Functional and Biomimetic Materials for Engineering of Microenvironment

Chemical Reviews 117, 12764-12850 DOI: 10.1021/acs.chemrev.7b00094

Citation Report

#	Article	IF	CITATIONS
1	Introduction: Bioinspired and Biomimetic Materials. Chemical Reviews, 2017, 117, 12581-12583.	47.7	77
2	Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture. Biomaterials Science, 2018, 6, 885-892.	5.4	9
3	Rational Fabrication of Antiâ€Freezing, Nonâ€Drying Tough Organohydrogels by Oneâ€Pot Solvent Displacement. Angewandte Chemie, 2018, 130, 6678-6681.	2.0	96
4	Rational Fabrication of Antiâ€Freezing, Nonâ€Drying Tough Organohydrogels by Oneâ€Pot Solvent Displacement. Angewandte Chemie - International Edition, 2018, 57, 6568-6571.	13.8	341
5	Recent advances in microfluidic models for cancer metastasis research. TrAC - Trends in Analytical Chemistry, 2018, 105, 1-6.	11.4	17
6	Hydrodynamics in Cell Studies. Chemical Reviews, 2018, 118, 2042-2079.	47.7	75
7	Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering. Applied Materials Today, 2018, 10, 173-183.	4.3	89
8	Photosensitive peptide hydrogels as smart materials for applications. Chinese Chemical Letters, 2018, 29, 1098-1104.	9.0	27
9	Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting. Journal of Materials Science, 2018, 53, 10679-10691.	3.7	55
10	Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: Characterization and its use in encapsulation of citral. Colloids and Surfaces B: Biointerfaces, 2018, 169, 99-106.	5.0	66
11	Engineering the Cell Microenvironment Using Novel Photoresponsive Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 12374-12389.	8.0	48
12	Photoresponsive fiber scaffolds with a core–sheath nanostructure for regulating cell behaviors. Journal of Materials Chemistry B, 2018, 6, 2052-2056.	5.8	9
13	High Modulus Conductive Hydrogels Enhance In Vitro Maturation and Contractile Function of Primary Cardiomyocytes for Uses in Drug Screening. Advanced Healthcare Materials, 2018, 7, e1800990.	7.6	28
14	Nanostructure Evolution of Biomimetic Hydrogel from Silk Fibroin and Poly(<i>N</i> -Vinylcaprolactam): A Small Angle Neutron Scattering Study. ACS Symposium Series, 2018, , 71-89.	0.5	0
15	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chemical Society Reviews, 2018, 47, 8639-8684.	38.1	115
16	Adhesion Control of Branched Catecholic Polymers by Acid Stimulation. ACS Omega, 2018, 3, 16626-16632.	3.5	13
17	Near-infrared AIEgen-functionalized and diselenide-linked oligo-ethylenimine with self-sufficing ROS to exert spatiotemporal responsibility for promoted gene delivery. Journal of Materials Chemistry B, 2018, 6, 6660-6666.	5.8	14
18	Acylhydrazone functionalized benzimidazole-based metallogel for the efficient detection and separation of Cr ³⁺ . Soft Matter, 2018, 14, 8390-8394.	2.7	22

ATION RED

#	Article	IF	CITATIONS
19	3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels. Methods in Molecular Biology, 2018, 2002, 165-180.	0.9	15
20	Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid and Interface Science, 2018, 38, 135-157.	7.4	35
21	The protective effects of acupoint gel embedding on rats with myocardial ischemia-reperfusion injury. Life Sciences, 2018, 211, 51-62.	4.3	14
22	Nanoscaled and microscaled parallel topography promotes tenogenic differentiation of ASC and neotendon formation in vitro. International Journal of Nanomedicine, 2018, Volume 13, 3867-3881.	6.7	29
23	Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials, 2018, 183, 306-318.	11.4	84
24	The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 160-169.	3.1	16
25	Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 198-207.	3.1	15
26	Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization. Advanced Functional Materials, 2018, 28, 1801027.	14.9	125
27	Tunable stiffness of graphene oxide/polyacrylamide composite scaffolds regulates cytoskeleton assembly. Chemical Science, 2018, 9, 6516-6522.	7.4	22
28	Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Materials Science and Engineering C, 2018, 92, 995-1005.	7.3	91
29	Recent Advances in Engineering the Stem Cell Microniche in 3D. Advanced Science, 2018, 5, 1800448.	11.2	83
30	Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2247-2258.	3.3	18
31	Tough Magnetic Chitosan Hydrogel Nanocomposites for Remotely Stimulated Drug Release. Biomacromolecules, 2018, 19, 3351-3360.	5.4	87
32	Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47, 5646-5683.	38.1	410
33	Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Crossâ€Linked Centers. Macromolecular Rapid Communications, 2018, 39, e1800143.	3.9	38
34	Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800079.	4.1	172
35	Multiple Cross-Linking of a Small Peptide to Form a Size Tunable Biopolymer with Efficient Cell Adhesion and Proliferation Property. Biomacromolecules, 2018, 19, 3994-4002.	5.4	16
36	Tailoring Collagen to Engineer the Cellular Microenvironment. Biotechnology Journal, 2018, 13, 1800140.	3.5	5

#	Article	IF	CITATIONS
37	Tumor Oxygenation and Hypoxia Inducible Factor-1 Functional Inhibition <i>via</i> a Reactive Oxygen Species Responsive Nanoplatform for Enhancing Radiation Therapy and Abscopal Effects. ACS Nano, 2018, 12, 8308-8322.	14.6	213
38	Hierarchical Micro- and Nanopatterning of Metallic Glass to Engineer Cellular Responses. ACS Applied Bio Materials, 2018, 1, 51-58.	4.6	12
39	Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Materials Today, 2019, 24, 41-56.	14.2	144
40	Microchannel Stiffness and Confinement Jointly Induce the Mesenchymal-Amoeboid Transition of Cancer Cell Migration. Nano Letters, 2019, 19, 5949-5958.	9.1	60
41	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622.	48.7	251
42	Regulation of Cell Behavior by Hydrostatic Pressure. Applied Mechanics Reviews, 2019, 71, 0408031-4080313.	10.1	34
43	Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11, 042001.	7.1	363
44	Advances in Hydrogels in Organoids and Organsâ€onâ€aâ€Chip. Advanced Materials, 2019, 31, e1902042.	21.0	212
45	Nonswellable and Tough Supramolecular Hydrogel Based on Strong Micelle Cross-Linkings. Biomacromolecules, 2019, 20, 3399-3407.	5.4	48
46	Differential Effects of Directional Cyclic Stretching on the Functionalities of Engineered Cardiac Tissues. ACS Applied Bio Materials, 2019, 2, 3508-3519.	4.6	17
47	Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomaterials Science, 2019, 7, 4414-4443.	5.4	22
48	Physical confinement induces malignant transformation in mammary epithelial cells. Biomaterials, 2019, 217, 119307.	11.4	13
49	Encoded Microneedle Arrays for Detection of Skin Interstitial Fluid Biomarkers. Advanced Materials, 2019, 31, e1902825.	21.0	145
50	Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydrate Polymers, 2019, 224, 115129.	10.2	43
51	A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration. Nano Letters, 2019, 19, 8612-8620.	9.1	82
52	Directional topography gradients drive optimum alignment and differentiation of human myoblasts. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2234-2245.	2.7	28
53	Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials, 2019, 11, .	7.9	202
54	Functional Nanomaterials on 2D Surfaces and in 3D Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2019, 29, 1904344.	14.9	58

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
55	Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemist biofabrication technology. Progress in Polymer Science, 2019, 98, 101147.	ry to	24.7	120
56	Enhancement and control of neuron adhesion on polydimethylsiloxane for cell microer using a functionalized triblock polymer. Lab on A Chip, 2019, 19, 3162-3167.	ngineering	6.0	12
57	Entanglement-Driven Adhesion, Self-Healing, and High Stretchability of Double-Networ Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 36458-36468.	'k PEG-Based	8.0	67
58	Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Orofacial Tissue Regeneration. ACS Applied Materials & amp; Interfaces, 2019, 11, 373	Properties for	8.0	155
59	Redirecting differentiation of mammary progenitor cells by 3D bioprinted sweat gland microenvironment. Burns and Trauma, 2019, 7, 29.		4.9	18
60	Strengthened cellulosic gels by the chemical gelation of cellulose via crosslinking with Cellulose, 2019, 26, 9819-9829.	TEOS.	4.9	12
61	Helium Plasma-Driven Radiofrequency in Body Contouring. , 0, , .			4
62	Use of Aligned Microscale Sacrificial Fibers in Creating Biomimetic, Anisotropic Poly(gly	vcerol) Tj ETQq1 1 0.7843	14 ₄ gBT /C	verlock 10
63	Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulati Behaviors. Journal of the American Chemical Society, 2019, 141, 16772-16780.	ng Cell	13.7	133
65	Characterization of microcircular wounds pressurized by a hybrid chip-on-dish method adhesion and mobility testing. Analytical Methods, 2019, 11, 1159-1167.	for live cell	2.7	2
66	pH-Controlled Self-Assembled Fibrillar Network Hydrogels: Evidence of Kinetic Control Mechanical Properties. Chemistry of Materials, 2019, 31, 4817-4830.	of the	6.7	35
67	Biofabrication of phenotypic pulmonary fibrosis assays. Biofabrication, 2019, 11, 0320	05.	7.1	7
69	Optimization of the cell microenvironment in a dual magnetic-pH-sensitive hydrogel-ba multiphysics modeling. Bioelectrochemistry, 2019, 129, 90-99.	ised scaffold by	4.6	10
70	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrowith hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	ogel scaffold	10.2	113
71	Tissue Engineering for Clean Meat Production. Frontiers in Sustainable Food Systems,	2019, 3, .	3.9	142
72	Engineering Artificial Niches for Regenerative Medicine. , 2019, , 103-103.			0
73	Skeletal myotube formation enhanced through fibrillated collagen nanofibers coated o polycaprolactone surface. Colloids and Surfaces B: Biointerfaces, 2019, 181, 408-415.	n a 3D-printed	5.0	6
74	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the S 2019, 7, 131.	SITC workshop. ,		64

