Breaking the Kasha Rule for More Efficient Photochemi

Chemical Reviews 117, 13353-13381 DOI: 10.1021/acs.chemrev.7b00110

Citation Report

#	ARTICLE	IF	CITATIONS
1	Anti-Kasha behavior of DMABN dual fluorescence. Journal of Luminescence, 2018, 198, 220-225.	1.5	5
2	Multifunctional luminescent molecules of o -carborane-pyrene dyad/triad: flexible synthesis and study of the photophysical properties. Dyes and Pigments, 2018, 154, 44-51.	2.0	41
3	Lanthanide-Based Coordination Polymers with a 4,5-Dichlorophthalate Ligand Exhibiting Highly Tunable Luminescence: Toward Luminescent Bar Codes. Inorganic Chemistry, 2018, 57, 3399-3410.	1.9	61
4	Study of the structure–bioactivity relationship of three new pyridine Schiff bases: synthesis, spectral characterization, DFT calculations and biological assays. New Journal of Chemistry, 2018, 42, 8851-8863.	1.4	41
5	Thermal equilibration between excited states or solvent effects: unveiling the origins of anomalous emissions in heteroleptic Ru(<scp>ii</scp>) complexes. Physical Chemistry Chemical Physics, 2018, 20, 11559-11563.	1.3	12
6	Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 123-129.	2.0	39
7	Prospects for efficient solar energy upconversion using metalloporphyrins as dual absorber-upconverters. Dalton Transactions, 2018, 47, 8517-8525.	1.6	16
8	Stepwise Two-Photon-Induced Electron Transfer from Higher Excited States of Noncovalently Bound Porphyrin-CdS/ZnS Core/Shell Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 7098-7104.	2.1	12
9	Let Digons be Bygones: The Fate of Excitons in Curved π-Systems. Journal of Physical Chemistry Letters, 2018, 9, 7123-7129.	2.1	14
10	Investigating the Optical Properties of Thiophene Additions to <i>s</i> -Indacene Donors with Diketopyrrolopyrrole, Isoindigo, and Thienothiophene Acceptors. Journal of Physical Chemistry C, 2018, 122, 27713-27733.	1.5	11
11	Anti-Kasha's Rule Emissive Switching Induced by Intermolecular H-Bonding. Chemistry of Materials, 2018, 30, 8008-8016.	3.2	75
12	Enhancement of fluorescence efficiency from molecules to materials and the critical role of molecular assembly. Journal of Materials Chemistry C, 2018, 6, 9314-9329.	2.7	43
13	Revisiting Dual Intramolecular Charge-Transfer Fluorescence of Phenothiazine-triphenyltriazine Derivatives. Journal of Physical Chemistry C, 2018, 122, 12215-12221.	1.5	51
14	Multiphoton-gated cycloreversion reaction of a fluorescent diarylethene derivative as revealed by transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 19776-19783.	1.3	6
15	Expression of anti-Kasha's emission from amino benzothiadiazole and its utilization for fluorescent chemosensors and organic light emitting materials. Journal of Materials Chemistry C, 2018, 6, 7864-7873.	2.7	31
16	Excitationâ€Wavelengthâ€Dependent Emission and Delayed Fluorescence in a Protonâ€Transfer System. Chemistry - A European Journal, 2018, 24, 12790-12795.	1.7	45
17	Linear and Third-Order Nonlinear Optical Properties of Fe(η ⁵ -C ₅ Me ₅)(β ² -dppe)- and <i>trans</i> -Ru(I² ² -dppe) ₂ -Alkynyl Complexes Containing 2-Fluorenyl End Groups. Organometallics, 2018, 37, 2245-2262.	1.1	17
18	A Family of Highly Fluorescent and Unsymmetric Bis(BF ₂) Chromophore Containing Both Pyrrole and <i>N</i> -Heteroarene Derivatives: BOPPY. Organic Letters, 2018, 20, 4462-4466.	2.4	49

