Influence of tribology on global energy consumption, co

Friction 5, 263-284 DOI: 10.1007/s40544-017-0183-5

Citation Report

#	Article	IF	CITATIONS
1	Structural superlubricity of platinum on graphite under ambient conditions: The effects of chemistry and geometry. Applied Physics Letters, 2017, 111, .	1.5	23
2	Superlubricity: Friction's vanishing act. Physics Today, 2018, 71, 40-46.	0.3	73
3	Improvement of Load Bearing Capacity of Nanoscale Superlow Friction by Synthesized Fluorinated Surfactant Micelles. ACS Applied Nano Materials, 2018, 1, 953-959.	2.4	8
4	Ultralow Friction Between Steel Surfaces Achieved by Lubricating with Liquid Crystal After a Running-in Process with Acetylacetone. Tribology Letters, 2018, 66, 1.	1.2	17
5	Understanding the synergistic lubrication effect of 2-mercaptobenzothiazolate based ionic liquids and Mo nanoparticles as hybrid additives. Tribology International, 2018, 125, 39-45.	3.0	45
6	Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction, 2018, 6, 349-386.	3.4	118
7	Performance and mechanisms of silicate tribofilm in heavily loaded rolling/sliding non-conformal contacts. Tribology International, 2018, 123, 130-141.	3.0	13
8	Direct Formation of Lubricious and Wear-Protective Carbon Films from Phosphorus- and Sulfur-Free Oil-Soluble Additives. Tribology Letters, 2018, 66, 1.	1.2	50
9	Tribochemical Processes in a Phenol Formaldehyde Polymer Modified by Polyformaldehyde Copolymer. Journal of Friction and Wear, 2018, 39, 462-468.	0.1	1
10	Evaluation of the Physical and Mechanical Characteristics of Ion-Plasma Antifriction Coatings Based on Ti-Cu. Key Engineering Materials, 0, 788, 59-67.	0.4	4
11	Minimizing friction, wear, and energy losses by eliminating contact charging. Science Advances, 2018, 4, eaau3808.	4.7	60
12	Fast 3D Microscopy Imaging of Contacts Between Surfaces Using a Fluorescent Liquid. ACS Applied Materials & Interfaces, 2018, 10, 40973-40977.	4.0	8
13	Is Tribology Approaching Its Golden Age? Grand Challenges in Engineering Education and Tribological Research. Frontiers in Mechanical Engineering, 2018, 4, .	0.8	20
14	Emerging superlubricity: A review of the state of the art and perspectives on future research. Applied Physics Reviews, 2018, 5, .	5.5	138
15	Molecular Dynamics Investigation of Graphene Nanoplate Diffusion Behavior in Poly-α-Olefin Lubricating Oil. Crystals, 2018, 8, 361.	1.0	11
16	Experimentally Calibrated Abrasive Sliding Wear Model: Demonstrations for Rotary and Linear Wear Systems. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	2
17	Friction reduction through biologically inspired scale-like laser surface textures. Beilstein Journal of Nanotechnology, 2018, 9, 2561-2572.	1.5	43
18	Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol. ACS Applied Materials & Interfaces, 2018, 10, 40863-40870.	4.0	131

#	Article	IF	CITATIONS
19	Tribological advancement – strategies and effects towards emissions and global energy consumption. MATEC Web of Conferences, 2018, 204, 00003.	0.1	2
20	Effect of Low Depth Surface Texturing on Friction Reduction in Lubricated Sliding Contact. Lubricants, 2018, 6, 62.	1.2	32
21	Comparison of Hertzian and JKR theories with a finite element model in boundary lubrication conditions between a compression ring and a cylinder. MATEC Web of Conferences, 2018, 188, 04009.	0.1	0
22	Adhesive wear and particle emission: Numerical approach based on asperity-free formulation of Rabinowicz criterion. Friction, 2018, 6, 260-273.	3.4	38
23	Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions. Langmuir, 2018, 34, 11281-11291.	1.6	70
24	Tribochemical Competition within a MoS ₂ /Ti Dry Lubricated Macroscale Contact in Ultrahigh Vacuum: A Time-of-Flight Secondary Ion Mass Spectrometry Investigation. ACS Applied Materials & Interfaces, 2018, 10, 20106-20119.	4.0	14
25	Renewable Cr ₂ O ₃ Nanolayer on Cr(W)N Surface for Seizure Prevention at Elevated Temperatures. ACS Applied Materials & amp; Interfaces, 2018, 10, 25787-25793.	4.0	3
26	Nanomechanical testing of third bodies. Current Opinion in Solid State and Materials Science, 2018, 22, 142-155.	5.6	13
27	From lab to application - Improved frictional performance of journal bearings induced by single- and multi-scale surface patterns. Tribology International, 2018, 127, 500-508.	3.0	60
28	Femtosecond Laser Texturing of Surfaces for Tribological Applications. Materials, 2018, 11, 801.	1.3	127
29	Adsorption of Surfactants on α-Fe ₂ O ₃ (0001): A Density Functional Theory Study. Journal of Physical Chemistry C, 2018, 122, 20817-20826.	1.5	39
30	Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research, 2018, 1, 3-39.	2.7	288
31	Molecular Dynamics Simulation on the Aggregation of Lubricant Oxidation Products. Tribology Letters, 2018, 66, 1.	1.2	18
32	Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribology International, 2019, 129, 137-150.	3.0	41
33	Mussel-Inspired Graphene Film with Enhanced Durability as a Macroscale Solid Lubricant. ACS Applied Materials & Interfaces, 2019, 11, 31386-31392.	4.0	22
34	Deposition processes and properties of coatings on steel fasteners — A review. Friction, 2019, 7, 389-416.	3.4	49
35	Structural and tribological behaviors of graphene nanocrystallited carbon nitride films. Applied Surface Science, 2019, 495, 143591.	3.1	8
36	Improving Abrasive Wear Resistance for Steel Hardox 400 by Electro-Spark Deposition. Journal of Friction and Wear, 2019, 40, 100-106.	0.1	4

ARTICLE IF CITATIONS # Electrodeposition of Ni P composite coatings: A review. Surface and Coatings Technology, 2019, 378, 37 2.2 52 124803. Simulating Surfactant–Iron Oxide Interfaces: From Density Functional Theory to Molecular Dynamics. 1.2 28 Journal of Physical Chemistry B, 2019, 123, 6870-6881. Recent Advances in Bifunctional Catalysts for the Fischerâ€"Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Industrial & amp; Engineering Chemistry Research, 2019, 58, 39 49 1.8 15872-15901. Problems in Friction Analysis. Mechanisms and Machine Science, 2019, , 3779-3788. 0.3 Solid Lubrication with MoS2: A Review. Lubricants, 2019, 7, 57. 41 1.2 320 Sliding friction of shale rock on dry quartz sand particles. Friction, 2019, 7, 307-315. 3.4 Drop-on-Demand Printing as Novel Method of Oil Supply in Elastohydrodynamic Lubrication. Tribology 43 1.2 4 Letters, 2019, 67, 1. Ionic liquid-based electrodeposition of ZnS:nano-MoS2 composite films with self-lubricating 44 properties. Surface and Coatings Technology, 2019, 374, 957-965. Understanding the Independent and Interdependent Role of Water and Oxidation on the Tribology of 46 1.9 26 Ultrathin Molybdenum Disulfide (MoS₂). Advanced Materials Interfaces, 2019, 6, 1901246. Enhancement in the tribological properties of Cr/DLC multilayers in methane: structural 1.5 transformation induced by sliding. SN Applied Sciences, 2019, 1, 1. Friction and Wear of Pd-Rich Amorphous Alloy (Pd43Cu27Ni10P20) with Ionic Liquid (IL) as Lubricant at 48 1.0 5 High Temperatures. Metals, 2019, 9, 1180. Advanced Coatings by Thermal Spray Processes. Technologies, 2019, 7, 79. 3.0 Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing 50 1.9 23 Applications. Inorganic Chemistry, 2019, 58, 14939-14980. Rapid Thermal Characterization of Graphene Oxideâ€"Nanocalorimetry as a Pathway for Novel Insights 1.2 in Tribology. Lubricants, 2019, 7, 96. Rolling Contact Performance of a Ti-Containing MoS2 Coating Operating Under Ambient, Vacuum, and 52 1.2 8 Oil-Lubricated Conditions. Coatings, 2019, 9, 752. Selenium Chemisorption Makes Iron Surfaces Slippery. Tribology Letters, 2019, 67, 1. 1.2 Ironâ€Nanoparticle Driven Tribochemistry Leading to Superlubric Sliding Interfaces. Advanced Materials 54 1.9 41 Interfaces, 2019, 6, 1901416. Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Central Science, 2019, 5, 5.3 1795-1803.

#	Article	IF	CITATIONS
56	Stretchable MoS ₂ Electromechanical Sensors with Ultrahigh Sensitivity and Large Detection Range for Skin-on Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 37035-37042.	4.0	28
57	Tribology and Industry: From the Origins to 4.0. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	36
58	Experimental results on a hydrostatic bearing lubricated with a magnetorheological fluid. Current Applied Physics, 2019, 19, 1441-1448.	1.1	16
59	Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments. ACS Applied Materials & Interfaces, 2019, 11, 40470-40480.	4.0	42
60	The effects of applied voltage on surface texturing during cathodic plasma electrolysis process. AIP Advances, 2019, 9, 095029.	0.6	1
61	Influence of surface texturing on hydrodynamic friction in plane converging bearings - An experimental and numerical approach. Tribology International, 2019, 134, 190-204.	3.0	111
62	Tribological Investigations of Silicon Nitride Lubricated by Ionic Liquid Aqueous Solutions. Tribology Transactions, 2019, 62, 295-303.	1.1	4
63	Effect of Nanobainite Content on the Dry Sliding Wear Behavior of an Al-Alloyed High Carbon Steel with Nanobainitic Microstructure. Materials, 2019, 12, 1618.	1.3	8
64	Possibilities of Dry and Lubricated Friction Modification Enabled by Different Ultrashort Laser-Based Surface Structuring Methods. Lubricants, 2019, 7, 43.	1.2	18
65	Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon, 2019, 151, 76-83.	5.4	86
66	Coating Architects: Manipulating Multiscale Structures To Optimize Interfacial Properties for Coating Applications. ACS Applied Polymer Materials, 2019, 1, 2249-2266.	2.0	23
67	Frictional Contact Between the Diamond Tip and Graphene Step Edges. Tribology Letters, 2019, 67, 1.	1.2	6
68	Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction, 2019, 7, 289-306.	3.4	23
69	Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019, 45, 18167-18188.	2.3	371
70	Synthesis of Biomassâ€Đerived Ethers for Use as Fuels and Lubricants. ChemSusChem, 2019, 12, 2835-2858.	3.6	56
71	Carbon Nanomaterials—Promising Solid Lubricants to Tailor Friction and Wear. Lubricants, 2019, 7, 51.	1.2	2
72	Insights into tribology from in situ nanoscale experiments. MRS Bulletin, 2019, 44, 478-486.	1.7	34
73	Insights into friction dependence of carbon nanoparticles as oil-based lubricant additive at amorphous carbon interface. Carbon, 2019, 150, 465-474.	5.4	48