#	Article	IF	CITATIONS
75	Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics, 2019, 9, 2694-2711.	10.0	73
76	Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Advanced Healthcare Materials, 2019, 8, e1900013.	7.6	52
77	Fish Collagen and Hydroxyapatite Reinforced Poly(lactide- <i>co</i> -glycolide) Fibrous Membrane for Guided Bone Regeneration. Biomacromolecules, 2019, 20, 2058-2067.	5.4	74
78	Imaging oxygen microenvironment in hydrogel microwell array. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 321-328.	3.4	5
79	Ultrasonicationâ€Induced Modification of Hydroxyapatite Nanoparticles onto a 3D Porous Poly(lactic) Tj ETQq0 (and Engineering, 2019, 304, 1900081.	0 0 rgBT /0 3.6	Overlock 10 T 12
80	Stimuli-Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications. , 2019, , 1-44.		Ο
81	Electroactive Nanocomposite Porous Scaffolds of PAP _n /op-HA/PLGA Enhance Osteogenesis in Vivo. ACS Applied Bio Materials, 2019, 2, 1464-1476.	4.6	12
82	Functionalized DNA Hydrogels Produced by Polymeraseâ€Catalyzed Incorporation of Nonâ€Natural Nucleotides as a Surface Coating for Cell Culture Applications. Advanced Healthcare Materials, 2019, 8, e1900080.	7.6	24
83	Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application. Molecular Biotechnology, 2019, 61, 345-354.	2.4	12
84	Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomaterialia, 2019, 90, 21-36.	8.3	34
85	Polyamide/PEG Blends as Biocompatible Biomaterials for the Convenient Regulation of Cell Adhesion and Growth. Macromolecular Rapid Communications, 2019, 40, e1900091.	3.9	33
86	Mouse <i>in vitro</i> spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication, 2019, 11, 035011.	7.1	48
87	Fabrication of three-dimensional islet models by the geometry-controlled hanging-drop method. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 329-337.	3.4	20
88	Modification of 3-D Porous Hydroxyapatite/Thermoplastic Polyurethane Composite Scaffolds for Reinforcing Interfacial Adhesion by Polydopamine Surface Coating. ACS Omega, 2019, 4, 6382-6391.	3.5	23
89	Translation of a Coated Rigid Spherical Inclusion in an Elastic Matrix: Exact Solution, and Implications for Mechanobiology. Journal of Applied Mechanics, Transactions ASME, 2019, 86, 0510021-5100210.	2.2	6
90	A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 2019, 46, 1728-1739.	3.0	4
91	4D Bioprinting: Technological Advances in Biofabrication. Macromolecular Bioscience, 2019, 19, e1800441.	4.1	92
92	Natural History Collections as Inspiration for Technology. BioEssays, 2019, 41, e1700238.	2.5	9

ARTICLE IF CITATIONS # Electrobiofabrication: electrically based fabrication with biologically derived materials. 93 7.1 43 Biofabrication, 2019, 11, 032002. Decorating protein hydrogels reversibly enables dynamic presentation and release of functional protein ligands on protein hydrogels. Chemical Communications, 2019, 55, 12703-12706. 94 4.1 9 The ins and outs of engineering functional tissues and organs: evaluating the in-vitro and in-situ 95 1.6 12 processes. Current Opinion in Organ Transplantation, 2019, 24, 590-597. Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by 96 nitric oxide generation. Regenerative Medicine, 2019, 14, 1089-1105. Supramolecular Hydrogels with Properties Tunable by Calcium Ions: A Bio-Inspired Chemical System. 97 4.6 13 AC'S Applied Bio Materials, 2019, 2, 5819-5828. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. Advanced Materials, 2019, 31, e1801159. 21.0 Engineering hiPSC cardiomyocyte inÂvitro model systems for functional and structural assessment. 99 2.9 19 Progress in Biophysics and Molecular Biology, 2019, 144, 3-15. 2D Gelatin Methacrylate Hydrogels with Tunable Stiffness for Investigating Cell Behaviors. ACS 100 4.6 Applied Bio Materials, 2019, 2, 570-576. 101 4D Biomaterials for Lightâ€Guided Angiogenesis. Advanced Functional Materials, 2019, 29, 1807734. 14.9 41 Matrix-assisted cell transplantation for tissue vascularization. Advanced Drug Delivery Reviews, 2019, 13.7 146, 155-169. Surface modification of chitosan films with a fibronectin fragment–DNA aptamer complex to enhance osteoblastic cell activity: A mass spectrometry approach probing evidence on protein behavior. Rapid 103 1.5 9 Communications in Mass Spectrometry, 2019, 33, 336-342. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. Biofabrication, 2019, 11, 015015. Threeâ€Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Advanced 105 3.2 16 Therapeutics, 2019, 2, 1800108. Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro. ACS Applied Materials & amp; Interfaces, 2019, 11, 5821-5833. 8.0 Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization. 107 5.471 Biomacromolecules, 2019, 20, 826-834. Stimulus-Responsive Antibiotic Releasing Systems for the Treatment of Wound Infections. ACS Applied Bio Materials, 2019, 2, 704-716. The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Bioscience Reports, 109 2.4 65 2019, 39, . A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chemical Engineering Journal, 2019, 358, 1539-1551.

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
111	X-Mechanics—An endless frontier. Science China: Physics, Mechanics and Astronomy	, 2019, 62, 1.	5.1	17
112	Shear thinning/self-healing hydrogel based on natural polymers with secondary photoc for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 191-201.	rosslinking , 2019, 90,	3.1	32
113	Material approaches to active tissue mechanics. Nature Reviews Materials, 2019, 4, 23	-44.	48.7	103
114	Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Advanced Funct Materials, 2019, 29, 1806899.	ional	14.9	118
115	Hepatocyte culture on 3D porous scaffolds of PCL/PMCL. Colloids and Surfaces B: Bioin 173, 185-193.	ıterfaces, 2019,	5.0	24
116	Stimuliâ€Responsive Supramolecular Hydrogels and Their Applications in Regenerative Macromolecular Bioscience, 2019, 19, e1800259.	Medicine.	4.1	133
117	Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Drug Delivery Reviews, 2019, 139, 92-115.	Advanced	13.7	134
118	Design of Polysaccharide- <i>b</i> -Elastin-Like Polypeptide Bioconjugates and Their The Self-Assembly. Biomacromolecules, 2020, 21, 114-125.	rmoresponsive	5.4	43
119	3D bioprinting of liver spheroids derived from human induced pluripotent stem cells su function and viability <i>in vitro</i> . Biofabrication, 2020, 12, 015010.	stain liver	7.1	95
120	Grayscale maskâ€assisted photochemical crosslinking for a dense collagen construct v gradient. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020,	vith stiffness 108, 1000-1009.	3.4	7
121	Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanica adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication, 2020	l and cell 12, 015024.	7.1	67
122	Spatially modulated stiffness on hydrogels for soft and stretchable integrated electron Horizons, 2020, 7, 203-213.	ics. Materials	12.2	70
123	Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers. Biofabrication, 2020, 12, 015020.		7.1	19
124	Photoinduced directional domain sliding motion in peptide hydrogels promotes ectode differentiation of embryonic stem cells. Science China Materials, 2020, 63, 467-478.	rmal	6.3	1
125	Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerg Advanced Materials, 2020, 32, e1902026.	ging Strategies.	21.0	377
126	Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjug Polythiophene/Polyisocyanide Hybrid Hydrogels. Angewandte Chemie - International Ec 2720-2724.		13.8	55
127	Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjug Polythiophene/Polyisocyanide Hybrid Hydrogels. Angewandte Chemie, 2020, 132, 274	;ated 2-2746.	2.0	4
128	Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Sca Fabrication. ACS Applied Materials & amp; Interfaces, 2020, 12, 4343-4357.	ffold	8.0	107

#	Article	IF	CITATIONS
129	Reactive spinning to achieve nanocomposite gel fibers: from monomer to fiber dynamically with enhanced anisotropy. Materials Horizons, 2020, 7, 811-819.	12.2	29
130	3D cultures for modeling nanomaterial-based photothermal therapy. Nanoscale Horizons, 2020, 5, 400-430.	8.0	34
131	Development of Optimized Strategies for Growth Factor Incorporation onto Electrospun Fibrous Scaffolds To Promote Prolonged Release. ACS Applied Materials & Interfaces, 2020, 12, 5578-5592.	8.0	33
132	Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1269-1278.	5.2	31
133	Uniaxial Stretching of Cell-Laden Microfibers for Promoting C2C12 Myoblasts Alignment and Myofibers Formation. ACS Applied Materials & Interfaces, 2020, 12, 2162-2170.	8.0	31
134	Well Plate Integrated Topography Gradient Screening Technology for Studying Cell‧urface Topography Interactions. Advanced Biology, 2020, 4, e1900218.	3.0	9
135	Supramolecular Nanofibers for Encapsulation and In Situ Differentiation of Neural Stem Cells. Advanced Healthcare Materials, 2020, 9, e1901295.	7.6	12
136	Effect of matrix stiffness and adhesion ligand density on chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 675-683.	4.0	35
137	The Plot Thickens: The Emerging Role of Matrix Viscosity in Cell Mechanotransduction. Advanced Healthcare Materials, 2020, 9, e1901259.	7.6	75
138	Straining 3D Hydrogels with Uniform Z-Axis Strains While Enabling Live Microscopy Imaging. Annals of Biomedical Engineering, 2020, 48, 868-880.	2.5	6
139	Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 2049-2058.	8.0	31
140	Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics, 2020, 10, 300-311.	10.0	60
141	Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.	21.0	127
142	A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation. Advanced Intelligent Systems, 2020, 2, 1900105.	6.1	16
143	Mussel-Inspired Conducting Copolymer with Aniline Tetramer as Intelligent Biological Adhesive for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 634-646.	5.2	49
144	Increased Fibronectin Impairs the Function of Excitatory/Inhibitory Synapses in Hirschsprung Disease. Cellular and Molecular Neurobiology, 2020, 40, 617-628.	3.3	4
145	Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules, 2020, 21, 732-742.	5.4	15
146	Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589590.	4.1	21