TATION REDO

#	Article	IF	CITATIONS
19	Unveiling controlled breaking of the mirror symmetry of Eu(fod) ₃ with α-/β-pinene and BINAP by circularly polarised luminescence (CPL), CPL excitation, and ¹⁹ F-/ ³¹ P{ ¹ H}-NMR spectra and Mulliken charges. Inorganic Chemistry Frontiers, 2018, 5, 2718-2733.	3.0	22
20	Probing charge transfer dynamics in a single iron tetraphenylporphyrin dyad adsorbed on an insulating surface. Nanoscale, 2018, 10, 17603-17616.	2.8	5
21	Organometallic Fluorophores of d 8 Metals (Pd, Pt, Au). Advances in Organometallic Chemistry, 2018, 69, 73-134.	0.5	14
22	Role of Hydrogen Bonding in Green Fluorescent Protein-like Chromophore Emission. Scientific Reports, 2019, 9, 11640.	1.6	17
23	Effect of Paramagnetic Open-Shell Gadolinium(III) Texaphyrin on Its Kinetics and Electronic Structures in Fluorescence and Phosphorescence Emission States. Journal of Physical Chemistry C, 2019, 123, 28327-28335.	1.5	6
24	Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry A, 2019, 123, 7420-7429.	1.1	19
25	Multiwavelength Anti-Kasha's Rule Emission on Self-Assembly of Azulene-Functionalized Persulfurated Arene. Journal of Physical Chemistry C, 2019, 123, 22511-22518.	1.5	29
26	Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Physical Chemistry Chemical Physics, 2019, 21, 16981-16988.	1.3	15
27	Bending-Type Electron Donor–Donor–Acceptor Triad: Dual Excited-State Charge-Transfer Coupled Structural Relaxation. Chemistry of Materials, 2019, 31, 5981-5992.	3.2	55
28	Towards boosting the exciton lifetime and efficiency of near-infrared aggregation induced emitters with hybridized local and charge transfer excited states: a multiscale study. Journal of Materials Chemistry C, 2019, 7, 8874-8887.	2.7	35
29	Fine Modulation of the Higher-Order Excitonic States toward More Efficient Conversion from Upper-Level Triplet to Singlet. Journal of Physical Chemistry Letters, 2019, 10, 6878-6884.	2.1	67
30	Highly Miscible Hybrid Liquid-Crystal Systems Containing Fluorescent Excited-State Intramolecular Proton Transfer Molecules. Langmuir, 2019, 35, 14031-14041.	1.6	11
31	Naphthalene diimides with improved solubility for visible light photoredox catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 2043-2051.	1.3	7
32	Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chemical Science, 2019, 10, 9801-9806.	3.7	115
33	Multiple Anti-Kasha Emissions in Transition-Metal Complexes. Journal of Physical Chemistry Letters, 2019, 10, 5798-5804.	2.1	28
34	Can Coumarins Break Kasha's Rule?. Journal of Physical Chemistry Letters, 2019, 10, 6468-6471.	2.1	17
35	Mechanochromism induced through the interplay between excimer reaction and excited state intramolecular proton transfer. Communications Chemistry, 2019, 2, .	2.0	28
36	Photoluminescence of a Porous Vycor Glass; Surface-Enhanced Photocatalyzed Conversion of CO ₂ to CH ₄ . Journal of Physical Chemistry C, 2019, 123, 6464-6476.	1.5	Ο

#	Article	IF	CITATIONS
37	2,2′â€Diaminoâ€6,6′â€diborylâ€1,1′â€binaphthyl: A Versatile Building Block for Temperatureâ€Depende Fluorescence and Switchable Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2019, 58, 4840-4846.	nt Dual 7.2	164
38	Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet–Singlet Intersystem Crossing. Advanced Materials, 2019, 31, e1807388.	11.1	288
39	Wavelength dependence and wavelength selectivity in photochemical reactions. Photochemical and Photobiological Sciences, 2019, 18, 2094-2101.	1.6	56
40	Photophysics of molecules containing multiples of the azulene carbon framework. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 68-80.	5.6	18
41	1,1′â€Binaphthyl Consisting of Two Donor–ï€â€"Acceptor Subunits: A General Skeleton for Temperatureâ€Dependent Dual Fluorescence. Chemistry - A European Journal, 2019, 25, 10179-10187.	1.7	11
42	Sulfur-Based Intramolecular Hydrogen-Bond: Excited-State Hydrogen-Bond On/Off Switch with Dual Room-Temperature Phosphorescence. Journal of the American Chemical Society, 2019, 141, 9885-9894.	6.6	81
43	Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis. Chemical Science, 2019, 10, 5624-5633.	3.7	19
44	Kasha's rule: a reappraisal. Physical Chemistry Chemical Physics, 2019, 21, 10061-10069.	1.3	97
45	Excited-State Intramolecular Proton-Transfer Process of Crystalline 6-Cyano-2-(2′-hydroxyphenyl)imidazo[1,2 <i>a</i>]pyridine, as Revealed by Femtosecond Pump–Probe Microspectroscopy. Journal of Physical Chemistry C, 2019, 123, 11224-11232.	1.5	14
46	Pure <i>E</i> / <i>Z</i> isomers of <i>N</i> -methylpyrrole-benzohydrazide-based BF ₂ complexes: remarkable aggregation-, crystallization-induced emission switching properties and application in sensing intracellular pH microenvironment. Journal of Materials Chemistry C, 2019, 7, 4533-4542.	2.7	20
47	Nanoscopic tannic acid - ZnO colloid: low temperature synthesis and the influence of pH on the aggregates. Materials Research Express, 2019, 6, 065007.	0.8	4
48	Understanding the Optical and Magnetic Properties of Ytterbium(III) Complexes. Inorganic Chemistry, 2019, 58, 3732-3743.	1.9	25
49	2 Photocatalysis: The Principles. , 2019, , .		0
50	Heteroaryl azo dyes as molecular photoswitches. Nature Reviews Chemistry, 2019, 3, 133-146.	13.8	356
51	Femtosecond dynamics of metal-centered and ligand-to-metal charge-transfer (<i>t</i> 2g-based) electronic excited states in various solvents: A comprehensive study of IrBr62â^'. Journal of Chemical Physics, 2019, 150, 054302.	1.2	10
52	2,2′â€Diaminoâ€6,6′â€diborylâ€1,1′â€binaphthyl: A Versatile Building Block for Temperatureâ€Depende Fluorescence and Switchable Circularly Polarized Luminescence. Angewandte Chemie, 2019, 131, 4894-4900.	nt Dual 1.6	32
53	Fluorescence Properties of Flavin Semiquinone Radicals in Nitronate Monooxygenase. ChemBioChem, 2019, 20, 1646-1652.	1.3	19
54	Stable High-Energy Excited States Observed in a Conjugated Molecule with Hindered Internal Conversion Processes. Journal of Physical Chemistry C, 2019, 123, 6190-6196.	1.5	11

