Sympathetic neuron–associated macrophages contril metabolizing norepinephrine

Nature Medicine 23, 1309-1318

DOI: 10.1038/nm.4422

Citation Report

#	Article	IF	CITATIONS
1	Specialized macrophages contribute to obesity. Nature Reviews Endocrinology, 2017, 13, 690-690.	4.3	5
2	Nerve Stimulation: Immunomodulation and Control of Inflammation. Trends in Molecular Medicine, 2017, 23, 1103-1120.	3.5	102
3	Macrophages dispose of catecholamines in adipose tissue. Nature Medicine, 2017, 23, 1255-1257.	15.2	13
4	Niche signals and transcription factors involved in tissue-resident macrophage development. Cellular Immunology, 2018, 330, 43-53.	1.4	114
5	Beyond Host Defense: Emerging Functions of the Immune System in Regulating Complex Tissue Physiology. Cell, 2018, 173, 554-567.	13.5	192
6	Body fat reduction without cardiovascular changes in mice after oral treatment with the <scp>MAO</scp> inhibitor phenelzine. British Journal of Pharmacology, 2018, 175, 2428-2440.	2.7	18
7	Phosphorylation of Beta-3 adrenergic receptor at serine 247 by ERK MAP kinase drives lipolysis in obese adipocytes. Molecular Metabolism, 2018, 12, 25-38.	3.0	57
8	Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis, 2018, 271, 102-110.	0.4	47
9	Leptin and brain–adipose crosstalks. Nature Reviews Neuroscience, 2018, 19, 153-165.	4.9	182
10	Play It Again, SAM: Macrophages Control Peripheral Fat Metabolism. Trends in Immunology, 2018, 39, 81-82.	2.9	3
11	Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Molecular Metabolism, 2018, 8, 86-95.	3.0	50
12	Macrophages and monocytes: of tortoises and hares. Nature Reviews Immunology, 2018, 18, 85-86.	10.6	20
13	Toward an Understanding of How Immune Cells Control Brown and Beige Adipobiology. Cell Metabolism, 2018, 27, 954-961.	7.2	155
14	Neuronal–immune system cross-talk in homeostasis. Science, 2018, 359, 1465-1466.	6.0	86
15	Hyperlipidemias and Obesity. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2018, , 331-548.	0.1	10
16	Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Marine Drugs, 2018, 16, 515.	2.2	12
17	Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Scientific Reports, 2018, 8, 14567.	1.6	24
18	Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. International Journal of Molecular Sciences, 2018, 19, 2569.	1.8	15

ATION RED

#	Article	IF	CITATIONS
19	Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metabolism, 2018, 28, 907-921.e7.	7.2	170
20	Macrophages and Cardiovascular Health. Physiological Reviews, 2018, 98, 2523-2569.	13.1	79
21	Macrophages: new players in cardiac ageing?. Cardiovascular Research, 2018, 114, e47-e49.	1.8	1
22	Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Molecular Metabolism, 2018, 16, 116-125.	3.0	34
23	Selegiline reduces adiposity induced by highâ€fat, highâ€sucrose diet in male rats. British Journal of Pharmacology, 2018, 175, 3713-3726.	2.7	17
24	Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Scientific Reports, 2018, 8, 9894.	1.6	75
25	Monoamine oxidase-A, serotonin and norepinephrine: synergistic players in cardiac physiology and pathology. Journal of Neural Transmission, 2018, 125, 1627-1634.	1.4	32
26	Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Frontiers in Immunology, 2018, 9, 169.	2.2	116
27	Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Frontiers in Immunology, 2018, 9, 502.	2.2	22
28	Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. International Immunology, 2018, 30, 493-501.	1.8	46
29	Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Current Hypertension Reports, 2018, 20, 77.	1.5	34
30	Common traits between the beige fat-inducing stimuli. Current Opinion in Cell Biology, 2018, 55, 67-73.	2.6	16
31	The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunology, 2018, 11, 1496-1511.	2.7	47
32	Macrophages in obesity. Cellular Immunology, 2018, 330, 183-187.	1.4	18
33	Macrophage-dependent impairment of α ₂ -adrenergic autoreceptor inhibition of Ca ²⁺ channels in sympathetic neurons from DOCA-salt but not high-fat diet-induced hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H863-H877.	1.5	13
34	The weight of nutrients: kynurenine metabolites in obesity and exercise. Journal of Internal Medicine, 2018, 284, 519-533.	2.7	37
35	Contributions of innate type 2 inflammation to adipose function. Journal of Lipid Research, 2019, 60, 1698-1709.	2.0	30
36	Neuro-immune regulation of mucosal physiology. Mucosal Immunology, 2019, 12, 10-20.	2.7	55