#	Article	IF	CITATIONS
147	Synthesis and biological evaluation of N-Alkylamide derivatives as anti-tumor agents. Journal of Traditional Chinese Medical Sciences, 2020, 7, 393-403.	0.2	2
148	Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111361.	5.0	14
149	Modeling the epithelial-mesenchymal transition process in a 3D organotypic cervical neoplasia. Acta Biomaterialia, 2020, 116, 209-222.	8.3	11
150	Studies of surface grafted collagen and transforming growth factor Î ² 1 combined with cyclic stretching as a dual chemical and physical stimuli approach for rat adipose-derived stem cells (rADSCs) chondrogenesis differentiation. Journal of the Mechanical Behavior of Biomedical Materials. 2020. 112. 104062.	3.1	6
151	Biomimetic microenvironmental preconditioning enhance neuroprotective properties of human mesenchymal stem cells derived from Wharton's Jelly (WJ-MSCs). Scientific Reports, 2020, 10, 16946.	3.3	14
152	Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering, 2020, 7, 122.	3.5	28
153	Conductive hydrogel composites with autonomous self-healing properties. Soft Matter, 2020, 16, 10969-10976.	2.7	11
154	Core-shell microparticles: Generation approaches and applications. Journal of Science: Advanced Materials and Devices, 2020, 5, 417-435.	3.1	79
155	Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomaterials Science, 2020, 8, 5589-5600.	5.4	34
156	3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands. Advanced Science, 2020, 7, 2001419.	11.2	92
157	Self‣trengthening Adhesive Force Promotes Cell Mechanotransduction. Advanced Materials, 2020, 32, e2006986.	21.0	41
158	Heterogeneous Polymeric Particles Encapsulating Human T cells for Controlled Activation, Proliferation, and Delivery. ACS Applied Bio Materials, 2020, 3, 7357-7362.	4.6	4
159	ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Science Advances, 2020, 6, .	10.3	78
161	Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. International Journal of Biological Macromolecules, 2020, 162, 1358-1371.	7.5	38
162	Paper-based in vitro tissue chip for delivering programmed mechanical stimuli of local compression and shear flow. Journal of Biological Engineering, 2020, 14, 20.	4.7	5
163	Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research?. Frontiers in Physiology, 2020, 11, 715.	2.8	57
164	Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering. Materials, 2020, 13, 3210.	2.9	26
165	Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chemical Reviews, 2020, 120, 10608-10661.	47.7	246

#	Article	IF	CITATIONS
166	Fabrication of vascular smooth muscle-like tissues based on self-organization of circumferentially aligned cells in microengineered hydrogels. Lab on A Chip, 2020, 20, 3120-3131.	6.0	16
167	Functionalization of 3-D porous thermoplastic polyurethane scaffolds by two-stage polydopamine/hydroxyapatite composite nanoparticles. EXPRESS Polymer Letters, 2020, 14, 794-807.	2.1	6
168	Cell-loaded injectable gelatin/alginate/LAPONITE® nanocomposite hydrogel promotes bone healing in a critical-size rat calvarial defect model. RSC Advances, 2020, 10, 25652-25661.	3.6	39
169	Silk-Based Composite Scaffolds for Tissue Engineering Applications. Industrial & Engineering Chemistry Research, 2020, 59, 17593-17611.	3.7	55
170	Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nature Communications, 2020, 11, 4032.	12.8	129
171	Interactions at engineered graft–tissue interfaces: A review. APL Bioengineering, 2020, 4, 031502.	6.2	3
172	Circulating tumour cells: a broad perspective. Journal of the Royal Society Interface, 2020, 17, 20200065.	3.4	37
173	Electrospun Nanofibers Containing Strontium for Bone Tissue Engineering. Journal of Nanomaterials, 2020, 2020, 1-14.	2.7	10
174	Highly swelling, tough intelligent self-healing hydrogel with body temperature-response. European Polymer Journal, 2020, 140, 110047.	5.4	16
175	4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Materials, 2020, 12, .	7.9	35
176	Warp-Knitted Spacer Fabrics: A Versatile Platform to Generate Fiber-Reinforced Hydrogels for 3D Tissue Engineering. Materials, 2020, 13, 3518.	2.9	11
177	Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter, 2020, 16, 10065-10095.	2.7	62
178	Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chemical Reviews, 2020, 120, 10834-10886.	47.7	107
179	Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Journal of Materials Science: Materials in Medicine, 2020, 31, 77.	3.6	20
180	Sacrificial Alginate-Assisted Microfluidic Engineering of Cell-Supportive Protein Microfibers for Hydrogel-Based Cell Encapsulation. ACS Omega, 2020, 5, 21641-21650.	3.5	9
181	Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy. Soft Matter, 2020, 16, 4210-4219.	2.7	31
182	In Vitro Organotypic Systems to Model Tumor Microenvironment in Human Papillomavirus (HPV)-Related Cancers. Cancers, 2020, 12, 1150.	3.7	15
183	Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chemical Reviews, 2020, 120, 6070-6123.	47.7	466

#	Article	IF	CITATIONS
184	Sustainable Polyesteramides and Copolyamides: Insights into the Copolymerization Behavior of Terpeneâ€Based Lactams. Macromolecular Chemistry and Physics, 2020, 221, 2000110.	2.2	16
185	Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Engineering and Regenerative Medicine, 2020, 17, 253-269.	3.7	14
186	Salt induced fluffy structured electrospun fibrous matrix. Journal of Molecular Liquids, 2020, 312, 113478.	4.9	9
187	Quantum Dot-Functionalized Extracellular Matrices for <i>In Situ</i> Monitoring of Cardiomyocyte Activity. ACS Applied Nano Materials, 2020, 3, 6118-6126.	5.0	6
188	Photopatternable, Branched Polymer Hydrogels Based on Linear Macromonomers for 3D Cell Culture Applications. ACS Macro Letters, 2020, 9, 882-888.	4.8	19
189	Rational Design of PMPC/PDMC/PEGDA Hydrogel Micropatterns onto Polylactic Acid with Enhanced Biological Activity. ACS Biomaterials Science and Engineering, 2020, 6, 3799-3810.	5.2	6
190	Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 414.	4.1	69
191	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	21.0	50
192	Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611.	4.1	62
193	Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports, 2020, 10, 8740.	3.3	63
194	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	14.9	51
195	Protective role of three differently processed corn bran on glucose and lipid concentrations in <scp>d</scp> â€galactoseâ€induced mice model. Journal of Food Biochemistry, 2020, 44, e13281.	2.9	5
196	Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. Materials, 2020, 13, 2483.	2.9	34
197	Local delivery of FTY720 in mesoporous bioactive glass improves bone regeneration by synergistically immunomodulating osteogenesis and osteoclastogenesis. Journal of Materials Chemistry B, 2020, 8, 6148-6158.	5.8	14
198	Nature-derived materials for the fabrication of functional biodevices. Materials Today Bio, 2020, 7, 100065.	5.5	68
199	Effect of Substrate Stiffness on Redox State of Single Cardiomyocyte: A Scanning Electrochemical Microscopy Study. Analytical Chemistry, 2020, 92, 4771-4779.	6.5	16
200	Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomaterials Science and Engineering, 2020, 6, 2357-2367.	5.2	31
201	Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 2020, 6, eaax1909.	10.3	69

ARTICLE IF CITATIONS Control of Matrix Stiffness Using Methacrylateâ€"Gelatin Hydrogels for a Macrophage-Mediated 202 5.2 64 Inflammatory Response. ACS Biomaterials Science and Engineering, 2020, 6, 3091-3102. 3D printing of Haversian bone–mimicking scaffolds for multicellular delivery in bone regeneration. 201 Science Advances, 2020, 6, eaaz6725. Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional 204 14.9 50 Materials, 2020, 30, 1909146. Human mesenchymal stem cell (hMSC) differentiation towards cardiac cells using a new 3.5 microbioanalytical method. Analyst, The, 2020, 145, 3017-3028. Chitosan derived nitrogen-doped carbon dots suppress osteoclastic osteolysis <i>via</i> 206 5.6 43 downregulating ROS. Nanoscale, 2020, 12, 16229-16244. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioactive Materials, 2020, 5, 938-948. 15.6 Control of fibroblast shape in sequentially formed 3D hybrid hydrogels regulates cellular responses 208 7.9 20 to microenvironmental cues. NPG Asia Materials, 2020, 12, . High Throughput Screening of Cell Mechanical Response Using a Stretchable 3D Cellular Microarray 209 10.0 16 Platform. Small, 2020, 16, e2000941. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell 210 5.4 3 Encapsulation and Differentiation. Biomacromolecules, 2020, 21, 3081-3091. Engineering extracellular matrix to improve drug delivery for cancer therapy. Drug Discovery Today, 6.4 2020, 25, 1727-1734. Poly(gallic acid)-coated polycaprolactone inhibits oxidative stress in epithelial cells. Materials 212 7.311 Science and Engineering C, 2020, 115, 111154. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International 8.6 240 Journal of Oral Science, 2020, 12, 6. Quantifying the regularity of a 3D set of points on the surface of an ellipsoidal object. Pattern 214 4.2 0 Recognition Letters, 2020, 133, 1-7. Neutralization-Induced Self-Assembly of Cellulose Oligomers into Antibiofouling Crystalline Nanoribbon Networks in Complex Mixtures. ACS Macro Letters, 2020, 9, 301-305. 4.8 Rational design and engineering of carbon nano-onions reinforced natural protein nanocomposite 216 hydrogels for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 43 3.12020, 104, 103696. Highâ€Aspectâ€Ratio Nanostructured Surfaces as Biological Metamaterials. Advanced Materials, 2020, 32, 217 161 e1903862. Sustained release of stromal cell–derived factorâ€1 alpha from silk fibroin microfiber promotes 218 urethral reconstruction in rabbits. Journal of Biomedical Materials Research - Part A, 2020, 108, 4.0 11 1760-1773. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT₁R. 219 4.1 28 Journal of Cellular Physiology, 2020, 235, 8345-8357.