#	Article	IF	CITATIONS
55	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	0.9	5
56	Upper Excited Triplet State-Mediated Intersystem Crossing for Anti-Kasha's Fluorescence: Potential Application in Deep-Ultraviolet Sensing. Journal of Physical Chemistry C, 2019, 123, 5761-5766.	1.5	21
57	Direct Observation of Long-Lived Upper Excited Triplet States and Intersystem Crossing in Anthracene-Containing Pt ^{II} Complexes. Journal of Physical Chemistry Letters, 2019, 10, 7767-7773.	2.1	13
58	Mechanical Insights into Aggregationâ€Induced Delayed Fluorescence Materials with Antiâ€Kasha Behavior. Advanced Science, 2019, 6, 1801629.	5.6	111
59	Highly Fluorescent Liquid Crystals from Excited‣tate Intramolecular Proton Transfer Molecules. Advanced Optical Materials, 2019, 7, 1801349.	3.6	27
60	Synthesis and hydrogen evolving catalysis of a panchromatic photochemical molecular device. Sustainable Energy and Fuels, 2020, 4, 619-624.	2.5	9
61	Direct excitation of higher excited state and kinetics of photoreactions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117573.	2.0	1
62	Excitedâ€state proton transfer via higher excited state in 2â€mercaptobenzothiazole: Absorption, fluorescence, Raman spectroscopic study, and theoretical calculation. Journal of Raman Spectroscopy, 2020, 51, 125-132.	1.2	2
63	Exploiting singlet excited state conformation for rational design of highly efficient photoinduced electron transfer molecules. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 118016.	2.0	3
64	A copper nanocluster incorporated nanogel: Confinementâ€assisted emission enhancement for zinc ion detection in living cells. Sensors and Actuators B: Chemical, 2020, 307, 127626.	4.0	33
65	Dicyclohepta[<i>ijkl</i> , <i>uvwx</i>]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Nonâ€benzenoid Nanographene. Angewandte Chemie, 2020, 132, 3557-3561.	1.6	33
66	Dicyclohepta[<i>ijkl</i> , <i>uvwx</i>]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Nonâ€benzenoid Nanographene. Angewandte Chemie - International Edition, 2020, 59, 3529-3533.	7.2	82
67	Labeling of Proteins by BODIPY-Quinone Methides Utilizing Anti-Kasha Photochemistry. ACS Applied Materials & Interfaces, 2020, 12, 347-351.	4.0	22
68	Theoretically exploring the luminescence mechanism tuned by intermolecular weak interactions of a mechanochromic 9-anthryl gold(I) isocyanide complex. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112195.	2.0	3
69	Reactivity of Transition-Metal Complexes in Excited States: C–O Bond Coupling Reductive Elimination of a Ni(II) Complex Is Elicited by the Metal-to-Ligand Charge Transfer State. ACS Catalysis, 2020, 10, 1-6.	5.5	44
70	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	5.8	122
71	Organocatalyzed Birch Reduction Driven by Visible Light. Journal of the American Chemical Society, 2020, 142, 13573-13581.	6.6	144
72	Dual Emission: Classes, Mechanisms, and Conditions. Angewandte Chemie - International Edition, 2021, 60, 22624-22638.	7.2	158

#	Article	IF	CITATIONS
73	Visible-Light-Initiated Free-Radical Polymerization by Homomolecular Triplet-Triplet Annihilation. CheM, 2020, 6, 3071-3085.	5.8	54
74	Molecular Conformational Effect on Optical Properties and Fluoride Induced Color Changes in Triarylborane–Vinylbithiophene–BODIPY Conjugates. Journal of Physical Chemistry B, 2020, 124, 8896-8903.	1.2	3
75	Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes. Chemical Science, 2020, 11, 9513-9523.	3.7	28
76	Anti-Kasha Conformational Photoisomerization of a Heteroleptic Dithiolene Metal Complex Revealed by Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 10687-10693.	1.1	8
77	Plasmon-enhanced S2 electroluminescence from the high-lying excited state of a single porphyrin molecule. Applied Physics Letters, 2020, 117, .	1.5	6
78	Greener development of highly selective turn-on fluorogenic chemo sensor for Cd2+ - Cell imaging and test strips studies. Optical Materials, 2020, 109, 110176.	1.7	11
79	Upper Excited State Photophysics of Malachite Green in Solution and Films. Journal of Physical Chemistry B, 2020, 124, 4293-4302.	1.2	5
80	State-Dependent Photochemical and Photophysical Behavior of Dithiolate Ester and Trithiocarbonate Reversible Addition–Fragmentation Chain Transfer Polymerization Agents. Journal of Physical Chemistry A, 2020, 124, 4211-4222.	1.1	21
81	Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry - A European Journal, 2020, 26, 11441-11450.	1.7	3
82	Excitation spectrum, nanoparticles, and their applications in cellular optical imaging. Journal of Biological Education, 2020, , 1-8.	0.8	2
83	Mono- versus Bicyclic Carbene Metal Amide Photoemitters: Which Design Leads to the Best Performance?. Chemistry of Materials, 2020, 32, 6114-6122.	3.2	58
84	Unravelling the intricate photophysical behavior of 3-(pyridin-2-yl)triimidazotriazine AIE and RTP polymorphs. Chemical Science, 2020, 11, 7599-7608.	3.7	22
85	Perylene derivative films: Emission from higher singlet excited state. Journal of Luminescence, 2020, 226, 117478.	1.5	1
86	A small bimetallic Ag ₃ Cu ₂ nanocluster with dual emissions within and against Kasha's rule. Nanoscale, 2020, 12, 7864-7869.	2.8	12
87	Weak Intrinsic Luminescence in Monomeric Proteins Arising from Charge Recombination. Journal of Physical Chemistry B, 2020, 124, 2731-2746.	1.2	13
88	Photophysical transformations induced by chemical substitution to salicylaldimines. Physical Chemistry Chemical Physics, 2020, 22, 6698-6705.	1.3	23
89	A turn-off fluorescent probe for the detection of Cu ²⁺ based on a tetraphenylethylene-functionalized salicylaldehyde Schiff-base. Materials Chemistry Frontiers, 2020, 4, 1500-1506.	3.2	66
90	Discovery and characterization of an acridine radical photoreductant. Nature, 2020, 580, 76-80.	13.7	277