#	Article	IF	Citations
74	Interplay between wall slip and cavitation: A complementary variable approach. Tribology International, 2019, 137, 324-339.	3.0	12
75	Improvement of Wear Resistance of the Nickel Based Alloy Mixed with Rare Earth Elements by High Power Direct Diode Laser Cladding. Lasers in Manufacturing and Materials Processing, 2019, 6, 173-188.	1.2	7
76	Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water. Journal of Physical Chemistry Letters, 2019, 10, 2978-2984.	2.1	37
77	A multiscale-approach for wear prediction in journal bearing systems – from wearing-in towards steady-state wear. Wear, 2019, 426-427, 1203-1211.	1.5	26
78	Wear behaviour of MgO stabilized zirconia in hot steam environment up to 400â€Â°C. Wear, 2019, 426-427, 428-432.	1.5	4
79	Thin-Film Lubrication in the Water/Octyl β- <scp>d</scp> -Glucopyranoside System: Macroscopic and Nanoscopic Tribological Behavior. Langmuir, 2019, 35, 7136-7145.	1.6	9
80	An Introduction to Elastohydrodynamic Lubrication. , 2019, , 1-19.		1
81	Superlubricity achieved for commensurate sliding: MoS2 frictional anisotropy in silico. Computational Materials Science, 2019, 163, 17-23.	1.4	24
82	Designing surface textures for EHL point-contacts - Transient 3D simulations, meta-modeling and experimental validation. Tribology International, 2019, 137, 152-163.	3.0	58
83	Structure, mechanical and tribological properties of Mo-S-N solid lubricant coatings. Applied Surface Science, 2019, 486, 1-14.	3.1	51
84	A low-friction graphene nanoplatelets film from suspension high velocity oxy-fuel thermal spray. AIP Advances, 2019, 9, .	0.6	15
85	Macro-Tribological Behaviors of Four Common Graphenes. Industrial & Engineering Chemistry Research, 2019, 58, 5464-5471.	1.8	10
86	Facile fabrication of long-chain alkyl functionalized ultrafine reduced graphene oxide nanocomposites for enhanced tribological performance. RSC Advances, 2019, 9, 7324-7333.	1.7	12
87	The effect of interference on the leakage performance of rotary lip seals. International Journal of Environmental Science and Technology, 2019, 16, 5275-5280.	1.8	3
88	BLC-RGO: A novel nanoadditive for water-based lubricant. Tribology International, 2019, 135, 277-286.	3.0	24
89	Investigating the micropitting and wear performance of copper oxide and tungsten carbide nanofluids under boundary lubrication. Wear, 2019, 428-429, 55-63.	1.5	20
90	Effect of Running-In Induced Groove-Structured Wear and Fe(acac)3 on Ultralow Friction When Lubricating with 5CB Liquid Crystal. Tribology Letters, 2019, 67, 1.	1.2	7
91	The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribology International, 2019, 135, 389-396.	3.0	335

#	Article	IF	CITATIONS
92	Versatile 4, 6-dimethyl-2-mercaptopyrimidine based ionic liquids as high-performance corrosion inhibitors and lubricants. Journal of Molecular Liquids, 2019, 284, 577-585.	2.3	38
93	Computational fluid dynamic study on the tribological performance of dimple-textured surface fabricated using the turning process. Industrial Lubrication and Tribology, 2019, 71, 594-602.	0.6	8
94	Optimization of milling parameters of 1018 steel and nanoparticle additive concentration in cutting fluids for enhancing multi-response characteristics. Wear, 2019, 426-427, 877-886.	1.5	16
95	Synthesis of Tribological WS2 Powder from WO3 Prepared by Ultrasonic Spray Pyrolysis (USP). Metals, 2019, 9, 277.	1.0	10
96	Effects of Reduced Graphene Oxide (rGO) at Different Concentrations on Tribological Properties of Liquid Base Lubricants. Lubricants, 2019, 7, 11.	1.2	17
97	Graphene - MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon, 2019, 146, 524-527.	5.4	108
98	Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants, 2019, 7, 7.	1.2	147
99	Friction and Wear Behavior of Environmentally Friendly Ionic Liquids for Sustainability of Biolubricants. Journal of Tribology, 2019, 141, .	1.0	10
100	Shear heating, flow, and friction of confined molecular fluids at high pressure. Physical Chemistry Chemical Physics, 2019, 21, 5813-5823.	1.3	25
101	Energetic coefficient of friction applied to cylinder liners lab tests. Industrial Lubrication and Tribology, 2019, 72, 1103-1108.	0.6	2
102	Contact modeling with a finite element model in piston ring‒liner conjunction under dry conditions. International Journal of Structural Integrity, 2019, 10, 393-414.	1.8	2
103	Effect of surface polishing on the tribological performance of hard coatings under lubricated three-body abrasive conditions. Surface Topography: Metrology and Properties, 2019, 7, 045001.	0.9	9
105	Tribological Behavior of a Polyester Composite System under Severe Wear Conditions. Key Engineering Materials, 2019, 813, 453-458.	0.4	0
106	High-temperature wear and frictional behavior of partially oxidized Al with NiCr composite coating. Materials Research Express, 2019, 6, 126599.	0.8	4
107	Frictional Analysis of different coatings on MS material in order to increase the life of machine element. , 2019, , .		0
108	Wear modelling of soil ripper tine in sand and sandy clay by discrete element method. Biosystems Engineering, 2019, 188, 305-319.	1.9	22
109	Tribology: The Tool to Design Materials for Energy-Efficient and Durable Products and Process. , 0, , .		0
110	Improvement in Tribological Properties of Cr12MoV Cold Work Die Steel by HVOF Sprayed WC-CoCr Cermet Coatings. Coatings, 2019, 9, 825.	1.2	14

#	Article	IF	CITATIONS
111	On Friction Reduction by Surface Modifications in the TEHL Cam/Tappet-Contact-Experimental and Numerical Studies. Coatings, 2019, 9, 843.	1.2	26
112	Tuning friction and slip at solid-nanoparticle suspension interfaces by electric fields. Scientific Reports, 2019, 9, 18584.	1.6	10
113	Fluorescence microscopy visualization of the roughness-induced transition between lubrication regimes. Science Advances, 2019, 5, eaaw4761.	4.7	19
114	Effect of Ionicity of Three Protic Ionic Liquids as Neat Lubricants and Lubricant Additives to a Biolubricant. Coatings, 2019, 9, 713.	1.2	13
115	Simultaneous Shot-Peening of hard and soft particles for friction reduction in reciprocal sliding. Tribology International, 2019, 130, 19-26.	3.0	6
116	Tribology of two-dimensional materials: From mechanisms to modulating strategies. Materials Today, 2019, 26, 67-86.	8.3	250
117	Flexible cable strength with regard to tribological interaction of its elements. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 638-648.	1.0	3
118	Synergistic tribological behaviors of graphene oxide and nanodiamond as lubricating additives in water. Tribology International, 2019, 132, 177-184.	3.0	65
119	Photonic, Low-Friction and Antimicrobial Applications for an Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy. Transactions of the Indian Institute of Metals, 2019, 72, 2105-2119.	0.7	2
120	Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 6568-6574.	4.0	76
121	A dynamic and tribological simulation of a monolayer graphene sheet for a carbon atomâ€graphene contact. Lubrication Science, 2019, 31, 194-209.	0.9	2
122	Motor oil condition evaluation based on on-board diagnostic system. Friction, 2020, 8, 95-106.	3.4	11
123	Investigation of parameters influencing erosive wear using DEM. Friction, 2020, 8, 136-150.	3.4	15
124	Wear particle dynamics drive the difference between repeated and non-repeated reciprocated sliding. Tribology International, 2020, 142, 105983.	3.0	19
125	Effect of Liquid Phase–Assisted Sintering on the Microstructure, Mechanical Properties, and Tribological Behavior of Self‣ubricating Ferrous Composites. Advanced Engineering Materials, 2020, 22, 1900865.	1.6	1
126	Abrasion resistance of Ni-Cr-B-Si coating deposited by laser cladding process. Tribology International, 2020, 143, 106002.	3.0	40
127	Arc PVD (Cr,Al,Mo)N and (Cr,Al,Cu)N coatings for mobility applications. Surface and Coatings Technology, 2020, 384, 125046.	2.2	20
128	Synergy between boron nitride or graphene nanoplatelets and tri(butyl)ethylphosphonium diethylphosphate ionic liquid as lubricant additives of triisotridecyltrimellitate oil. Journal of Molecular Liquids, 2020, 301, 112442.	2.3	26

			_
#	ARTICLE	IF	CITATIONS
129	Mechanochemistry of Zinc Dialkyldithiophosphate on Steel Surfaces under Elastohydrodynamic Lubrication Conditions. ACS Applied Materials & Interfaces, 2020, 12, 6662-6676.	4.0	58
130	Correlation between the Degree of Alkylation and Tribological Properties of Amino-PEG2-amine-Based Organic Friction Modifiers. Industrial & Engineering Chemistry Research, 2020, 59, 215-225.	1.8	12
131	Enhancing tool life, and reducing power consumption and surface roughness in milling processes by nanolubricants and laser surface texturing. Journal of Cleaner Production, 2020, 253, 119836.	4.6	37
132	Exploring the friction and wear behaviors of Ag-Mo hybrid modified thermosetting polyimide composites at high temperature. Friction, 2020, 8, 893-904.	3.4	15
133	Non-Newtonian flow of highly-viscous oils in hydraulic components. Journal of Non-Newtonian Fluid Mechanics, 2020, 275, 104221.	1.0	4
134	Corrosion- and wear-resistant composite film of graphene and mussel adhesive proteins on carbon steel. Corrosion Science, 2020, 164, 108351.	3.0	22
135	Analysis of the tribological performances of biodegradable hydraulic oils HEES and HEPR in the sliding of Cu–Zn/WC–CoCr alloys using the Stribeck curve. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	2
136	Superlubricity of carbon nanostructures. Carbon, 2020, 158, 1-23.	5.4	163
137	Rheological texture in a journal bearing with magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2020, 499, 166218.	1.0	21
138	The study of hexanoate-based protic ionic liquids used as lubricants in steel-steel contact. Journal of Molecular Liquids, 2020, 299, 112208.	2.3	24
139	Quasi-smectic liquid crystal phase of octane in contact with 2D MoS2. Applied Surface Science, 2020, 533, 147386.	3.1	5
140	Water droplet friction and rolling dynamics on superhydrophobic surfaces. Communications Materials, 2020, 1, .	2.9	58
141	Effects of Thickness and Particle Size on Tribological Properties of Graphene as Lubricant Additive. Tribology Letters, 2020, 68, 1.	1.2	30
142	Lateral Ordering in Nanoscale Ionic Liquid Films between Charged Surfaces Enhances Lubricity. ACS Nano, 2020, 14, 13256-13267.	7.3	26
143	Tribological behaviour of fibre-reinforced thermoset polymer composites: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 1439-1449.	0.7	14
144	Superlow friction of amorphous diamond-like carbon films in humid ambient enabled by hexagonal boron nitride nanosheet wrapped carbon nanoparticles. Chemical Engineering Journal, 2020, 402, 126206.	6.6	46
145	Topology optimization of tribological composites for multifunctional performance at sliding interfaces. Composites Part B: Engineering, 2020, 199, 108209.	5.9	6
146	Effect of hardenability on microstructure and property of low alloy abrasion-resistant steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139901.	2.6	9