#	Article	IF	CITATIONS
220	3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Materials Science and Engineering C, 2020, 112, 110905.	7.3	58
221	Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage. Sensors and Actuators B: Chemical, 2020, 315, 127917.	7.8	27
222	Mechanically Robust Polyacrylamide Composite Hydrogel Achieved by Integrating Lamellar Montmorillonite and Chitosan Microcrystalline Structure into Covalently Cross-linked Network. ACS Applied Polymer Materials, 2020, 2, 1874-1885.	4.4	21
223	Organoid technology for tissue engineering. Journal of Molecular Cell Biology, 2020, 12, 569-579.	3.3	38
224	Humanâ€onâ€Leafâ€Chip: A Biomimetic Vascular System Integrated with Chamberâ€Specific Organs. Small, 2020 16, e2000546.	^{),} 10.0	38
225	3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Advanced Healthcare Materials, 2020, 9, e2000208.	7.6	52
226	Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration. Materials Science and Engineering C, 2020, 113, 110981.	7.3	18
227	Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chemical Reviews, 2020, 120, 6009-6047.	47.7	107
228	Biointerface topography mediates the interplay between endothelial cells and monocytes. RSC Advances, 2020, 10, 13848-13854.	3.6	6
229	Impact of composite scaffold degradation rate on neural stem cell persistence in the glioblastoma surgical resection cavity. Materials Science and Engineering C, 2020, 111, 110846.	7.3	8
230	Porous multi-layered composite hydrogel as cell substrate for <i>inÂvitro</i> culture of chondrocytes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 764-773.	3.4	5
231	Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angewandte Chemie - International Edition, 2021, 60, 2757-2767.	13.8	66
232	Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angewandte Chemie, 2021, 133, 2789-2799.	2.0	12
233	Characterization of Anisotropic Human Hair Keratin Scaffolds Fabricated via Directed Ice Templating. Macromolecular Bioscience, 2021, 21, e2000314.	4.1	15
234	Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 229-247.	3.5	7
235	Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues. Progress in Materials Science, 2021, 120, 100738.	32.8	131
236	Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers, 2021, 252, 117159.	10.2	28
237	Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Materials Science and Engineering C, 2021, 120, 111752.	7.3	26

#	Article	IF	CITATIONS
238	Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release, 2021, 329, 237-256.	9.9	45
239	Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‣ystems. Angewandte Chemie, 2021, 133, 5519-5526.	2.0	8
240	Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‧ystems. Angewandte Chemie - International Edition, 2021, 60, 5459-5466.	13.8	19
241	Photoelectrochemical TiO ₂ â€Auâ€Nanowireâ€Based Motor for Precise Modulation of Singleâ€Neuron Activities. Advanced Functional Materials, 2021, 31, 2008667.	14.9	37
242	<i>Inâ€Situ</i> and <i>Operando</i> Techniques for Investigating Electron Transfer in Biological Systems. ChemElectroChem, 2021, 8, 431-446.	3.4	13
243	Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioactive Materials, 2021, 6, 1878-1909.	15.6	103
244	Organism–Materials Integration: A Promising Strategy for Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000044.	3.6	3
245	Coaxial-printed small-diameter polyelectrolyte-based tubes with an electrostatic self-assembly of heparin and YIGSR peptide for antithrombogenicity and endothelialization. Bioactive Materials, 2021, 6, 1628-1638.	15.6	16
246	Novel method to produce a layered 3D scaffold for human pluripotent stem cell-derived neuronal cells. Journal of Neuroscience Methods, 2021, 350, 109043.	2.5	10
247	Biomimetic algal polysaccharide coated 3D nanofibrous scaffolds promote skin extracellular matrix formation. Materials Science and Engineering C, 2021, 119, 111580.	7.3	13
248	Lowâ€intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration. Journal of Biomedical Materials Research - Part A, 2021, 109, 1101-1112.	4.0	17
249	Peak force tapping atomic force microscopy for advancing cell and molecular biology. Nanoscale, 2021, 13, 8358-8375.	5.6	20
250	Advances in Engineering Human Tissue Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 620962.	4.1	72
251	Molecularly imprinted polymer composites in drug delivery. , 2021, , 173-226.		Ο
252	3D printing biomimetic materials and structures for biomedical applications. Bio-Design and Manufacturing, 2021, 4, 405-428.	7.7	66
253	Induction of M2â€Type Macrophage Differentiation for Bone Defect Repair via an Interpenetration Network Hydrogel with a GOâ€Based Controlled Release System. Advanced Healthcare Materials, 2021, 10, e2001502.	7.6	51
254	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	1.6	0
255	Beyond homogeneous dispersion: oriented conductive fillers for high <i>β</i> nanocomposites. Materials Horizons, 2021, 8, 3009-3042.	12.2	21

#	Article	IF	CITATIONS
256	In vitro models of intestinal epithelium: Toward bioengineered systems. Journal of Tissue Engineering, 2021, 12, 204173142098520.	5.5	33
257	Chondrocytes derived from pluripotent stem cells. , 2021, , 55-80.		0
258	High-throughput three-dimensional cellular platforms for screening biophysical microenvironmental signals. , 2021, , 125-152.		1
259	Osteogenic Response of MC3T3-E1 and Raw264.7 in the 3D-Encapsulated Co-Culture Environment. Tissue Engineering and Regenerative Medicine, 2021, 18, 387-397.	3.7	4
260	Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomaterials Science, 2021, 9, 4329-4342.	5.4	16
261	Nanostructured Dense Collagenâ€Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. Advanced Science, 2021, 8, 2004213.	11.2	40
262	Bioengineered Skin Substitutes: Advances and Future Trends. Applied Sciences (Switzerland), 2021, 11, 1493.	2.5	35
263	Effects of electrical stimulation on skin surface. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1843-1871.	3.4	12
264	Controlled Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Dexamethasone-Loaded Light-Responsive Microgels. ACS Applied Materials & Interfaces, 2021, 13, 7051-7059.	8.0	19
265	Necessities, opportunities, and challenges for tympanic membrane perforation scaffolding-based bioengineering. Biomedical Materials (Bristol), 2021, 16, 032004.	3.3	12
266	Engineering Three-Dimensional Vascularized Cardiac Tissues. Tissue Engineering - Part B: Reviews, 2022, 28, 336-350.	4.8	12
267	Viscoelastic Cell Microenvironment: Hydrogelâ€Based Strategy for Recapitulating Dynamic ECM Mechanics. Advanced Functional Materials, 2021, 31, 2100848.	14.9	80
268	Displaying Lipid Chains in a Peptide–Polysaccharide-Based Self-Assembled Hydrogel Network. Chemistry of Materials, 2021, 33, 2756-2768.	6.7	10
269	Ultra-stretchable, self-recovering, self-healing cationic guar gum/poly(stearyl) Tj ETQq1 1 0.784314 rgBT /Overloc	k 10 Tf 50 10.2	222 Td (me
270	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2000088.	3.6	9
271	High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews, 2021, 121, 4561-4677.	47.7	89
272	Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomaterialia, 2021, 123, 312-324.	8.3	22
273	Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsystems and Nanoengineering, 2021, 7, 19.	7.0	47

#	ARTICLE	IF	Citations
274	Manipulation of Stem Cells Fates: The Master and Multifaceted Roles of Biophysical Cues of Biomaterials. Advanced Functional Materials, 2021, 31, 2010626.	14.9	62
275	Evaluating Poly(Acrylamide―co â€Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromolecular Bioscience, 2021, 21, 2100069.	4.1	8
276	Investigating the Effect of Substrate Stiffness on the Redox State of Cardiac Fibroblasts Using Scanning Electrochemical Microscopy. Analytical Chemistry, 2021, 93, 5797-5804.	6.5	11
277	Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomaterialia, 2022, 139, 4-21.	8.3	33
278	Conductive Hydrogels with Dynamic Reversible Networks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100012.	7.6	47
279	A Three-Dimensional Electrochemical Biosensor Integrated with Hydrogel Enables Real-Time Monitoring of Cells under Their <i>In Vivo</i> -like Microenvironment. Analytical Chemistry, 2021, 93, 7917-7924.	6.5	18
280	3D Bioprinting of Polythiophene Materials for Promoting Stem Cell Proliferation in a Nutritionally Deficient Environment. ACS Applied Materials & Interfaces, 2021, 13, 25759-25770.	8.0	15
281	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2170053.	3.6	4
282	Aligned Electrospun PLLA/Graphene Microfibers with Nanotopographical Surface Modulate the Mitochondrial Responses of Vascular Smooth Muscle Cells. Advanced Materials Interfaces, 2021, 8, 2100229.	3.7	8
283	A Stretchable Scaffold with Electrochemical Sensing for 3D Culture, Mechanical Loading, and Realâ€īme Monitoring of Cells. Advanced Science, 2021, 8, e2003738.	11.2	16
284	Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. Science Advances, 2021, 7, .	10.3	77
285	The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomaterialia, 2021, 126, 45-62.	8.3	25
286	3D Cell Culture Technology – A New Insight Into <i>in Vitro</i> Research – A Review. Annals of Animal Science, 2021, 21, 1257-1273.	1.6	4
287	Lightâ€Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic. Advanced Healthcare Materials, 2021, 10, e2100488.	7.6	6
288	Preparation and characterization of double network hydrogel with high-strength and self-healing. Materials Today Communications, 2021, 27, 102450.	1.9	8
289	Research Progress of Chitosan-Based Biomimetic Materials. Marine Drugs, 2021, 19, 372.	4.6	15
290	Chemically Triggered Hydrogel Transformations through Covalent Adaptable Networks and Applications in Cell Culture. ACS Macro Letters, 2021, 10, 901-906.	4.8	10
291	Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 2021, 33, e2007429.	21.0	153