		CITATION REPORT		
#	ARTICLE		IF	Citations
37	Innate Immune Control of Adipose Tissue Homeostasis. Trends in Immunology, 2019, 4	10, 857-872.	2.9	114
38	Switching on the furnace: Regulation of heat production in brown adipose tissue. Mole of Medicine, 2019, 68, 60-73.	cular Aspects	2.7	52
39	Old Dog New Tricks; Revisiting How Stroke Modulates the Systemic Immune Landscap Neurology, 2019, 10, 718.	e. Frontiers in	1.1	29
40	Effects of Adipocyte Expansion on Cardiovascular System and Ongoing Debate over O International Heart Journal, 2019, 60, 499-502.	besity Paradox.	0.5	3
41	Nerves in Bone: Evolving Concepts in Pain and Anabolism. Journal of Bone and Mineral 34, 1393-1406.	Research, 2019,	3.1	116
42	Osons la fraternité! Les écrivains aux côtés des migrants. Sous la direction de F Michel Le Bris. French Studies, 2019, 73, 334-334.	Patrick Chamoiseau et	0.0	0
43	Preadipocyte factor 1 regulates adipose tissue browning via TNF-α-converting enzyme Metabolism: Clinical and Experimental, 2019, 101, 153977.	-mediated cleavage.	1.5	11
44	The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology	v, 2019, 10, 1893.	2.2	59
45	Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQ Reports, 2019, 28, 2567-2580.e6.	<u>)</u> P-21. Cell	2.9	20
47	Neuropathy and neural plasticity in the subcutaneous white adipose depot. PLoS ONE, e0221766.	2019, 14,	1.1	40
48	The Role of Kupffer Cells as Mediators of Adipose Tissue Lipolysis. Journal of Immunolo 2689-2700.	gy, 2019, 203,	0.4	7
49	Metabolic adaptation and maladaptation in adipose tissue. Nature Metabolism, 2019,	1, 189-200.	5.1	224
50	Past, Present and Future Anti-Obesity Effects of Flavin-Containing and/or Copper-Cont Oxidase Inhibitors. Medicines (Basel, Switzerland), 2019, 6, 9.	aining Amine	0.7	24
51	Metabolic adaptations of tissue-resident immune cells. Nature Immunology, 2019, 20,	793-801.	7.0	115
52	ComBATing aging—does increased brown adipose tissue activity confer longevity?. G 41, 285-296.	eroScience, 2019,	2.1	40
53	Adaptive adipose tissue stromal plasticity in response to cold stress and antibody-base therapy. Scientific Reports, 2019, 9, 8833.	d metabolic	1.6	10
54	A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Log Immunity, 2019, 50, 1482-1497.e7.	cal Nerves.	6.6	141
55	Type 2 immune regulation of adipose tissue homeostasis. Current Opinion in Physiolog	gy, 2019, 12, 20-25.	0.9	3

#	ARTICLE	IF	CITATIONS
56	Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. International Journal of Molecular Sciences, 2019, 20, 2768.	1.8	41
57	"Cloaking―on Time: A Cover-Up Act by Resident Tissue Macrophages. Cell, 2019, 177, 514-516.	13.5	2
58	Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 2019, 363, .	6.0	676
59	Mapping the lung. Science, 2019, 363, 1154-1155.	6.0	2
60	Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine and Growth Factor Reviews, 2019, 46, 36-44.	3.2	82
61	Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nature Communications, 2019, 10, 1546.	5.8	27
62	Role of innate immune cells in metabolism: from physiology to type 2 diabetes. Seminars in Immunopathology, 2019, 41, 531-545.	2.8	21
63	The Impact of Aging on Adipose Function and Adipokine Synthesis. Frontiers in Endocrinology, 2019, 10, 137.	1.5	183
64	Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 207-225.	4.3	119
65	Fat cells gobbling up norepinephrine?. PLoS Biology, 2019, 17, e3000138.	2.6	8
66	The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. Biology, 2019, 8, 10.	1.3	49
67	Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nature Immunology, 2019, 20, 1631-1643.	7.0	107
68	Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metabolism, 2019, 30, 1024-1039.e6.	7.2	125
69	Meta-Analysis of in vitro-Differentiated Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages in vivo. Frontiers in Immunology, 2019, 10, 2887.	2.2	30
70	The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends in Immunology, 2019, 40, 98-112.	2.9	188
71	Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Molecular Metabolism, 2019, 20, 38-50.	3.0	18
72	Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cellular and Molecular Life Sciences, 2019, 76, 1341-1363.	2.4	66
73	Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting Î ² Cell Proliferation and Function in Obesity. Cell Metabolism, 2019, 29, 457-474.e5.	7.2	173

