Deletion of the African Swine Fever Virus Gene DP148R in Culture but Reduces Virus Virulence in Pigs and Indu against Challenge

Journal of Virology 91, DOI: 10.1128/jvi.01428-17

Citation Report

#	Article	IF	CITATIONS
1	African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018, 36, 2694-2704.	3.8	101
2	Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine, 2018, 36, 707-715.	3.8	50
3	African swine fever: A re-emerging viral disease threatening the global pig industry. Veterinary Journal, 2018, 233, 41-48.	1.7	312
4	The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β. Virus Research, 2018, 249, 116-123.	2.2	48
5	Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence. Veterinary Microbiology, 2018, 216, 190-197.	1.9	41
6	Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines, 2019, 7, 56.	4.4	85
7	Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses, 2019, 11, 599.	3.3	40
8	African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II. Viruses, 2019, 11, 852.	3.3	50
9	African swine fever. Antiviral Research, 2019, 165, 34-41.	4.1	313
10	Development of vaccines against African swine fever virus. Virus Research, 2019, 265, 150-155.	2.2	83
11	African swine fever virus evasion of host defences. Virus Research, 2019, 266, 25-33.	2.2	122
12	Current status and evolving approaches to African swine fever vaccine development. Transboundary and Emerging Diseases, 2020, 67, 529-542.	3.0	82
13	African Swine Fever Epidemiology and Control. Annual Review of Animal Biosciences, 2020, 8, 221-246.	7.4	254
14	Identification of a Functional Small Noncoding RNA of African Swine Fever Virus. Journal of Virology, 2020, 94, .	3.4	9
15	Deletion of CD2-Like (CD2v) and C-Type Lectin-Like (EP153R) Genes from African Swine Fever Virus Georgia-â^†9GL Abrogates Its Effectiveness as an Experimental Vaccine. Viruses, 2020, 12, 1185.	3.3	47
16	Current State of Global African Swine Fever Vaccine Development under the Prevalence and Transmission of ASF in China. Vaccines, 2020, 8, 531.	4.4	76
17	X69R Is a Non-Essential Gene That, When Deleted from African Swine Fever, Does Not Affect Virulence in Swine. Viruses, 2020, 12, 918.	3.3	20
18	Assessment of Risk Factors of African Swine Fever in India: Perspectives on Future Outbreaks and Control Strategies. Pathogens, 2020, 9, 1044.	2.8	18

#	Article	IF	CITATIONS
19	Identification and Isolation of Two Different Subpopulations Within African Swine Fever Virus Arm/07 Stock. Vaccines, 2020, 8, 625.	4.4	16
20	Absence of Long-Term Protection in Domestic Pigs Immunized with Attenuated African Swine Fever Virus Isolate OURT88/3 or Beninî"MGF Correlates with Increased Levels of Regulatory T Cells and Interleukin-10. Journal of Virology, 2020, 94, .	3.4	36
21	A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs against Fatal Disease. Vaccines, 2020, 8, 234.	4.4	66
22	Production of Recombinant African Swine Fever Viruses: Speeding Up the Process. Viruses, 2020, 12, 615.	3.3	13
23	The African Swine Fever Virus (ASFV) Topoisomerase II as a Target for Viral Prevention and Control. Vaccines, 2020, 8, 312.	4.4	11
24	Antigenic Regions of African Swine Fever Virus Phosphoprotein P30. Transboundary and Emerging Diseases, 2020, 67, 1942.	3.0	14
25	Progress Toward Development of Effective and Safe African Swine Fever Virus Vaccines. Frontiers in Veterinary Science, 2020, 7, 84.	2.2	57
26	Adenovirus-vectored African Swine Fever Virus Antigens Cocktail Is Not Protective against Virulent Arm07 Isolate in Eurasian Wild Boar. Pathogens, 2020, 9, 171.	2.8	33
27	The C962R ORF of African Swine Fever Strain Georgia Is Non-Essential and Not Required for Virulence in Swine. Viruses, 2020, 12, 676.	3.3	18
28	African swine fever vaccines: a promising work still in progress. Porcine Health Management, 2020, 6, 17.	2.6	69
29	A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China Life Sciences, 2020, 63, 623-634.	4.9	193
30	The MGF360-16R ORF of African Swine Fever Virus Strain Georgia Encodes for a Nonessential Gene That Interacts with Host Proteins SERTAD3 and SDCBP. Viruses, 2020, 12, 60.	3.3	35
31	African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virologica Sinica, 2021, 36, 176-186.	3.0	59
32	Development and In Vivo Evaluation of a MGF110-1L Deletion Mutant in African Swine Fever Strain Georgia. Viruses, 2021, 13, 286.	3.3	23
33	Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China Life Sciences, 2021, 64, 752-765.	4.9	113
34	6. African swine fever vaccines. , 2021, , 161-182.		3
35	Natural oil blend formulation as an anti-African swine fever virus agent in in vitro primary porcine alveolar macrophage culture. Veterinary World, 2021, 14, 794-802.	1.7	5
36	ASFV-G-â^†1177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses, 2021, 13, 765.	3.3	65