#	Article	IF	CITATIONS
292	Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. Applied Physics Reviews, 2021, 8, 021404.	11.3	45
293	Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. Applied Physics Reviews, 2021, 8, 021405.	11.3	33
294	Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment. International Journal of Biological Macromolecules, 2021, 182, 1941-1952.	7.5	19
295	Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. International Journal of Biological Macromolecules, 2021, 182, 2048-2055.	7.5	25
296	Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomaterialia, 2021, 128, 1-20.	8.3	36
297	Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. Journal of Controlled Release, 2021, 335, 216-236.	9.9	49
298	Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs. Biofabrication, 2021, 13, 035051.	7.1	10
299	Highly interconnected inverse opal extracellular matrix scaffolds enhance stem cell therapy in limb ischemia. Acta Biomaterialia, 2021, 128, 209-221.	8.3	15
300	Bioinspired Microstructure Platform for Modular Cell‣aden Microgel Fabrication. Macromolecular Bioscience, 2021, 21, 2100110.	4.1	2
301	Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today, 2021, 39, 101180.	11.9	9
302	Hierarchically Assembled Type I Collagen Fibres as Biomimetic Building Blocks of Biomedical Membranes. Membranes, 2021, 11, 620.	3.0	5
303	Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomaterialia, 2021, 135, 304-317.	8.3	12
304	Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. International Journal of Biological Macromolecules, 2021, 184, 648-665.	7.5	17
305	Calculation of Mass Transfer and Cell-Specific Consumption Rates to Improve Cell Viability in Bioink Tissue Constructs. Materials, 2021, 14, 4387.	2.9	1
306	Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomedicine and Pharmacotherapy, 2021, 140, 111704.	5.6	25
307	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	14.9	38
308	Bioâ€Inspired Multiâ€Responsive Structural Color Hydrogel with Constant Volume and Wide Viewing Angles. Advanced Optical Materials, 2021, 9, 2100831.	7.3	30
309	Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 2022, 10, 397-404.	15.6	41

#	Article	IF	CITATIONS
310	Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. Chemical Engineering Journal, 2021, 417, 129335.	12.7	45
311	Tailoring Materials with Specific Wettability in Biomedical Engineering. Advanced Science, 2021, 8, e2100126.	11.2	52
312	Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
313	Bioengineering methods for organoid systems. Biology of the Cell, 2021, 113, 475-491.	2.0	8
314	Bioprinted hASC-laden structures with cell-differentiation niches for muscle regeneration. Chemical Engineering Journal, 2021, 419, 129570.	12.7	19
315	A Substrate-Mimicking Basement Membrane Drives the Organization of Human Mesenchymal Stromal Cells and Endothelial Cells Into Perivascular Niche-Like Structures. Frontiers in Cell and Developmental Biology, 2021, 9, 701842.	3.7	2
316	Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomaterialia, 2021, 132, 188-216.	8.3	21
317	Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. Nano Select, 0, , .	3.7	0
318	How Microgels Can Improve the Impact of Organ-on-Chip and Microfluidic Devices for 3D Culture: Compartmentalization, Single Cell Encapsulation and Control on Cell Fate. Polymers, 2021, 13, 3216.	4.5	10
319	MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration. Bioactive Materials, 2022, 10, 1-14.	15.6	18
320	The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way. Bioactive Materials, 2022, 11, 206-217.	15.6	24
321	Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and Engineering Reports, 2021, 146, 100630.	31.8	18
322	Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration. Bioactive Materials, 2021, 6, 3097-3108.	15.6	29
323	A nanosecond pulsed electric field (nsPEF) can affect membrane permeabilization and cellular viability in a 3D spheroids tumor model. Bioelectrochemistry, 2021, 141, 107839.	4.6	9
324	Three-dimensional (3D), macroporous, elastic, and biodegradable nanocomposite scaffold for in situ bone regeneration: Toward structural, biophysical, and biochemical cues integration. Composites Part B: Engineering, 2021, 225, 109270.	12.0	23
325	Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioengineering, 2021, 5, 041501.	6.2	11
326	Recent progress in preparation of functional microparticles based on microfluidic technique. Materials Today Communications, 2021, 29, 102740.	1.9	8
327	Micro-and-nanometer topological gradient of block copolymer fibrous scaffolds towards region-specific cell regulation. Journal of Colloid and Interface Science, 2022, 606, 248-260.	9.4	17

#	Article	IF	CITATIONS
328	Three-dimensional MOF-derived hierarchically porous aerogels activate peroxymonosulfate for efficient organic pollutants removal. Chemical Engineering Journal, 2022, 427, 130830.	12.7	53
329	Mechanics of hydrogel-based bioprinting: From 3D to 4D. Advances in Applied Mechanics, 2021, 54, 285-318.	2.3	9
330	Chapter 3. Biomimetic and Collagen-based Biomaterials for Biomedical Applications. RSC Soft Matter, 2021, , 61-87.	0.4	1
331	The Plasticity of Nanofibrous Matrix Regulates Fibroblast Activation in Fibrosis. Advanced Healthcare Materials, 2021, 10, e2001856.	7.6	12
332	Nanostructures for biomedical devices. , 2021, , 299-326.		3
333	Organic supramolecular aggregates based on waterâ€soluble cyclodextrins and calixarenes. Aggregate, 2020, 1, 31-44.	9.9	97
334	Characterization Tools for Mechanical Probing of Biomimetic Materials. , 2019, , 69-111.		2
335	Reversibly Assembled Electroconductive Hydrogel via a Host–Guest Interaction for 3D Cell Culture. ACS Applied Materials & Interfaces, 2019, 11, 7715-7724.	8.0	69
336	A comparative study unraveling the effects of TNF-α stimulation on endothelial cells between 2D and 3D culture. Biomedical Materials (Bristol), 2020, 15, 065018.	3.3	10
337	Growth differentiation factor-5–gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication, 2021, 13, 015010.	7.1	48
338	Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. Reviews in Chemical Engineering, 2022, 38, 347-361.	4.4	28
339	Robust Topographical Micro-Patterning of Nanofibrillar Collagen Gel by In Situ Photochemical Crosslinking-Assisted Collagen Embossing. Nanomaterials, 2020, 10, 2574.	4.1	4
340	Carbon Nanotubes Promote the Development of Intestinal Organoids through Regulating Extracellular Matrix Viscoelasticity and Intracellular Energy Metabolism. ACS Nano, 2021, 15, 15858-15873.	14.6	20
341	Understanding Förster Resonance Energy Transfer in the Sheet Regime with DNA Brick-Based Dye Networks. ACS Nano, 2021, 15, 16452-16468.	14.6	14
342	Machine Learningâ€Ðriven Biomaterials Evolution. Advanced Materials, 2022, 34, e2102703.	21.0	68
343	Shear-Thinning and Designable Responsive Supramolecular DNA Hydrogels Based on Chemically Branched DNA. ACS Applied Materials & amp; Interfaces, 2021, 13, 48414-48422.	8.0	34
344	Printing Parameters of Fused Filament Fabrication Affect Key Properties of Four-Dimensional Printed Shape-Memory Polymers. 3D Printing and Additive Manufacturing, 2023, 10, 279-288.	2.9	4
345	Functional nucleic acid-based cell imaging and manipulation. Science China Chemistry, 2021, 64, 1817-1825.	8.2	13

#	Article	IF	CITATIONS
346	Thermo-Gelling Dendronized Chitosans as Biomimetic Scaffolds for Corneal Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 49369-49379.	8.0	26
347	Bioink design for extrusion-based bioprinting. Applied Materials Today, 2021, 25, 101227.	4.3	15
348	Microfluidic-templating alginate microgels crosslinked by different metal ions as engineered microenvironment to regulate stem cell behavior for osteogenesis. Materials Science and Engineering C, 2021, 131, 112497.	7.3	18
349	Hierarchical Biological Materials. Biologically-inspired Systems, 2019, , 69-80.	0.2	0
350	Regularities of the formation of a framework from a mixture of single-walled carbon nanotubes in a protein matrix based on albumin and collagen for tissue engineering. , 2019, , .		0
353	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Driven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	14.9	9
354	Surface presentation of the noncanonical Wnt5a motif to cytotoxic CD8 ⁺ T-cells promotes their mechanotransduction and activation. Chemical Communications, 2021, 57, 12667-12670.	4.1	2
355	A review of magnetic ordered materials in biomedical field: Constructions, applications and prospects. Composites Part B: Engineering, 2022, 228, 109401.	12.0	16
356	Stimuli-Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications. , 2020, , 603-646.		1
358	Fabrication and Biomedical Applications of Heart-on-a-chip. International Journal of Bioprinting, 2021, 7, 370.	3.4	0
359	Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. Journal of Controlled Release, 2022, 341, 227-246.	9.9	65
360	Biomaterials by design: Harnessing data for future development. Materials Today Bio, 2021, 12, 100165.	5.5	13
361	Cyclic Mechanical Strain Regulates Osteoblastic Differentiation of Mesenchymal Stem Cells on TiO2 Nanotubes Through GCN5 and Wnt/β-Catenin. Frontiers in Bioengineering and Biotechnology, 2021, 9, 735949.	4.1	6
362	Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: potency and future perspective. Future Science OA, 2022, 8, FSO765.	1.9	9
363	Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydrate Polymers, 2022, 278, 118952.	10.2	91
364	Advances in the application of mesenchymal stem cells, exosomes, biomimetic materials, and 3D printing in osteoporosis treatment. Cellular and Molecular Biology Letters, 2021, 26, 47.	7.0	19
365	Naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic promotes self-assembly of nephron progenitor cells in decellularized scaffolds to construct bioengineered kidneys. Materials Science and Engineering C, 2022, 134, 112590.	7.3	3
366	A periodontal tissue regeneration strategy <i>via</i> biphasic release of zeolitic imidazolate framework-8 and FK506 using a uniaxial electrospun Janus nanofiber. Journal of Materials Chemistry B, 2022, 10, 765-778.	5.8	25