#	Article	IF	CITATIONS
91	Tailoring Hot Exciton Dynamics in 2D Hybrid Perovskites through Cation Modification. ACS Nano, 2020, 14, 3621-3629.	7.3	38
92	Computational Protocol To Predict Anti-Kasha Emissions: The Case of Azulene Derivatives. Journal of Physical Chemistry A, 2020, 124, 7228-7237.	1.1	35
93	Ligand Control of Room-Temperature Phosphorescence Violating Kasha's Rule in Hybrid Organic–Inorganic Metal Halides. Chemistry of Materials, 2020, 32, 1454-1460.	3.2	47
94	De novo strategy with engineering anti-Kasha/Kasha fluorophores enables reliable ratiometric quantification of biomolecules. Nature Communications, 2020, 11, 793.	5.8	74
95	Photochromic Evaluation of 3(5) -Arylazo-1 <i>H</i> -pyrazoles. Journal of Organic Chemistry, 2020, 85, 4079-4088.	1.7	27
96	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	1.6	96
97	Photochemical <i>anti</i> – <i>syn</i> isomerization around the –N–Nbond in heterocyclic imines. RSC Advances, 2020, 10, 5540-5550.	1.7	6
98	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	7.2	821
99	Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence, 2020, 8, 022001.	1.1	183
100	An Application Exploiting Aurophilic Bonding and iClick to Produce White Light Emitting Materials. Inorganic Chemistry, 2020, 59, 1893-1904.	1.9	22
101	A Fluorescence–Phosphorescence–Phosphorescence Tripleâ€Channel Emission Strategy for Fullâ€Color Luminescence. Small, 2020, 16, e1906475.	5.2	45
102	Organic Ïfâ€Hole Containing Crystals with Enhanced Nonlinear Optical Response and Efficient Opticalâ€toâ€THz Frequency Conversion. Advanced Optical Materials, 2020, 8, 1901840.	3.6	17
103	Multiple‣tate Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie, 2020, 132, 10259-10264.	1.6	22
104	Photoelimination of Nitrogen from Diazoalkanes: Involvement of Higher Excited Singlet States in the Carbene Formation. Journal of the American Chemical Society, 2020, 142, 9718-9724.	6.6	4
105	Application of two-dimensional correlation fluorescence spectroscopy to detect the presence of trace amount of substances. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118374.	2.0	6
106	Photophysics and visible light photodissociation of supramolecular meso-tetra(4-pyridyl) porphyrin/RuCl2(CO)(PPh3)2 structures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118351.	2.0	5
107	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	9.5	57
108	Duale Emission: Klassen, Mechanismen und Bedingungen. Angewandte Chemie, 2021, 133, 22804-22820.	1.6	10

#	Article	IF	CITATIONS
109	Water-stimuli-responsive dynamic fluorescent switch from Kasha's rule to anti-Kasha's rule based on a tetraphenylethene substituted Schiff base. Chemical Engineering Journal, 2021, 405, 127000.	6.6	22
110	4'-Nitroflavonol fluorescence: Excited state intramolecular proton transfer reaction from the non-emissive excited state. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112978.	2.0	12
111	Behind the scenes of spin-forbidden decay pathways in transition metal complexes. Physical Chemistry Chemical Physics, 2021, 23, 59-81.	1.3	14
112	Recent progress in hot exciton materials for organic light-emitting diodes. Chemical Society Reviews, 2021, 50, 1030-1069.	18.7	353
113	Novel anti-Kasha fluorophores exhibiting dual emission with thermally activated delayed fluorescence through detouring triplet manifolds. Journal of Materials Chemistry C, 2021, 9, 7083-7093.	2.7	18
114	Synthesis and photophysical properties of donor-substituted phenyl-phosphachromones as potential TADF materials. Organic Chemistry Frontiers, 2021, 8, 1747-1755.	2.3	1
115	Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics. Symmetry, 2021, 13, 199.	1.1	3
116	Wavelength dependent photochemistry of BODIPY–phenols and their applications in the fluorescent labeling of proteins. Organic and Biomolecular Chemistry, 2021, 19, 4891-4903.	1.5	7
117	ESIPT-AIE active Schiff base based on 2-(2′-hydroxyphenyl)benzo-thiazole applied as multi-functional fluorescent chemosensors. Dalton Transactions, 2021, 50, 3916-3922.	1.6	49
118	Hole-mediated photoredox catalysis: tris(<i>p</i> -substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Organic Chemistry Frontiers, 2021, 8, 1132-1142.	2.3	72
119	Lifetime Broadening and Impulsive Generation of Vibrational Coherence Triggered by Ultrafast Electron Transfer. Journal of Physical Chemistry Letters, 2021, 12, 1052-1057.	2.1	6
120	Breaching Kasha's rule for dual emission: mechanisms, materials and applications. Journal of Materials Chemistry C, 2021, 9, 10154-10172.	2.7	29
121	Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chemical Society Reviews, 2021, 50, 9540-9685.	18.7	205
122	Restriction of Intramolecular Motion(RIM): Investigating AIE Mechanism from Experimental and Theoretical Studies. Chemical Research in Chinese Universities, 2021, 37, 1-15.	1.3	81
123	Synthesis and properties of an AIE fluorescent probe for Cu2+ detection based on ESIPT system. Chemical Papers, 2021, 75, 1851-1859.	1.0	14
124	Sizeâ€Ðependent Light Harvesting from Nonthermalized Excited States of Gold Clusters. Solar Rrl, 2021, 5, 2000710.	3.1	4
125	Controlling Lightâ€Induced Proton Transfer from the GFP Chromophore. ChemPhysChem, 2021, 22, 833-841.	1.0	4
126	Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules, 2021, 26, 1475.	1.7	101