#	Article	IF	CITATIONS
74	Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 188-199.	1.1	24
75	Obesity and dysregulated central and peripheral macrophage–neuron crossâ€ŧalk. European Journal of Immunology, 2019, 49, 19-29.	1.6	15
76	Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome. Brain, Behavior, and Immunity, 2019, 76, 82-96.	2.0	9
77	Organic cation transporter 3 (Oct3) is a distinct catecholamines clearance route in adipocytes mediating the beiging of white adipose tissue. PLoS Biology, 2019, 17, e2006571.	2.6	41
78	The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature Metabolism, 2019, 1, 251-260.	5.1	53
79	Neuro–Immune Cell Units: A New Paradigm in Physiology. Annual Review of Immunology, 2019, 37, 19-46.	9.5	162
80	Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis, 2019, 281, 159-167.	0.4	46
81	The role of catecholamines in HIV neuropathogenesis. Brain Research, 2019, 1702, 54-73.	1.1	40
82	Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. European Heart Journal, 2020, 41, 989-994.	1.0	26
83	Dopaminergic Pathways in Obesity-Associated Inflammation. Journal of NeuroImmune Pharmacology, 2020, 15, 93-113.	2.1	20
84	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	8.9	109
85	Origin and Differentiation of Nerve-Associated Macrophages. Journal of Immunology, 2020, 204, 271-279.	0.4	57
86	Neuroimmune circuits in inter-organ communication. Nature Reviews Immunology, 2020, 20, 217-228.	10.6	132
87	HYPOTHesizing about central comBAT against obesity. Journal of Physiology and Biochemistry, 2020, 76, 193-211.	1.3	3
88	Obesity: a neuroimmunometabolic perspective. Nature Reviews Endocrinology, 2020, 16, 30-43.	4.3	91
89	Tissue-Specific Role of Macrophages in Noninfectious Inflammatory Disorders. Biomedicines, 2020, 8, 400.	1.4	20
90	Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biology, 2020, 18, e3000859.	2.6	94
91	The Heating Microenvironment: Intercellular Cross Talk Within Thermogenic Adipose Tissue. Diabetes, 2020, 69, 1599-1604.	0.3	22

	Сітаті	on Report	
#	Article	IF	CITATIONS
92	A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes. Lipids in Health and Disease, 2020, 19, 164.	1.2	54
93	Thermoneutrality-Induced Macrophage Accumulation in Brown Adipose Tissue Does Not Impair the Tissue's Competence for Cold-Induced Thermogenic Recruitment. Frontiers in Endocrinology, 2020, 1 568682.	l, 1.5	10
94	Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine, 2020, 7, 602088.	1.1	49
95	Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Reports, 2020, 32, 107998.	2.9	60
96	Adipose tissue, immune aging, and cellular senescence. Seminars in Immunopathology, 2020, 42, 573-587	7. 2.8	28
97	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78.	1.1	41
98	Novel cardiac cell subpopulations: Pnmt-derived cardiomyocytes. Open Biology, 2020, 10, 200095.	1.5	3
99	Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. International Journal of Molecular Sciences, 2020, 21, 6241.	1.8	113
100	Dietary Regulation of Immunity. Immunity, 2020, 53, 510-523.	6.6	64
101	A transcriptional toolbox for exploring peripheral neuroimmune interactions. Pain, 2020, 161, 2089-2106.	2.0	26
102	The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 583884.	1.7	14
103	The involvement of neuroimmune cells in adipose innervation. Molecular Medicine, 2020, 26, 126.	1.9	27
104	The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Frontiers in Endocrinology, 2020, 11, 267.	1.5	53
105	Secreted Phospholipase PLA2G2D Contributes to Metabolic Health by Mobilizing ω3 Polyunsaturated Fatty Acids in WAT. Cell Reports, 2020, 31, 107579.	2.9	42
106	Organ System Crosstalk in Cardiometabolic Disease in the Age of Multimorbidity. Frontiers in Cardiovascular Medicine, 2020, 7, 64.	1.1	39
107	Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects. Cell Metabolism, 2020, 31, 1120-1135.e7.	7.2	18
108	Metabolic Inflammation and Insulin Resistance in Obesity. Circulation Research, 2020, 126, 1549-1564.	2.0	438
109	Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nature Communications, 2020, 11, 2922.	5.8	35