#	Article	IF	Citations
147	Nanotribological Investigation of Sliding Properties of Transition Metal Dichalcogenide Thin Film Coatings. ACS Applied Materials & Interfaces, 2020, 12, 54191-54202.	4.0	9
148	System models and model classification in tribological system development. Systems Engineering, 2020, 23, 783-794.	1.6	2
149	Influence of LiDAR Point Cloud Density in the Geometric Characterization of Rooftops for Solar Photovoltaic Studies in Cities. Remote Sensing, 2020, 12, 3726.	1.8	10
150	High-stress impact–abrasion test by discrete element modeling. Computational Particle Mechanics, 2021, 8, 1061-1073.	1.5	4
151	Microstructure and Properties of Heat Affected Zone in High-Carbon Steel after Welding with Fast Cooling in Water. Materials, 2020, 13, 5059.	1.3	16
152	Laser Microtextured Surfaces for Friction Reduction: Does the Pattern Matter?. Materials, 2020, 13, 4915.	1.3	14
153	Effect of friction on the contact stress of a coated polymer gear. Friction, 2020, 8, 1169-1177.	3.4	21
154	Effect of hexagonal boron nitride on the coefficient of frictions of organic-inorganic hybrid polymer thin films for metal surface coatings. Journal of Adhesion Science and Technology, 2020, 34, 2200-2215.	1.4	1
155	Influence Factors on Mechanisms of Superlubricity in DLC Films: A Review. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	33
156	The effect of femtosecond laser treatment on the tribological properties of titanium nitride. IOP Conference Series: Materials Science and Engineering, 2020, 862, 022054.	0.3	5
157	tribAIn—Towards an Explicit Specification of Shared Tribological Understanding. Applied Sciences (Switzerland), 2020, 10, 4421.	1.3	15
158	Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction, 2020, 8, 1007-1024.	3.4	67
159	Study of silicon carbide dissociation into Fe and Fe C matrixes produced by die pressing and sintering. Materials Chemistry and Physics, 2020, 253, 123442.	2.0	9
160	Effect of chromium doping on high temperature tribological properties of silicon-doped diamond-like carbon films. Tribology International, 2020, 152, 106546.	3.0	13
161	Toward Robust Macroscale Superlubricity on Engineering Steel Substrate. Advanced Materials, 2020, 32, e2002039.	11.1	67
162	Synthesis of ricinoleate anion based ionic liquids and their application as green lubricating oil additives. Journal of Saudi Chemical Society, 2020, 24, 742-753.	2.4	9
163	Identification of a Material–Lubricant Pairing and Operating Conditions That Lead to the Failure of Porous Journal Bearing Systems. Tribology Letters, 2020, 68, 1.	1.2	4
164	Tribologie-Handbuch. , 2020, , .		13

#	Article	IF	CITATIONS
165	Tribology of 2D Nanomaterials: A Review. Coatings, 2020, 10, 897.	1.2	49
166	Techno-Economic Trade-Off between Battery Storage and Ice Thermal Energy Storage for Application in Renewable Mine Cooling System. Applied Sciences (Switzerland), 2020, 10, 6022.	1.3	12
167	Tailoring the Nanostructure of Graphene as an Oil-Based Additive: toward Synergistic Lubrication with an Amorphous Carbon Film. ACS Applied Materials & amp; Interfaces, 2020, 12, 43320-43330.	4.0	34
168	Influence of laser wavelength on the modification of friction between 100Cr6 steel and polytetrafluoroethylene by femtosecond laser-induced periodic surface structures. Journal of Laser Applications, 2020, 32, .	0.8	3
169	Influence of Laser Surface Texturing Sequence on Fatigue Properties of Coated Cold Work Tool Steel. Metals, 2020, 10, 1636.	1.0	2
170	Microstructure and corrosion properties of single layer Inconel 625 weld cladding obtained by the electroslag welding process. Journal of Materials Research and Technology, 2020, 9, 16146-16158.	2.6	24
171	Snakeskin-Inspired Elastomers with Extremely Low Coefficient of Friction under Dry Conditions. ACS Applied Materials & Interfaces, 2020, 12, 57450-57460.	4.0	14
172	Tribological Investigations of Nano and Micro-sized GraphiteÂParticles as an Additive in Lithium-Based Grease. Tribology Letters, 2020, 68, 1.	1.2	32
173	Designing Amorphous Carbon Coatings Using Numerical and Experimental Methods within a Multi-Scale Approach. Defect and Diffusion Forum, 0, 404, 77-84.	0.4	4
174	Lubricated friction around nanodefects. Science Advances, 2020, 6, eaaz3673.	4.7	20
175	In-situ Raman-SLIM multi-analytical observation for the process of the chemical composition and film thickness of tribofilms lubricated with a fully formulated oil. Transactions of the JSME (in Japanese), 2020, 86, 19-00445-19-00445.	0.1	1
176	Black Phosphorus Quantum Dots in Aqueous Ethylene Glycol for Macroscale Superlubricity. ACS Applied Nano Materials, 2020, 3, 4799-4809.	2.4	50
177	Sectoral-based CO2 emissions of Pakistan: a novel Grey Relation Analysis (GRA) approach. Environmental Science and Pollution Research, 2020, 27, 29118-29129.	2.7	47
178	Friction improvement via grinding wheel texturing by dressing. International Journal of Advanced Manufacturing Technology, 2020, 107, 4939-4954.	1.5	6
179	Alkyl-Ethylene Amines as Effective Organic Friction Modifiers for the Boundary Lubrication Regime. Langmuir, 2020, 36, 6716-6727.	1.6	15
180	Roughness analysis of electrochemically textured surfaces: effects on friction and wear of lubricated contacts. Surface Topography: Metrology and Properties, 2020, 8, 024011.	0.9	17
181	Balancing oxygen-containing groups and structural defects for optimizing macroscopic tribological properties of graphene oxide coating. Applied Surface Science, 2020, 516, 146122.	3.1	15
182	Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions. Langmuir, 2020, 36, 6765-6774.	1.6	17

#	Article	IF	CITATIONS
183	Competitive Adsorption of Lubricant Base Oil and Ionic Liquid Additives at Air/Liquid and Solid/Liquid Interfaces. Langmuir, 2020, 36, 7582-7592.	1.6	14
184	A finite-element model for a paste lubricated steel wire vs cast iron contact. Tribology International, 2020, 150, 106362.	3.0	10
185	Sheet metal forming using environmentally benign lubricant. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	14
186	Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by microdimple arrays. Carbon, 2020, 167, 122-131.	5.4	32
187	Cermets with Fe-alloy binder: A review. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105290.	1.7	47
188	Numerical Modeling of Wear in a Thrust Roller Bearing under Mixed Elastohydrodynamic Lubrication. Lubricants, 2020, 8, 58.	1.2	21
189	Improving the lubricity of a bio-lubricating grease with the multilayer graphene additive. Tribology International, 2020, 150, 106386.	3.0	17
190	Tribo-Raman-SLIM observation for diamond-like carbon lubricated with fully formulated oils with different wear levels at DLC/steel contacts. Wear, 2020, 454-455, 203326.	1.5	11
191	Experimental study of application of molecules with a cyclic head group containing a free radical as organic friction modifiers. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2020, 14, JAMDSM0044-JAMDSM0044.	0.3	7
192	Geometric design, meshing simulation, and stress analysis of pure rolling cylindrical helical gear drives. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 3102-3115.	1.1	12
193	A new approach for prediction of the wear loss of PTA surface coatings using artificial neural network and basic, kernel-based, and weighted extreme learning machine. Friction, 2020, 8, 1102-1116.	3.4	23
194	Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges. ACS Applied Materials & Interfaces, 2020, 12, 30007-30015.	4.0	6
195	Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction, 2020, 8, 643-665.	3.4	142
196	Effect of Ni addition and cryogenic hardening on the mechanical and tribological properties of self-lubricating steels produced by MIM. Powder Metallurgy, 2020, 63, 163-173.	0.9	2
197	Tribochemical Interaction of Multicomponent Aluminum Alloys During Sliding Friction with Steel. Lubricants, 2020, 8, 24.	1.2	8
198	Crystallography, orientation relationships and growth behaviour of TiC in wear-resistant steel. Materials Science and Technology, 2021, 37, 702-710.	0.8	3
199	Improving interfacial compatibility by a micro–nano synergetic structure for highâ€performance epoxy composites. Journal of Applied Polymer Science, 2020, 137, 49195.	1.3	2
200	Two fatty acid anion-based ionic liquids - part I: Physicochemical properties and tribological behavior as neat lubricants. Journal of Molecular Liquids, 2020, 305, 112827.	2.3	21

#	Article	IF	CITATIONS
201	Achieving a superlubricating ohmic sliding electrical contact <i>via</i> a 2D heterointerface: a computational investigation. Nanoscale, 2020, 12, 7857-7863.	2.8	11
202	Review—Towards Efficient Energy Storage Materials: Lithium Intercalation/Organic Electrodes to Polymer Electrolytes—A Road Map (Tribute to Michel Armand). Journal of the Electrochemical Society, 2020, 167, 070530.	1.3	13
203	Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes. Journal of Colloid and Interface Science, 2020, 579, 479-488.	5.0	39
204	<i>In Situ</i> Raman-SLIM Monitoring for the Formation Processes of MoDTC and ZDDP Tribofilms at Steel/Steel Contacts under Boundary Lubrication. Tribology Online, 2020, 15, 105-116.	0.2	13
205	Bilayer a-C:H/MoS2 film to realize superlubricity in open atmosphere. Diamond and Related Materials, 2020, 108, 107973.	1.8	16
206	Artificial Intelligence and fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils. Talanta, 2020, 219, 121312.	2.9	17
207	Tribological performance and microstructural evolution of α-brass alloys as a function of zinc concentration. Friction, 2020, 8, 1117-1136.	3.4	11
208	One-pot synthesis of SIB@ZIF-8 with enhanced anti-corrosion properties and excellent lubrication properties. Tribology International, 2020, 151, 106491.	3.0	18
209	Lubricating Ability of Magnesium Silicate Hydroxide–Based Nanopowder as Lubricant Additive in Steel–Steel and Ceramic–Steel Contacts. Tribology Transactions, 2020, 63, 585-596.	1.1	5
210	Synergistic Lubricating Behaviors of 3D Graphene and 2D Hexagonal Boron Nitride Dispersed in PAO4 for Steel/Steel Contact. Advanced Materials Interfaces, 2020, 7, 1901893.	1.9	24
211	RSM study on the influence of nitrogen flow rate and deposition temperature on the tribological properties of nitrogen doped diamond-like carbon coating. Surfaces and Interfaces, 2020, 19, 100470.	1.5	2
212	Understanding the role of surface textures in improving the performance of boundary additives, part I: Experimental. Tribology International, 2020, 146, 106243.	3.0	21
213	A methodology to estimate mechanical losses and its distribution during a real driving cycle. Tribology International, 2020, 145, 106208.	3.0	7
214	Performance of polyimide and PTFE based composites under sliding, erosive and high stress abrasive conditions. Tribology International, 2020, 147, 106282.	3.0	41
215	Achieving controllable friction of ultrafine-grained graphite HPG510 by tailoring the interfacial nanostructures. Applied Surface Science, 2020, 512, 145731.	3.1	8
216	Microscale superlubricity at multiple gold–graphite heterointerfaces under ambient conditions. Carbon, 2020, 161, 827-833.	5.4	18
217	Hydraulic hybrid passenger vehicle: Fuel savings possibilities. Mechanics Based Design of Structures and Machines, 2022, 50, 135-153.	3.4	15
218	Understanding the friction of atomically thin layered materials. Nature Communications, 2020, 11, 420.	5.8	33

