Ab initio theory and modeling of water

Proceedings of the National Academy of Sciences of the Unite 114, 10846-10851

DOI: 10.1073/pnas.1712499114

Citation Report

#	Article	IF	CITATIONS
4	Functionals for exchange and correlation. , 2004, , 152-171.		3
5	Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9188-E9196.	3.3	152
6	Chemical physics of water. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13325-13326.	3.3	13
7	Note: Assessment of the SCAN+rVV10 functional for the structure of liquid water. Journal of Chemical Physics, 2017, 147, 216101.	1.2	30
8	Interstitial Voids and Resultant Density of Liquid Water: A First-Principles Molecular Dynamics Study. ACS Omega, 2018, 3, 2010-2017.	1.6	23
9	Crown Ether Effects on the Location of Charge Carriers in Electrospray Droplets: Implications for the Mechanism of Protein Charging and Supercharging. Analytical Chemistry, 2018, 90, 4126-4134.	3.2	14
10	Refined description of liquid and supercooled silicon from <i>ab initio</i> simulations. Physical Review B, 2018, 97, .	1.1	9
11	How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Methods, 2018, 144, 104-112.	1.9	34
12	Equilibration and analysis of first-principles molecular dynamics simulations of water. Journal of Chemical Physics, 2018, 148, 124501.	1.2	41
13	Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions. Journal of Physical Chemistry B, 2018, 122, 3519-3527.	1.2	27
14	Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature. Journal of Chemical Physics, 2018, 148, 102320.	1.2	32
15	Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ï‰B97X-V Exchange–Correlation Functionals. Journal of Chemical Theory and Computation, 2018, 14, 884-893.	2.3	41
16	Structural, electronic, and dynamical properties of liquid water by <i>ab initio</i> molecular dynamics based on SCAN functional within the canonical ensemble. Journal of Chemical Physics, 2018, 148, 164505.	1.2	58
17	Simple Modifications of the SCAN Meta-Generalized Gradient Approximation Functional. Journal of Chemical Theory and Computation, 2018, 14, 2469-2479.	2.3	26
18	Accurate critical pressures for structural phase transitions of group IV, III-V, and II-VI compounds from the SCAN density functional. Physical Review B, 2018, 97, .	1.1	100
19	Efficient first-principles prediction of solid stability: Towards chemical accuracy. Npj Computational Materials, 2018, 4, .	3.5	157
20	The excess electron in polymer nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 27528-27538.	1.3	19
21	Water phase transitions from the perspective of hydrogen-bond network analysis. Physical Chemistry Chemical Physics, 2018, 20, 28308-28318.	1.3	8

ATION REDO

#	Article	IF	CITATIONS
22	Stability line of liquid molecular nitrogen based on the SCAN meta- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G </mml:mi> <mml:mi>Gdensity functional. Physical Review B, 2018, 98, .</mml:mi></mml:mrow></mml:math 	>≺ m nl:mi	>A¶/mml:mi>
23	The quantum mechanics-based polarizable force field for water simulations. Journal of Chemical Physics, 2018, 149, 174502.	1.2	27
24	Electron-Hole Theory of the Effect of Quantum Nuclei on the X-Ray Absorption Spectra of Liquid Water. Physical Review Letters, 2018, 121, 137401.	2.9	35
25	A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation Theory (XSAPT). Journal of Chemical Theory and Computation, 2018, 14, 5128-5142.	2.3	19
26	Antiferromagnetic ground state of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:n : A parameter-free <i>ab initio</i> description. Physical Review B, 2018, 98, .</mml:n </mml:msub></mml:mrow></mml:math 	nn xl2k/mm	ıl:næo⊳
27	Structure, Polarization, and Sum Frequency Generation Spectrum of Interfacial Water on Anatase TiO ₂ . Journal of Physical Chemistry Letters, 2018, 9, 6716-6721.	2.1	70
28	Insights on the Alumina–Water Interface Structure by Direct Comparison of Density Functional Simulations with X-ray Reflectivity. Journal of Physical Chemistry C, 2018, 122, 26934-26944.	1.5	19
29	Effect of Water Adsorption on the Interfacial Structure and Band Edge Alignment of Anatase TiO ₂ (001)/Water by First-Principles Molecular Dynamics. Journal of Physical Chemistry C, 2018, 122, 26965-26973.	1.5	22
30	Contribution of the Covalent Component of the Hydrogen-Bond Network to the Properties of Liquid Water. Journal of Physical Chemistry A, 2018, 122, 7482-7490.	1.1	8
31	First-Principles Simulations of Liquid Water Using a Dielectric-Dependent Hybrid Functional. Journal of Physical Chemistry Letters, 2018, 9, 3068-3073.	2.1	82
32	Simple-to-Complex Transformation in Liquid Rubidium. Journal of Physical Chemistry Letters, 2018, 9, 2909-2913.	2.1	20
33	How do hydrogen bonds break in supercooled water?: Detecting pathways not going through saddle point of two-dimensional potential of mean force. Journal of Chemical Physics, 2018, 148, 244501.	1.2	8
34	Evaluation of Gas-to-Liquid 17O Chemical Shift of Water: A Test Case for Molecular and Periodic Approaches. Journal of Chemical Theory and Computation, 2018, 14, 4041-4051.	2.3	2
35	Measuring surface charge: Why experimental characterization and molecular modeling should be coupled. Current Opinion in Colloid and Interface Science, 2018, 37, 101-114.	3.4	39
36	Advances in Computational Studies of the Liquid–Liquid Transition in Water and Water-Like Models. Chemical Reviews, 2018, 118, 9129-9151.	23.0	152
37	Collapse of the electron gas from three to two dimensions in Kohn-Sham density functional theory. Physical Review B, 2018, 98, .	1.1	11
38	The Quest for Accurate Liquid Water Properties from First Principles. Journal of Physical Chemistry Letters, 2018, 9, 5009-5016.	2.1	70
39	Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water–Air Interface. Journal of Physical Chemistry Letters. 2019. 10. 4914-4919.	2.1	43