#	Article	IF	CITATIONS
110	Differential regulation of the immune system in a brain-liver-fats organ network during short-term fasting. Molecular Metabolism, 2020, 40, 101038.	3.0	7
112	Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Frontiers in Endocrinology, 2020, 11, 62.	1.5	79
113	Neuro-immune Interactions in the Tissues. Immunity, 2020, 52, 464-474.	6.6	144
114	Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunological Reviews, 2020, 295, 101-113.	2.8	68
115	Role of Neuro-Immune Cross-Talk in the Anti-obesity Effect of Electro-Acupuncture. Frontiers in Neuroscience, 2020, 14, 151.	1.4	17
116	EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1495-1505.	0.9	14
117	Comprehensive analysis of differential immunocyte infiltration and the potential ceRNA networks during epicardial adipose tissue development in congenital heart disease. Journal of Translational Medicine, 2020, 18, 111.	1.8	9
118	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	2.1	14
119	Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 158, 1899-1912.	0.6	157
121	The origin, fate and function of macrophages in the peripheral nervous system—an update. International Immunology, 2020, 32, 709-717.	1.8	13
122	How Inflammation Blunts Innate Immunity in Aging. Interdisciplinary Topics in Gerontology and Geriatrics, 2020, 43, 1-17.	2.6	20
123	Inflammatory Signaling and Brown Fat Activity. Frontiers in Endocrinology, 2020, 11, 156.	1.5	58
124	Nicotine' actions on energy balance: Friend or foe?. , 2021, 219, 107693.		20
125	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	7.2	160
126	Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends in Neurosciences, 2021, 44, 189-202.	4.2	28
127	Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E359-E378.	1.8	5
128	Talabostat Alleviates Obesity and Associated Metabolic Dysfunction via Suppression of Macrophageâ€Driven Adipose Inflammation. Obesity, 2021, 29, 327-336.	1.5	7
129	Neuronal regulation of immunity: why, how and where?. Nature Reviews Immunology, 2021, 21, 20-36.	10.6	100

		CITATION R	EPORT	
#	Article		IF	Citations
130	The Histo-CLEM Workflow for tissues of model organisms. Methods in Cell Biology, 2021	, 162, 13-37.	0.5	2
131	The Rheumatoid Arthritis Drug Auranofin Lowers Leptin Levels and Exerts Anti-Diabetic Ef Obese Mice. SSRN Electronic Journal, 0, , .	fects in	0.4	2
132	Targeting macrophage polarization for therapy of diabesity–the feasibility of early impr insulin sensitivity and insulin resistance-a comprehensive systematic review. Journal of Dia Metabolic Disorders & Control, 2021, 8, 6-25.	ovement of abetes,	0.2	1
133	CHRNA1 promotes the pathogenesis of primary focal hyperhidrosis. Molecular and Cellula Neurosciences, 2021, 111, 103598.	ar	1.0	8
134	The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell 2021, 22, 393-409.	Biology,	16.1	203
135	Metabolic stress drives sympathetic neuropathy within the liver. Cell Metabolism, 2021, 3	33, 666-675.e4.	7.2	54
136	Chronic tissue inflammation and metabolic disease. Genes and Development, 2021, 35, 3	307-328.	2.7	122
137	Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Agei Reviews, 2021, 66, 101256.	ng Research	5.0	44
138	Origins, Biology, and Diseases of Tissue Macrophages. Annual Review of Immunology, 20	21, 39, 313-344.	9.5	88
139	Role of Macrophages in the Endocrine System. Trends in Endocrinology and Metabolism, 238-256.	2021, 32,	3.1	33
140	Optogenetic activation of local colonic sympathetic innervations attenuates colitis by lim immune cell extravasation. Immunity, 2021, 54, 1022-1036.e8.	liting	6.6	26
142	Activation of GCN2 in macrophages promotes white adipose tissue browning and lipolysi leucine deprivation. FASEB Journal, 2021, 35, e21652.	s under	0.2	7
143	Neuroimmune interactions in peripheral tissues. European Journal of Immunology, 2021,	51, 1602-1614.	1.6	23
144	Sirtuin 6 promotes eosinophil differentiation by activating GATA†transcription factor. 2021, 20, e13418.	Aging Cell,	3.0	5
145	Tissue-resident macrophages: guardians of organ homeostasis. Trends in Immunology, 20)21, 42, 495-507.	2.9	77
146	Plasticity and heterogeneity of thermogenic adipose tissue. Nature Metabolism, 2021, 3,	751-761.	5.1	29
147	Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige?. Physiology, 2246-255.	2021, 36,	1.6	12
148	Macrophage ontogeny and functional diversity in cardiometabolic diseases. Seminars in C Developmental Biology, 2021, 119, 119-129.	Cell and	2.3	2