#	Article	IF	CITATIONS
219	Synergy between Covalent Organic Frameworks and Surfactants to Promote Water-Based Lubrication and Corrosion Resistance. ACS Applied Nano Materials, 2020, 3, 1400-1411.	2.4	20
220	Superhigh-exfoliation graphene with a unique two-dimensional (2D) microstructure for lubrication application. Applied Surface Science, 2020, 513, 145608.	3.1	30
221	Martensitic wear resistant steels alloyed with titanium. Wear, 2020, 446-447, 203203.	1.5	14
222	Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear. Tribology International, 2020, 146, 106228.	3.0	89
223	A Case Study about Biomass Torrefaction on an Industrial Scale: Solutions to Problems Related to Self-Heating, Difficulties in Pelletizing, and Excessive Wear of Production Equipment. Applied Sciences (Switzerland), 2020, 10, 2546.	1.3	27
224	Carbon solid lubricants: role of different dimensions. International Journal of Advanced Manufacturing Technology, 2020, 107, 3875-3895.	1.5	29
225	Tribological comparison of Inconel 625 coatings deposited via laser metal deposition and tungsten inert gas welding process. Journal of Laser Applications, 2020, 32, .	0.8	11
226	Enhancing Cuo nanolubricant performance using dispersing agents. Tribology International, 2020, 150, 106338.	3.0	27
227	Hydroxyl-terminated ionic liquids functionalized graphene oxide with good dispersion and lubrication function. Tribology International, 2020, 148, 106350.	3.0	49
228	Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol. ACS Applied Materials & Interfaces, 2020, 12, 18859-18869.	4.0	51
229	Numerical Study of the Influence of Geometric Features of Dimple Texture on Hydrodynamic Pressure Generation. Metals, 2020, 10, 361.	1.0	9
230	A Study of the Durability of Hardened Plough Point. Journal of Friction and Wear, 2020, 41, 78-84.	0.1	7
231	Tribology of Natural Fibers Composite Materials: An Overview. Lubricants, 2020, 8, 42.	1.2	35
232	Tribological Behavior of Nanolubricants Based on Coated Magnetic Nanoparticles and Trimethylolpropane Trioleate Base Oil. Nanomaterials, 2020, 10, 683.	1.9	32
233	Synergistic Tribo-Activity of Nanohybrids of Zirconia/Cerium-Doped Zirconia Nanoparticles with Nano Lamellar Reduced Graphene Oxide and Molybdenum Disulfide. Nanomaterials, 2020, 10, 707.	1.9	13
234	Modified graphene as novel lubricating additive with high dispersion stability in oil. Friction, 2021, 9, 143-154.	3.4	45
235	The development of a micro-pattern manufacturing method using rotating active tools with compensation of estimated errors and an LMS algorithm. Journal of Intelligent Manufacturing, 2021, 32, 51-59.	4.4	1
236	Transient plasto-elastohydrodynamic lubrication concerning surface features with application to split roller bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 453-467.	1.0	2

		CITATION RE	EPORT	
#	ARTICLE Experimental and numerical studies of positive texture effect on friction reduction of slidi	ng Doct li	IF	CITATIONS
237	Journal of Engineering Tribology, 2021, 235, 360-375.	Part J:	1.0	16
239	Transient tribo-dynamic analysis of crosshead slipper in low-speed marine diesel engines of startup. Friction, 2021, 9, 1504-1527.	luring engine	3.4	11
240	Vibration-induced superlubricity. , 2021, , 53-70.			0
241	Structural superlubricity under ambient conditions. , 2021, , 113-130.			1
242	Liquid superlubricity with 2D material additives. , 2021, , 167-187.			1
243	Diamond-like carbon films and their superlubricity. , 2021, , 215-230.			4
244	Superlubricity of water-based lubricants. , 2021, , 333-357.			1
245	Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics simulations. Tribological properties of V2O5 studied via reactive molecular dynamics	ology	3.0	6
246	The correlation between friction coefficient and areal topography parameters for AISI 304	y steel	3.0	8
247 248	sliding against AISI 52100 steel. Friction, 2021, 9, 41-60.	bricity.	3.4	64
249	Tribology International, 2021, 154, 106695. Tribological Behavior of Surfaces Obtained by Turning in Sintered Self-Lubricating Compo Tribology Transactions, 2021, 64, 143-156.	sites.	1.1	3
250	Synthesis and tribological studies of epoxidized palm stearin methyl ester as a green lubri Journal of Cleaner Production, 2021, 280, 124320.	cant.	4.6	22
251	Tribological studies of 3D printed ABS and PLA plastic parts. Materials Today: Proceedings 856-862.	s, 2021, 41,	0.9	33
252	The effects of graphene nanoplatelets on the tribological performance of glass fiber-reinforepoxy composites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal Engineering Tribology, 2021, 235, 1514-1525.	prced of	1.0	22
253	Tribological performance and lubrication mechanism of new gemini quaternary phosphon liquid lubricants. Journal of Molecular Liquids, 2021, 322, 114522.	ium ionic	2.3	19
254	In-situ observation of tribo-decomposition behavior of ionic liquids composed of phosphc and cyano-anion using quadrupole mass spectrometer. Tribology International, 2021, 153	nium-cation , 106547.	3.0	13

#	Article	IF	CITATIONS
255	Effect of grain boundary on the friction coefficient of pure Fe under the oil lubrication. Tribology International, 2021, 155, 106781.	3.0	8
256	Direct observation of partial interface slip in micrometre-scale single asperity contacts. Tribology International, 2021, 155, 106776.	3.0	4
257	Superlubricity of NiTi alloys. , 2021, , 517-533.		2
258	Origin of low friction in hydrogenated diamond-like carbon films due to graphene nanoscroll formation depending on sliding mode: Unidirection and reciprocation. Carbon, 2021, 173, 696-704.	5.4	48
259	Rapid surface treatment of grey cast iron for reduction of friction and wear by alumina coating using gas tunnel plasma spray. Materials Chemistry and Physics, 2021, 260, 124134.	2.0	7
260	Taguchi optimization of various parameters for tribological performance of polyalphaolefins based nanolubricants. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1262-1280.	1.0	12
261	Monitoring of friction-related failures using diffusion maps of acoustic time series. Mechanical Systems and Signal Processing, 2021, 148, 107172.	4.4	5
262	Soot Nanoparticles Generated from Tribofilm Decomposition under Real Engine Conditions for Identifying Lubricant Hazards. ACS Applied Nano Materials, 2021, 4, 220-228.	2.4	10
263	Numerical prediction of the frictional losses in sliding bearings during start-stop operation. Friction, 2021, 9, 583-597.	3.4	10
264	Nanolubricant additives: A review. Friction, 2021, 9, 891-917.	3.4	124
264 265	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447.	3.4 8.2	124 6
264 265 266	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447. Origin of the tribofilm from MoS2 nanoparticle oil additives: Dependence of oil film thickness on particle aggregation in rolling point contact. Friction, 2021, 9, 1436-1449.	3.4 8.2 3.4	124 6 20
264 265 266 267	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447. Origin of the tribofilm from MoS2 nanoparticle oil additives: Dependence of oil film thickness on particle aggregation in rolling point contact. Friction, 2021, 9, 1436-1449. Tribological characterization of potential crankshaft bearing steels for roller bearing engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1365-1378.	3.4 8.2 3.4 1.0	124 6 20 0
264 265 266 267 268	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447. Origin of the tribofilm from MoS2 nanoparticle oil additives: Dependence of oil film thickness on particle aggregation in rolling point contact. Friction, 2021, 9, 1436-1449. Tribological characterization of potential crankshaft bearing steels for roller bearing engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1365-1378. Motor oil degradation during urban cycle road tests. Friction, 2021, 9, 1002-1011.	 3.4 8.2 3.4 1.0 3.4 	124 6 20 0
264 265 266 267 268	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447. Origin of the tribofilm from MoS2 nanoparticle oil additives: Dependence of oil film thickness on particle aggregation in rolling point contact. Friction, 2021, 9, 1436-1449. Tribological characterization of potential crankshaft bearing steels for roller bearing engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1365-1378. Motor oil degradation during urban cycle road tests. Friction, 2021, 9, 1002-1011. Friction and wear characteristics modification via laser surface textured grooves. Surface Engineering, 2021, 37, 658-668.	 3.4 8.2 3.4 1.0 3.4 1.1 	 124 6 20 0 15 6
264 265 266 267 268 269	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447. Origin of the tribofilm from MoS2 nanoparticle oil additives: Dependence of oil film thickness on particle aggregation in rolling point contact. Friction, 2021, 9, 1436-1449. Tribological characterization of potential crankshaft bearing steels for roller bearing engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1365-1378. Motor oil degradation during urban cycle road tests. Friction, 2021, 9, 1002-1011. Friction and wear characteristics modification via laser surface textured grooves. Surface Engineering, 2021, 37, 658-668. Tribological behavior of ammonium-based protic ionic liquid as lubricant additive. Friction, 2021, 9, 169-178.	 3.4 8.2 3.4 1.0 3.4 1.1 3.4 	124 6 20 0 15 6 21
264 265 266 267 268 269 270	Nanolubricant additives: A review. Friction, 2021, 9, 891-917. Nanoscale viscosity of triboreactive interfaces. Nano Energy, 2021, 79, 105447. Origin of the tribofilm from MoS2 nanoparticle oil additives: Dependence of oil film thickness on particle aggregation in rolling point contact. Friction, 2021, 9, 1436-1449. Tribological characterization of potential crankshaft bearing steels for roller bearing engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1365-1378. Motor oil degradation during urban cycle road tests. Friction, 2021, 9, 1002-1011. Friction and wear characteristics modification via laser surface textured grooves. Surface Engineering, 2021, 37, 658-668. Tribological behavior of ammonium-based protic ionic liquid as lubricant additive. Friction, 2021, 9, 169-178. A mechanical contact model for superelastic shape memory alloys. Journal of Intelligent Material Systems and Structures, 2021, 32, 208-218.	3.4 8.2 3.4 1.0 3.4 1.1 3.4 1.4	 124 6 20 0 15 6 21 2

#	Article	IF	Citations
273	Friction and wear behaviour of composite MoS2–TiO2 coating material in dry sliding contact. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	14
274	Effect of Plasma Cladding Speed on the Microstructure and Properties of ZrC-ZrB2/NiAl Coating. Materials Research, 2021, 24, .	0.6	1
275	Atomic-scale friction along various scan paths starting at different points. Microsystem Technologies, 2021, 27, 3421-3428.	1.2	1
276	Investigation of lubrication performance and flow behavior of nano-fluids. AIP Conference Proceedings, 2021, , .	0.3	0
277	Fluorine-Doped Amorphous Carbon-Coated Magnesium Silicate Hydroxide as Lubricant Additive and Atomic Simulation. Tribology Letters, 2021, 69, 1.	1.2	9
278	Influence of deposition parameters on Tribological Performance of HVOF Coating: A review. IOP Conference Series: Materials Science and Engineering, 2021, 1017, 012015.	0.3	8
279	Effect of dimple shape and depth on tribological performance of textured surface. , 2021, , .		3
280	Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene. Nanoscale, 2021, 13, 14399-14407.	2.8	13
281	Nano Particles as Lubricant Additive: A Concise Review. Lecture Notes in Mechanical Engineering, 2021, , 392-403.	0.3	3
282	The Future of Wind Power in Malaysia: A Review. Lecture Notes in Civil Engineering, 2021, , 844-851.	0.3	0
283	Correlation of the tribological properties of LIPSS on TiN surface with 3D parameters of roughness. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012014.	0.3	2
284	Outline to tribology of polymer composites. , 2021, , 1-5.		1
285	An Experimental Investigation on Rheological and Heat Transfer Performance of Hybrid Nanolubricant and Its Effect on the Vibration and Noise Characteristics of an Automotive Spark-Ignition Engine. International Journal of Thermophysics, 2021, 42, 1.	1.0	9
286	Superlubricity of molybdenum disulfide subjected to large compressive strains. Friction, 2022, 10, 209-216.	3.4	17
288	The Role of Speed in Atomic Scale Wear. Journal of Physical Chemistry C, 2021, 125, 4139-4145.	1.5	5
289	Structural and Mechanical Properties of a-BCN Films Prepared by an Arc-Sputtering Hybrid Process. Materials, 2021, 14, 719.	1.3	6
290	Investigation of the Tribological Behavior of Mineral Lubricant Using Copper Oxide Nano Additives. Lubricants, 2021, 9, 16.	1.2	19
291	Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy. Scientific Reports, 2021, 11, 3621.	1.6	9

