2.0	8
157	Carbonyl Linked Carbon Nitride Loading Few Layered MoS ₂ for Boosting Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 1389-1398.	3.2	39
158	Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 778-787.	3.8	71
159	Photoelectrochemical Degradation of Organic Pollutants Using BiOBr Anode Coupled with Simultaneous CO ₂ Reduction to Liquid Fuels via CuO Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 1250-1259.	3.2	43
160	Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-g-C3N4 nanohybrid: Waste to energy insight. Chemical Engineering Journal, 2019, 358, 944-954.	6.6	102
161	Simultaneously enhanced photon absorption and charge transport on a distorted graphitic carbon nitride toward visible light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 242, 40-50.	10.8	74
162	Effective orientation control of photogenerated carrier separation via rational design of a Ti3C2(TiO2)@CdS/MoS2 photocatalytic system. Applied Catalysis B: Environmental, 2019, 242, 202-208.	10.8	99

#	Article	IF	CITATIONS
163	Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Applied Catalysis B: Environmental, 2020, 263, 117730.	10.8	168
164	Metal-free broad-spectrum PTCDA/g-C3N4 Z-scheme photocatalysts for enhanced photocatalytic water oxidation. Applied Catalysis B: Environmental, 2020, 260, 118179.	10.8	89
165	Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Applied Catalysis B: Environmental, 2020, 262, 118308.	10.8	402
166	Modifying Crystallinity, Morphology, and Photophysical Properties of Carbon Nitride by Using Crystals as Reactants. Israel Journal of Chemistry, 2020, 60, 544-549.	1.0	4
167	The photocatalytic redox properties of polymeric carbon nitride nanocages (PCNCs) with mesoporous hollow spherical structures prepared by a ZnO-template method. Microporous and Mesoporous Materials, 2020, 292, 109639.	2.2	8
168	Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production. Applied Surface Science, 2020, 499, 143755.	3.1	32
169	Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment. Chinese Journal of Catalysis, 2020, 41, 21-30.	6.9	119
170	Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Applied Catalysis B: Environmental, 2020, 267, 118396.	10.8	183
171	Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118381.	10.8	130
172	Enhanced photocatalytic activity of ZnO/g-C3N4 composites by regulating stacked thickness of g-C3N4 nanosheets. Environmental Pollution, 2020, 257, 113577.	3.7	26
173	Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: Visible-light-driven photocatalytic activity. Applied Surface Science, 2020, 505, 144576.	3.1	25
174	Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities. Applied Surface Science, 2020, 507, 145145.	3.1	19
175	Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: A highly efficient catalyst for CO2 conversion. Applied Surface Science, 2020, 508, 145220.	3.1	15
176	Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Materials Horizons, 2020, 7, 762-786.	6.4	130
177	Combined wet lithography and fractional precipitation as a tool for fabrication of spatially controlled nanostructures of poly(3-hexylthiophene) ordered aggregates. Nanoscale, 2020, 12, 1432-1437.	2.8	0
178	Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin		123
	Chemical Engineering Journal, 2020, 385, 123919.	0.0	
179	Chemical Engineering Journal, 2020, 385, 123919. Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Applied Surface Science, 2020, 505, 144654.	3.1	45

#	Article	IF	CITATIONS
181	Structurally modified graphitic carbon nitride with highly photocatalytic activity in the presence of visible light. Catalysis Today, 2020, 352, 47-53.	2.2	28
182	Metakaolin-based nano-structuring of polymeric carbon nitride and synchronous composite construction for superior photocatalytic H2 evolution. Applied Clay Science, 2020, 184, 105320.	2.6	14
183	Nanocages of Polymeric Carbon Nitride from Lowâ€Temperature Supramolecular Preorganization for Photocatalytic CO ₂ Reduction. Solar Rrl, 2020, 4, 1900469.	3.1	38
184	Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation. Applied Catalysis B: Environmental, 2020, 268, 118398.	10.8	53
185	Three-dimension branched crystalline carbon nitride: A high efficiency photoelectrochemical sensor of trace Cu2+ detection. Electrochimica Acta, 2020, 330, 135336.	2.6	27
186	Recent Advances in Visibleâ€Lightâ€Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem, 2020, 12, 689-704.	1.8	100
187	Band structure engineering of PTI in C-PTI/ZnO heterostructures for enhanced visible-light-driven H ₂ evolution. Nanotechnology, 2020, 31, 145716.	1.3	2
188	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion. , 2020, 2, 1484-1494.		65
189	Emerging Chemical Functionalization of g-C ₃ N ₄ : Covalent/Noncovalent Modifications and Applications. ACS Nano, 2020, 14, 12390-12469.	7.3	258
190	Restacked melon as highly-efficient photocatalyst. Nano Energy, 2020, 77, 105124.	8.2	7
191	Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature. Green Energy and Environment, 2021, 6, 938-951.	4.7	26
192	On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials. Scientific Reports, 2020, 10, 5832.	1.6	9
193	Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20763-20771.	6.6	321
194	Enhanced Photocatalytic H ₂ O ₂ Production over Carbon Nitride by Doping and Defect Engineering. ACS Catalysis, 2020, 10, 14380-14389.	5.5	265
195	Synthesis of Zn doped g-C3N4 in KCl-ZnCl2 molten salts: The temperature window for promoting the photocatalytic activity. Applied Surface Science, 2020, 533, 147429.	3.1	15
196	An Allâ€Organic Dâ€A System for Visibleâ€Lightâ€Driven Overall Water Splitting. Small, 2020, 16, e2003914.	5.2	80
197	Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Materials Today, 2020, 40, 160-172.	8.3	56
198	An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. Journal of the American Chemical Society, 2020, 142, 14007-14022.	6.6	129