#	Article	IF	CITATIONS
37	Thoughts on African Swine Fever Vaccines. Viruses, 2021, 13, 943.	3.3	29
38	African swine fever vaccine: Turning a dream into reality. Transboundary and Emerging Diseases, 2021, 68, 2657-2668.	3.0	21
39	A Cell Culture-Adapted Vaccine Virus against the Current African Swine Fever Virus Pandemic Strain. Journal of Virology, 2021, 95, e0012321.	3.4	55
41	Deletion of the K145R and DP148R Genes from the Virulent ASFV Georgia 2007/1 Isolate Delays the Onset, but Does Not Reduce Severity, of Clinical Signs in Infected Pigs. Viruses, 2021, 13, 1473.	3.3	6
42	Autophagy impairment by African swine fever virus. Journal of General Virology, 2021, 102, .	2.9	10
43	Regulation and Evasion of Host Immune Response by African Swine Fever Virus. Frontiers in Microbiology, 2021, 12, 698001.	3.5	7
44	African swine fever virus vaccine candidate ASFVâ€G― Δ 1177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2022, 69, .	3.0	57
45	African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. Journal of Virology, 2021, 95, e0119921.	3.4	54
46	Construction, Identification and Analysis of the Interaction Network of African Swine Fever Virus MGF360-9L with Host Proteins. Viruses, 2021, 13, 1804.	3.3	9
47	Viricidal activity of several disinfectants against African swine fever virus. Journal of Integrative Agriculture, 2021, 20, 3084-3088.	3.5	9
48	African Swine Fever Virus. Livestock Diseases and Management, 2020, , 27-53.	0.5	3
49	Identification and characterization of the 285L and K145R proteins of African swine fever virus. Journal of General Virology, 2019, 100, 1303-1314.	2.9	16
50	African swine fever: A permanent threat to Indian pigs. Veterinary World, 2020, 13, 2275-2285.	1.7	18
51	Evaluation in Swine of a Recombinant Georgia 2010 African Swine Fever Virus Lacking the I8L Gene. Viruses, 2021, 13, 39.	3.3	14
52	Role of African Swine Fever Virus Proteins EP153R and EP402R in Reducing Viral Persistence in Blood and Virulence in Pigs Infected with Beninî"DP148R. Journal of Virology, 2022, 96, JVI0134021.	3.4	25
53	A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge. Journal of Virology, 2022, 96, JVI0150021.	3.4	18
54	African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STINC-mediated signaling pathway. Veterinary Microbiology, 2021, 263, 109265.	1.9	37
55	Recent advances in cell homeostasis by African swine fever virus-host interactions. Research in Veterinary Science, 2021, 141, 4-13.	1.9	4