#	Article	IF	CITATIONS
367	Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials, 2022, 281, 121331.	11.4	11
368	Development and Biocompatibility Analysis of NBD Peptide Sustained- Release Microsphere Scaffold Nanoparticle SP-Sr-CaS/NBD. Current Drug Delivery, 2021, 18, 433-445.	1.6	1
369	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	47.7	238
370	Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioactive Materials, 2022, 17, 81-108.	15.6	30
371	Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioactive Materials, 2022, 17, 178-194.	15.6	23
372	Higher yield and enhanced therapeutic effects of exosomes derived from MSCs in hydrogel-assisted 3D culture system for bone regeneration. Materials Science and Engineering C, 2022, 133, 112646.	7.3	37
373	Mechanobiology in wound healing. Biophysical Journal, 2022, 121, 173-174.	0.5	1
374	A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
375	Microfluidic 3D printing polyhydroxyalkanoates-based bionic skin for wound healing. Materials Futures, 2022, 1, 015401.	8.4	16
376	A review on 3D printing in tissue engineering applications. Journal of Polymer Engineering, 2022, 42, 243-265.	1.4	29
377	Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Research, 2022, 15, 4294-4301.	10.4	11
378	A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angewandte Chemie, 0, , .	2.0	0
379	Nanostructured hyaluronic acid-based hydrogels encapsulating synthetic/ natural hybrid nanogels as promising wound dressings. Biochemical Engineering Journal, 2022, 179, 108341.	3.6	16
380	Remediation and resource utilization of chromium(III)-containing tannery effluent based on chitosan-sodium alginate hydrogel. Carbohydrate Polymers, 2022, 284, 119179.	10.2	29
381	Stimuli-responsive materials: A smart way to study dynamic cell responses. Smart Materials in Medicine, 2022, 3, 257-273.	6.7	32
382	Preservation of the naÃ ⁻ ve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix. Journal of Tissue Engineering, 2022, 13, 204173142210744.	5.5	8
383	Programmable DNA Hydrogels as Artificial Extracellular Matrix. Small, 2022, 18, e2107640.	10.0	41
384	Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydrate Polymers, 2022, 285, 119237.	10.2	19

#	Article	IF	CITATIONS
385	Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 807533.	4.1	6
386	Culture and in situ H2O2-mediated electrochemical study of cancer cells using three-dimensional scaffold based on graphene foam coated with Fe3O4 nanozyme. Mikrochimica Acta, 2022, 189, 89.	5.0	4
387	Fabrication and Biomedical Applications of Heart-on-a-chip. International Journal of Bioprinting, 2021, 7, 370.	3.4	31
388	Surface Micropatterning for the Formation of an in Vitro Functional Endothelial Model for Cell-Based Biosensors. SSRN Electronic Journal, 0, , .	0.4	0
390	Biomaterials modulate macrophage polarization and inflammatory responses. , 2022, , 99-110.		2
392	Cell Culture in Microfluidic Droplets. Chemical Reviews, 2022, 122, 7061-7096.	47.7	56
393	Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 2022, 23, 2662.	4.1	23
394	Diacerein Loaded Poly (Styrene Sulfonate) and Carbon Nanotubes Injectable Hydrogel: An Effective Therapy for Spinal Cord Injury Regeneration. Journal of Cluster Science, 2023, 34, 565-576.	3.3	6
395	Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS Applied Materials & Interfaces, 2022, 14, 15623-15631.	8.0	6
396	Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artificial Organs, 2022, 46, .	1.9	16
397	A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform. Small, 2022, 18, e2107757.	10.0	4
398	Bioelectricityâ€coupling patches for repairing impaired myocardium. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1787.	6.1	5
399	Anterior substitutional urethroplasty using a biomimetic poly― <scp>l</scp> â€ŀactide nanofiber membrane: Preclinical and clinical outcomes. Bioengineering and Translational Medicine, 0, , .	7.1	0
400	Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. Polymers for Advanced Technologies, 2022, 33, 2044-2068.	3.2	11
401	Electromechanical Nanogenerators for Cell Modulation. Nanoenergy Advances, 2022, 2, 110-132.	7.7	2
402	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	11.9	54
403	A review of the structural and physical properties that govern cell interactions with structured biomaterials enabled by additive manufacturing. Bioprinting, 2022, 26, e00201.	5.8	9
404	Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. Micromachines, 2022, 13, 75.	2.9	3

#	Article	IF	CITATIONS
405	Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules, 2022, 55, 15-25.	4.8	1
406	Fabrication of Resveratrol‣oaded Scaffolds and Their Application for Delaying Cell Senescence In Vitro. Macromolecular Bioscience, 2022, 22, e2100440.	4.1	2
407	Anisotropic Responsive Microgels Based on the Cholesteric Phase of Chitin Nanocrystals. ACS Macro Letters, 2022, 11, 96-102.	4.8	2
408	Macroscopic Banding Pattern of Collagen Gel Formed by a Diffusion-Reaction Process. ACS Omega, 2022, 7, 1014-1020.	3.5	0
409	Static and Dynamic Biomaterial Engineering for Cell Modulation. Nanomaterials, 2022, 12, 1377.	4.1	10
410	A Biostable <scp>l</scp> â€DNA Hydrogel with Improved Stability for Biomedical Applications. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
411	Three-dimensional models of the lung: past, present and future: a mini review. Biochemical Society Transactions, 2022, 50, 1045-1056.	3.4	13
412	A Biostable <scp>l</scp> â€DNA Hydrogel with Improved Stability for Biomedical Applications. Angewandte Chemie, 2022, 134, .	2.0	6
413	Spatial and Temporal Modulation of Cell Instructive Cues in a Filamentous Supramolecular Biomaterial. ACS Applied Materials & Interfaces, 2022, 14, 17042-17054.	8.0	11
414	A Brief Overview of Bioinspired Robust Hydrogel Based Shape Morphing Functional Structure for Biomedical Soft Robotics. Frontiers in Materials, 2022, 9, .	2.4	4
415	Electroactive extracellular Matrix/Polypyrrole composite films and their microenvironmental effects on osteogenic differentiation of BMSCs. Chemical Engineering Journal, 2022, 443, 136508.	12.7	15
416	Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
417	MiR-29b-3p Inhibits Migration and Invasion of Papillary Thyroid Carcinoma by Downregulating COL1A1 and COL5A1. Frontiers in Oncology, 2022, 12, 837581.	2.8	4
418	Emulsion Template Fabrication of Antibacterial Gelatin-Based Scaffolds with a Preferred Microstructure for Accelerated Wound Healing. ACS Applied Polymer Materials, 2022, 4, 3885-3895.	4.4	8
419	Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angewandte Chemie, 2022, 134, .	2.0	0
420	Porous microcapsules encapsulating \hat{l}^2 cells generated by microfluidic electrospray technology for diabetes treatment. NPG Asia Materials, 2022, 14, .	7.9	12
421	An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis. Nature Communications, 2022, 13, 2499.	12.8	54
422	Immunoregulation in Diabetic Wound Repair with a Photoenhanced Glycyrrhizic Acid Hydrogel Scaffold. Advanced Materials, 2022, 34, e2200521.	21.0	212

#	Article	IF	CITATIONS
423	Highly elastic 3D-printed gelatin/HA/placental-extract scaffolds for bone tissue engineering. Theranostics, 2022, 12, 4051-4066.	10.0	15
424	Guiding cell migration in 3D with high-resolution photografting. Scientific Reports, 2022, 12, .	3.3	8
425	Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis. ACS Applied Materials & amp; Interfaces, 2022, 14, 26180-26193.	8.0	9
426	Influence of Colonies' Morphological Cues on Cellular Uptake Capacity of Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	2
427	Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Advanced Drug Delivery Reviews, 2022, 187, 114365.	13.7	30
428	Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Progress in Polymer Science, 2022, 131, 101573.	24.7	21
429	Collagen-based shape-memory biocomposites. Applied Physics Reviews, 2022, 9, 021415.	11.3	1
430	Adipose-derived stromal/stem cells are verified to be potential seed candidates for bio-root regeneration in three-dimensional culture. Stem Cell Research and Therapy, 2022, 13, .	5.5	10
431	Surface micropatterning for the formation of an in vitro functional endothelial model for cell-based biosensors. Biosensors and Bioelectronics, 2022, , 114481.	10.1	0
432	4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture. Small, 2022, 18, .	10.0	22
433	3D printed controllable microporous scaffolds support embryonic development in vitro. Journal of Cellular Physiology, 0, , .	4.1	2
434	Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Applied Materials & Interfaces, 2023, 15, 25248-25274.	8.0	33
435	Preparation and Application of Decellularized ECM-Based Biological Scaffolds for Articular Cartilage Repair: A Review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6
436	Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	5
437	Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 32799-32812.	8.0	38
438	Construction of polysaccharide scaffold-based perfusion bioreactor supporting liver cell aggregates for drug screening. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 2249-2269.	3.5	1
439	Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules, 2022, 23, 3081-3103.	5.4	18
440	Electrospun nanofibers containing chitosan-stabilized bovine serum albumin nanoparticles for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112680.	5.0	14