# 149	ARTICLE An anti-obesity immunotherapy?. Science, 2021, 373, 24-25.	IF 6.0	Citations
150	Diet-regulated production of PDGFcc by macrophages controls energy storage. Science, 2021, 373, .	6.0	84
151	The good and the BAT of metabolic sex differences in thermogenic human adipose tissue. Molecular and Cellular Endocrinology, 2021, 533, 111337.	1.6	19
152	Multiple roles of cardiac macrophages in heart homeostasis and failure. Heart Failure Reviews, 2022, 27, 1413-1430.	1.7	24
153	Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Frontiers in Immunology, 2021, 12, 727008.	2.2	8
154	Myeloid-resident neuropilin-1 influences brown adipose tissue in obesity. Scientific Reports, 2021, 11, 15767.	1.6	1
155	Acetylcholineâ€synthesizing macrophages in subcutaneous fat are regulated by β ₂ â€sdrenergic signaling. EMBO Journal, 2021, 40, e106061.	3.5	21
156	Creation of an Anti-Inflammatory, Leptin-Dependent Anti-Obesity Celastrol Mimic with Better Druggability. Frontiers in Pharmacology, 2021, 12, 705252.	1.6	3
157	Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Molecular Metabolism, 2021, 51, 101241.	3.0	35
158	Neuroimmune regulation of white adipose tissues. FEBS Journal, 2022, 289, 7830-7853.	2.2	4
159	Reactive Oxygen Species in Macrophages: Sources and Targets. Frontiers in Immunology, 2021, 12, 734229.	2.2	134
160	From Psychoneuroimmunology to Immunopsychiatry: An Historical Perspective. , 2021, , 25-50.		0
161	Understanding the heterogeneity and functions of metabolic tissue macrophages. Seminars in Cell and Developmental Biology, 2021, 119, 130-139.	2.3	7
162	IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metabolism, 2021, 33, 2277-2287.e5.	7.2	42
165	Fatty Acids Rescue the Thermogenic Function of Sympathetically Denervated Brown Fat. Biomolecules, 2021, 11, 1428.	1.8	4
166	The neuroimmune response during stress: A physiological perspective. Immunity, 2021, 54, 1933-1947.	6.6	37
167	Neuroimmune interactions and immunoengineering strategies in peripheral nerve repair. Progress in Neurobiology, 2022, 208, 102172.	2.8	19
168	From White to Brown – Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. Advances in Experimental Medicine and Biology, 2019, 1178, 207-225.	0.8	5