#	Article	IF	CITATIONS
293	Effect of Dispersant Concentration With Friction Modifiers and Anti-Wear Additives on the Tribofilm Composition and Boundary Friction. Journal of Tribology, 2021, 143, .	1.0	3
295	Green Tribology. , 0, , .		1
296	Macroscale Superlubricity and Polymorphism of Long-Chain <i>n</i> -Alcohols. ACS Applied Materials & Interfaces, 2021, 13, 9239-9251.	4.0	13
297	Smart-Responsive Colloidal Capsules as an Emerging Tool to Design a Multifunctional Lubricant Additive. ACS Applied Materials & Interfaces, 2021, 13, 7714-7724.	4.0	8
298	Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines. Lubricants, 2021, 9, 19.	1.2	5
299	Tribological Performance of Additively Manufactured AISI H13 Steel in Different Surface Conditions. Materials, 2021, 14, 928.	1.3	13
300	The Economic and Environmental Significance of Sustainable Lubricants. Lubricants, 2021, 9, 21.	1.2	30
301	Facile Fabrication of Novel Multifunctional Lubricant-Infused Surfaces with Exceptional Tribological and Anticorrosive Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 6678-6687.	4.0	34
302	A New Film Parameter for Rough Surface EHL Contacts with Anisotropic and Isotropic Structures. Tribology Letters, 2021, 69, 1.	1.2	15
303	Dynamic friction energy dissipation and enhanced contrast in high frequency bimodal atomic force microscopy. Friction, 2022, 10, 748-761.	3.4	8
304	In situ Tribo-Fluorination for Oil-Less Hermetic Compressor Applications. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	1
305	On the Microstructural, Mechanical and Tribological Properties of Mo-Se-C Coatings and Their Potential for Friction Reduction against Rubber. Materials, 2021, 14, 1336.	1.3	5
306	lonic Liquids as High-Performance Lubricants and Lubricant Additives. , 0, , .		3
307	Use of smartphones as optical metrology tools for surface wear detection. International Journal of Advanced Manufacturing Technology, 2021, 114, 231-240.	1.5	0
308	Applied Research of Applicability of High-Strength Steel for a Track of a Demining Machine in Term of Its Tribological Properties. Metals, 2021, 11, 505.	1.0	3
310	Unexpected Frictional Behavior of Laser-Textured Hydrophobic Surfaces. Lubricants, 2021, 9, 31.	1.2	7
311	Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal. Langmuir, 2021, 37, 3628-3636.	1.6	12
312	Two-dimensional clay nanosheet-reinforced polytetrafluoroethylene composites and their mechanical/tribological studies. Materials Today Communications, 2021, 26, 102026.	0.9	6

#	Article	IF	CITATIONS
313	Recent Progress on Wearâ€Resistant Materials: Designs, Properties, and Applications. Advanced Science, 2021, 8, e2003739.	5.6	199
314	A first-principles and machine learning combined method to investigate the interfacial friction between corrugated graphene. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 035011.	0.8	2
315	Tribological Properties of 2D Materials and Composites—A Review of Recent Advances. Materials, 2021, 14, 1630.	1.3	40
316	Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Materials Today Advances, 2021, 9, 100133.	2.5	44
317	Mono-dispersed Ag nanoparticles decorated graphitic carbon nitride: An excellent lubricating additive as PPESK composite film. Friction, 2022, 10, 717-731.	3.4	18
318	The Effects of Ultra-Low Viscosity Engine Oil on Mechanical Efficiency and Fuel Economy. Energies, 2021, 14, 2320.	1.6	7
319	High-Temperature Tribological Performance of Al2O3/a-C:H:Si Coating in Ambient Air. Coatings, 2021, 11, 495.	1.2	3
320	Tribological Interaction of Plasma-Functionalized CaCO3 Nanoparticles with Zinc and Ashless Dithiophosphate Additives. Tribology Letters, 2021, 69, 1.	1.2	5
321	Surface-functionalized nanoMOFs in oil for friction and wear reduction and antioxidation. Chemical Engineering Journal, 2021, 410, 128306.	6.6	57
322	Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets. Npj 2D Materials and Applications, 2021, 5, .	3.9	40
323	Exploring the tribological behavior of Ti/Al-DLC/PAO/graphene oxide nanocomposite system. Ceramics International, 2021, 47, 11052-11062.	2.3	9
324	Friction and wear behaviors of bare and diamond-like carbon/chromium bi-layer coated SKH51 steel at low temperatures. Surface and Coatings Technology, 2021, 412, 127018.	2.2	9
325	Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures. Langmuir, 2021, 37, 4836-4846.	1.6	7
326	Effects of conformational entropy on antiwear performances of organic friction modifiers. Tribology International, 2021, 156, 106848.	3.0	11
327	Tribological characterisation of magnesium matrix nanocomposites: A review. Advances in Mechanical Engineering, 2021, 13, 168781402110090.	0.8	22
328	Optimization of process parameters by Hybrid Taguchi-Grey Relational Analysis for thermal behaviours of lubricant oil of worm gearbox. Materials Today: Proceedings, 2021, , .	0.9	2
329	Biocoatings and additives as promising candidates for ultralow friction systems. Green Chemistry Letters and Reviews, 2021, 14, 358-381.	2.1	8
330	Sliding Wear of Conventional and Suspension Sprayed Nanocomposite WC-Co Coatings: An Invited Review. Journal of Thermal Spray Technology, 2021, 30, 800-861.	1.6	36

#	Article	IF	CITATIONS
331	Resonance in Atomic-Scale Sliding Friction. Nano Letters, 2021, 21, 4615-4621.	4.5	20
332	Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives. Carbon, 2021, 176, 358-366.	5.4	48
333	Effect of normal loading on microstructural evolution and sliding wear behaviour of novel continuously cooled carbide free bainitic steel. Tribology International, 2021, 157, 106846.	3.0	25
334	Tribological properties of hexagonal boron nitride nanoparticles or graphene nanoplatelets blended with an ionic liquid as additives of an ester base oil. Lubrication Science, 2021, 33, 269-278.	0.9	3
335	Microstructure and Wear Behavior of High-Carbon Concentration CrCoNi Multi-principal Element Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3034-3050.	1.1	6
336	Effects of molybdenum-based substrate coatings on tribological performance of graphene films. Carbon, 2021, 176, 488-499.	5.4	8
337	Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name?. Frontiers in Chemistry, 2021, 9, 685789.	1.8	108
338	Surface integrity in metal machining - Part II: Functional performance. International Journal of Machine Tools and Manufacture, 2021, 164, 103718.	6.2	118
339	Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites. Lubricants, 2021, 9, 53.	1.2	9
340	Tribological Properties of a Mesh-Like Nanostructured Diamond-Like Carbon (DLC) Lubricated with a Fully Formulated Oil at DLC/Steel Contacts under Boundary Lubrication. Coatings, 2021, 11, 746.	1.2	3
341	Tribological Investigation of Composite MoS2-TiO2-ZrO2 Coating Material by Response Surface Methodology Approach. Journal of Tribology, 2022, 144, .	1.0	8
342	Environmental Molecular Effect on the Macroscale Friction Behaviors of Graphene. Frontiers in Chemistry, 2021, 9, 679417.	1.8	3
343	Exploring Nanoscale Lubrication Mechanisms of Multilayer MoS2 During Sliding: The Effect of Humidity. Frontiers in Chemistry, 2021, 9, 684441.	1.8	8
344	The importance of tribology for reducing CO2 emissions and for sustainability. Wear, 2021, 474-475, 203768.	1.5	24
345	Tribotronic Analysis of Internal Combustion Engine Compression Ring. Tribology Online, 2021, 16, 125-137.	0.2	1
346	Full-Scale Simulation and Validation of Wear for a Mining Rope Shovel Bucket. Minerals (Basel,) Tj ETQq1 1 0.78	4314 rgBT 0.8	Overlock 1
347	Augmentation in Tribological Performance of Polyalphaolefins by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive in Boundary Lubrication Conditions. Journal of Tribology, 2021, 143, .	1.0	10
348	Impact of Ultrashort Laser Nanostructuring on Friction Properties of AISI 314 LVC. Symmetry, 2021, 13, 1049.	1.1	1

# 349	ARTICLE Ultra-Low Wear and Anti-Oxidation Properties of Microcrystalline Graphite Oxide-Magnesium Silicate Hydroxide Composite Nanoadditives in the Poly-Alpha-Olefin Base Oil. Journal of Tribology, 2022, 144, .	IF 1.0	CITATIONS
350	Transient Nanoscale Tribofilm Growth: Analytical Prediction and Measurement. Applied Sciences (Switzerland), 2021, 11, 5890.	1.3	2
351	Peculiar high temperature tribological behaviour of plasma sprayed graphene nanoplatelets reinforced cerium oxide coatings. Ceramics International, 2021, 47, 17809-17812.	2.3	12
352	Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction, 2022, 10, 645-676.	3.4	49
353	Identification of abnormal tribological regimes using a microphone and semi-supervised machine-learning algorithm. Friction, 2022, 10, 583-596.	3.4	26
354	Asperity level characterization of abrasive wear using atomic force microscopy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210103.	1.0	5
355	The matrix method of energy analysis and energy-saving design on the electromechanical system. Energy, 2021, 224, 120138.	4.5	1
356	Enhanced tribological properties of wind turbine engine oil formulated with flower-shaped MoS2 nano-additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126509.	2.3	16
357	Scaling feature of nano-scale friction based on the inverse statistical approach. Physica A: Statistical Mechanics and Its Applications, 2021, 574, 125994.	1.2	0
358	Tribological behavior of a novel organic molybdenum containing mercaptotriazine as a multifunctional environmentally friendly additive. Tribology International, 2021, 159, 106988.	3.0	9
359	A First Approximation of the Global Energy Consumption of Ball Bearings. Tribology Transactions, 2021, 64, 883-890.	1.1	7
360	CO ₂ Leakage Identification Method Based on Complex Time–Frequency Spectrum of Atmospheric CO ₂ Variation. Journal of Chemical Health and Safety, 2021, 28, 376-386.	1.1	1
361	Erosive wear characteristics of high-chromium based multi-component white cast irons. Tribology International, 2021, 159, 106982.	3.0	27
362	Tribological synergies among chemical-modified graphene oxide nanomaterials and a phosphonium ionic liquid as additives of a biolubricant. Journal of Molecular Liquids, 2021, 336, 116885.	2.3	19
363	Sliding wear behavior of electrochemically textured surfaces under different lubrication regimes: Effects of curvature radius. Wear, 2021, 477, 203817.	1.5	15
364	Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case. Sustainability, 2021, 13, 7943.	1.6	10
365	Enhanced frictional performance in gradient nanostructures by strain delocalization. International Journal of Mechanical Sciences, 2021, 201, 106458.	3.6	9
366	Development and characterization of multiwalled carbon nanotube-reinforced microwave sintered hybrid aluminum metal matrix composites: An experimental investigation on mechanical and tribological performances. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2021, 235, 2310-2323	0.7	1