#	Article	IF	CITATIONS
40	Modulation of structure and dynamics of water under alternating electric field and the role of hydrogen bonding. Molecular Physics, 2019, 117, 3282-3296.	0.8	14
41	Classical and path-integral molecular-dynamics study on liquid water and ice melting using non-empirical TTM2.1-F model. Molecular Physics, 2019, 117, 3241-3253.	0.8	1
42	Electrically induced liquid–liquid phase transition in water at room temperature. Physical Chemistry Chemical Physics, 2019, 21, 18541-18550.	1.3	4
43	Rethinking CO adsorption on transition-metal surfaces: Effect of density-driven self-interaction errors. Physical Review B, 2019, 100, .	1.1	44
44	Car–Parrinello Monitor for More Robust Born–Oppenheimer Molecular Dynamics. Journal of Chemical Theory and Computation, 2019, 15, 4454-4467.	2.3	5
45	Learning from the density to correct total energy and forces in first principle simulations. Journal of Chemical Physics, 2019, 151, 144102.	1.2	21
46	Isotope effects in liquid water via deep potential molecular dynamics. Molecular Physics, 2019, 117, 3269-3281.	0.8	52
47	Structure and reactivity of highly reduced titanium oxide surface layers on TiO2: A first-principles study. Journal of Chemical Physics, 2019, 151, 184701.	1.2	7
48	Designing an All-Carbon Membrane for Water Desalination. Physical Review Applied, 2019, 12, .	1.5	16
49	Proton Acidity and Proton Mobility in ECRâ€40, a Silicoaluminophosphate that Violates Löwenstein's Rule. Chemistry - A European Journal, 2019, 25, 13579-13590.	1.7	6
50	Imaging and Dynamics of Water Hexamer Confined in Nanopores. ACS Nano, 2019, 13, 10622-10630.	7.3	10
51	Dynamics and Spectral Response of Water Molecules around Tetramethylammonium Cation. Journal of Physical Chemistry B, 2019, 123, 8753-8766.	1.2	24
52	Using a monomer potential energy surface to perform approximate path integral molecular dynamics simulation of <i>ab initio</i> water at near-zero added cost. Physical Chemistry Chemical Physics, 2019, 21, 409-417.	1.3	1
53	Liquid water is a dynamic polydisperse branched polymer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1998-2003.	3.3	42
54	The Influence of Distant Boundaries on the Solvation of Charged Particles. Journal of Statistical Physics, 2019, 175, 743-763.	0.5	12
55	Sodium Halide Adsorption and Water Structure at the α-Alumina(0001)/Water Interface. Journal of Physical Chemistry C, 2019, 123, 15618-15628.	1.5	19
56	Regularized SCAN functional. Journal of Chemical Physics, 2019, 150, 161101.	1.2	124
57	First-principles study of the infrared spectrum in liquid water from a systematically improved description of H-bond network. Physical Review B, 2019, 99, .	1.1	27