#	Article	IF	CITATIONS
199	A new concept: Volume photocatalysis for efficient H2 generation Using low polymeric carbon nitride as an example. Applied Catalysis B: Environmental, 2020, 279, 119379.	10.8	104
200	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.	6.6	118
201	Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chemical Science, 2020, 11, 8744-8756.	3.7	41
202	Synthesis of Leafâ€Veinâ€Like gâ€C ₃ N ₄ with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H ₂ O ₂ Evolution. Advanced Functional Materials, 2020, 30, 2001922.	7.8	292
203	Pt Nanoparticle-Decorated CdS Photocalysts for CO ₂ Reduction and H ₂ Evolution. ACS Applied Nano Materials, 2020, 3, 8632-8639.	2.4	19
204	Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nature Communications, 2020, 11, 4701.	5.8	87
205	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 85, 2499-2517.	1.3	47
206	Twoâ€photon Absorption in a Defectâ€engineered Carbon Nitride Polymer Drives Redâ€light Photocatalysis. ChemCatChem, 2020, 12, 4185-4197.	1.8	10
207	Excitonic effects on photophysical processes of polymeric carbon nitride. Journal of Applied Physics, 2020, 127, .	1.1	14
208	Cellulose-Derived Hierarchical g-C3N4/TiO2-Nanotube Heterostructured Composites with Enhanced Visible-Light Photocatalytic Performance. Langmuir, 2020, 36, 5967-5978.	1.6	34
209	CaH2-assisted structural engineering of porous defective graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 18937-18945.	3.8	12
210	Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diamond and Related Materials, 2020, 107, 107899.	1.8	49
211	Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate <i>O</i> -Arylations. Journal of the American Chemical Society, 2020, 142, 11042-11049.	6.6	46
212	Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting. Nanoscale, 2020, 12, 13484-13490.	2.8	28
213	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	5.2	142
214	Vacancy mediated Z-scheme charge transfer in a 2D/2D La ₂ Ti ₂ O ₇ /g-C ₃ N ₄ nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. Journal of Materials Chemistry A, 2020, 8, 13241-13247	5.2	138
215	Self-Assembled Amphiphilic Molecules for Highly Efficient Photocatalytic Hydrogen Evolution from Water. Journal of Physical Chemistry C, 2020, 124, 6971-6978.	1.5	7
216	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	5.2	45

	CITATION	Report	
#	Article	IF	Citations
217	Facile synthesis and microstructure modulation of crystalline polymeric carbon nitride for highly boosted photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 6785-6794.	5.2	35
218	Diketopyrrolopyrrole-Based Donor–Acceptor Conjugated Microporous Polymers for Visible-Light-Driven Photocatalytic Hydrogen Production from Water. Macromolecules, 2020, 53, 2454-2463.	2.2	59
219	Visible-light photocatalysts: Prospects and challenges. APL Materials, 2020, 8, .	2.2	156
220	Ag NPs modified plasmonic Z-scheme photocatalyst Bi4Ti3O12/Ag/Ag3PO4 with improved performance for pollutants removal under visible light irradiation. Ceramics International, 2020, 46, 14650-14661.	2.3	37
221	Photoactive Graphitic Carbon Nitride-Based Gel Beads As Recyclable Photocatalysts. ACS Applied Polymer Materials, 2020, 2, 3346-3354.	2.0	23
222	Crystal phase engineering Zn0.8Cd0.2S nanocrystals with twin-induced homojunctions for photocatalytic nitrogen fixation under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112766.	2.0	18
223	Co3O4 nanoparticles/graphitic carbon nitride heterojunction for photoelectrochemical aptasensor of oxytetracycline. Analytica Chimica Acta, 2020, 1125, 299-307.	2.6	34
224	Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nature Catalysis, 2020, 3, 611-620.	16.1	144
225	Metal-free photocatalysts for hydrogen evolution. Chemical Society Reviews, 2020, 49, 1887-1931.	18.7	374
226	The effect of n–π* electronic transitions on the N ₂ photofixation ability of carbon self-doped honeycomb-like g-C ₃ N ₄ prepared <i>via</i> microwave treatment. RSC Advances, 2020, 10, 7019-7025.	1.7	23
227	An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering, 2020, 5, 597-604.	1.9	68
228	Retinaâ€Inspired Carbon Nitrideâ€Based Photonic Synapses for Selective Detection of UV Light. Advanced Materials, 2020, 32, e1906899.	11.1	222
229	Tunable Conjugated Organoborane Oligomers for Visible-Light-Driven Hydrogen Evolution. ACS Energy Letters, 2020, 5, 669-675.	8.8	33
230	Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. Journal of Materials Chemistry A, 2020, 8, 10571-10603.	5.2	80
231	Energy-transfer-mediated oxygen activation in carbonyl functionalized carbon nitride nanosheets for high-efficient photocatalytic water disinfection and organic pollutants degradation. Water Research, 2020, 177, 115798.	5.3	68
232	Dramatic Change of Morphological, Photophysical, and Photocatalytic H ₂ Evolution Properties of C ₃ N ₄ Materials by the Removal of Carbon Impurities. ACS Applied Energy Materials, 2020, 3, 4812-4820.	2.5	20
233	Facile synthesis of metal free perylene imide-carbon nitride membranes for efficient photocatalytic degradation of organic pollutants in the presence of peroxymonosulfate. Applied Catalysis B: Environmental, 2020, 278, 118981.	10.8	68
234	Molecular engineering of supramolecular precursor to modulate g-C3N4 for boosting photocatalytic hydrogen evolution. Carbon, 2020, 164, 337-348.	5.4	45

#	Article	IF	CITATIONS
235	High-performance photoelectrochemical aptasensor for enrofloxacin based on Bi-doped ultrathin polymeric carbon nitride nanocomposites with SPR effect and carbon vacancies. Sensors and Actuators B: Chemical, 2020, 316, 128142.	4.0	40
236	Controlled Growth and Bandstructure Properties of One Dimensional Cadmium Sulfide Nanorods for Visible Photocatalytic Hydrogen Evolution Reaction. Nanomaterials, 2020, 10, 619.	1.9	16
237	Efficient Photocatalytic Hydrogen Evolution and CO ₂ Reduction: Enhanced Light Absorption, Charge Separation, and Hydrophilicity by Tailoring Terminal and Linker Units in g-C ₃ N ₄ . ACS Applied Materials & Interfaces, 2020, 12, 19607-19615.	4.0	40
238	Controlling defects in crystalline carbon nitride to optimize photocatalytic CO ₂ reduction. Chemical Communications, 2020, 56, 5641-5644.	2.2	83
239	An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: Mechanism, degradation pathway, DFT calculation and toluene selective oxidation. Journal of Hazardous Materials, 2021, 401, 123309.	6.5	43
240	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	23.3	361
241	Improve photocatalytic performance of g-C3N4 through balancing the interstitial and substitutional chlorine doping. Applied Surface Science, 2021, 536, 147784.	3.1	33
242	One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2021, 75, 59-67.	5.6	16
243	Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese Journal of Catalysis, 2021, 42, 501-509.	6.9	61
244	Sulfur promoted n-ï€* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity. Chinese Journal of Catalysis, 2021, 42, 450-459.	6.9	87
245	Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Applied Polymer Materials, 2021, 3, 60-92.	2.0	43
246	A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Applied Catalysis B: Environmental, 2021, 281, 119539.	10.8	186
247	Self-assembly approach toward polymeric carbon nitrides with regulated heptazine structure and surface groups for improving the photocatalytic performance. Chemical Engineering Journal, 2021, 409, 127370.	6.6	28
248	Boosting formic acid dehydrogenation via the design of a Z-scheme heterojunction photocatalyst: The case of graphitic carbon nitride/Ag/Ag3PO4-AgPd quaternary nanocomposites. Applied Surface Science, 2021, 535, 147740.	3.1	29
249	Template-free synthesis of mesh-like graphic carbon nitride with optimized electronic band structure for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 405, 126685.	6.6	28
250	Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO ₂ Reduction. Solar Rrl, 2021, 5, 2000478.	3.1	34
251	Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 283, 119636.	10.8	111
252	2D PtS nanorectangles/g-C ₃ N ₄ nanosheets with a metal sulfide–support interaction effect for high-efficiency photocatalytic H ₂ evolution. Materials Horizons, 2021, 8, 612-618.	6.4	34