#	Article	IF	CITATIONS
127	Linear and nonlinear optical properties of a quadrupolar carbo-benzene and its benzenic parent: The carbo-merization effect. Dyes and Pigments, 2021, 188, 109133.	2.0	2
128	Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Advanced Optical Materials, 2021, 9, 2002251.	3.6	146
129	Highâ€Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Singleâ€Molecule Sensitive Flow Technique and Transistorâ€like Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 13582-13587.	1.6	5
130	Highâ€Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Singleâ€Molecule Sensitive Flow Technique and Transistorâ€like Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 13470-13475.	7.2	27
131	Tracking Ultrafast Structural Dynamics in a Dual-Emission Anti-Kasha-Active Fluorophore Using Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 4466-4473.	2.1	12
132	Two-photon uncaging of bioactive compounds: Starter guide to an efficient IR light switch. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100423.	5.6	22
133	Highly Luminescent Inorganic–Organic Hybrids with Molecularly Dispersed Perylene. Inorganic Chemistry, 2021, 60, 9563-9570.	1.9	8
134	Photoacid Generators Activated through Sequential Two-Photon Excitation: 1-Sulfonatoxy-2-alkoxyanthraquinone Derivatives. Journal of Physical Chemistry A, 2021, 125, 5227-5236.	1.1	3
135	Theoretical Insights into Excited-State Intermolecular Proton Transfers of 2,7-Diazaindole in Water Using a Microsolvation Approach. Journal of Physical Chemistry A, 2021, 125, 5314-5325.	1.1	9
136	Dihedral Angle Distribution of Thermally Activated Delayed Fluorescence Molecules in Solids Induces Dual Phosphorescence from Charge-Transfer and Local Triplet States. Chemistry of Materials, 2021, 33, 5618-5630.	3.2	31
137	Phototransformation study of the antidepressant paroxetine in surface waters. Science of the Total Environment, 2021, 774, 145380.	3.9	16
138	Efficient photobleaching of rhodamine 6G by a single UV pulse. Applied Optics, 2021, 60, 6342.	0.9	5
139	Construction of Heptagon ontaining Molecular Nanocarbons. Angewandte Chemie, 2021, 133, 23700-23724.	1.6	31
140	Colorless Copolyimide Films Exhibiting Large Stokes-Shifted Photoluminescence Applicable for Spectral Conversion. ACS Applied Polymer Materials, 2021, 3, 3911-3921.	2.0	6
141	Persistent Roomâ€Temperature Phosphorescence from Purely Organic Molecules and Multiâ€Component Systems. Advanced Optical Materials, 2021, 9, 2100411.	3.6	81
143	Construction of Heptagon ontaining Molecular Nanocarbons. Angewandte Chemie - International Edition, 2021, 60, 23508-23532.	7.2	118
144	Chemical syntheses and salient features of azulene-containing homo- and copolymers. Beilstein Journal of Organic Chemistry, 2021, 17, 2164-2185.	1.3	7
145	Deep NIR-I Emissive Iridium(III) Complex Bearing D-A Ligand: Synthesis, Photophysical Properties and DFT/TDDFT Calculation. Crystals, 2021, 11, 1038.	1.0	Ο