#	Article	IF	CITATIONS
367	Power loss reduction for tilt pad journal bearings utilizing pad pockets and steps. Tribology International, 2021, 159, 106993.	3.0	6
368	Dry tribological performance of nanostructured 2D turbostratic graphite particles derived from boron and chromium carbides. Wear, 2021, 477, 203842.	1.5	6
369	Influence of Interfacial Oxidation on Friction in Structural Superlubricity. Tribology Letters, 2021, 69, 1.	1.2	1
370	A review on alternative lubricants: Ionic liquids as additives and deep eutectic solvents. Journal of Molecular Liquids, 2021, 333, 116004.	2.3	34
371	Friction on incommensurate substrates: Role of anharmonicity and defects. Physical Review E, 2021, 104, 014802.	0.8	0
372	Preparation and Tribological Properties of MXene-Based Composite Films. Industrial & Engineering Chemistry Research, 2021, 60, 11128-11140.	1.8	6
373	Influence of silica nanoparticles on running-in performance of aqueous lubricated Si3N4 ceramics. Tribology International, 2021, 159, 106968.	3.0	18
374	Tribological Performance of Circular-Concave-and-Spherical-Convex Compound Texture Under Hydrodynamic Lubrication. Journal of Tribology, 2022, 144, .	1.0	4
375	Tribological properties of graphene nanoplatelets or boron nitride nanoparticles as additives of a polyalphaolefin base oil. Journal of Molecular Liquids, 2021, 333, 115911.	2.3	18
376	Effect of micro-textures on lubrication characteristics of spur gears under 3D line-contact EHL model. Industrial Lubrication and Tribology, 2021, 73, 1132-1145.	0.6	12
377	Tribological characterization of different geometries generated with laser surface texturing for tooling applications. Wear, 2021, 477, 203856.	1.5	13
378	Study of hybrid nanofluids of TiO2 and montmorillonite clay nanoparticles for milling of AISI 4340 steel. Wear, 2021, 477, 203805.	1.5	13
379	Tuning frictional properties of molecularly thin erucamide films through controlled self-assembling. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1041-1049.	1.5	6
380	An Approach for the Transfer of Real Surfaces in Finite Element Simulations. Lubricants, 2021, 9, 77.	1.2	2
381	Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water. Journal of Colloid and Interface Science, 2021, 596, 44-53.	5.0	15
382	Recent Advances in Preparation and Testing Methods of Engine-Based Nanolubricants: A State-of-the-Art Review. Lubricants, 2021, 9, 85.	1.2	10
383	On Improving Wear Resistance of Cr-Al-N Coatings Using Dynamic Glancing Angle DC Magnetron Sputtering. Nanomaterials, 2021, 11, 2187.	1.9	6
384	Ultra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nature Materials, 2022, 21, 47-53.	13.3	110

ARTICLE IF CITATIONS Developing partially oxidized NiCr coatings using the combined flame spray and plasma spray process 385 1.5 9 for improved wear behaviour at high temperature. Wear, 2021, 478-479, 203885. Enhanced ability of magnesium silicate hydroxide in transforming base oil into amorphous carbon by annealing heat treatment. Diamond and Related Materials, 2021, 117, 108476. 1.8 Mussel-inspired facile fabrication of dense hexagonal boron nitride nanosheet-based coatings for 387 2.3 14 anticorrosion and antifriction applications. Materials Today Nano, 2021, 15, 100129. Influence of Si- and W- doping on micro-scale reciprocating wear and impact performance of DLC coatings on hardened steel. Tribology International, 2021, 160, 107063. Tribofilm formation during dry sliding of graphite- and MoS2- based composites obtained by spark 389 3.0 20 plasma sintering. Tribology International, 2021, 160, 107035. Interfacial Bonding Controls Friction in Diamond–Rock Contacts. Journal of Physical Chemistry C, 2021, 125, 18395-18408. 1.5 Role of nanoparticles in achieving macroscale superlubricity of graphene/nano-SiO2 particle 391 3.4 16 composites. Friction, 2022, 10, 1305-1316. Hybrid combinations of graphene nanoplatelets and phosphonium ionic liquids as lubricant additives 2.3 21 for a polyalphaolefin. Journal of Molecular Liquids, 2021, 336, 116266. Effect of Carbon Content on Three-body Abrasive Wear Characteristics of 28Cr-3Ni Cast Alloys. ISIJ 394 0.6 9 International, 2021, 61, 2274-2283. Preparation and wear properties of high-vanadium alloy composite layer. Friction, 2022, 10, 1166-1179. 3.4 Improving the Mechanical Properties and Wear Resistance of a Commercial Pearlitic Rail Steel Using a 396 Two-Step Heat Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and 1.1 6 Materials Science, 2021, 52, 4888-4906. Controlling the tribological behavior at the friction interface by regulating the triboelectrification. 8.2 Nano Energy, 2021, 87, 106183. Bayesian identification of energy models for industrial machinery controlled rotary axes. Journal of 398 4.6 0 Cléaner Production, 2021, 316, 128187. Investigation of stress distributions between a frictional rigid cylinder and laminated glass fiber composites. Acta Mechanica, 2021, 232, 4379-4403. 1.1 Study of Cracking Mechanism and Wear Resistance in Laser Cladding Coating of Ni-based Alloy. 400 1.9 6 Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, . Niobium carbide reinforcedâ€Ţi6Al4V composites via directed energy deposition. International Journal 1.1 of Applied Ceramic Technology, 0, , . The Effect of Additive Chemical Structure on the Tribofilms Derived from Varying Molybdenum-Sulfur 402 1.2 4 Chemistries. Tribology Letters, 2021, 69, 1. Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nature 5.8 Communications, 2021, 12, 5518.

#	Article	IF	CITATIONS
404	Hybrid and electric vehicle tribology: a review. Surface Topography: Metrology and Properties, 2021, 9, 043001.	0.9	7
405	Conformable metal oxide platelets – A smart surface armor for green tribology. Tribology International, 2021, 162, 107138.	3.0	3
406	Efficiency of surface texturing in the reducing of wear for tests starting with initial point contact. Wear, 2021, 482-483, 203957.	1.5	10
407	An eco-impact design metric for water lubricated bearings based on anticipatory Life Cycle Assessment. Journal of Cleaner Production, 2021, 321, 128874.	4.6	11
408	Tracing single asperity wear in relation to macroscale friction during running-in. Tribology International, 2021, 162, 107108.	3.0	7
409	Bio-based ionic liquid crystal for stainless steel-sapphire high temperature ultralow friction. Wear, 2021, 484-485, 204020.	1.5	5
410	Double hybrid lubricant additives consisting of a phosphonium ionic liquid and graphene nanoplatelets/hexagonal boron nitride nanoparticles. Tribology International, 2021, 163, 107189.	3.0	34
411	Role of chemical vs. physical interfacial interaction and adsorbed water on the tribology of ultrathin 2D-material/steel interfaces. Tribology International, 2021, 163, 107194.	3.0	8
412	Wear behavior of electrodeposited nickel/graphene composite coating. Diamond and Related Materials, 2021, 119, 108589.	1.8	17
413	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475.	2.0	3
413 414	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475. Microstructural feature dependence of dry sliding wear behaviors in a Î ³ -TiAl alloy. Wear, 2021, 484-485, 204039.	2.0 1.5	3
413 414 415	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475. Microstructural feature dependence of dry sliding wear behaviors in a Î ³ -TiAl alloy. Wear, 2021, 484-485, 204039. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093.	2.0 1.5 1.5	3 3 7
413 414 415 416	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475.Microstructural feature dependence of dry sliding wear behaviors in a γ-TiAl alloy. Wear, 2021, 484-485, 204039.Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093.Novel green waterborne polyurethane-polytetrafluoroethylene BSLCs: Chemically optimized crosslinking extent for enhancing the mechanical and tribological properties. Progress in Organic Coatings, 2021, 161, 106457.	2.0 1.5 1.5 1.9	3 3 7 7
413 414 415 416 417	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475. Microstructural feature dependence of dry sliding wear behaviors in a γ-TiAl alloy. Wear, 2021, 484-485, 204039. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093. Novel green waterborne polyurethane-polytetrafluoroethylene BSLCs: Chemically optimized crosslinking extent for enhancing the mechanical and tribological properties. Progress in Organic Coatings, 2021, 161, 106457. Significantly enhanced tribology and thermal management by dualâ€network graphene/epoxy composites. Tribology International, 2021, 164, 107239.	2.0 1.5 1.5 1.9 3.0	3 3 7 7 7
 413 414 415 416 417 418 	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475. Microstructural feature dependence of dry sliding wear behaviors in a γ-TiAl alloy. Wear, 2021, 484-485, 204039. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093. Novel green waterborne polyurethane-polytetrafluoroethylene BSLCs: Chemically optimized crosslinking extent for enhancing the mechanical and tribological properties. Progress in Organic Coatings, 2021, 161, 106457. Significantly enhanced tribology and thermal management by dualâ€network graphene/epoxy composites. Tribology International, 2021, 164, 107239. Efficient one-pot synthesis of mussel-inspired Cu-doped polydopamine nanoparticles with enhanced lubrication under heavy loads. Chemical Engineering Journal, 2021, 426, 131287.	2.0 1.5 1.5 1.9 3.0 6.6	3 3 7 7 7 7 7 23
 413 414 415 416 417 418 419 	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475. Microstructural feature dependence of dry sliding wear behaviors in a γ-TiAl alloy. Wear, 2021, 484-485, 204039. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093. Novel green waterborne polyurethane-polytetrafluoroethylene BSLCs: Chemically optimized crosslinking extent for enhancing the mechanical and tribological properties. Progress in Organic Coatings, 2021, 161, 106457. Significantly enhanced tribology and thermal management by dualâ€network graphene/epoxy composites. Tribology International, 2021, 164, 107239. Efficient one-pot synthesis of mussel-inspired Cu-doped polydopamine nanoparticles with enhanced lubrication under heavy loads. Chemical Engineering Journal, 2021, 426, 131287. Mechanistic insights into the effect of structural factors on film formation and tribological properties.	2.0 1.5 1.5 1.9 3.0 6.6 3.0	3 3 7 7 7 7 7 23
 413 414 415 416 417 418 419 420 	Geometric control of sliding friction. Extreme Mechanics Letters, 2021, 49, 101475. Microstructural feature dependence of dry sliding wear behaviors in a γ-TiAl alloy. Wear, 2021, 484-485, 204039. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093. Novel green waterborne polyurethane-polytetrafluoroethylene BSLCs: Chemically optimized crosslinking extent for enhancing the mechanical and tribological properties. Progress in Organic Coatings, 2021, 161, 106457. Significantly enhanced tribology and thermal management by duala€network graphene/epoxy composites. Tribology International, 2021, 164, 107239. Efficient one-pot synthesis of mussel-inspired Cu-doped polydopamine nanoparticles with enhanced lubrication under heavy loads. Chemical Engineering Journal, 2021, 426, 131287. Mechanistic insights into the effect of structural factors on film formation and tribological performance of organic friction modifiers. Tribology International, 2021, 164, 107243. Aspects of modeling and numerical simulation of dry point contacts between viscoelastic solids. Tribology International, 2022, 165, 107245.	2.0 1.5 1.5 1.9 3.0 6.6 3.0	3 3 7 7 7 7 23 23 10 8