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
169	Signal Mechanisms of M2 Macrophage Activation. Agents and Actions Supplements, 2	020, , 73-97.	0.2	2
170	M2 Macrophages in the Metabolic Organs and in the Neuroendocrine System. Agents Supplements, 2020, , 171-187.	and Actions	0.2	3
171	Peripheral nerve resident macrophages share tissue-specific programming and features microglia. Nature Communications, 2020, 11, 2552.	of activated	5.8	84
178	Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal Medicine, 2018, 284, 492-504.	of Internal	2.7	189
179	Neuro-immune crosstalk and allergic inflammation. Journal of Clinical Investigation, 20 1475-1482.	19, 129,	3.9	106
180	Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophage Clinical Investigation, 2019, 129, 2485-2499.	es. Journal of	3.9	85
181	Myeloid-specific Asxl2 deletion limits diet-induced obesity by regulating energy expend Clinical Investigation, 2020, 130, 2644-2656.	liture. Journal of	3.9	13
182	Immunity and the carotid body: implications for metabolic diseases. Bioelectronic Med	icine, 2020, 6, 24.	1.0	17
183	On the role of macrophages in the control of adipocyte energy metabolism. Endocrine 2019, 8, R105-R121.	Connections,	0.8	19
184	Adipose tissue browning in mice and humans. Journal of Endocrinology, 2019, 241, R9	7-R109.	1.2	97
185	CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic middle-aged female mice. Aging, 2020, 12, 2101-2122.	outcomes in	1.4	22
186	Macrophage Metabolism at the Crossroad of Metabolic Diseases and Cancer. Immuno	metabolism, 2020,	0.7	6
187	Single cell analysis reveals immune cell–adipocyte crosstalk regulating the transcript thermogenic adipocytes. ELife, 2019, 8, .	ion of	2.8	110
188	The Adrenergic Nerve Network in Cancer. Advances in Experimental Medicine and Biolo 271-294.	ogy, 2021, 1329,	0.8	5
189	A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annual I and Developmental Biology, 2021, 37, 549-573.	leview of Cell	4.0	12
190	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of 1506, 74-97.	Sciences, 2021,	1.8	3
191	The interplay of immunology and cachexia in infection and cancer. Nature Reviews Imr 22, 309-321.	nunology, 2022,	10.6	69
192	The evolving view of thermogenic adipocytes — ontogeny, niche and function. Natur Endocrinology, 2021, 17, 726-744.	e Reviews	4.3	81

#	Article	IF	CITATIONS
193	Macrophages as Emerging Key Players in Mitochondrial Transfers. Frontiers in Cell and Developmental Biology, 2021, 9, 747377.	1.8	17
194	Immune Regulation of Adipose Tissue Browning. , 2022, , 221-234.		0
195	Neuro-immune-metabolism: The tripod system of homeostasis. Immunology Letters, 2021, 240, 77-97.	1.1	3
196	Fat expansion through norepinephrine catabolism. Science Signaling, 2017, 10, .	1.6	0
197	Peptide/Receptor Evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. SSRN Electronic Journal, 0, , .	0.4	0
198	Depicting the Landscape of Adipose Tissue-Specific Macrophages and Their Immunometabolic Signatures during Obesity. Immunometabolism, 2020, 2, .	0.7	4
207	SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence. Journal of Diabetes Research, 2021, 2021, 1-17.	1.0	1
208	Immune and non-immune functions of adipose tissue leukocytes. Nature Reviews Immunology, 2022, 22, 371-386.	10.6	53
210	Immunonutritional agonists in the neuroimmune response in AGE-Ing. , 2022, , 535-544.		0
212	IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature, 2021, 600, 314-318.	13.7	70
213	Macrophage ROBOcalls rattle adipose nerves. Nature Metabolism, 2021, 3, 1441-1442.	5.1	0
214	Adipoclast: a multinucleated fat-eating macrophage. BMC Biology, 2021, 19, 246.	1.7	15
216	Electroacupuncture Stimulation Regulates Adipose Lipolysis via Catecholamine Signaling Mediated by NLRP3 Suppression in Obese Rats. Frontiers in Endocrinology, 2021, 12, 773127.	1.5	5
217	Endogenously produced catecholamines improve the regulatory function of TLR9-activated B cells. PLoS Biology, 2022, 20, e3001513.	2.6	12
218	Functional characterization of the biogenic amine transporters on human macrophages. JCI Insight, 2022, 7, .	2.3	13
219	Macrophages Can Drive Sympathetic Excitability in the Early Stages of Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 807904.	1.1	4
220	Eosinophils regulate intra-adipose axonal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
222	Diversity of satellite glia in sympathetic and sensory ganglia. Cell Reports, 2022, 38, 110328.	2.9	33