#	Article	IF	CITATIONS
146	Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview. Molecules, 2021, 26, 5140.	1.7	28
147	A Multiple Excited-State Engineering of Boron-Functionalized Diazapentacene Via a Tuning of the Molecular Orbital Coupling. Journal of Physical Chemistry Letters, 2021, 12, 9308-9314.	2.1	5
148	Crystal structure and optical property of a Cadmium(II) complex based on triphenylamine derivative—Theoretical and experimental investigation. Journal of Luminescence, 2021, 238, 118270.	1.5	2
149	A pH-sensitive ESIPT molecule with aggregation-induced emission and tunable solid-state fluorescence multicolor for anti-counterfeiting and food freshness detection. Chemical Engineering Journal, 2022, 428, 130986.	6.6	31
150	Graphene quantum dots induced porous orientation of holey graphene nanosheets for improved electrocatalytic activity. Carbon, 2021, 171, 493-506.	5.4	28
151	A single isomer rotary switch demonstrating anti-Kasha behaviour: Does acidity function matter?. Physical Chemistry Chemical Physics, 2021, 23, 13760-13767.	1.3	9
152	Multiple‣tate Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie - International Edition, 2020, 59, 10173-10178.	7.2	49
153	Fluorescence Anisotropy Detection of Barrier Crossing and Ultrafast Conformational Dynamics in the S ₂ State of β-Carotene. Journal of Physical Chemistry B, 2020, 124, 9029-9046.	1.2	10
154	Photophysical and semiconducting properties of isomeric triphenylimidazole derivatives with a benzophenone moiety. New Journal of Chemistry, 2021, 45, 19746-19754.	1.4	1
155	Anti-Kasha Behavior of 3-Hydroxyflavone and Its Derivatives. International Journal of Molecular Sciences, 2021, 22, 11103.	1.8	6
156	Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113619.	2.0	4
157	Photophysics. , 2022, , 9-28.		1
158	A simple generalization of the energy gap law for nonradiative processes. Journal of Chemical Physics, 2021, 155, 164106.	1.2	19
159	Towards efficient photochemistry from upper excited electronic states: detection of long S2 lifetime of perylene. Journal of Chemical Physics, 2021, 155, 191102.	1.2	3
160	Photophysics and spectroscopy of 1,2-Benzazulene. Chemical Physics Letters, 2021, 784, 139114.	1.2	5
162	Combining Theory and Experiment for Understanding of Ultrafast Photoinduced Charge-Transfer Processes. Mathematical Physics and Computer Simulation, 2020, , 91-99.	0.2	0
163	Large-Stokes-shifted yellow photoluminescence emission from an imide and polyimides forming multiple intramolecular hydrogen bonds. Materials Chemistry Frontiers, 2021, 6, 24-32.	3.2	4
164	Frontiers for Future Research. Two-Photonic, Highly Excited and Single-Molecular Sensors. , 2020, , 613-646.		0

#	Article	IF	CITATIONS
165	2-Hydroxybenzophenone Derivatives: ESIPT Fluorophores Based on Switchable Intramolecular Hydrogen Bonds and Excitation Energy–Dependent Emission. Frontiers in Chemistry, 2021, 9, 766179.	1.8	1
166	Low efficiency roll-off blue TADF OLEDs employing a novel acridine–pyrimidine based high triplet energy host. Journal of Materials Chemistry C, 2021, 9, 17471-17482.	2.7	14
167	Action Plots in Action: In-Depth Insights into Photochemical Reactivity. Journal of the American Chemical Society, 2021, 143, 21113-21126.	6.6	60
168	Electronic state of a fluoranthene–urea compound and the kinetics of its emissive tautomer state in the presence of acetate anions. New Journal of Chemistry, 2022, 46, 1741-1750.	1.4	4
169	Halogen Bonding: A New Platform for Achieving Multi‣timuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie, 2022, 134, .	1.6	20
170	Controlling the excited-state relaxation for tunable single-molecule dual fluorescence in both the solution and film states. Journal of Materials Chemistry C, 2022, 10, 1118-1126.	2.7	6
171	New Light on an Old Story: Breaking Kasha's Rule in Phosphorescence Mechanism of Organic Boron Compounds and Molecule Design. International Journal of Molecular Sciences, 2022, 23, 876.	1.8	1
172	Enantioselective one-carbon expansion of aromatic rings by simultaneous formation and chromoselective irradiation of a transient coloured enolate. Chemical Science, 2022, 13, 2079-2085.	3.7	6
173	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	111
174	Photophysics of Two-Dimensional Semiconducting Organic–Inorganic Metal-Halide Perovskites. Annual Review of Physical Chemistry, 2022, 73, 403-428.	4.8	18
175	Photochemistry of (<i>Z</i>)-Isovinylneoxanthobilirubic Acid Methyl Ester, a Bilirubin Dipyrrinone Subunit: Femtosecond Transient Absorption and Stimulated Raman Emission Spectroscopy. Journal of Organic Chemistry, 2022, 87, 3089-3103.	1.7	3
176	Recent advances in low-power-threshold nonlinear photochromic materials. Chemical Society Reviews, 2022, 51, 2397-2415.	18.7	41
177	Organically tuned white-light emission from two zero-dimensional Cd-based hybrids. RSC Advances, 2022, 12, 10431-10442.	1.7	10
178	Exciton Dynamics of a Diketo-Pyrrolopyrrole Core for All Low-Lying Electronic Excited States Using Density Functional Theory-Based Methods. Journal of Chemical Theory and Computation, 2022, 18, 1838-1848.	2.3	5
179	Human Serum Albumin Dimerization Enhances the S ₂ Emission of Bound Cyanine IR806. Journal of Physical Chemistry Letters, 2022, 13, 1825-1832.	2.1	2
180	Organic materials repurposing, a data set for theoretical predictions of new applications for existing compounds. Scientific Data, 2022, 9, 54.	2.4	16
181	Pushing the Length Limit of Dihydrodiboraacenes: Synthesis and Characterizations of Boronâ€Embedded Heptacene and Nonacene. Angewandte Chemie, 2022, 134, .	1.6	3
182	Pushing the Length Limit of Dihydrodiboraacenes: Synthesis and Characterizations of Boronâ€Embedded Heptacene and Nonacene. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19