#	Article	IF	CITATIONS
253	Highly crystalline porous carbon nitride with electron accumulation capacity: Promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation. Chemical Engineering Journal, 2021, 409, 128030.	6.6	60
254	C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. Journal of Materials Chemistry A, 2021, 9, 111-153.	5.2	320
255	Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chemical Engineering Journal, 2021, 421, 127729.	6.6	67
256	All-organic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. Applied Catalysis B: Environmental, 2021, 285, 119773.	10.8	19
257	Site-exposed Ti ₃ C ₂ MXene anchored in N-defect g-C ₃ N ₄ heterostructure nanosheets for efficient photocatalytic N ₂ fixation. Catalysis Science and Technology, 2021, 11, 1027-1038.	2.1	34
258	Facile synthesis of g-C3N4/TiO2/CQDs/Au Z-scheme heterojunction composites for solar-driven efficient photocatalytic hydrogen. Diamond and Related Materials, 2021, 111, 108212.	1.8	27
259	Conjugated nanomaterials for solar fuel production. Nanoscale, 2021, 13, 634-646.	2.8	21
260	A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2021, 283, 119637.	10.8	87
261	Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2021, 42, 627-636.	6.9	125
262	Alkylamine-Grafted Organic Semiconductors with Plasma-Induced Defects as Electron Promoters of CO-Resistant Pd-Based Nanoparticles for Efficient Light-Driven On-Demand H₂ Generation . ACS Applied Energy Materials, 2021, 4, 704-713.	2.5	8
263	Molten‣alt Technology Application for the Synthesis of Photocatalytic Materials. Energy Technology, 2021, 9, 2000945.	1.8	9
264	Photopolymerization performed under dark conditions using long-stored electrons in carbon nitride. Materials Horizons, 2021, 8, 2018-2024.	6.4	15
265	ï€-deficient pyridine ring-incorporated carbon nitride polymers for photocatalytic H2 evolution and CO2 fixation. Research on Chemical Intermediates, 2021, 47, 15-27.	1.3	31
266	Graphitic Carbon Nitride-polymer Hybrids: A Win–Win Combination with Advanced Properties for Different Applications. RSC Nanoscience and Nanotechnology, 2021, , 174-220.	0.2	0
267	Mizoroki–Heck type reactions and synthesis of 1,4-dicarbonyl compounds by heterogeneous organic semiconductor photocatalysis. Green Chemistry, 2021, 23, 2017-2024.	4.6	20
268	Research progress on the photocatalytic activation of methane to methanol. Green Chemistry, 2021, 23, 3526-3541.	4.6	39
269	Tailored amorphization of graphitic carbon nitride triggers superior photocatalytic C–C coupling towards the synthesis of perfluoroalkyl derivatives. Materials Chemistry Frontiers, 2021, 5, 7267-7275.	3.2	21
270	Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nature Communications, 2021, 12, 320.	5.8	150

#	Article	IF	CITATIONS
271	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie - International Edition, 2021, 60, 6965-6969.	7.2	52
272	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie, 2021, 133, 7041-7045.	1.6	12
273	Solâ^'Gel Processing of Waterâ€5oluble Carbon Nitride Enables Highâ€Performance Photoanodes**. ChemSusChem, 2021, 14, 2170-2179.	3.6	16
274	Bridging and bonding: Zinc and potassium co-assisted crystalline g-C3N4 for significant highly efficient upon photocatalytic hydrogen evolution. Applied Surface Science, 2021, 542, 148620.	3.1	28
275	Understanding and modulating exciton dynamics of organic and low-dimensional inorganic materials in photo(electro)catalysis. Journal of Catalysis, 2021, 395, 91-104.	3.1	5
276	Organic fluorescent nanoparticles using fluorophores synthesized from low-temperature calcination process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126096.	2.3	3
277	Preparation and application of defective graphite phase carbon nitride photocatalysts. Chinese Science Bulletin, 2021, , .	0.4	1
278	Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS Nano, 2021, 15, 3621-3630.	7.3	81
279	Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. ACS Nano, 2021, 15, 6551-6561.	7.3	55
280	Tracking the chemical active species to unravel the photocatalytic activity evolution of structure modified polymeric carbon nitride. Applied Surface Science, 2021, 546, 149099.	3.1	1
281	Designing nitrogen and phosphorus co-doped graphene quantum dots/g-C3N4 heterojunction composites to enhance visible and ultraviolet photocatalytic activity. Applied Surface Science, 2021, 548, 149211.	3.1	32
282	Rapid Microwave Synthesis of Mesoporous Oxygen-Doped g-C ₃ N ₄ with Carbon Vacancies for Efficient Photocatalytic H ₂ O ₂ Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 6788-6798.	3.2	71
283	Recyclable, Bifunctional Metallaphotocatalysts for Câ^'S Cross oupling Reactions. ChemPhotoChem, 2021, 5, 716-720.	1.5	6
284	Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal. Chemosphere, 2021, 271, 129503.	4.2	29
285	Structure/Property Control in Photocatalytic Organic Semiconductor Nanocrystals. Advanced Functional Materials, 2021, 31, 2104099.	7.8	31
286	Acid-activated carbon nitrides as photocatalysts for degrading organic pollutants under visible light. Chemosphere, 2021, 273, 129731.	4.2	21
287	Construction of K ⁺ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Visible Light H ₂ Production. ACS Catalysis, 2021, 11, 6995-7005.	5.5	100
288	Inâ€depth Understanding of the Effects of Intramolecular Charge Transfer on Carbon Nitride Based Photocatalystsâ€. Chinese Journal of Chemistry, 2021, 39, 2044-2053.	2.6	18