ARTICLE IF CITATIONS # Structure and Dynamics of Water at the Waterâ€"Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. Journal of Chemical 58 2.3 12 Theory and Computation, 2019, 15, 3836-3843. Stretched or noded orbital densities and self-interaction correction in density functional theory. 1.2 Journal of Chemical Physics, 2019, 150, 174102. Interactions between cyclic nucleotides and common cations: an ab initio molecular dynamics study. 60 1.3 15 Physical Chemistry Chemical Physics, 2019, 21, 8121-8132. Universal nature of different methods of obtaining the exact Kohn–Sham exchange-correlation potential for a given density. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 075007. Local structure and vibrational properties of molten lead halides PbX2 (X = Cl, Br, I) from ab initio 62 1.1 2 molecular dynamics. Computational and Theoretical Chemistry, 2019, 1156, 20-24. First-Principles Study of AlPO4-H3, a Hydrated Aluminophosphate Zeotype Containing Two Different Types of Adsorbed Water Molecules. Molecules, 2019, 24, 922. 1.7 Effect of Functional and Electron Correlation on the Structure and Spectroscopy of the Al₂O₃(001)â€"H₂O Interface. Journal of Physical Chemistry Letters, 64 2.1 22 2019, 10, 2031-2036. Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series. 1.2 Journal of Chemical Physics, 2019, 150, 124505. Elastic constants of ice I(i)h(i) as described by semi-empirical water models. Journal of Chemical 1.2 10 66 Physics, 2019, 150, 044503. First-Principles Calculation of Transition Metal Hyperfine Coupling Constants with the Strongly Constrained and Appropriately Normed (SCAN) Density Functional and its Hybrid Variants. 1.0 Magnetochemistry, 2019, 5, 69. Ensemble first-principles molecular dynamics simulations of water using the SCAN meta-GGA density 68 1.2 24 functional. Journal of Chemical Physics, 2019, 151, 164101. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms 50 of electrospray ionization. Analyst, The, 2019, 144, 6157-6171. Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals 70 3.8 39 interactions. Progress in Surface Science, 2019, 94, 100561. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Molecular Simulation, 2019, 45, 425-453. Contribution of the density-functional-based tight-binding scheme to the description of water 72 0.9 17 clusters: methods, applications and extension to bulk systems. Molecular Simulation, 2019, 45, 249-268. Atomistic structure and collective dynamics in liquid Pb along the melting line up to 70 GPa: A first-principles molecular dynamics study. Physical Review B, 2019, 99, . Structure and Dynamics of Water at the Waterâ€"Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation. Journal of Chemical Theory and 74 2.318 Computation, 2019, 15, 595-602. Vibrational Spectroscopy in Analysis of Stimuli-Responsive Polymer–Water <u>Systems. Challenges and</u> Advances in Computational Chemistry and Physics, 2019, , 223-271.

#	Article	IF	CITATIONS
76	Density functional theory. , 2019, , 119-159.		7
77	Ab initio simulations of liquid electrolytes for energy conversion and storage. International Journal of Quantum Chemistry, 2019, 119, e25795.	1.0	14
78	Recent advances in quantumâ€mechanical molecular dynamics simulations of proton transfer mechanism in various waterâ€based environments. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1419.	6.2	10
79	A comprehensive molecular dynamics simulation study of hydrous magmatic liquids. Chemical Geology, 2020, 533, 119300.	1.4	15
80	Accurate Water Properties from an Efficient ab Initio Method. Journal of Chemical Theory and Computation, 2020, 16, 974-987.	2.3	15
81	Importance of self-interaction-error removal in density functional calculations on water cluster anions. Physical Chemistry Chemical Physics, 2020, 22, 3789-3799.	1.3	32
82	Local Structural Distortions and Failure of the Surface-Stress "Core–Shell―Model in Brookite Titania Nanorods. Chemistry of Materials, 2020, 32, 286-298.	3.2	5
83	Competing stripe and magnetic phases in the cuprates from first principles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 68-72.	3.3	61
84	First-Principles Calculation of Water p <i>K</i> _a Using the Newly Developed SCAN Functional. Journal of Physical Chemistry Letters, 2020, 11, 54-59.	2.1	19
85	First-Principles Modeling of Electronic Stopping in Complex Matter under Ion Irradiation. Journal of Physical Chemistry Letters, 2020, 11, 229-237.	2.1	13
86	A FFLUX Water Model: Flexible, Polarizable and with a Multipolar Description of Electrostatics. Journal of Computational Chemistry, 2020, 41, 619-628.	1.5	23
87	Dynamics of confined water and its interplay with alkali cations in sodium aluminosilicate hydrate gel: insights from reactive force field molecular dynamics. Physical Chemistry Chemical Physics, 2020, 22, 23707-23724.	1.3	10
88	Signatures of a liquid–liquid transition in an ab initio deep neural network model for water. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26040-26046.	3.3	112
89	Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges. Journal of Physical Chemistry B, 2020, 124, 7421-7432.	1.2	4
90	Absolute ion hydration free energy scale and the surface potential of water via quantum simulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30151-30158.	3.3	14
91	Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA. Physical Chemistry Chemical Physics, 2020, 22, 18060-18070.	1.3	6
92	Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional. Journal of Chemical Physics, 2020, 153, 044114.	1.2	22
93	Minimal Experimental Bias on the Hydrogen Bond Greatly Improves Ab Initio Molecular Dynamics Simulations of Water. Journal of Chemical Theory and Computation, 2020, 16, 5675-5684.	2.3	9

