FmLC5, a putative galactose-binding C-type lectin with of Fenneropenaeus merguiensis participates in shrimp

Journal of Invertebrate Pathology 150, 136-144 DOI: 10.1016/j.jip.2017.09.013

Citation Report

#	Article	IF	CITATIONS
1	Novel L-type lectin from fresh water prawn, Macrobrachium rosenbergii participates in antibacterial and antiviral immune responses. Fish and Shellfish Immunology, 2018, 77, 304-311.	1.6	15
2	FmLC6: An ultimate dual-CRD C-type lectin from Fenneropenaeus merguiensis mediated its roles in shrimp defense immunity towards bacteria and virus. Fish and Shellfish Immunology, 2018, 80, 200-213.	1.6	23
3	The hepatic lectin of zebrafish binds a wide range of bacteria and participates in immune defense. Fish and Shellfish Immunology, 2018, 82, 267-278.	1.6	17
4	Identification and functional characterization of a C-type lectin gene from Litopenaeus vannamei that is associated with ER-stress response. Fish and Shellfish Immunology, 2019, 93, 977-985.	1.6	12
5	Transcriptomic analysis and expression of C-type lectins in response to Vibrio parahaemolyticus challenge in Scapharca subcrenata. Fish and Shellfish Immunology, 2020, 106, 365-373.	1.6	6
6	Cloning and abiotic stress expression analysis of galactose-binding lectin (GBL) gene from mulberry and its prokaryotic expression in E. coli. Journal of Horticultural Science and Biotechnology, 2021, 96, 24-33.	0.9	1
7	Pattern recognition receptors in the crustacean immune response against bacterial infections. Aquaculture, 2021, 532, 735998.	1.7	24
8	iTRAQ and PRM-based comparative proteomic profiling in gills of white shrimp Litopenaeus vannamei under copper stress. Chemosphere, 2021, 263, 128270.	4.2	25
9	The expanding repertoire of immuneâ€related molecules with antimicrobial activity in penaeid shrimps: a review. Reviews in Aquaculture, 2021, 13, 1907-1937.	4.6	19
10	The functional relevance of shrimp C-type lectins in host-pathogen interactions. Developmental and Comparative Immunology, 2020, 109, 103708.	1.0	51
11	Functional analysis of TcCTL12 in innate immunity and development in Tribolium castaneum. International Journal of Biological Macromolecules, 2022, 206, 422-434.	3.6	5
13	A Novel Ig Domain–Containing C-Type Lectin Triggers the Intestine–Hemocyte Axis to Regulate Antibacterial Immunity in Crab. Journal of Immunology, 2022, 208, 2343-2362.	0.4	9