#	Article	IF	CITATIONS
289	Modulating Local Charge Distribution of Carbon Nitride for Promoting Exciton Dissociation and Chargeâ€Induced Reactions. Small, 2021, 17, e2100698.	5.2	18
290	Simultaneous Manipulation of Bulk Excitons and Surface Defects for Ultrastable and Highly Selective CO ₂ Photoreduction. Advanced Materials, 2021, 33, e2100143.	11.1	151
291	Donor-acceptor carbon nitride with electron-withdrawing chlorine group to promote exciton dissociation. Chinese Journal of Catalysis, 2021, 42, 1168-1175.	6.9	19
292	Exciton Dissociation on Double Zâ€scheme Heterojunction for Photocatalytic Application. ChemistrySelect, 2021, 6, 6707-6713.	0.7	6
293	Amino group-rich porous g-C3N4 nanosheet photocatalyst: Facile oxalic acid-induced synthesis and improved H2-evolution activity. Ceramics International, 2021, 47, 18295-18303.	2.3	34
294	The integrated production of ultrathin g-C ₃ N ₄ and membrane assisted by edible syrup for the sustained photocatalytic treatment of Cr(VI) and tetracycline. Nanotechnology, 2021, 32, 465603.	1.3	6
295	Enormous Promotion of Photocatalytic Activity through the Use of Near-Single Layer Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 2429-2439.	4.6	25
296	Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics. Turkish Journal of Chemistry, 2021, 45, 1057-1069.	0.5	4
297	A Bibendum-like structure of carbon nitride microtubes with regular arrangement nanotubes for photocatalytic protons reduction. Materials Today Energy, 2021, 21, 100767.	2.5	6
298	Synchronous construction of a porous intramolecular D-A conjugated polymer via electron donors for superior photocatalytic decontamination. Journal of Hazardous Materials, 2022, 424, 127379.	6.5	12
299	Iodideâ€Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for Highâ€Performance Quasiâ€Homogeneous Photocatalytic H ₂ O ₂ Production. Angewandte Chemie - International Edition, 2021, 60, 25546-25550.	7.2	251
300	A Study in Red: The Overlooked Role of Azoâ€Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption. Chemistry - A European Journal, 2021, 27, 17188-17202.	1.7	4
301	Noble-metal-free p-n heterojunction of iron(III) hydroxide and graphitic carbon nitride for hydrogen evolution reaction. Ceramics International, 2021, 47, 35057-35066.	2.3	6
302	Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Applied Catalysis B: Environmental, 2021, 292, 120197.	10.8	99
303	Donor Bandgap Engineering without Sacrificing the Reduction Ability of Photogenerated Electrons in Crystalline Carbon Nitride. ChemSusChem, 2021, 14, 4516-4524.	3.6	12
304	Asymmetric structure engineering of polymeric carbon nitride for visible-light-driven reduction reactions. Nano Energy, 2021, 87, 106168.	8.2	32
305	Structure-Property relationship in β-keto-enamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 419, 129984.	6.6	56
306	Iodideâ€Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High Performance Quasiâ€Homogeneous Photocatalytic H2O2 Production. Angewandte Chemie, 0, , .	1.6	7

#	Article	IF	Citations
307	Expanding the Conjugate Structure of Polymeric Carbon Nitride for Enhanced Light Absorption and Photothermal Conversion. Macromolecular Rapid Communications, 2021, 42, e2100502.	2.0	6
308	Ultrafast Interlayer Charge Separation, Enhanced Visibleâ€Light Absorption, and Tunable Overpotential in Twisted Graphitic Carbon Nitride Bilayers for Water Splitting. Advanced Materials, 2021, 33, e2104695.	11.1	26
309	Homojunction type of carbon nitride as a robust photo-catalyst for reduction conversion of CO2 in water vapor under visible light. Chemical Engineering Journal, 2022, 430, 132668.	6.6	11
310	Biomimetic donor-acceptor motifs in carbon nitrides: Enhancing red-light photocatalytic selective oxidation by rational surface engineering. Applied Catalysis B: Environmental, 2021, 294, 120259.	10.8	25
311	Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Advances in Colloid and Interface Science, 2021, 296, 102523.	7.0	49
312	A novel vacancy-strengthened Z-scheme g-C3N4/Bp/MoS2 composite for super-efficient visible-light photocatalytic degradation of ciprofloxacin. Separation and Purification Technology, 2021, 272, 118891.	3.9	39
313	A facile template synthesis of phosphorus-doped graphitic carbon nitride hollow structures with high photocatalytic hydrogen production activity. Materials Chemistry and Physics, 2022, 275, 125299.	2.0	15
314	Enhanced visible-light H2 evolution performance of nitrogen vacancy carbon nitride by improving crystallinity. Optical Materials, 2021, 120, 111407.	1.7	10
315	Sustainable one-step synthesis of nanostructured potassium poly(heptazine imide) for highly boosted photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 424, 130332.	6.6	18
316	Recent advances in crystalline carbon nitride for photocatalysis. Journal of Materials Science and Technology, 2021, 91, 224-240.	5.6	97
317	Insight into the influence of donor-acceptor system on graphitic carbon nitride nanosheets for transport of photoinduced charge carriers and photocatalytic H2 generation. Journal of Colloid and Interface Science, 2021, 601, 326-337.	5.0	27
318	Carbon ring and molecular scaffold co-doped g-C3N4 heterostructural nanosheets for highly efficient hydrogen evolution. Materials Research Bulletin, 2021, 144, 111482.	2.7	5
319	Photocatalytic H2O2 production and removal of Cr (VI) via a novel Lu3NbO7: Yb, Ho/CQDs/AgInS2/In2S3 heterostructure with broad spectral response. Journal of Hazardous Materials, 2022, 423, 127172.	6.5	58
320	Constructing electrostatic self-assembled ultrathin porous red 2D g-C3N4/Fe2N Schottky catalyst for high-efficiency tetracycline removal in photo-Fenton-like processes. Journal of Colloid and Interface Science, 2022, 607, 1527-1539.	5.0	20
321	Synergy of intermolecular Donor-Acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 1603-1612.	5.0	25
322	Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: a combined experimental and theoretical study. Applied Catalysis B: Environmental, 2022, 300, 120633.	10.8	82
323	Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chemical Engineering Journal, 2022, 427, 132032.	6.6	92
324	Donor–acceptor covalent organic framework/g-C ₃ N ₄ hybrids for efficient visible light photocatalytic H ₂ production. Catalysis Science and Technology, 2021, 11, 2616-2621.	2.1	20