#	Article	IF	CITATIONS
94	<i>Ab initio</i> structure and thermodynamics of the RPBE-D3 water/vapor interface by neural-network molecular dynamics. Journal of Chemical Physics, 2020, 153, 144710.	1.2	24
95	Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew–Zunger and locally scaled self-interaction corrected methods. Journal of Chemical Physics, 2020, 153, 164304.	1.2	21
96	The role of thermal history on spontaneous polarization and phase transitions of amorphous solid water films studied by contact potential difference measurements. Journal of Chemical Physics, 2020, 153, 144702.	1.2	12
97	High level ab initio binding energy distribution of molecules on interstellar ices: Hydrogen fluoride. Molecular Astrophysics, 2020, 21, 100095.	1.7	15
98	Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations. Journal of Physical Chemistry Letters, 2020, 11, 9461-9467.	2.1	11
99	Elucidating the Role of Tetraethylammonium in the Silicate Condensation Reaction from <i>Ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 10210-10218.	1.2	11
100	Accurate and Numerically Efficient r ² SCAN Meta-Generalized Gradient Approximation. Journal of Physical Chemistry Letters, 2020, 11, 8208-8215.	2.1	335
101	Crystal imperfections in ice I <i>h</i> . Journal of Chemical Physics, 2020, 153, 110902.	1.2	8
102	Isotope effects in x-ray absorption spectra of liquid water. Physical Review B, 2020, 102, .	1.1	6
107	Periodic Solids and Electron Bands. , 2020, , 81-108.		0
108	Uniform Electron Gas and sp-Bonded Metals. , 2020, , 109-128.		0
109	Density Functional Theory: Foundations. , 2020, , 129-144.		0
110	The Kohn–Sham Auxiliary System. , 2020, , 145-170.		0
111	Functionals for Exchange and Correlation I. , 2020, , 171-187.		0
112	Functionals for Exchange and Correlation II. , 2020, , 188-214.		0
113	Electronic Structure of Atoms. , 2020, , 215-229.		0
114	Pseudopotentials. , 2020, , 230-258.		0
116	Plane Waves and Grids: Basics. , 2020, , 262-282.		0

#	ARTICLE Plane Waves and Real-Space Methods: Full Calculations. , 2020, , 283-294.	IF	CITATIONS
118	Localized Orbitals: Tight-Binding. , 2020, , 295-319.		0
119	Localized Orbitals: Full Calculations. , 2020, , 320-331.		0
120	Augmented Functions: APW, KKR, MTO. , 2020, , 332-364.		0
121	Augmented Functions: Linear Methods. , 2020, , 365-385.		0
122	Locality and Linear-Scaling O(N) Methods. , 2020, , 386-410.		0
123	Quantum Molecular Dynamics (QMD). , 2020, , 411-426.		0
124	Response Functions: Phonons and Magnons. , 2020, , 427-445.		0
125	Excitation Spectra and Optical Properties. , 2020, , 446-464.		0
126	Surfaces, Interfaces, and Lower-Dimensional Systems. , 2020, , 465-480.		0
127	Wannier Functions. , 2020, , 481-498.		0
128	Polarization, Localization, and Berry Phases. , 2020, , 499-516.		0
129	Topology of the Electronic Structure of a Crystal: Introduction. , 2020, , 517-530.		0
130	Two-Band Models: Berry Phase, Winding, and Topology. , 2020, , 531-546.		0
131	Topological Insulators I: Two Dimensions. , 2020, , 547-568.		0
132	Topological Insulators II: Three Dimensions. , 2020, , 569-580.		0
151	Simple hydrogenic estimates for the exchange and correlation energies of atoms and atomic ions, with implications for density functional theory. Journal of Chemical Physics, 2020, 153, 074114.	1.2	10
152	Hydration of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>NH</mml:mi></mml:mrow><mml:mrow>< in Water: Bifurcated Hydrogen Bonding Structures and Fast Rotational Dynamics. Physical Review Letters. 2020. 125. 106001.</mml:mrow></mml:msubsup></mml:mrow></mml:math>	mml:mn> 2.9	4

#	Article	IF	CITATIONS
153	High-Temperature Quantum Anomalous Hall Insulators in Lithium-Decorated Iron-Based Superconductor Materials. Physical Review Letters, 2020, 125, 086401.	2.9	46
154	Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nature Energy, 2020, 5, 1032-1042.	19.8	99
155	Raman spectrum and polarizability of liquid water from deep neural networks. Physical Chemistry Chemical Physics, 2020, 22, 10592-10602.	1.3	80
156	Self-interaction error overbinds water clusters but cancels in structural energy differences. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11283-11288.	3.3	57
157	<i>Ex Machina</i> Determination of Structural Correlation Functions. Journal of Physical Chemistry Letters, 2020, 11, 4372-4378.	2.1	7
158	Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction. Physical Chemistry Chemical Physics, 2020, 22, 12785-12793.	1.3	9
159	Improvements in the orbitalwise scaling down of Perdew–Zunger self-interaction correction in many-electron regions. Journal of Chemical Physics, 2020, 152, 174112.	1.2	23
160	Thermophysical Properties and Angular Jump Dynamics of Water: A Comparative DFT and DFT-Dispersion-Based Molecular Dynamics Study. Journal of Physical Chemistry A, 2020, 124, 6039-6049.	1.1	5
161	A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction. II. Gauge consistency of the energy density at three levels of approximation. Journal of Chemical Physics, 2020, 152, 214109.	1.2	23
162	Impact of electronic polarizability on protein-functional group interactions. Physical Chemistry Chemical Physics, 2020, 22, 6848-6860.	1.3	16
163	Molecular Structure and Modeling of Water–Air and Ice–Air Interfaces Monitored by Sum-Frequency Generation. Chemical Reviews, 2020, 120, 3633-3667.	23.0	97
164	Solid wetting-layers in inorganic nano-reactors: the water in imogolite nanotube case. Nanoscale Advances, 2020, 2, 1869-1877.	2.2	17
165	Tuning energy barriers by doping 2D group-IV monochalcogenides. Journal of Applied Physics, 2020, 127,	1.1	4
166	Free energy of proton transfer at the water–TiO ₂ interface from <i>ab initio</i> deep potential molecular dynamics. Chemical Science, 2020, 11, 2335-2341.	3.7	134
167	Density-functional theory prediction of the elastic constants of ice Ih. Journal of Chemical Physics, 2020, 152, 084502.	1.2	4
168	Response Theory for Static and Dynamic Solvation of Ionic and Dipolar Solutes in Water. Journal of Statistical Physics, 2020, 180, 721-738.	0.5	6
169	Making free-energy calculations routine: Combining first principles with machine learning. Physical Review B, 2020, 101, .	1.1	35
170	Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based <i>Ab Initio</i> Molecular Dynamics. 1. Theory, Algorithm, and Performance. Journal of Chemical Theory and Computation, 2020, 16, 3757-3785.	2.3	29