	СПАНОГ	NREPORT	
#	Article	IF	Citations
223	Macrophages, Metabolism and Heterophagy in the Heart. Circulation Research, 2022, 130, 418-431.	2.0	21
224	Adipose tissue microenvironments during aging: Effects on stimulated lipolysis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159118.	1.2	2
225	Uncoupling Protein 1 Does Not Produce Heat without Activation. International Journal of Molecular Sciences, 2022, 23, 2406.	1.8	9
226	Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Frontiers in Endocrinology, 2022, 13, 839360.	1.5	2
227	Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity, 2022, 30, 841-857.	1.5	25
228	The shades of grey in adipose tissue reprogramming. Bioscience Reports, 2022, 42, .	1.1	5
229	CD146 Associates with Gp130 to Control a Macrophage Proâ€inflammatory Program That Regulates the Metabolic Response to Obesity. Advanced Science, 2022, 9, e2103719.	5.6	10
230	Systematic Analysis of the Molecular Mechanisms of Cold and Hot Properties of Herbal Medicines. Plants, 2022, 11, 997.	1.6	4
231	Neuroimmune Interactions in Peripheral Organs. Annual Review of Neuroscience, 2022, 45, 339-360.	5.0	39
232	Metabolism of tissue macrophages in homeostasis and pathology. Cellular and Molecular Immunology, 2022, 19, 384-408.	4.8	117
234	CHRNA2: a new paradigm in beige thermoregulation and metabolism. Trends in Cell Biology, 2022, 32, 479-489.	3.6	4
235	Macrophages expressing uncoupling protein 1 increase in adipose tissue in response to cold in humans. Scientific Reports, 2021, 11, 23598.	1.6	1
236	Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Frontiers in Endocrinology, 2022, 13, 847291.	1.5	8
237	The Adipose Tissue Macrophages Central to Adaptive Thermoregulation. Frontiers in Immunology, 2022, 13, 884126.	2.2	12
255	Monitoring of inflammation using novel biosensor mouse model reveals tissue- and sex-specific responses to Western diet. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
256	New Insights into Adipose Tissue Macrophages in Obesity and Insulin Resistance. Cells, 2022, 11, 1424.	1.8	25
257	Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metabolism, 2022, 34, 747-760.e6.	7.2	21
258	Paracrine Regulation of Adipose Tissue Macrophages by Their Neighbors in the Microenvironment of Obese Adipose Tissue. Endocrinology, 2022, 163, .	1.4	2

#	Article	IF	CITATIONS
259	Role of adipose tissue macrophages in obesity-related disorders. Journal of Experimental Medicine, 2022, 219, .	4.2	31
260	Immune–vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood–brain barrier. Neurophotonics, 2022, 9, 031914.	1.7	12
261	Brown Adipose Tissue—A Translational Perspective. Endocrine Reviews, 2023, 44, 143-192.	8.9	49
262	Adrenergic signaling regulation of macrophage function: do we understand it yet?. Immunotherapy Advances, 2022, 2, .	1.2	8
263	The transition between acute and chronic infections in light of energy control: a mathematical model of energy flow in response to infection. Journal of the Royal Society Interface, 2022, 19, .	1.5	0
264	Adipose Tissue Myeloid-Lineage Neuroimmune Cells Express Genes Important for Neural Plasticity and Regulate Adipose Innervation. Frontiers in Endocrinology, 0, 13, .	1.5	11
265	Obesity Control by Ship Inhibition Requires Pan-Paralog Inhibition and an Intact Eosinophil Compartment. SSRN Electronic Journal, 0, , .	0.4	0
266	Interactions between central nervous system and peripheral metabolic organs. Science China Life Sciences, 2022, 65, 1929-1958.	2.3	18
267	Monoamine oxidase A and organic cation transporter 3 coordinate intracellular \hat{l}^21AR signaling to calibrate cardiac contractile function. Basic Research in Cardiology, 2022, 117, .	2.5	9
268	Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells, 2022, 11, 2310.	1.8	12
269	Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
271	Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends in Immunology, 2022, 43, 718-727.	2.9	1
272	Macrophage Class A Scavenger Receptors $\hat{a} \in \hat{A}$ Functional Perspective. , 2022, , .		0
273	The Yin-Yang functions of macrophages in metabolic disorders. , 2022, 1, 319-332.		1
274	Adipose tissue macrophage in obesity-associated metabolic diseases. Frontiers in Immunology, 0, 13, .	2.2	28
275	Reciprocal signaling between adipose tissue depots and the central nervous system. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
276	Obesity and cancer—extracellular matrix, angiogenesis, and adrenergic signaling as unusual suspects linking the two diseases. Cancer and Metastasis Reviews, 2022, 41, 517-547.	2.7	9
277	A neurogenic signature involving monoamine Oxidase-A controls human thermogenic adipose tissue development. ELife, 0, 11, .	2.8	6