#	Article	IF	CITATIONS
325	Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. Journal of Materials Chemistry A, 2021, 9, 19958-19964.	5.2	36
326	Soft-template induced synthesis of high-crystalline polymeric carbon nitride with boosted photocatalytic performance. Journal of Materials Chemistry A, 2021, 9, 6805-6810.	5.2	28
327	Molecular oxygen activation enhancement by BiOBr0.510.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal. Chinese Journal of Catalysis, 2020, 41, 1480-1487.	6.9	31
328	Photothermal conversion assisted photocatalytic hydrogen evolution from amorphous carbon nitrogen nanosheets with nitrogen vacancies. Physical Chemistry Chemical Physics, 2020, 22, 4453-4463.	1.3	21
329	Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 0, , 1.	5.8	9
330	Selfâ€Supporting 3D Carbon Nitride with Tunable n → ï€* Electronic Transition for Enhanced Solar Hydrogen Production. Advanced Materials, 2021, 33, e2104361.	11.1	105
331	Cyano group-enriched crystalline graphitic carbon nitride photocatalyst: Ethyl acetate-induced improved ordered structure and efficient hydrogen-evolution activity. Journal of Colloid and Interface Science, 2022, 608, 1268-1277.	5.0	29
332	Carbon nitrides get close. Nature Nanotechnology, 0, , .	15.6	0
333	Photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. Interface Science and Technology, 2020, 31, 475-507.	1.6	2
334	Enhanced Light-driven CO2 Reduction on Metal-free Rich Terminal Oxygen-defects Carbon Nitride Nanosheets. Journal of Colloid and Interface Science, 2021, 608, 2505-2505.	5.0	4
335	A host–guest self-assembly strategy to enhance π-electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution. Chemical Engineering Journal, 2022, 430, 132880.	6.6	33
336	Donor-Acceptor structural polymeric carbon nitride with in-plane electric field accelerating charge separation for efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 430, 132725.	6.6	33
337	H ₂ and CH ₄ production from bio-alcohols using condensed poly(heptazine) Tj ETQq0 (0.0 rgBT /0 5.2	Overlock 10 T
338	Study of photogenerated exciton dissociation in transition metal dichalcogenide van der Waals heterojunction A2-MWS ₄ : a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 26768-26779.	1.3	2
339	Interface engineering of the MoS2/NiS2/CoS2 nanotube as a highly efficient bifunctional electrocatalyst for overall water splitting. Materials Today Nano, 2022, 17, 100156.	2.3	14
340	Constructing Crystalline gâ€C ₃ N ₄ /gâ€C ₃ N _{4â^x} S _x lsotype Heterostructure for Efficient Photocatalytic and Piezocatalytic Performances. Energy and Environmental Materials. 2023. 6	7.3	17
341	Geometry-tunable sulfur-doped carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation. Chemical Engineering Journal, 2022, 431, 133412.	6.6	28
342	Hierarchically Porous Polymeric Carbon Nitride as a Volume Photocatalyst for Efficient H ₂ Generation under Strong Irradiation. Solar Rrl, 2022, 6, 2100823.	3.1	27

	Сітат	ion Report	
#	ARTICLE	IF	CITATIONS
343	Atomically thin Bi/Bi4Ti3O12 heterojunction mediated increasing active photogenerated carriers for boosting photocatalytic activity. Journal of Colloid and Interface Science, 2022, 613, 625-635.	5.0	20
344	Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Applied Catalysis B: Environmental, 2022, 304, 120978.	10.8	88
345	High-efficiency ultrathin porous phosphorus-doped graphitic carbon nitride nanosheet photocatalyst for energy production and environmental remediation. Applied Catalysis B: Environmental, 2022, 307, 121099.	10.8	76
346	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
347	Visible light-induced enhancement in the Seebeck coefficient of PEDOT:PSS composites with two-dimensional potassium poly-(heptazine imide). Journal of Materials Chemistry A, 2022, 10, 862-871.	5.2	12
348	Design Principles and Strategies of Photocatalytic H ₂ O ₂ Production from O ₂ Reduction. ACS ES&T Engineering, 2022, 2, 1068-1079.	3.7	51
349	Graphitic carbon nitride for photocatalytic hydrogen production. , 2022, , 17-68.		2
350	The role of Cs dopants for improved activation of molecular oxygen and degradation of tetracycline over carbon nitride. Chinese Chemical Letters, 2022, 33, 4756-4760.	4.8	30
351	Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H ₂ O ₂ evolution. Energy and Environmental Science, 2022, 15, 830-842.	15.6	308
352	Acetylene/Vinyleneâ€Bridged Ï€â€Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. ChemSusChem, 2022, 15, .	3.6	9
353	Insight into the enhanced degradation mechanism of g-C3N4/g-C3N5 heterostructures through photocatalytic molecular oxygen activation in Van der Waals junction and excitation. Journal of Alloys and Compounds, 2022, 905, 164064.	2.8	28
354	Boosting photocatalytic hydrogen generation by the combination of tunable cobaloxime and covalent organic framework. International Journal of Hydrogen Energy, 2022, 47, 7180-7188.	3.8	9
355	Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon, 2022, 190, 337-347.	5.4	73
356	Tremendous boost in the photocatalytic properties of g-C ₃ N ₄ : regulation from polymerization kinetics to crystal structure engineering. CrystEngComm, 2022, 24, 2023-2035.	1.3	3
357	Synthesis of an iso-type graphitic carbon nitride heterojunction derived from oxamide and urea in molten salt for high-performance visible-light driven photocatalysis. New Journal of Chemistry, 2022, 46, 8999-9009.	1.4	4
358	Confined synthesis of condensed π-conjugation C-PAN/MS-CN nanotubes for efficient photocatalytic H ₂ evolution. Chemical Communications, 2022, 58, 4352-4355.	2.2	9
359	Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. Journal of Semiconductors, 2022, 43, 021701.	2.0	24
360	Ion-Induced Synthesis of Crystalline Carbon Nitride Ultrathin Nanosheets from Mesoporous Melon for Efficient Photocatalytic Hydrogen Evolution with Synchronous Highly Selective Oxidation of Benzyl Alcohol. ACS Applied Materials & Interfaces, 2022, 14, 13419-134 <u>30.</u>	4.0	20