#	Article	IF	CITATIONS
171	Aqueous-Phase Conformations of Lactose, Maltose, and Sucrose and the Assessment of Low-Cost DFT Methods with the DSCONF Set of Conformers for the Three Disaccharides. Journal of Physical Chemistry A, 2020, 124, 582-590.	1.1	20
172	Arsenic–nucleotides interactions: an experimental and computational investigation. Dalton Transactions, 2020, 49, 6302-6311.	1.6	10
173	Machine learning potentials for tobermorite minerals. Computational Materials Science, 2021, 188, 110173.	1.4	15
174	Born–Oppenheimer molecular dynamics simulations on structures of high-density and low-density water: a comparison of the SCAN meta-GGA and PBE GGA functionals. Physical Chemistry Chemical Physics, 2021, 23, 2298-2304.	1.3	9
175	Solution structure of a europium–nicotianamine complex supports that phytosiderophores bind lanthanides. Physical Chemistry Chemical Physics, 2021, 23, 4287-4299.	1.3	12
176	Uncooperative Effect of Hydrogen Bond on Water Dimer. Chinese Physics Letters, 2021, 38, 013101.	1.3	6
177	Predicting lanthanide coordination structures in solution with molecular simulation. Methods in Enzymology, 2021, 651, 193-233.	0.4	3
178	Importance of nuclear quantum effects on the hydration of chloride ion. Physical Review Materials, 2021, 5, .	0.9	11
179	When do short-range atomistic machine-learning models fall short?. Journal of Chemical Physics, 2021, 154, 034111.	1.2	61
180	Structural and dynamical fingerprints of the anomalous dielectric properties of water under confinement. Physical Review Materials, 2021, 5, .	0.9	10
181	Molecular Polarizabilities in Aqueous Systems from First-Principles. Journal of Physical Chemistry B, 2021, 125, 2183-2192.	1.2	4
182	<i>Ab initio</i> and force field molecular dynamics study of bulk organophosphorus and organochlorine liquid structures. Journal of Chemical Physics, 2021, 154, 084503.	1.2	8
183	Coordination Sphere of Lanthanide Aqua Ions Resolved with Ab Initio Molecular Dynamics and X-ray Absorption Spectroscopy. Inorganic Chemistry, 2021, 60, 3117-3130.	1.9	33
184	The explicit role of electron exchange in the hydrogen bonded molecular complexes. Journal of Computational Chemistry, 2021, 42, 870-882.	1.5	11
185	Concentric Approximation for Fast and Accurate Numerical Evaluation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. Journal of Physical Chemistry Letters, 2021, 12, 3082-3089.	2.1	41
186	Self-interaction correction in water–ion clusters. Journal of Chemical Physics, 2021, 154, 094302.	1.2	16
187	Hydration structure of flat and stepped MgO surfaces. Journal of Chemical Physics, 2021, 154, 114708.	1.2	10
188	Reversible Hydration of α-Dicarbonyl Compounds from Ab Initio Metadynamics Simulations: Comparison between Pyruvic and Glyoxylic Acids in Aqueous Solutions. Journal of Physical Chemistry B, 2021, 125,	1.2	2