#	Article	IF	CITATIONS
422	Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(1 1 1) electrode interface. Journal of Colloid and Interface Science, 2022, 606, 1170-1178.	5.0	8
423	Bioinspired <scp>oilâ€soluble</scp> polymers based on catecholamine chemistry for reduced friction. Journal of Applied Polymer Science, 2021, 138, 50472.	1.3	1
424	Wear resistance of a Metco 1030A hard coating deposited on Hadfield steel by laser cladding for ore comminution application. International Journal of Advanced Manufacturing Technology, 2021, 112, 1873-1884.	1.5	7
425	Graphitic Encapsulation and Electronic Shielding of Metal Nanoparticles to Achieve Metal–Carbon Interfacial Superlubricity. ACS Applied Materials & Interfaces, 2021, 13, 3397-3407.	4.0	20
426	Li Metal Polymer Batteries. , 2019, , 347-373.		7
427	Structural Phase Transformation in Amorphous Molybdenum Disulfide during Friction. Journal of Physical Chemistry C, 2021, 125, 836-844.	1.5	12
428	Ionic liquid lubricants: when chemistry meets tribology. Chemical Society Reviews, 2020, 49, 7753-7818.	18.7	220
429	Comparison between thermophysical and tribological properties of two engine lubricant additives: electrochemically exfoliated graphene and molybdenum disulfide nanoplatelets. Nanotechnology, 2021, 32, 025701.	1.3	12
430	Tribology meets sustainability. Industrial Lubrication and Tribology, 2021, 73, 430-435.	0.6	28
431	Wear Performance Under Dry and Lubricated Conditions of Post Boriding Heat Treatment in 4140 Steel. Journal of Tribology, 2021, 143, .	1.0	3
432	Effect of Cutting Parameters in Machining Force, Surface Texture and Chips Morphology Obtained in Turning of Sintered Self-Lubricating Composites. Materials Research, 2020, 23, .	0.6	6
433	Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chemistry and Chemical Technology, 2020, 14, 514-520.	0.2	8
434	Inverse methods and integral-differential model demonstration for optimal mechanical operation of power plants – numerical graphical optimization for second generation of tribology models. Electrical, Control and Communication Engineering, 2018, 14, 39-50.	0.4	5
435	Friction and wear tester. Zavodskaya Laboratoriya Diagnostika Materialov, 2020, 86, 66-71.	0.1	1
436	Macroscopic Friction Studies of Alkylglucopyranosides as Additives for Water-Based Lubricants. Lubricants, 2020, 8, 11.	1.2	14
437	Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review. Processes, 2021, 9, 31.	1.3	26
438	Green Tribology for the Sustainable Engineering of the Future. Strojniski Vestnik/Journal of Mechanical Engineering, 2019, 65, 709-727.	0.6	10
439	Abrasive Wear of High-Carbon Low-Alloyed Austenite Steel: Microhardness, Microstructure and X-ray Characteristics of Worn Surface. Materials, 2021, 14, 6159.	1.3	4

#	Article	IF	CITATIONS
440	Synergistic effects between sulfur- and phosphorus-free organic molybdenums and ZDDP as lubricating additives in PAO 6. Tribology International, 2022, 165, 107324.	3.0	8
441	Tribology and Sustainable Development Goals. Mechanisms and Machine Science, 2022, , 438-447.	0.3	4
442	An experimental study on the relation between friction force and real contact area. Scientific Reports, 2021, 11, 20366.	1.6	15
443	Energy-efficient collaborative optimization for VM scheduling in cloud computing. Computer Networks, 2021, 201, 108565.	3.2	7
444	Investigating load-dependent wear behavior and degradation mechanisms in Cr3C2–NiCr coatings deposited by HVAF and HVOF. Journal of Materials Research and Technology, 2021, 15, 4595-4609.	2.6	21
445	Two-Body Abrasive Wear Behavior and Its Correlation With Mechanical Properties of Aged AA6063 Alloy. Journal of Tribology, 2022, 144, .	1.0	4
446	Green Tribology for Sustainable Development Goals. Mechanisms and Machine Science, 2022, , 421-428.	0.3	2
447	Cathodic Arc Evaporation of Self-Lubricating TiSiVN Coatings. Journal of Materials Engineering and Performance, 0, , 1.	1.2	3
448	Wear properties of carbon-rich tungsten carbide films. Wear, 2022, 488-489, 204146.	1.5	5
449	Laser remelting of WC-CoCr surface coated by HVOF: Effect on the tribological properties and energy efficiency. Surface and Coatings Technology, 2021, 427, 127841.	2.2	12
450	Tribological Performance of Surface Textured Automotive Components: A Review. Energy, Environment, and Sustainability, 2019, , 287-306.	0.6	0
451	Improved Test Method for Tribological Evaluation of High Performance Plastics. SAE International Journal of Advances and Current Practices in Mobility, 0, 1, 569-577.	2.0	1
455	BiosphÃ ¤ sche-technosphäsche Transformationen – Dreißig praktikable VorsÃæe. , 2020, , 347-495.		0
456	EVALUATION OF TIN COATING PROPERTIES DEPOSITED ON HS6-5-2C STEEL. Tribologia, 2020, 291, 23-31.	0.0	0
457	Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranı üzerindeki etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	şı 0.3	4
458	Tribological Properties of Al-Based Composites Reinforced with Fullerene Soot. Materials, 2021, 14, 6438.	1.3	2
459	Understanding Friction in Cam–Tappet Contacts—An Application-Oriented Time-Dependent Simulation Approach Considering Surface Asperities and Edge Effects. Lubricants, 2021, 9, 106.	1.2	10
460	Influence of interface liquid lubrication on triboelectrification of point contact friction pair. Tribology International, 2022, 165, 107323.	3.0	18

#	Article	IF	CITATIONS
461	Wear resistance of laser cladding Fe50Cr40Si10 coating on AISI 1045 steel in elevated temperature. Journal of Laser Applications, 2021, 33, .	0.8	2
462	Effect of Laser Remelting on Tribological Performance of Ni-Cr-B-Si Coatings Deposited by Laser Metal Deposition. Soldagem E Inspecao, 0, 25, .	0.6	0
463	The Effect of Fillers on the Tribological Properties of Composites. Composites Science and Technology, 2021, , 243-266.	0.4	1
464	Investigation of ionic liquids with and without graphene as lubricant additive for metal/metal and metal/ PEEK contacts over a wide temperature range. Lubrication Science, 2021, 33, 100-111.	0.9	6
465	The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon, 2022, 186, 91-127.	5.4	163
466	The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribology International, 2022, 165, 107300.	3.0	12
467	Controllable superlubricity achieved with mixtures of green ionic liquid and glycerol aqueous solution via humidity. Journal of Molecular Liquids, 2022, 345, 117860.	2.3	16
468	Tribochemical reaction and wear mechanism of MoDTC based friction modifier. Tribology International, 2022, 165, 107302.	3.0	13
469	Improving the tribological performance of a biodegradable lubricant adding graphene nanoplatelets as additives. Journal of Molecular Liquids, 2022, 345, 117797.	2.3	13
470	Addressing the Green Tribology Advancement, Future Development, and Challenges. Smart Innovation, Systems and Technologies, 2020, , 565-573.	0.5	0
471	Calcium Fluoride a Potential Solid Lubricant for Green Tribology and Sustainability. Lecture Notes in Mechanical Engineering, 2020, , 587-595.	0.3	3
472	MULTIPLE LINEAR REGRESSION MODEL APPLIED TO THE PROJECTION OF ELECTRICITY DEMAND IN COLOMBIA. International Journal of Energy Economics and Policy, 2020, 10, 419-422.	0.5	2
473	Innovative carbon-based approaches to tailor friction and wear performance—Editorial. Surface Topography: Metrology and Properties, 2021, 9, 040202.	0.9	1
474	Influence of the deposition parameters on the tribological behavior of cold gas sprayed FeMnCrSi alloy coatings. Surface and Coatings Technology, 2021, 428, 127888.	2.2	5
475	Experimental investigation of friction in compliant contact: The effect of configuration, viscoelasticity and operating conditions. Tribology International, 2022, 165, 107340.	3.0	2
476	Characterization of Sintered Bronze–MoS2 Composite With Solid Lubrication Effect. Journal of Tribology, 2021, 143, .	1.0	2
477	Mathematical approach to the validation of surface texture filtration software. Surface Topography: Metrology and Properties, 2020, 8, 045017.	0.9	3
478	Mathematical approach to the validation of form removal surface texture software. Surface Topography: Metrology and Properties, 2020, 8, 045019.	0.9	0

#	Article	IF	CITATIONS
479	Microstructure and Tribological Properties of TPU/Fluoropolymer Composites. International Polymer Processing, 2020, 35, 415-421.	0.3	0
480	Roadblocks faced by graphene in replacing graphite in large-scale applications. Oxford Open Materials Science, 2020, 1, .	0.5	2
481	Carbon spheres wrapped with 2D covalent organic polymer as lubricant additives for enhancing tribological properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127862.	2.3	7
482	Bioinspired three-dimensional and multiple adsorption effects toward high lubricity of solvent-free graphene-based nanofluid. Carbon, 2022, 188, 166-176.	5.4	21
483	Development of a Protective Coating for Evaluating the Sub-surface Microstructure of a Worn Material. Tribology Letters, 2021, 69, 1.	1.2	2
484	Ionic liquids as boundary additives in water-based and PAO lubricants. Friction, 2022, 10, 1405-1423.	3.4	9
485	Wear and Airborne Noise Interdependency at Asperitical Level: Analytical Modelling and Experimental Validation. Materials, 2021, 14, 7308.	1.3	2
486	Supramolecular repair of hydration lubrication surfaces. CheM, 2022, 8, 480-493.	5.8	16
487	Polyethylene glycol derived carbon quantum dots nanofluids: An excellent lubricant for diamond-like carbon film/bearing steel contact. Friction, 2022, 10, 1393-1404.	3.4	15
488	Formation of discrete periodic nanolayered coatings through tailoring of nanointerfaces—Toward zero macroscale wear. Science Advances, 2021, 7, eabk1224.	4.7	11
489	Sensors and tribological systems: applications for industry 4.0. Industrial Robot, 2022, 49, 442-460.	1.2	5
490	Influence of laser texturing of surface on friction coefficient and wear resistance of titanium and its nitride. AIP Conference Proceedings, 2021, , .	0.3	0
491	Metal matrix nanocomposites in tribology: Manufacturing, performance, and mechanisms. Friction, 2022, 10, 1596-1634.	3.4	49
492	Fluid Drag Reduction by Magnetic Confinement. Langmuir, 2022, 38, 719-726.	1.6	2
493	Effects of substrate bias voltage on the phase structure, mechanical and wear resistance properties of tungsten boride films. Ceramics International, 2022, 48, 11535-11544.	2.3	3
494	ZnO nanoparticles coated with oleic acid as additives for a polyalphaolefin lubricant. Journal of Molecular Liquids, 2022, 348, 118401.	2.3	26
495	Investigation on friction and wear performance of volcano-shaped textured PVD coating. Surface and Coatings Technology, 2022, 431, 128044.	2.2	14
496	Different desorption rates prompting an indirect isotopic effect on nanoscale friction. Applied Surface Science Advances, 2022, 7, 100201.	2.9	1