#	Article	IF	CITATIONS
361	K–I co-doped crystalline carbon nitride with outstanding visible light photocatalytic activity for H2 evolution. International Journal of Hydrogen Energy, 2022, 47, 12569-12581.	3.8	11
362	Effect of D/A Ratio on Photocatalytic Hydrogen Evolution Performance of Conjugated Polymer Photocatalysts. ACS Applied Energy Materials, 2022, 5, 4631-4640.	2.5	18
363	Boosting Reactive Oxygen Species Generation by Regulating Excitonic Effects in Porphyrinic Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 2814-2823.	2.1	9
364	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
365	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	7
366	Calcium Poly(Heptazine Imide): A Covalent Heptazine Framework for Selective CO ₂ Adsorption. ACS Nano, 2022, 16, 5393-5403.	7.3	17
367	Conjugated Porphyrin Materials for Solar Fuel Generation. Current Organic Chemistry, 2022, 26, 596-605.	0.9	2
368	One-step construction of mesoporous cyano and sulfur co-modified carbon nitride for photocatalytic valorization of lignin to functionalized aromatics. Applied Surface Science, 2022, 592, 153266.	3.1	23
369	High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight. Applied Surface Science, 2022, 593, 153281.	3.1	106
370	In-Plane Charge Transport Dominates the Overall Charge Separation and Photocatalytic Activity in Crystalline Carbon Nitride. ACS Catalysis, 2022, 12, 4648-4658.	5.5	69
371	Noble metal nanoparticles (Mx = Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol. Environmental Research, 2022, 212, 113185.	3.7	26
372	Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. Chinese Chemical Letters, 2023, 34, 107383.	4.8	6
373	Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H2 evolution in seawater. Applied Catalysis B: Environmental, 2022, 310, 121321.	10.8	63
374	Intermediate-induced repolymerization for constructing self-assembly architecture: Red crystalline carbon nitride nanosheets for notable hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121323.	10.8	15
375	Light as a Tool in Organic Photocatalysis: Multiâ€Photon Excitation and Chromoselective Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	15
376	Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors. Nanotechnology, 2022, 33, 322001.	1.3	7
377	Interface Engineering of Tio2/G-C3n4 2d/2d Heterostructures for Enhanced Antibiotic Degradation and Cr(Vi) Reduction. SSRN Electronic Journal, 0, , .	0.4	0
378	Combined Experimental and DFT Study on 2D MoSe ₂ toward Low Infrared Emissivity. Advanced Functional Materials, 2022, 32, .	7.8	5

#	ARTICLE	IF	CITATIONS
379	Hydrogen-Bonded Aggregates Featuring <1>n 1 aT l€ Electronic Transition for Efficient Visible-Light-Responsive Photocatalysis. ACS Catalysis, 2022, 12, 6276-6284.	5.5	11
380	Enhanced CO2-to-methane photoconversion over carbon nitride via interfacial charge kinetics steering. Materials and Design, 2022, 219, 110756.	3.3	4
381	Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science and Technology, 2022, 125, 200-235.	7.8	29
382	Enhanced photocatalytic H ₂ evolution over covalent organic frameworks through an assembled NiS cocatalyst. RSC Advances, 2022, 12, 14932-14938.	1.7	4
383	Alpha-calcium sulfate hemihydrate used as a water-soluble template for the synthesis of ZnO hollow microspheres. Materials Chemistry Frontiers, 2022, 6, 1895-1902.	3.2	4
384	Construction of dual transfer channels in graphitic carbon nitride photocatalyst for high-efficiency environmental pollution remediation: Enhanced exciton dissociation and carrier migration. Journal of Hazardous Materials, 2022, 436, 129171.	6.5	13
385	Carbon Nitride Homojunction with Functional Surface for Efficient Photocatalytic Production of H2o2. SSRN Electronic Journal, 0, , .	0.4	0
386	Extraordinary Promotion of Visible-Light Hydrogen Evolution for Graphitic Carbon Nitride by Introduction of Accumulated Electron Sites (BN ₂). ACS Applied Energy Materials, 2022, 5, 7479-7489.	2.5	2
387	Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Nearâ€Infrared Light Photoactivity. Advanced Science, 2022, 9, .	5.6	22
388	Hydrogen generation from photocatalytic treatment of wastewater containing pharmaceuticals and personal care products by Oxygen-doped crystalline carbon nitride. Separation and Purification Technology, 2022, 296, 121425.	3.9	11
389	Stitching Electron Localized Heptazine Units with "Carbon Patches―to Regulate Exciton Dissociation Behavior of Carbon Nitride for Photocatalytic Elimination of Petroleum Hydrocarbons. SSRN Electronic Journal, 0, , .	0.4	0
390	Metalâ€Free Semiconductorâ€Based Bioâ€Nano Hybrids for Sustainable CO ₂ â€ŧo H ₄ Conversion with High Quantum Yield. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
391	Metalâ€Free Semiconductorâ€Based Bioâ€Nano Hybrids for Sustainable CO ₂ â€toâ€CH ₄ Conversion with High Quantum Yield. Angewandte Chemie, 2022, 134, .	1.6	10
392	Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Applied Catalysis B: Environmental, 2022, 316, 121643.	10.8	32
393	Potassium-Doped Carbon Nitride: Highly Efficient Photoredox Catalyst for Selective Oxygen Reduction and Arylboronic Acid Hydroxylation. SSRN Electronic Journal, 0, , .	0.4	0
394	Piezoelectric induced reverse photocatalytic performances of carbon nitride with different structures. Catalysis Science and Technology, 2022, 12, 5372-5378.	2.1	5
395	Molybdenum (VI)â€oxo Clusters Incorporation Activates g ₃ N ₄ with Simultaneously Regulating Charge Transfer and Reaction Centers for Boosting Photocatalytic Performance. Advanced Functional Materials, 2022, 32, .	7.8	41
396	Tailoring well-ordered, highly crystalline carbon nitride nanoarrays via molecular engineering for efficient photosynthesis of H2O2. Applied Catalysis B: Environmental, 2022, 317, 121723.	10.8	53