#	Article	IF	CITATIONS
189	Electronic structure of cesium-based photocathode materials from density functional theory: performance of PBE, SCAN, and HSE06 functionals. Electronic Structure, 2021, 3, 027001.	1.0	26
190	Enhancing the formation of ionic defects to study the ice lh/XI transition with molecular dynamics simulations. Molecular Physics, 2021, 119, .	0.8	7
191	Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional. Journal of Chemical Theory and Computation, 2021, 17, 3065-3077.	2.3	37
192	Dynamics & Spectroscopy with Neutrons—Recent Developments & Emerging Opportunities. Polymers, 2021, 13, 1440.	2.0	8
193	Modeling of Peptides with Classical and Novel Machine Learning Force Fields: A Comparison. Journal of Physical Chemistry B, 2021, 125, 3598-3612.	1.2	22
194	Highly Accurate Many-Body Potentials for Simulations of N ₂ O ₅ in Water: Benchmarks, Development, and Validation. Journal of Chemical Theory and Computation, 2021, 17, 3931-3945.	2.3	13
195	Dielectric Constant of Liquid Water Determined with Neural Network Quantum Molecular Dynamics. Physical Review Letters, 2021, 126, 216403.	2.9	16
196	Assessing the Accuracy of the SCAN Functional for Water through a Many-Body Analysis of the Adiabatic Connection Formula. Journal of Chemical Theory and Computation, 2021, 17, 3739-3749.	2.3	13
197	Quantum Chemistry Calculations for Metabolomics. Chemical Reviews, 2021, 121, 5633-5670.	23.0	47
198	Enzyme Models—From Catalysis to Prodrugs. Molecules, 2021, 26, 3248.	1.7	6
199	Phase Diagram of a Deep Potential Water Model. Physical Review Letters, 2021, 126, 236001.	2.9	140
200	Effect of Lanthanum Ions on the BrÃ,nsted Acidity of Faujasite and Implications for Hydrothermal Stability. Journal of Physical Chemistry C, 2021, 125, 13649-13657.	1.5	10
201	Investigations of water/oxide interfaces by molecular dynamics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1537.	6.2	21
202	Computational Prediction of All Lanthanide Aqua Ion Acidity Constants. Inorganic Chemistry, 2021, 60, 10257-10266.	1.9	9
203	Structure and Stability of Pristine and Carboxylate-Covered Anatase TiO ₂ (001) in Aqueous Environment. Journal of Physical Chemistry C, 2021, 125, 15910-15917.	1.5	3
204	Hydrogen Bonds and H ₃ O ⁺ Formation at the Water Interface with Formic Acid Covered Anatase TiO ₂ . Journal of Physical Chemistry Letters, 2021, 12, 6840-6846.	2.1	6
205	Nuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural Network. Journal of Physical Chemistry Letters, 2021, 12, 6354-6362.	2.1	16
206	Phase-transition behavior of (H ₂ 0) _{<i>n</i>=1â^'4} few-body systems from Car–Parrinello molecular dynamics. Phase Transitions, 2021, 94, 889-898.	0.6	1

#	Article	IF	CITATIONS
207	Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. Journal of Chemical Information and Modeling, 2021, 61, 5013-5027.	2.5	11
208	Thermophysical properties of water using reactive force fields. Journal of Chemical Physics, 2021, 155, 114501.	1.2	7
209	Modeling Liquid Water by Climbing up Jacob's Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials. Journal of Physical Chemistry B, 2021, 125, 11444-11456.	1.2	40
210	Machine learning potentials for complex aqueous systems made simple. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	82
211	Using Neural Network Force Fields to Ascertain the Quality of <i>Ab Initio</i> Simulations of Liquid Water. Journal of Physical Chemistry B, 2021, 125, 10772-10778.	1.2	13
212	Hydration structures of barium ions: Ab initio molecular dynamics simulations using the SCAN meta-GGA density functional and EXAFS spectroscopy studies. Chemical Physics Letters, 2021, 780, 138945.	1.2	5
213	QEHeat: An open-source energy flux calculator for the computation of heat-transport coefficients from first principles. Computer Physics Communications, 2021, 269, 108090.	3.0	7
214	Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. Journal of Chemical Theory and Computation, 2021, 17, 804-817.	2.3	6
215	Rapid and accurate estimation of protein–ligand relative binding affinities using site-identification by ligand competitive saturation. Chemical Science, 2021, 12, 8844-8858.	3.7	18
216	Ultrafast Charge Transfer Coupled to Quantum Proton Motion at Molecule/Metal Oxide Interface. SSRN Electronic Journal, 0, , .	0.4	0
218	Equation of state of water based on the SCAN meta-GGA density functional. Physical Chemistry Chemical Physics, 2020, 22, 4626-4631.	1.3	9
219	Aqueous solvation of the chloride ion revisited with density functional theory: impact of correlation and exchange approximations. Physical Chemistry Chemical Physics, 2020, 22, 10666-10675.	1.3	20
220	Insights from the density functional performance of water and water–solid interactions: SCAN in relation to other meta-GGAs. Journal of Chemical Physics, 2020, 153, 214116.	1.2	14
221	Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional. Physical Review B, 2020, 102, .	1.1	22
222	Design and analysis of machine learning exchange-correlation functionals via rotationally invariant convolutional descriptors. Physical Review Materials, 2019, 3, .	0.9	49
223	Group-IV monochalcogenide monolayers: Two-dimensional ferroelectrics with weak intralayer bonds and a phosphorenelike monolayer dissociation energy. Physical Review Materials, 2019, 3, .	0.9	19
224	Different bonding type along each crystallographic axis: Computational study of poly(p -phenylene) Tj ETQq0 0	0 rgBT /0\	verlock 10 Tf 5

225	Validating first-principles molecular dynamics calculations of oxide/water interfaces with x-ray reflectivity data. Physical Review Materials, 2020, 4, .	0.9	12
-----	---	-----	----