#	Article	IF	CITATIONS
183	Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chemical Reviews, 2022, 122, 8487-8593.	23.0	61
184	Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors. Journal of Cleaner Production, 2022, 343, 131061.	4.6	45
185	Critical Role of Highâ€Lying Triplet States for Efficient Excitons Utilization in Highâ€Performance Nonâ€Doped Deepâ€Blue Fluorescent and Hybrid White Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	6
186	Designing Red-Shifted Molecular Emitters Based on the Annulated Locked GFP Chromophore Derivatives. International Journal of Molecular Sciences, 2021, 22, 13645.	1.8	2
187	Recent Advances in the Functionalization of Azulene Through Pdâ€Catalyzed Crossâ€Coupling Reactions. ChemistrySelect, 2021, 6, 13664-13723.	0.7	8
189	Ligand Shell Isomerization Induces Different Fluorescence Origins of Two Au ₂₈ Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 3718-3725.	2.1	5
190	Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks. Nature Communications, 2022, 13, 2171.	5.8	30
191	Femtosecond dynamics of stepwise two-photon ionization in solutions as revealed by pump–repump–probe detection with a burst mode of photoexcitation. Physical Chemistry Chemical Physics, 2022, 24, 14187-14197.	1.3	1
192	The regulation mechanism of the excited-state behaviour of 3-Hydroxy-2-(1-ethyl-1H-pyrazol-3-yl)-4H-chromen-4-one fluorophore by solvent polarity: a computational study. Molecular Physics, 0, , .	0.8	1
193	Excitationâ€Dependent Circularly Polarized Luminescence from Helical Assemblies based on Tartaric Acidâ€derived Acylhydrazones. Angewandte Chemie, 0, , .	1.6	4
194	Excitationâ€Đependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acidâ€Derived Acylhydrazones. Angewandte Chemie - International Edition, 2022, 61, e202205633.	7.2	16
195	<i>N</i> -Hydroxy– <i>N</i> -oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(<scp>ii</scp>) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1 <i>H</i> -imidazole ESIPT-ligand. Dalton Transactions, 2022, 51, 9818-9835.	1.6	13
196	Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 10042-10052.	6.6	18
197	Excited State Intramolecular Proton Transfer (ESIPT) from -NH ₂ to the Carbon Atom of a Naphthyl Ring. Journal of Organic Chemistry, 2022, 87, 9148-9156.	1.7	1
198	Singleâ€Fluorophoreâ€Based Organic Crystals with Distinct Conformers Enabling Wideâ€Range Excitationâ€Dependent Emissions. Angewandte Chemie, 0, , .	1.6	3
199	Singleâ€Fluorophoreâ€Based Organic Crystals with Distinct Conformers Enabling Wideâ€Range Excitationâ€Dependent Emissions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
200	Excitation Energy-Dependent, Excited-State Intramolecular Proton Transfer-Based Dual Emission in Poor Hydrogen-Bonding Solvents. Journal of Physical Chemistry A, 2022, 126, 5711-5720.	1.1	7
201	Anomalous emission of an ESIPT-capable zinc(II) complex: An interplay of TADF, TICT and anti-Kasha behaviour. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114195.	2.0	10

#	Article	IF	CITATIONS
202	Mechanisms for the Deactivation of the Electronic Excited States of α-(2-Hydroxyphenyl)- <i>N</i> -phenylnitrone: From Intramolecular Proton and Charge Transfer to Structure Twisting and Aggregation. Journal of Physical Chemistry B, 2022, 126, 7373-7384.	1.2	4
203	A platform for blue-luminescent carbon-centered radicals. Nature Communications, 2022, 13, .	5.8	21
204	Unusually high energy barriers for internal conversion in a {Ru(bpy)} chromophore. Physical Chemistry Chemical Physics, 0, , .	1.3	1
205	Torsional disorder and planarization dynamics: 9,10-bis(phenylethynyl)anthracene as a case study. Physical Chemistry Chemical Physics, 2022, 24, 25979-25989.	1.3	3
206	Recent progress on the excited-state multiple proton transfer process in organic molecules. Science China Chemistry, 2022, 65, 1843-1853.	4.2	12
207	Pnictogenâ€Bridged Diphenyl Sulfones as Photoinduced Pnictogen Bond Forming Emission Motifs. Chemistry - A European Journal, 2023, 29, .	1.7	2
208	Temperature-Dependent Dual Fluorescence from Small Organic Molecules. Organic Materials, 0, , .	1.0	3
209	Anti-Kasha Fluorescence in Molecular Entities: Central Role of Electron–Vibrational Coupling. Accounts of Chemical Research, 2022, 55, 2698-2707.	7.6	21
210	Polarityâ€ŧriggered antiâ€Kasha system for highâ€contrast cell imaging and classification. Aggregate, 2023, 4, .	5.2	1
211	Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states. Journal of Chemical Physics, 2022, 157, .	1.2	11
212	Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. Journal of Chemical Theory and Computation, 2022, 18, 6851-6865.	2.3	18
213	[4]Triangulenes Modified by Three Oxygen-Boron-Oxygen (OBO) Units: Synthesis, Characterizations, and Anti-Kasha Emissions. Journal of Physical Chemistry Letters, 2022, 13, 10085-10091.	2.1	7
214	Theoretical study on the origin of the dual phosphorescence emission from organic aggregates at room temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 287, 122077.	2.0	6
215	Revisiting the Fluorescence of Benzothiadiazole Derivatives: Antiâ€Kasha Emission or Not?. ChemPhotoChem, 0, , .	1.5	0
216	Excitationâ€Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angewandte Chemie, 2023, 135, .	1.6	4
217	Dual-function artificial molecular motors performing rotation and photoluminescence. Science Advances, 2022, 8, .	4.7	5
218	Luminescent Crystalline Carbon―and Nitrogenâ€Centered Organic Radicals Based on Nâ€Heterocyclic Carbeneâ€Triphenylamine Hybrids. Chemistry - A European Journal, 2023, 29, .	1.7	5
219	Dispersion Effect of Molecular Crowding on Ligand–Protein Surface Binding Sites of <i>Escherichia coli</i> RNase HI. Langmuir, 2022, 38, 14497-14507.	1.6	2