#	Article	IF	CITATIONS
397	Edge electron-rich carbon nitride via π-acceptor frame with high-efficient charge separation for photocatalytic hydrogen evolution and environmental remediation. Journal of Colloid and Interface Science, 2022, 626, 889-898.	5.0	7
398	Au NPs decorated holey g-C3N4 as a dual-mode sensing platform of SERS and SALDI-MS for selective discrimination of L-cysteine. Journal of Colloid and Interface Science, 2022, 626, 608-618.	5.0	21
399	Polarization-induced exciton dissociation in COF photocatalyst. Chem Catalysis, 2022, 2, 1517-1519.	2.9	4
400	The effect of precursor selection on the microwave-assisted synthesis of graphitic carbon nitride. Catalysis Today, 2023, 424, 113868.	2.2	16
401	Graphitic carbon nitride facilely modified with pyromellitic diimide with enhanced photocatalytic activity and good selectivity towards the photodegradation of cationic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129831.	2.3	1
402	Green and controllable synthesis of kelp-like carbon nitride nanosheets via an ultrasound-mediated self-assembly strategy. Journal of Colloid and Interface Science, 2022, 628, 397-408.	5.0	12
403	A Crystalline Carbon Nitride Based Nearâ€Infrared Active Photocatalyst. Advanced Functional Materials, 2022, 32, .	7.8	67
404	Highly efficient photocatalytic hydrogen evolution using a selfâ€assembled octupolar molecular system. ChemPhotoChem, 0, , .	1.5	0
405	Potassium-doped carbon nitride: Highly efficient photoredox catalyst for selective oxygen reduction and arylboronic acid hydroxylation. Journal of Catalysis, 2022, 414, 64-75.	3.1	9
406	Electrostatic potential of the incorporated asymmetry molecules induced high charge separation efficiency of the modified carbon nitride copolymers. Applied Catalysis B: Environmental, 2022, 319, 121922.	10.8	15
407	Stitching electron localized heptazine units with "carbon patches―to regulate exciton dissociation behavior of carbon nitride for photocatalytic elimination of petroleum hydrocarbons. Chemical Engineering Journal, 2023, 452, 139092.	6.6	7
408	NH-rich red poly(heptazine imide) nanoparticles with simultaneously promoted exciton dissociation and activated n → l€* electronic transition for boosted photocatalytic H ₂ generation. Journal of Materials Chemistry A, 2022, 10, 17668-17679.	5.2	6
409	Manipulation of n → π* electronic transitions <i>via</i> implanting thiophene rings into two-dimensional carbon nitride nanosheets for efficient photocatalytic water purification. Journal of Materials Chemistry A, 2022, 10, 20559-20570.	5.2	17
410	Alkyl group-decorated g-C ₃ N ₄ for enhanced gas-phase CO ₂ photoreduction. Nanoscale, 2022, 14, 11972-11978.	2.8	9
411	Dual-Defect Enhanced Piezocatalytic Performance of C ₃ N ₅ for Multifunctional Applications. SSRN Electronic Journal, 0, , .	0.4	0
412	A direct Z-scheme heterojunction g-C ₃ N ₄ /α-Fe ₂ O ₃ nanocomposite for enhanced polymer-containing oilfield sewage degradation under visible light. Environmental Science: Water Research and Technology, 2022, 8, 1965-1975.	1.2	3
413	Highly-Sensitive Sers Detection of Tetracycline: Sub-Enhancement Brought by Light Scattering of Nano-Diamond. SSRN Electronic Journal, 0, , .	0.4	0
414	Ionothermally synthesized S-scheme isotype heterojunction of carbon nitride with significantly enhanced photocatalytic performance for hydrogen evolution and carbon dioxide reduction. Carbon, 2023, 201, 815-828.	5.4	17

#	Article	IF	CITATIONS
415	Bi modified oxidized tubular carbon nitride with high-yield singlet oxygen for propylparaben degradation: Implication for a novel oxygen activation mechanism. Applied Catalysis B: Environmental, 2023, 321, 122025.	10.8	10
416	Interface Nanoarchitectonics of TiO ₂ /g-C ₃ N ₄ 2D/2D Heterostructures for Enhanced Antibiotic Degradation and Cr(VI) Reduction. Langmuir, 2022, 38, 11068-11079.	1.6	10
417	Copolymerization Driven Construction of in-Plane Heterostructure for Enhanced Photocatalytic Performance: Structure–Activity and Effects of Water Matrices. Catalysis Letters, 0, , .	1.4	0
418	Lightâ€Induced Ammonia Generation over Defective Carbon Nitride Modified with Pyrite. Advanced Energy Materials, 2022, 12, .	10.2	16
419	Optimizing the Optical Absorption of Poly(heptazine imide) by the n → ï€* Electron Transition for Improved Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2022, 14, 41131-41140.	4.0	13
420	Boosting Photosynthetic H ₂ O ₂ of Polymeric Carbon Nitride by Layer Configuration Regulation and Fluoride–Potassium Double-Site Modification. ACS Applied Materials & Interfaces, 2022, 14, 43328-43338.	4.0	7
421	Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. , 2023, 2, 100094.		18
422	Metal-free N-GQDs/P-g-C3N4 photocatalyst with broad-spectrum response: Enhanced exciton dissociation and charge migration for promoting H2 evolution and tetracycline degradation. Separation and Purification Technology, 2023, 304, 122297.	3.9	7
423	Engineering doping and defect in graphitic carbon nitride by one-pot method for enhanced photocatalytic hydrogen evolution. Ceramics International, 2023, 49, 6729-6738.	2.3	7
424	Synthesis of crystalline g-C3N4 with rock/molten salts for efficient photocatalysis and piezocatalysis. Green Energy and Environment, 2022, , .	4.7	4
425	Heptazineâ€Based Orderedâ€Distorted Copolymers with Enhanced Visibleâ€Light Absorption for Photocatalytic Hydrogen Production. ChemSusChem, 2022, 15, .	3.6	32
426	The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Separation and Purification Technology, 2023, 305, 122413.	3.9	20
427	Highly-sensitive SERS detection of tetracycline: Sub-enhancement brought by light scattering of nano-diamond. Applied Surface Science, 2023, 608, 155270.	3.1	4
428	Extended Ï€â€ʿconjugated system of 3D carbon-rich carbon nitride microspheres for boosting photoelectrochemical 4-chlorophenol sensing. Microchemical Journal, 2023, 184, 108170.	2.3	4
429	A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. Small Methods, 2022, 6, .	4.6	14
430	Dual-defect enhanced piezocatalytic performance of C3N5 for multifunctional applications. Applied Catalysis B: Environmental, 2023, 323, 122196.	10.8	26
431	Twoâ€Ðimensional Ultrathin Graphic Carbon Nitrides with Extended Ï€â€Conjugation as Extraordinary Efficient Hydrogen Evolution Photocatalyst. Small, 2023, 19, .	5.2	16
432	Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium(VI) under simulated solar light. Applied Catalysis B: Environmental, 2023, 324, 122202.	10.8	35