#	Article	IF	CITATIONS
226	Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning. , 2020, , .		69
227	Computational Simulations to Guide Enzyme-Mediated Prodrug Activation. International Journal of Molecular Sciences, 2020, 21, 3621.	1.8	13
228	Does cosmological evolution select for technology?. New Journal of Physics, 2020, 22, 073064.	1.2	1
229	Polarizable Water Potential Derived from a Model Electron Density. Journal of Chemical Theory and Computation, 2021, 17, 7056-7084.	2.3	26
230	Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism. Nature Communications, 2021, 12, 6359.	5.8	45
231	<i>Ab initio</i> molecular dynamics simulation of liquid water with fragment-based quantum mechanical approach under periodic boundary conditions. Chinese Journal of Chemical Physics, 2021, 34, 761-768.	0.6	1
232	Computational Evaluation of Intermolecular Interaction in Poly(Styrene-Maleic Acid)-Water Complexes Using Density Functional Theory. Indonesian Journal of Chemistry, 2021, 21, 1537.	0.3	4
233	In Silico Prediction of Food Properties: A Multiscale Perspective. Frontiers in Chemical Engineering, 2022, 3, .	1.3	4
234	Ab Initio Simulations of Water/Metal Interfaces. Chemical Reviews, 2022, 122, 10746-10776.	23.0	72
235	Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals. Journal of Chemical Physics, 2022, 156, 034109.	1.2	25
236	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
237	Dissolving salt is not equivalent to applying a pressure on water. Nature Communications, 2022, 13, 822.	5.8	41
238	Hydrous silicate melts and the deep mantle H2O cycle. Earth and Planetary Science Letters, 2022, 581, 117408.	1.8	9
239	Heat transport in liquid water from first-principles and deep neural network simulations. Physical Review B, 2021, 104, .	1.1	29
240	Exchange-Correlation and Spin-Orbit Coupling Effects in 18-Electrons Transparent Conductors Half-Heusler: Ab-Initio Study. SSRN Electronic Journal, 0, , .	0.4	0
241	On the influence of water on THz vibrational spectral features of molecular crystals. Physical Chemistry Chemical Physics, 2022, 24, 6107-6125.	1.3	10
242	Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water. Journal of Physical Chemistry A, 2022, 126, 2031-2041.	1.1	4
243	Self-consistent determination of long-range electrostatics in neural network potentials. Nature Communications, 2022, 13, 1572.	5.8	38

#	Article	IF	CITATIONS
244	Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature. Journal of Chemical Theory and Computation, 2022, 18, 2124-2131.	2.3	16
245	Structural characteristics of low-density environments in liquid water. Physical Review E, 2022, 105, 034604.	0.8	13
246	Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree–Fock Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation, 2022, 18, 2208-2232.	2.3	7
247	Density functional theory of water with the machine-learned DM21 functional. Journal of Chemical Physics, 2022, 156, 161103.	1.2	8
248	Insights into lithium manganese oxide–water interfaces using machine learning potentials. Journal of Chemical Physics, 2021, 155, 244703.	1.2	18
249	Pure and Hybrid SCAN, rSCAN, and r2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking?. Molecules, 2022, 27, 141.	1.7	10
250	Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews, 2022, 122, 10777-10820.	23.0	82
251	Potential energy barrier for proton transfer in compressed benzoic acid. RSC Advances, 2022, 12, 11436-11441.	1.7	1
252	Boron Incorporation in Silicate Melt: Pressure-induced Coordination Changes and Implications for B Isotope Fractionation. Frontiers in Earth Science, 2022, 10, .	0.8	0
253	Assessing the Interplay between Functional-Driven and Density-Driven Errors in DFT Models of Water. Journal of Chemical Theory and Computation, 2022, 18, 3410-3426.	2.3	14
254	Many-body effects in the X-ray absorption spectra of liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201258119.	3.3	11
255	Connection between water's dynamical and structural properties: Insights from ab initio simulations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121641119.	3.3	9
256	Tailored Computational Approaches to Interrogate Heavy Element Chemistry and Structure in Condensed Phase. ACS Symposium Series, 0, , 219-245.	0.5	0
257	Ab Initio Cluster Approach for High Harmonic Generation in Liquids. Journal of Chemical Theory and Computation, 0, , .	2.3	14
258	Structural and Dynamic Properties of Solvated Hydroxide and Hydronium Ions in Water from Ab Initio Modeling. Journal of Chemical Physics, 0, , .	1.2	8
259	Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface. Science Advances, 2022, 8, .	4.7	21
260	Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. Journal of Physical Chemistry A, 2022, 126, 3926-3936.	1.1	11
261	How Good Is the Density-Corrected SCAN Functional for Neutral and Ionic Aqueous Systems, and What Is So Right about the Hartree–Fock Density?. Journal of Chemical Theory and Computation, 2022, 18, 4745-4761.	2.3	20