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Emerging Viral-Vectored Technology: Future Potential of Capripoxvirus and African Swine Fever Virus as Viral Vectors. , 2021, , 217-230.		0
58	Comparison of the Proteomes of Porcine Macrophages and a Stable Porcine Cell Line after Infection with African Swine Fever Virus. Viruses, 2021, 13, 2198.	3.3	15
59	Safety of African Swine Fever Vaccine Candidate Lv17/WB/Rie1 in Wild Boar: Overdose and Repeated Doses. Frontiers in Immunology, 2021, 12, 761753.	4.8	11
60	African Swine Fever Virus and Host Response: Transcriptome Profiling of the Georgia 2007/1 Strain and Porcine Macrophages. Journal of Virology, 2022, 96, jvi0193921.	3.4	40
61	Genome Plasticity of African Swine Fever Virus: Implications for Diagnostics and Live-Attenuated Vaccines. Pathogens, 2022, 11, 145.	2.8	7
62	MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway. MBio, 2022, 13, e0233021.	4.1	50
63	Differential Effect of Deleting Members of African Swine Fever Virus Multigene Families 360 and 505 from the Genotype II Georgia 2007/1 Isolate on Virus Replication, Virulence, and Induction of Protection. Journal of Virology, 2022, 96, jvi0189921.	3.4	25
64	Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs. Journal of Integrative Agriculture, 2022, 21, 819-825.	3.5	2
65	Adaptive Cellular Immunity against African Swine Fever Virus Infections. Pathogens, 2022, 11, 274.	2.8	21
66	1267L Is Neither the Virulence- Nor the Replication-Related Gene of African Swine Fever Virus and Its Deletant Is an Ideal Fluorescent-Tagged Virulence Strain. Viruses, 2022, 14, 53.	3.3	11
67	Prevention and Control Strategies of African Swine Fever and Progress on Pig Farm Repopulation in China. Viruses, 2021, 13, 2552.	3.3	37
68	The A137R Protein of African Swine Fever Virus Inhibits Type I Interferon Production via the Autophagy-Mediated Lysosomal Degradation of TBK1. Journal of Virology, 2022, 96, e0195721.	3.4	47
69	Recombinant ASF Live Attenuated Virus Strains as Experimental Vaccine Candidates. Viruses, 2022, 14, 878.	3.3	39
70	Evaluation of the Safety Profile of the ASFV Vaccine Candidate ASFV-G-ΔI177L. Viruses, 2022, 14, 896.	3.3	46
71	Isolation of Porcine Bone Marrow Cells and Generation of Recombinant African Swine Fever Viruses. Methods in Molecular Biology, 2022, 2503, 73-94.	0.9	3
72	Deletion of African Swine Fever Virus Histone-like Protein, A104R from the Georgia Isolate Drastically Reduces Virus Virulence in Domestic Pigs. Viruses, 2022, 14, 1112.	3.3	17
73	Protection Evaluation of a Five-Gene-Deleted African Swine Fever Virus Vaccine Candidate Against Homologous Challenge. Frontiers in Microbiology, 0, 13, .	3.5	10
74	African Swine Fever Virus: A Review. Life, 2022, 12, 1255.	2.4	35