#	Article	IF	CITATIONS
433	Intramolecular D-A structure and n-ï€* transition co-promoted photodegradation activity of carbon nitride: Performance, mechanism and toxicity insight. Chemical Engineering Journal, 2023, 456, 141029.	6.6	35
434	Partially cross-linked carbon nitride with unimpeded charge transfer between different chains for boosting photocatalytic hydrogen production. Materials Horizons, 2023, 10, 601-606.	6.4	4
435	Improved charge transport through 2D framework in fully condensed carbon nitride for efficient photocatalytic hydrogen production. Journal of Catalysis, 2023, 417, 360-367.	3.1	7
436	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	16.0	23
437	A hydroxyl-induced carbon nitride homojunction with functional surface for efficient photocatalytic production of H2O2. Applied Catalysis B: Environmental, 2023, 324, 122216.	10.8	27
438	Mesoporous Carbon Nitride with π-Electron-Rich Domains and Polarizable Hydroxyls Fabricated via Solution Thermal Shock for Visible-Light Photocatalysis. ACS Nano, 2022, 16, 21002-21012.	7.3	20
439	Alkali Metal Cations as Chargeâ€Transfer Bridge for Polarization Promoted Solarâ€ŧoâ€H ₂ Conversion. Advanced Functional Materials, 2023, 33, .	7.8	9
440	Role of Seawater Ions in Forming an Effective Interface between Photocatalyst/Cocatalyst. ACS Applied Materials & Interfaces, 2023, 15, 1219-1226.	4.0	3
441	Triphenylamine-based covalent triazine framework @ carbon nanotube complex: efficient photogenerated charges migration for metal free photocatalytic Cr(VI) reduction. Journal of Environmental Chemical Engineering, 2023, 11, 109331.	3.3	6
442	Manipulating electronic structure and light absorption of carbon nitride via P-doping and local crystallization for efficient photocatalytic reduction of CO2. Journal of CO2 Utilization, 2023, 68, 102392.	3.3	11
443	Atomic symmetry alteration in carbon nitride to modulate charge distribution for efficient photocatalysis. Journal of Catalysis, 2023, 418, 22-30.	3.1	10
444	Hydrogen-Induced Defective Crystalline Carbon Nitride with Enhanced Bidirectional Charge Migration for Persulfate Photoactivation. ACS ES&T Engineering, 2023, 3, 580-589.	3.7	6
445	Afterglow Electrochemiluminescence from Nitrogen-Deficient Graphitic Carbon Nitride. Analytical Chemistry, 2023, 95, 2917-2924.	3.2	10
446	Boosted built-in electric field and active sites based on Ni-doped heptazine/triazine crystalline carbon nitride for achieving high-efficient photocatalytic H2 evolution. Journal of Molecular Structure, 2023, 1280, 135076.	1.8	19
447	Exploration of optimal reaction conditions on lactic acid production from glucose photoreforming over carbon nitride. , 2023, 2, 111-116.		2
448	Synthesis of Carbon Nitride Nanosheets with n→π* Electronic Transition for Boosting Photocatalytic CO ₂ Reduction. Journal of the Electrochemical Society, 2023, 170, 036502.	1.3	1
449	Complete removal of 4-fluorophenol using a novel optical fiber photocatalysis–biodegradation–ion-adsorption system. Chemical Engineering Journal, 2023, 464, 142631.	6.6	3
450	Constructing photocatalysis-self-Fenton system over a defective twin C3N4: In-situ producing H2O2 and mineralizing organic pollutants. Applied Catalysis B: Environmental, 2023, 331, <u>122716</u> .	10.8	30

#	Article	IF	CITATIONS
451	Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour. Coatings, 2023, 13, 358.	1.2	1
452	The Directional Crystallization Process of Poly (triazine imide) Single Crystals in Molten Salts. Angewandte Chemie, 2023, 135, .	1.6	2
453	The Directional Crystallization Process of Poly (triazine imide) Single Crystals in Molten Salts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
454	Anti-defect Engineering of Crystalline g-C ₃ N ₄ Nanostructures for Efficient Photocatalytic In Situ H ₂ O ₂ Production. ACS Applied Nano Materials, 2023, 6, 3927-3935.	2.4	8
455	K-intercalated polymeric carbon nitride with nitrogen defects for efficient photocatalytic H ₂ O ₂ production. New Journal of Chemistry, 2023, 47, 6385-6396.	1.4	2
456	Crystallinity-defect matching relationship of g-C3N4: Experimental and theoretical perspectives. Green Energy and Environment, 2024, 9, 623-658.	4.7	2
457	Saltâ€Melt Synthesis of Poly Heptazine Imides with Enhanced Optical Absorption for Photocatalytic Hydrogen Production. ChemSusChem, 2023, 16, .	3.6	22
458	Organocatalysis with carbon nitrides. Science and Technology of Advanced Materials, 2023, 24, .	2.8	10
459	Optimizing the band structure of sponge-like S-doped poly(heptazine imide) with quantum confinement effect towards boosting visible-light photocatalytic H2 generation. Journal of Colloid and Interface Science, 2023, 644, 116-123.	5.0	5
460	Unraveling the dual defect effects in C3N5 for piezo-photocatalytic degradation and H2O2 generation. Applied Catalysis B: Environmental, 2023, 332, 122752.	10.8	29
461	Tuning the surface hydrophilicity of a C3N4 nanosheet for efficient photocatalytic H2 evolution coupled with microplastic degradation. International Journal of Hydrogen Energy, 2023, 48, 27599-27610.	3.8	7
462	Synergistic effect of n-ï€* electronic transitions in porous ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen production. Applied Surface Science, 2023, 627, 157305.	3.1	4
463	Tandem internal electric fields in intralayer/interlayer carbon nitride homojunction with a directed flow of photo-excited electrons for photocatalysis. Applied Catalysis B: Environmental, 2023, 333, 122781.	10.8	8
468	Carbon nitrides and titanium dioxide-based photocatalysis outlook and challenges. , 2023, , 145-180.		2
472	Recent advances in the heterogeneous photochemical synthesis of Câ \in ''N bonds. Green Chemistry, 0, , .	4.6	2
484	Carbon nitride based materials: more than just a support for single-atom catalysis. Chemical Society Reviews, 2023, 52, 4878-4932.	18.7	31
490	Construction of π-conjugated crystalline carbon dots with carbon nitride nanofragments for efficient photocatalytic H ₂ evolution. Chemical Communications, 2023, 59, 10016-10019.	2.2	2
494	Recent progress of graphitic carbon nitride films and their application in photoelectrochemical water splitting. Sustainable Energy and Fuels, 0, , .	2.5	0

IF

CITATIONS

1

ARTICLE

528 Crystalline carbon nitrides for photocatalysis. , 2024, 2, 411-447.