#	Article	IF	CITATIONS
262	Viscosity in water from first-principles and deep-neural-network simulations. Npj Computational Materials, 2022, 8, .	3.5	23
263	Extended X-ray absorption fine structure spectroscopy measurements and ab initio molecular dynamics simulations reveal the hydration structure of the radium(II) ion. IScience, 2022, 25, 104763.	1.9	9
264	Exchange-correlation and spin-orbit coupling effects in 18-electrons transparent conductors half-Heusler: Ab-initio study. Computational Condensed Matter, 2022, 32, e00690.	0.9	3
265	Phase stability, phonon, electronic, and optical properties of not-yet-synthesized CsScS2, CsYS2, and APmS2 (A= Li, Na, K, Rb, Cs) materials: Insights from first-principles calculations. Materials Science in Semiconductor Processing, 2022, 150, 106936.	1.9	4
266	Melting curve and transport properties of ammonia ice up to the deep mantle conditions of Uranus and Neptune. Physical Review B, 2022, 106, .	1.1	2
267	<tt>DMC-ICE13</tt> : Ambient and high pressure polymorphs of ice from diffusion Monte Carlo and density functional theory. Journal of Chemical Physics, 2022, 157, .	1.2	7
268	Laplacian-level meta-generalized gradient approximation for solid and liquid metals. Physical Review Materials, 2022, 6, .	0.9	10
269	Homogeneous ice nucleation in an ab initio machine-learning model of water. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	35
270	Superhydrophilicity of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si22.svg"><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:math> -alumina surfaces results from tight binding of interfacial waters to specific aluminols. Journal of Colloid and Interface Science. 2022, 628, 943-954.	5.0	7
272	Orcinol and resorcinol induce local ordering of water molecules near the liquid–vapor interface. Environmental Science Atmospheres, 2022, 2, 1277-1291.	0.9	1
273	Quantum chemical investigation of the effect of alkali metal ions on the dynamic structure of water in aqueous solutions. RSC Advances, 2022, 12, 25500-25510.	1.7	3
274	Water Defect Stabilizes the Bi ³⁺ Lone-Pair Electronic State Leading to an Unusual Aqueous Hydration Structure. Inorganic Chemistry, 2022, 61, 14987-14996.	1.9	4
275	Modeling the Solvation and Acidity of Carboxylic Acids Using an <i>Ab Initio</i> Deep Neural Network Potential. Journal of Physical Chemistry A, 2022, 126, 7283-7290.	1.1	3
276	Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential. Journal of Molecular Liquids, 2022, 367, 120500.	2.3	6
277	Exact constraints and appropriate norms in machine-learned exchange-correlation functionals. Journal of Chemical Physics, 2022, 157, .	1.2	8
278	Optimizing the structure and performance of biomimetic water channels. Molecular Systems Design and Engineering, 0, , .	1.7	2
279	Quantifying the Structure of Water and Hydrated Monovalent lons by Density Functional Theory-Based Molecular Dynamics. Journal of Physical Chemistry B, 2022, 126, 10471-10480.	1.2	11
280	DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials. Journal of Physical Chemistry A, 2022, 126, 9154-9164.	1.1	4

		CITATION REPORT	
#	Article	IF	CITATIONS
281	Liquid-Liquid Transition in Water from First Principles. Physical Review Letters, 2022, 129, .	2.9	24
282	Water dissociation at the water–rutile TiO ₂ (110) interface from abÂinitio-base neural network simulations. Proceedings of the National Academy of Sciences of the United Sta America, 2023, 120, .	d deep ates of 3.3	10
283	Dynamics of Aqueous Electrolyte Solutions: Challenges for Simulations. Journal of Physical Chemistry B, 2023, 127, 430-437.	1.2	8
284	Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews, 2023, 4, .	2.6	4
285	The Predictive Power of Exact Constraints and Appropriate Norms in Density Functional Theory. Annual Review of Physical Chemistry, 2023, 74, 193-218.	4.8	22
286	Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. Journal of Physical Chemistry B, 2023, 127, 809-821.	1.2	3
287	Solvation Structure and Dynamics of Aqueous Solutions of Au+ Ions: A Molecular Dynamics Simulation Study. Journal of Solution Chemistry, 2023, 52, 326-342.	0.6	0
288	Metallic water: Transient state under ultrafast electronic excitation. Journal of Chemical Physics 2023, 158, .	, 1.2	1
289	Phase behavior of metastable water based on fully ab initio simulations. Journal of Non-Crystalli Solids, 2023, 610, 122307.	ne 1.5	0
290	Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Water. Journal of Physical Chemistry B, 2023, 127, 1422-1428.	Liquid 1.2	0
291	Extending density functional theory with near chemical accuracy beyond pure water. Nature Communications, 2023, 14, .	5.8	7
292	Improved and Always Improving: Reference Formulations for Thermophysical Properties of Wat Journal of Physical and Chemical Reference Data, 2023, 52, .	er. 1.9	9
293	Proton Transport in Perfluorinated Ionomer Simulated by Machine-Learned Interatomic Potentia Journal of Physical Chemistry Letters, 2023, 14, 3581-3588.	al. 2.1	5
294	Insight into the role of excess hydroxide ions in silicate condensation reactions. Physical Chemic Chemical Physics, 2023, 25, 12723-12733.	stry 1.3	3
295	Understanding the wetting of transition metal dichalcogenides from an <i>ab initio</i> perspec Physical Review Research, 2023, 5, .	tive. 1.3	0
296	Dielectric Saturation in Water from a Long-Range Machine Learning Model. Journal of Physical Chemistry B, 2023, 127, 3663-3671.	1.2	2
297	Exploring the Dynamics of DNA Nucleotides in Graphene/h-BN Nanopores: Insights from ab-initi Molecular Dynamics. Physical Chemistry Chemical Physics, 0, , .	0 1.3	0
300	Modern Density Functionals Derived From First Principles. , 2024, , 69-77.		0

ARTICLE

IF CITATIONS