#	Article	IF	CITATIONS
278	T _{regs} in visceral adipose tissue up-regulate circadian-clock expression to promote fitness and enforce a diurnal rhythm of lipolysis. Science Immunology, 2022, 7, .	5.6	8
279	Importance of temperature on immunoâ€metabolic regulation and cancer progression. FEBS Journal, 2024, 291, 832-845.	2.2	3
280	Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism: Clinical and Experimental, 2023, 138, 155328.	1.5	6
281	The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain. International Journal of Molecular Sciences, 2022, 23, 12389.	1.8	6
282	Immune cell involvement in brown adipose tissue functions. , 2022, 1, .		2
283	Multifaceted mitochondrial quality control in brown adipose tissue. Trends in Cell Biology, 2023, 33, 517-529.	3.6	8
284	The rheumatoid arthritis drug auranofin lowers leptin levels and exerts antidiabetic effects in obese mice. Cell Metabolism, 2022, 34, 1932-1946.e7.	7.2	10
285	Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity. International Journal of Molecular Sciences, 2022, 23, 12635.	1.8	2
286	The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron, 2022, 110, 3597-3626.	3.8	18
287	Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism: Clinical and Experimental, 2022, 137, 155335.	1.5	9
288	The diversity of neuroimmune circuits controlling lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L53-L63.	1.3	3
289	Reduced secretion of neuronal growth regulator 1 contributes to impaired adipose-neuronal crosstalk in obesity. Nature Communications, 2022, 13, .	5.8	2
290	A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nature Genetics, 2023, 55, 66-77.	9.4	40
291	Recruitment of CTCF to an <i>Fto</i> enhancer is responsible for transgenerational inheritance of BPA-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
292	α1 Adrenoreceptor antagonism mitigates extracellular mitochondrial DNA accumulation in lung fibrosis models and in patients with idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L639-L651.	1.3	2
293	Increased adipose catecholamine levels and protection from obesity with loss of Allograft Inflammatory Factor-1. Nature Communications, 2023, 14, .	5.8	5
294	Obese visceral fat tissue inflammation: from protective to detrimental?. BMC Medicine, 2022, 20, .	2.3	29
295	Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Bioscience Reports, 2023, 43, .	1.1	13

#	Article	IF	CITATIONS
296	Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence. Analytical Chemistry, 2023, 95, 3996-4004.	3.2	9
297	Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nature Immunology, 2023, 24, 757-766.	7.0	26
298	Pancreatic sympathetic innervation disturbance in type 1 diabetes. Clinical Immunology, 2023, 250, 109319.	1.4	0
300	Obesity control by SHIP inhibition requires pan-paralog inhibition and an intact eosinophil compartment. IScience, 2023, 26, 106071.	1.9	2
302	The Influence of Ambient Temperature on Adipose Tissue Homeostasis, Metabolic Diseases and Cancers. Cells, 2023, 12, 881.	1.8	3
303	Epicardial adipocytes in the pathogenesis of atrial fibrillation: An update on basic and translational studies. Frontiers in Endocrinology, 0, 14, .	1.5	5
304	Components of the sympathetic nervous system as targets to modulate inflammation – rheumatoid arthritis synovial fibroblasts as neuron-like cells?. Journal of Inflammation, 2023, 20, .	1.5	2
305	Heterogeneity of adipose tissue-resident macrophages-beyond M1/M2 paradigm. Diabetology International, 2023, 14, 125-133.	0.7	1
306	CX3CR1hi macrophages sustain metabolic adaptation by relieving adipose-derived stem cell senescence in visceral adipose tissue. Cell Reports, 2023, 42, 112424.	2.9	5
314	Physiology and diseases of tissue-resident macrophages. Nature, 2023, 618, 698-707.	13.7	40
324	Obesity-induced and weight-loss-induced physiological factors affecting weight regain. Nature Reviews Endocrinology, 2023, 19, 655-670.	4.3	4
328	The cancer-immune dialogue in the context of stress. Nature Reviews Immunology, 0, , .	10.6	6
330	Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine, 0, , .	1.1	0
341	Macrophage and T cell networks in adipose tissue. Nature Reviews Endocrinology, 0, , .	4.3	0
352	Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Frontiers of Medicine, 0, , .	1.5	1