#	Article	IF	Citations
220	Excitationâ€Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
221	Wavelength-dependent photochemistry of a salicylimine derivative studied with cryogenic and ultrafast spectroscopy approaches. Physical Chemistry Chemical Physics, 2022, 24, 30017-30026.	1.3	1
222	Plenty of Room on the Top: Pathways and Spectroscopic Signatures of Singlet Fission from Upper Singlet States. Journal of Physical Chemistry Letters, 2022, 13, 11086-11094.	2.1	3
223	Strong Coupling of Chiral Frenkel Exciton for Intense, Bisignate Circularly Polarized Luminescence. Angewandte Chemie, 0, , .	1.6	0
224	Strong Coupling of Chiral Frenkel Exciton for Intense, Bisignate Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
225	Micellization Turned on Dual Fluorescence and Room Temperature Phosphorescence by Pseudo-ESIPT in Thiadiazole Derivatives. Journal of Physical Chemistry C, 2023, 127, 99-109.	1.5	2
226	Aggregation-Induced Delayed Fluorescence and Phosphorescence from Hot Excitons via Suppression of Kasha's Rule in a Stimuli-Active Molecular Rotor. Journal of Physical Chemistry C, 2023, 127, 2694-2704.	1.5	5
227	Strategy for Modulating Dihedral Angle Distribution for Enhanced Anti-Kasha TADF Behavior. Journal of Physical Chemistry C, 2023, 127, 5567-5575.	1.5	3
228	Critical Crystallographic Transition in Violation of Kasha's Rule of Size-Specific ZnO Quantum Dots. Crystal Growth and Design, 2023, 23, 1941-1950.	1.4	1
229	Multicomponent Anti-Kasha's Rule Emission from Nanotubular Metal–Organic Frameworks for Selective Detection of Small Molecules. Inorganic Chemistry, 2023, 62, 3170-3177.	1.9	5
230	Visible-light-driven direct decarboxylative carbonylation of carboxylic acids using acridine photocatalysis in oxygen-liquid flow. Chemical Engineering Journal, 2023, 461, 141767.	6.6	3
231	Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nature Communications, 2023, 14, .	5.8	31
232	A <i>d</i> _{Ï€} â€ <i>p</i> _{Ï€} Conjugated System with High Mobility and Strong Emission Simultaneously. Advanced Functional Materials, 2023, 33, .	7.8	4
233	Synthesis and Unexpected Optical Properties of Ionic Phosphorus Heterocycles with P-Regulated Noncovalent Interactions. Journal of Organic Chemistry, 2023, 88, 2792-2800.	1.7	4
234	Conformational emissive states in dual-state emitters with benzotriazole acceptors. Matter, 2023, 6, 1140-1159.	5.0	11
235	Organophotocatalytic Mechanisms: Simplicity or NaÃ ⁻ vety? Diverting Reactive Pathways by Modifications of Catalyst Structure, Redox States and Substrate Preassemblies. ChemCatChem, 2023, 15, .	1.8	15
236	Dual emission of ESIPT-capable 2-(2-hydroxyphenyl)-4-(1 <i>H</i> -pyrazol-1-yl)pyrimidines: interplay of fluorescence and phosphorescence. New Journal of Chemistry, 2023, 47, 6361-6377.	1.4	6
237	Proton transfer reactions: From photochemistry to biochemistry and bioenergetics. BBA Advances, 2023, 3, 100085.	0.7	8

#	Article	IF	CITATIONS
238	Narrowband emission: organic thermally-activated delayed fluorescence materials and underlying mechanisms. Materials Chemistry Frontiers, 2023, 7, 2809-2827.	3.2	12
239	Ultrafast Photoelimination of Nitrogen from Upper Excited States of Diazoalkanes and the Fate of Carbenes Formed in the Reaction. Journal of Organic Chemistry, 2023, 88, 4286-4300.	1.7	2
240	Two triplet emitting states in one emitter: Near-infrared dual-phosphorescent Au ₂₀ nanocluster. Science Advances, 2023, 9, .	4.7	22
241	Processing of Chemicals at Scale. , 2021, , 330-414.		0
246	Introduction to molecular photophysics. , 2023, , 3-49.		0
257	Naphthopyran molecular switches and their emergent mechanochemical reactivity. Chemical Science, 2023, 14, 10041-10067.	3.7	4
258	Photophysics and Photochemistry of Transition Metal Complexes: Complex Emissive and Photoreactivity Scenarios. , 2024, , 330-344.		0
263	Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophysical Reviews, 2023, 15, 887-906.	1.5	0
276	Visualizing and characterizing excited states from time-dependent density functional theory. Physical Chemistry Chemical Physics, 2024, 26, 3755-3794.	1.3	2