#	Article	IF	Citations
75	Development of an ELISA Method to Differentiate Animals Infected with Wild-Type African Swine Fever Viruses and Attenuated HLJ/18-7GD Vaccine Candidate. Viruses, 2022, 14, 1731.	3.3	5
76	The African Swine Fever Isolate ASFV-Kenya-IX-1033 Is Highly Virulent and Stable after Propagation in the Wild Boar Cell Line WSL. Viruses, 2022, 14, 1912.	3.3	7
77	Recombinant African Swine Fever Virus Arm/07/CBM/c2 Lacking CD2v and A238L Is Attenuated and Protects Pigs against Virulent Korean Paju Strain. Vaccines, 2022, 10, 1992.	4.4	7
78	Oronasal or Intramuscular Immunization with a Thermo-Attenuated ASFV Strain Provides Full Clinical Protection against Georgia 2007/1 Challenge. Viruses, 2022, 14, 2777.	3.3	6
79	African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses, 2023, 15, 233.	3.3	7
80	Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses, 2023, 15, 557.	3.3	3
81	Biosecurity and Disinfectant Resistance in a Post-antibiotic Era. , 2023, , 215-239.		0
82	Deletion of <i>DP148R</i> , <i>DP71L</i> , and <i>DP96R</i> Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs. Journal of Virology, 2023, 97, .	3.4	2
83	Evaluation of African Swine Fever Virus E111R Gene on Viral Replication and Porcine Virulence. Viruses, 2023, 15, 890.	3.3	1
85	Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge. Journal of Biological Chemistry, 2023, 299, 104767.	3.4	1
86	African swine fever virus QP383R dampens type I interferon production by promoting cGAS palmitoylation. Frontiers in Immunology, 0, 14, .	4.8	2
87	New perspective on African swine fever: a bibliometrics study and visualization analysis. Frontiers in Veterinary Science, 0, 10, .	2.2	1
88	Vaccines for African swine fever: an update. Frontiers in Microbiology, 0, 14, .	3.5	15
89	Evaluation of Haematological and Immunological Parameters of the ASFV Lv17/WB/Rie1 Strain and Its Derived Mutant Lv17/WB/Rie1/d110-11L against ASFV Challenge Infection in Domestic Pigs. Vaccines, 2023, 11, 1277.	4.4	0
90	Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever?. Viruses, 2023, 15, 1925.	3.3	0
91	Innate immune escape and adaptive immune evasion of African swine fever virus: A review. Virology, 2023, 587, 109878.	2.4	2
92	Adaptation of african swine fever virus (Asfarviridae: <i>Asfivirus</i>)to growth in the continuous culture PPK-66b cells by the method of accelerated passaging. Voprosy Virusologii, 2023, 68, 334-342.	0.7	0
93	Signal peptide and N-glycosylation of N-terminal-CD2v determine the hemadsorption of African swine fever virus. Journal of Virology, 0, , .	3.4	3

CITATION REPORT

		CITATION I	CITATION REPORT	
#	Article		IF	CITATIONS
94	A protective multiple gene-deleted African swine fever virus genotype II, Georgia 2007/ modified non-haemadsorbing CD2v protein. Emerging Microbes and Infections, 2023,	1, expressing a 12, .	6.5	4
95	Deletion of the gene for the African swine fever virus BCL-2 family member A179L increases uptake and apoptosis but decreases virus spread in macrophages and reduces virulence of Virology, 2023, 97, .	ases virus e in pigs. Journal	3.4	1
96	Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fe 2023, 15, 2169.	ever. Viruses,	3.3	2
97	Interactome between ASFV and host immune pathway proteins. MSystems, 2023, 8, .		3.8	0
98	Research progress on African swine fever in China. Scientia Sinica Vitae, 2023, , .		0.3	0
99	The attenuated African swine fever vaccine HLJ/18-7GD provides protection against em genotype II variants in China. Emerging Microbes and Infections, 2024, 13, .	erging prevalent	6.5	1
100	Identification of L11L and L7L as virulence-related genes in the African swine fever virus Frontiers in Microbiology, 0, 15, .	s genome.	3.5	0
101	Deleting the C84L Gene from the Virulent African Swine Fever Virus SY18 Does Not Aff Replication in Porcine Primary Macrophages but Reduces Its Virulence in Swine. Pathog 103.	ect Its gens, 2024, 13,	2.8	0
102	Recent progress and major gaps in the vaccine development for African swine fever. Br of Microbiology, 2024, 55, 997-1010.	azilian Journal	2.0	0
103	Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. Np. 9, .	Vaccines, 2024,	6.0	0