#	Article	IF	CITATIONS
441	Surface-Sensitive Imaging Analysis of Cell–Microenvironment Interactions by Electrochemiluminescence Microscopy. Analytical Chemistry, 2022, 94, 10885-10892.	6.5	14
442	3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers, 2022, 14, 3535.	3.7	6
443	Extracellular Matrix Coatings on Cardiovascular Materials—A Review. Coatings, 2022, 12, 1039.	2.6	6
444	Engineering Hydrogels for Modulation of Materialâ€Cell Interactions. Macromolecular Bioscience, 2022, 22, .	4.1	4
445	Enhanced bone regeneration <i>via</i> PHA scaffolds coated with polydopamine-captured BMP2. Journal of Materials Chemistry B, 2022, 10, 6214-6227.	5.8	9
446	Nanoparticles-based delivery system and its potentials in treating central nervous system disorders. Nanotechnology, 2022, 33, 452001.	2.6	6
447	Engineering a dynamic three-dimensional cell culturing microenvironment using a "sandwich― structure-liked microfluidic device with 3D printing scaffold. Biofabrication, 0, , .	7.1	5
448	Quick photofabrication of functional nanospheres from de novo designed peptides for NIR fluorescence and MR imaging. Nano Research, 2023, 16, 4029-4038.	10.4	2
449	Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications. ACS Biomaterials Science and Engineering, 2022, 8, 3831-3841.	5.2	6
450	Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosensors and Bioelectronics, 2022, 216, 114601.	10.1	1
451	Hydrogels for bone organoid construction: From a materiobiological perspective. Journal of Materials Science and Technology, 2023, 136, 21-31.	10.7	17
452	In-Situ Characterization of the Mechanical Microenvironment and Mechano-Regulation in Tissue Engineering. SSRN Electronic Journal, 0, , .	0.4	0
453	Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. Sensors, 2022, 22, 6889.	3.8	12
454	In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration. Biofabrication, 2022, 14, 045016.	7.1	15
455	4D printing: a cutting-edge platform for biomedical applications. Biomedical Materials (Bristol), 2022, 17, 062001.	3.3	23
456	Composite Multicellular Spheroids Containing Fibers with Pores and Epigallocatechin Gallate (EGCG) Coating on the Surface for Enhanced Proliferation of Stem Cells. Macromolecular Bioscience, 0, , 2200195.	4.1	0
457	Targeting Tumor Physical Microenvironment for Improved Radiotherapy. Small Methods, 2022, 6, .	8.6	5
458	Dynamic and static biomechanical traits of cardiac fibrosis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6

	CITA	tion Report	
#	Article	IF	CITATIONS
459	Rational Design of Softâ \in "Hard Interfaces through Bioinspired Engineering. Small, 2023, 19, .	10.0	6
460	Precise Design of Alginate Hydrogels Crosslinked with Microgels for Diabetic Wound Healing. Biomolecules, 2022, 12, 1582.	4.0	4
461	Endogenous Synthesis of Tetrahydroisoquinoline Derivatives from Dietary Factors: Neurotoxicity Assessment on a 3D Neurosphere Culture. Molecules, 2022, 27, 7443.	3.8	0
462	Construction and tissue regeneration evaluation for mature chondrocyte/scaffold complex under optimal compression loading. Materials and Design, 2022, 224, 111276.	7.0	2
463	Electrochemical deposition of Ppy/Dex/ECM coatings and their regulation on cellular responses through electrical controlled drug release. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113016.	5.0	5
464	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	32.8	3
465	Engineering the dynamics of biophysical cues in supramolecular hydrogels to facile control stem cell chondrogenesis for cartilage regeneration. Composites Part B: Engineering, 2023, 250, 110429.	12.0	18
466	In vitro microglia models: the era of engineered cell microenvironments. Neural Regeneration Research, 2023, .	3.0	1
467	Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomaterials Science, 2023, 11, 400-431.	5.4	13
468	Applications of carbon dots and its modified carbon dots in bone defect repair. Journal of Biological Engineering, 2022, 16, .	4.7	4
469	Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1
470	Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Advanced Healthcare Materials, 2023, 12, .	7.6	5
471	Essential tremor: A three-dimensional neurosphere inÂvitro model to assess the neurotoxicity of harmane. Journal of Traditional Chinese Medical Sciences, 2022, , .	0.2	0
472	Recent advances in bioengineered scaffold for in vitro meat production. Cell and Tissue Research, 2023, 391, 235-247.	2.9	7
474	Human mini-blood–brain barrier models for biomedical neuroscience research: a review. Biomaterials Research, 2022, 26, .	6.9	6
475	Design and engineering of organ-on-a-chip. Biomedical Engineering Letters, 2023, 13, 97-109.	4.1	11
476	Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: Current status and future perspectives. Materials and Design, 2023, 225, 111591.	7.0	3
477	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	32.8	32

#	Article	IF	CITATIONS
478	Impact of Magneto-Deformation Effect in Ferrogels on the Echogenicity of Magnetic Composites. Spin, 2023, 13, .	1.3	0
479	Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics, 2023, 8, 16.	3.3	9
480	ANTXR1 as a potential sensor of extracellular mechanical cues. Acta Biomaterialia, 2023, 158, 80-86.	8.3	3
481	3D Printing of Selfâ€Assembling Nanofibrous Multidomain Peptide Hydrogels. Advanced Materials, 2023, 35, .	21.0	22
482	Chopped fibers and nano-hydroxyapatite enhanced silk fibroin porous hybrid scaffolds for bone augmentation. Journal of Materials Chemistry B, 2023, 11, 1557-1567.	5.8	3
483	Matrices Activated with Messenger RNA. Journal of Functional Biomaterials, 2023, 14, 48.	4.4	1
484	Extrusion <scp>3D</scp> printing of a multiphase collagenâ€based material: An optimized strategy to obtain biomimetic scaffolds with high shape fidelity. Journal of Applied Polymer Science, 2023, 140, .	2.6	5
485	Gold nanocluster decorated fibrous substrate for photo-modulated cellular growth. Journal of Materials Chemistry C, 2023, 11, 2600-2607.	5.5	4
486	Selenium-decorated biocompatible honeycomb films with redox-switchable surface for controlling cell adhesion/detachment. Journal of Colloid and Interface Science, 2023, 635, 503-513.	9.4	1
487	Critical factors affecting cells behavior in microfluidic chips. , 2023, , 37-59.		0
488	Bioprinting of hydrogels for tissue engineering and drug screening applications. , 2023, , 183-221.		0
489	Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for <i>In Vitro</i> Cell Culture Systems. ACS Applied Polymer Materials, 2023, 5, 1487-1498.	4.4	10
490	An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Advanced Drug Delivery Reviews, 2023, 196, 114816.	13.7	17
491	20-Hydroxyecdysone inhibits inflammation via SIRT6-mediated NF-κB signaling in endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119460.	4.1	4
492	Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. International Journal of Biological Macromolecules, 2023, 240, 124364.	7.5	5
493	Wrinkled topography regulates osteogenesis via autophagy-mediated Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Archives of Oral Biology, 2023, 151, 105700.	1.8	2
494	Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. Medicine in Novel Technology and Devices, 2023, 17, 100211.	1.6	8
495	Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels, 2023, 9, 132.	4.5	14

#	Article	IF	CITATIONS
496	Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers, 2023, 15, 793.	4.5	32
497	Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels, 2023, 9, 153.	4.5	3
498	Engineered Fibrous NiTi Scaffolds with Cultured Hepatocytes for Liver Regeneration in Rats. ACS Biomaterials Science and Engineering, 2023, 9, 1558-1569.	5.2	0
499	Snake venom-defined fibrin architecture dictates fibroblast survival and differentiation. Nature Communications, 2023, 14, .	12.8	2
500	Photolithographic microfabrication of hydrogel clefts for cell invasion studies. Lab on A Chip, 2023, 23, 1886-1895.	6.0	0
501	Construction and Hierarchical Self-Assembly of Multifunctional Coordination Cages with Triangular Metal–Metal-Bonded Units. Journal of the American Chemical Society, 2023, 145, 7446-7453.	13.7	17
502	Bioprinting of light-crosslinkable neutral-dissolved collagen to build implantable connective tissue with programmable cellular orientation. Biofabrication, 2023, 15, 035007.	7.1	4
503	Ultrafast 3D nanofabrication via digital holography. Nature Communications, 2023, 14, .	12.8	26
504	Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Medical Research, 2023, 10, .	3.4	23
505	Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life, 2023, 13, 569.	2.4	4
507	Nerveâ€onâ€aâ€Chip Derived Biomimicking Microfibers for Peripheral Nerve Regeneration. Advanced Science, 2023, 10, .	11.2	3
508	Dynamic and self-biodegradable polysaccharide hydrogel stores embryonic stem cell construct under ambient condition. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1
509	Antibacterial and Cytocompatible pH-Responsive Peptide Hydrogel. Molecules, 2023, 28, 4390.	3.8	4
510	Stem cells therapy for diabetes: from past to future. Cytotherapy, 2023, , .	0.7	1
511	Vascularization of engineered organoids. , 2023, 1, .		7
512	Electrochemiluminescence Imaging of Cellular Contact Guidance on Microfabricated Substrates. , 2023, 1, 558-565.		5
513	3D Printing Approaches to Engineer Cardiac Tissue. Current Cardiology Reports, 2023, 25, 505-514.	2.9	2
514	Bioinspired PLCL/Elastin Nanofibrous Vascular Tissue Engineering Scaffold Enhances Endothelial Cells and Inhibits Smooth Muscle Cells. Biomacromolecules, 2023, 24, 2741-2754.	5.4	1

#	Article	IF	CITATIONS
515	Cell Shape and Forces in Elastic and Structured Environments: From Single Cells to Organoids. Advanced Functional Materials, 0, , .	14.9	5
516	Extracellular matrix cues regulate the differentiation of pluripotent stem cell-derived endothelial cells. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0
517	In situ deformation measurement of 3D printed scaffold and mechano-regulation in tissue engineering. Optics and Lasers in Engineering, 2023, 169, 107719.	3.8	0
518	Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. International Journal of Biological Macromolecules, 2023, 247, 125606.	7.5	12
519	Biomaterials evolution: from inert to instructive. Biomaterials Science, 2023, 11, 6109-6115.	5.4	3
520	Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Materials Today, 2023, 68, 177-203.	14.2	22
521	Development of a micro-patterned membrane consisting of a PCL/Keratin/PEGDE ternary blend using PSµM for potential biotechnological applications. Journal of Polymer Research, 2023, 30, .	2.4	0
523	Dopamineâ€Based Highâ€Transparent Hydrogel as Bioadhesive for Sutureless Ocular Tissue Repair. Advanced Functional Materials, 2023, 33, .	14.9	2
524	Development of Organs-on-Chips and Their Impact on Precision Medicine and Advanced System Simulation. Pharmaceutics, 2023, 15, 2094.	4.5	1
525	Blood–Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. International Journal of Molecular Sciences, 2023, 24, 12699.	4.1	3
526	Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220.	38.1	12
527	Peptide Hydrogels and Nanostructures Controlling Biological Machinery. Langmuir, 2023, 39, 11935-11945.	3.5	2
528	The fibrous character of pericellular matrix mediates cell mechanotransduction. Journal of the Mechanics and Physics of Solids, 2023, 180, 105423.	4.8	1
529	Tissue Regeneration Processing and Mimicking. Pancreatic Islet Biology, 2023, , 31-72.	0.3	0
530	Growth factor-encapsulated triphasic scaffolds of electrospun polylactic acid–polycaprolactone (PLA–PCL) nanofibrous mats combined with a directionally freeze-dried chitosan hydrogel for periodontal tissue regeneration. Materials Advances, 2023, 4, 4798-4811.	5.4	1
531	Stem cell-based therapeutic strategies for rotator cuff tendinopathy. Journal of Orthopaedic Translation, 2023, 42, 73-81.	3.9	1
532	Effect of biocomposite mediated magnesium ionic micro-homeostasis on cell fate regulation and bone tissue regeneration. Composites Part B: Engineering, 2023, 265, 110961.	12.0	4
533	Microenvironment-targeted strategy steers advanced bone regeneration. Materials Today Bio, 2023, 22, 100741.	5.5	4

#	Article	IF	CITATIONS
534	Chiral Cell Nanomechanics Originated in Clockwise/Counterclockwise Biofunctional Microarrays to Govern the Nuclear Mechanotransduction of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2023, 15, 48038-48049.	8.0	0
535	On compressive properties of 3D printed polyvinylidene fluoride composite for implant applications. Journal of Thermoplastic Composite Materials, 0, , .	4.2	5
536	Construction and Hierarchical Selfâ€Assembly of a Supramolecular Metal–Carbene Complex with Multifunctional Units. Chemistry - A European Journal, 2023, 29, .	3.3	0
537	3D Chiral Selfâ€Assembling Matrixes for Regulating Polarization of Macrophages and Enhance Repair of Myocardial Infarction. Advanced Science, 2023, 10, .	11.2	0
538	Collagen-based scaffolds with high wet-state cyclic compressibility for potential oral application. International Journal of Biological Macromolecules, 2023, 253, 127193.	7.5	0
539	Recent advances in tailoring stimuli responsive hybrid scaffolds for cardiac tissue engineering and allied applications. Journal of Materials Chemistry B, O, , .	5.8	0
540	Silica Replicas Derived from Mammalian Cells as an Innovative Approach to Physically Direct Cell Lineage Decisions of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2023, 15, 48855-48870.	8.0	0
541	Unravelling hierarchical patterning of biomaterial inks with 3D microfluidic-assisted spinning: a paradigm shift in bioprinting technologies. , 0, 2, .		1
542	Hierarchically patterned protein scaffolds with nano-fibrillar and micro-lamellar structures modulate neural stem cell homing and promote neuronal differentiation. Biomaterials Science, 2023, 11, 7663-7677.	5.4	3
544	Dendronization of chitosan to afford unprecedent thermoresponsiveness and tunable microconfinement. Journal of Materials Chemistry B, 2023, 11, 11024-11034.	5.8	0
545	Emulsion template fabricated gelatin-based scaffold functionalized by dialdehyde starch complex with antibacterial antioxidant properties for accelerated wound healing. International Journal of Biological Macromolecules, 2024, 254, 127918.	7.5	0
546	Advanced Tissue Engineering with Novel Engineered Biomaterials. Engineering Materials, 2023, , 361-395.	0.6	0
547	Plant-Based Biomaterials in Tissue Engineering and Drug Delivery Systems. Engineering Materials, 2023, , 153-197.	0.6	0
548	Bridging the Gap—Thermofluidic Designs for Precision Bioelectronics. Advanced Healthcare Materials, 0, , .	7.6	0
549	Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioengineering and Translational Medicine, 0, , .	7.1	1
550	Designing Hydrogels for Immunomodulation in Cancer Therapy and Regenerative Medicine. Advanced Materials, 2024, 36, .	21.0	3
551	Intercellular competitive growth dynamics with microenvironmental feedback. Physical Review E, 2023, 108, .	2.1	0
552	Bicomponent hydrogel laden with TGF-β3-nucleus pulposus stem cells for disc degeneration repair. Chemical Engineering Journal, 2024, 479, 147788.	12.7	1

#	Article	IF	Citations
553	Accelerated osteogenesis of bone graft by optimizing the bone microenvironment formed by electrical signals dependent on driving micro vibration stimulation. Materials Today Bio, 2023, 23, 100891.	5.5	0
554	Dynamic Exchange in 3D Cell Culture Hydrogels Based on Crosslinking of Cyclic Thiosulfinates. Angewandte Chemie, 2024, 136, .	2.0	0
555	Dynamic Exchange in 3D Cell Culture Hydrogels Based on Crosslinking of Cyclic Thiosulfinates. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
556	Fluorescence color change of supramolecular polymer networks controlled by crown ether ation recognition. Chemistry - A European Journal, 2024, 30, .	3.3	0
557	Combination of melt-electrospun poly-ε-caprolactone scaffolds and hepatocyte-like cells from footprint-free hiPSCs to create 3D biohybrid constructs for liver tissue engineering. Scientific Reports, 2023, 13, .	3.3	0
558	Bioinspired 3D microprinted cell scaffolds: Integration of graph theory to recapitulate complex network wiring in lymph nodes. Biotechnology Journal, 0, , .	3.5	0
559	Harnessing Macromolecular Chemistry to Design Hydrogel Micro―and Macroâ€Environments. Macromolecular Bioscience, 0, , .	4.1	0
560	Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels. International Journal of Biological Macromolecules, 2024, 259, 128843.	7.5	0
562	Architecting the Microenvironment Skeleton of Active Materials in High apacity Electrodes by Selfâ€Assembled Nanoâ€Building Blocks. Small, 0, , .	10.0	1
563	Expanding CAR-T cell immunotherapy horizons through microfluidics. Lab on A Chip, 2024, 24, 1088-1120.	6.0	0
564	Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. Advanced Functional Materials, 0, , .	14.9	0
565	Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics, 2024, 9, 48.	3.3	4
566	Functionalized polysaccharide-based hydrogels: spanking accession in tissue engineering and regenerative medicines. , 2024, , 215-264.		0
567	Macrostructure and Microenvironment Biomimetic Hydrogel: Design, Properties, and Tissue Engineering Application. Chemistry of Materials, 2024, 36, 1054-1087.	6.7	0
568	Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects. International Journal of Stem Cells, 2024, 17, 38-50.	1.8	1
569	Modeling of a Bioengineered Immunomodulating Microenvironment for Cell Therapy. Advanced Healthcare Materials, 0, , .	7.6	0
570	Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. Advances in Cancer Biology Metastasis, 2024, 10, 100114.	2.0	1
571	Polysaccharide-based responsive hydrogels for nerve regeneration. , 2024, , 429-455.		0

	Сітатіо	n Report	
#	Article	IF	CITATIONS
572	Cultivated meat: disruptive technology for sustainable meat production. , 2024, , 11-28.		0
573	Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic <i>In Vitro</i> Cell Culture Platform. ACS Applied Materials & Interfaces, 2024, 16, 5613-5626.	8.0	1
574	Thermo-sensitive hydroxybutyl chitosan/diatom biosilica hydrogel with immune microenvironment regulatory for chronic wound healing. International Journal of Biological Macromolecules, 2024, 262, 130189.	7.5	0
575	Ex vivo expansion of hematopoietic stem cells in two/ three-dimensional co-cultures with various source of stromal cells. Tissue and Cell, 2024, 87, 102331.	2.2	0
576	<scp>MicroRNAâ€29c</scp> â€ŧetrahedral framework nucleic acids: Towards osteogenic differentiation of mesenchymal stem cells and bone regeneration in criticalâ€sized calvarial defects. Cell Proliferation, 0,	5.3	0
577	The Review focuses on the Supramolecular Polymer Network Formed by Macrocyclic Molecules through Host-Guest Interactions Advances in Analytical Chemistry, 2024, 14, 7-20.	0.1	0
578	From small to largeâ \in "The application of in situ polymerization within tumor cells. Aggregate, 0, , .	9.9	0
579	Engineering Soft Spring Gauges for In Situ Biomaterial and Tissue Weighing. ACS Biomaterials Science and Engineering, 2024, 10, 2133-2142.	5.2	0
580	First Advanced Bilayer Scaffolds for Tailored Skin Tissue Engineering Produced via Electrospinning and Melt Electrowriting. Advanced Functional Materials, 0, , .	14.9	0
581	Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplantation, 2024, 33, .	2.5	0
582	Biomimetic Scaffolds—A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. Nanomaterials, 2024, 14, 531.	4.1	0