#	Article	IF	CITATIONS
497	Tribological properties of the hierarchically structured graphene oxide composite coatings reinforced with polyvinyl alcohol. Wear, 2022, 490-491, 204212.	1.5	2
498	Discovering exceptionally hard and wear-resistant metallic glasses by combining machine-learning with high throughput experimentation. Applied Physics Reviews, 2022, 9, .	5.5	12
499	Chemically functionalized 2D/2D hexagonal boron Nitride/Molybdenum disulfide heterostructure for enhancement of lubrication properties. Applied Surface Science, 2022, 579, 152157.	3.1	20
500	A new one-step deposition approach of graphene nanoflakes coating using a radio frequency plasma: Synthesis, characterization and tribological behaviour. Tribology International, 2022, 167, 107406.	3.0	12
501	Synthesis of T-Type low-viscosity hydrocarbon bio-lubricant from fatty acid methyl esters and coconut oil. Renewable Energy, 2022, 186, 280-287.	4.3	5
502	Unexplored solid lubricity of Titanium nanoparticles in oil to modify the metallic interfaces. Applied Surface Science, 2022, 580, 152127.	3.1	6
503	Study on the tribological properties of UHMWPE modified by UV-induced grafting under seawater lubrication. Tribology International, 2022, 168, 107419.	3.0	9
504	Controllable in situ fabrication of self-lubricating nanocomposite coating for light alloys. Scripta Materialia, 2022, 211, 114493.	2.6	11
505	Synergistic low friction effect and mechanism of inorganic fullerene-like tungsten disulfide and talcum at the interface of steel tribo-pairs under severe conditions. Applied Surface Science, 2022, 585, 152570.	3.1	9
507	Atomistic insight into the lubrication of glycerol aqueous solution: The role of the solid interfaceâ€induced microstructure of fluid molecules. AICHE Journal, 0, , .	1.8	3
508	Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. International Journal of Advanced Manufacturing Technology, 2022, 120, 1-27.	1.5	134
509	Vibration-induced nanoscale friction modulation on piezoelectric materials. Friction, 2022, 10, 1650-1659.	3.4	2
510	Analysis of Electrochemical Machining-Textured Surfaces Under Point Contacts in Rolling Tribo-Test. , 2022, , 561-578.		0
511	Operando Formation of Van der Waals Heterostructures for Achieving Macroscale Superlubricity on Engineering Rough and Worn Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	31
512	Rapid and Easy Assessment of Friction and Load-Bearing Capacity in Thin Coatings. Electronics (Switzerland), 2022, 11, 296.	1.8	4
514	A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology. Lubricants, 2022, 10, 18.	1.2	3
515	Triboelectrochemical friction control of W- and Ag-doped DLC coatings in water–glycol with ionic liquids as lubricant additives. RSC Advances, 2022, 12, 3573-3583.	1.7	10
516	A review of free piston engine control literature—Taxonomy and techniques. AEJ - Alexandria Engineering Journal, 2022, 61, 7877-7916.	3.4	12

#	Article	IF	CITATIONS
517	Rich activated edges of hexagonal boron nitride flakes in-situ triggered by nickel nanoparticles to achieve efficient reduction of friction and wear. Composites Part B: Engineering, 2022, 234, 109710.	5.9	9
518	The relationship between surface structure and super-lubrication performance based on 2D MOFs. Applied Materials Today, 2022, 26, 101382.	2.3	7
519	Boundary Slip of Oil Molecules at MoS ₂ Homojunctions Governing Superlubricity. ACS Applied Materials & Interfaces, 2022, 14, 8644-8653.	4.0	13
520	Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Research, 2022, 15, 4700-4709.	5.8	9
521	Effect of cyclic cryogenic treatment on tribological performance of Fe-based amorphous coatings in air and in 3.5% NaCl solution. Journal of Non-Crystalline Solids, 2022, 583, 121471.	1.5	3
522	Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elements—A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	80
523	Carbon Quantum Dots Doped with Silver as Lubricating Oil Additive for Enhancing Tribological Performances at Elevated Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
524	Tribological behavior of laser textured rolling element bearings under starved lubrication. Industrial Lubrication and Tribology, 2022, 74, 453-462.	0.6	10
525	Preliminary Design and Dynamic Response of Multi-Purpose Floating Offshore Wind Turbine Platform: Part 1. Journal of Marine Science and Engineering, 2022, 10, 336.	1.2	3
526	Disclosure of state uncertainty of the roller chain based on cross-correlation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2022, , 57-62.	0.3	Ο
527	Effect of Steel Hardness and Composition on the Boundary Lubricating Behavior of Low-Viscosity PAO Formulated with Dodecanoic Acid and Ionic Liquid Additives. Langmuir, 2022, 38, 2777-2792.	1.6	4
528	A short review on the influence of mechanical machining on tribological and wear behavior of components. International Journal of Advanced Manufacturing Technology, 2022, 120, 1401-1413.	1.5	17
529	Editorial: 2D-Layered Nanomaterials: Chemical Functionalization, Advanced Characterization, and Tribological Properties. Frontiers in Chemistry, 2022, 10, 840213.	1.8	3
530	Effect of Gas Propellant Temperature on the Microstructure, Friction, and Wear Resistance of High-Pressure Cold Sprayed Zr702 Coatings on Al6061 Alloy. Coatings, 2022, 12, 263.	1.2	13
531	Potential-Dependent Interfacial Frictional Behavior between Charged Microspheres and Gold in Aqueous Solutions. Journal of Physical Chemistry C, 2022, 126, 4555-4562.	1.5	3
532	Tailored surface textures to increase friction—A review. Friction, 2022, 10, 1285-1304.	3.4	46
533	Modeling phosphorene and \$\$hbox {MoS}_{2}\$\$ interacting with iron: lubricating effects compared to graphene. Journal of Nanostructure in Chemistry, 0, , 1.	5.3	5
534	Study on the Lubrication Mechanism of Diamond-Like Carbon Coating in Two Formulated Lubricants with Two Viscosity Grades. Journal of Materials Engineering and Performance, 0, , 1	1.2	0

#	Article	IF	CITATIONS
535	Three-way compatibility study among Nanoparticles, Ionic Liquid, and Dispersant for potential in lubricant formulation. Materials Today: Proceedings, 2022, , .	0.9	2
536	The lubrication effect of different vegetable oil-based greases on steel-steel tribo-pair. Biomass Conversion and Biorefinery, 2024, 14, 1993-2005.	2.9	7
537	Adsorption Behavior of TEMPO-Based Organic Friction Modifiers during Sliding between Iron Oxide Surfaces: A Molecular Dynamics Study. Langmuir, 2022, 38, 3170-3179.	1.6	8
538	Stresses in multi-layer coatings in Hertzian contact with a moving circular punch. Tribology International, 2022, 171, 107565.	3.0	7
539	Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction, 2022, 10, 1137-1165.	3.4	54
540	Plasma surface technology for CO ₂ â€neutral and sustainable mobility. Plasma Processes and Polymers, 0, , .	1.6	1
541	Protective films on complex substrates of thermoplastic and cellular elastomers: Prospective applications to rubber, nylon and cork. Surface and Coatings Technology, 2022, 442, 128405.	2.2	6
542	A Review on the Enhancement of Mechanical and Tribological Properties of MCrAlY Coatings Reinforced by Dispersed Micro and Nanoparticles. Energies, 2022, 15, 1914.	1.6	11
543	Implanting MnO2 into Hexagonal Boron Nitride as Nanoadditives for Enhancing Tribological Performance. Crystals, 2022, 12, 451.	1.0	2
544	Micro/nano carbon spheres as liquid lubricant additive: Achievements and prospects. Journal of Molecular Liquids, 2022, 357, 119090.	2.3	18
545	Multi-layer model for moving contact problems of functionally graded coatings with general variations in physical properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236, 1967-1980.	0.7	1
546	Friction-induced construction of PTFE-anchored MXene heterogeneous lubricating coating and its in-situ tribological transfer mechanism. Chemical Engineering Journal, 2022, 442, 136238.	6.6	23
547	Formation, stability and degradation of transfer films formed by polyphenylene sulfide (PPS) and its composites in dry sliding against steel. Wear, 2022, 500-501, 204343.	1.5	4
548	Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition. Nano Research, 2022, 15, 5758-5766.	5.8	5
549	Applications of the radiotracers in the industry: A review. Applied Radiation and Isotopes, 2022, 182, 110076.	0.7	8
550	Understanding temperature characteristics during microwave cladding through process modeling and experimental investigation. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 401-413.	2.3	2
551	Layered double hydroxides for tribological application: Recent advances and future prospective. Applied Clay Science, 2022, 221, 106466.	2.6	12
552	Influence of post-sintering sizing process on the tribological behaviour of self-lubricating iron-based composite. Wear, 2022, 496-497, 204287.	1.5	2

#	Article	IF	CITATIONS
553	Synthesis of novel CuO@Graphene nanocomposites for lubrication application via a convenient and economical method. Wear, 2022, 498-499, 204323.	1.5	5
554	Superlubricity and running-in wear maps of water-lubricated dissimilar ceramics. Wear, 2022, 498-499, 204328.	1.5	2
555	Measuring multi-asperity wear with nanoscale precision. Wear, 2022, 498-499, 204284.	1.5	3
556	Failure analysis of shot-piston used in squeeze casting process equipment. Engineering Failure Analysis, 2022, 136, 106179.	1.8	0
557	Effect of thermal boundary conditions on dynamic characteristics of multi-lobed bearings. Mechanism and Machine Theory, 2022, 172, 104787.	2.7	2
558	The three-body abrasive tribological characteristics of the Graphene/h-BN heterostructure film considering defects. Tribology International, 2022, 171, 107525.	3.0	13
559	Tribological study of iron infused carbon tubes additive in gearbox, engine, and vegetable-based lubricants. Tribology International, 2022, 171, 107538.	3.0	6
560	Electrical compatibility of transmission fluids in electric vehicles. Tribology International, 2022, 171, 107544.	3.0	16
561	Polyimide-based composite coatings for simultaneously enhanced mechanical and tribological properties by polyhedral oligomeric silsesquioxane. Tribology International, 2022, 171, 107521.	3.0	9
562	An Experimental Study of Micro-Dimpled Texture in Friction Control under Dry and Lubricated Conditions. Micromachines, 2022, 13, 70.	1.4	9
563	Rougher is more slippery: How adhesive friction decreases with increasing surface roughness due to the suppression of capillary adhesion. Physical Review Research, 2021, 3, .	1.3	21
564	The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants, 2022, 10, 2.	1.2	6
565	Abrasion and Erosion Resistance of Cermets: A Review. Materials, 2022, 15, 69.	1.3	20
566	The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability. Lubricants, 2021, 9, 117.	1.2	7
567	Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface. Friction, 2022, 10, 1365-1381.	3.4	27
568	Glycerolâ€Based Polyurethane Nanoparticles Reduce Friction and Wear of Lubricant Formulations. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
569	Friction Reduction Mechanism of Aqueous Hydroxyethyl Cellulose Solution Enhanced by Synergistic Effect of APTES. Tribology Letters, 2022, 70, 1.	1.2	1
571	Influence of Austempering of As-Cast Medium Carbon High-Silicon Steel on Wear Resistance. Materials, 2021, 14, 7518.	1.3	2

#	Article	IF	CITATIONS
572	Tribocorrosion properties and mechanism of a shot peened AISI 4140 low-alloy steel. Surface and Coatings Technology, 2022, 440, 128444.	2.2	13
573	The Development of Triglyceride-Based Additives and Their Lubricity Properties for Low Sulfur Fossil Diesel: A Review. Journal of Tribology, 2022, 144, .	1.0	1
574	Characterization of wear of FRP composites: A review. Materials Today: Proceedings, 2022, 64, 1357-1361.	0.9	3
575	High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating. Coatings, 2022, 12, 547.	1.2	2
576	Insight into macroscale superlubricity of polyol aqueous solution induced by protic ionic liquid. Friction, 2022, 10, 2000-2017.	3.4	17
577	Nanostructured Coatings: Review on Processing Techniques, Corrosion Behaviour and Tribological Performance. Nanomaterials, 2022, 12, 1323.	1.9	24
578	Two-dimensional molybdenum carbide (MXene) as an efficient nanoadditive for achieving superlubricity under ultrahigh pressure. Friction, 2023, 11, 369-382.	3.4	18
579	Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity. Friction, 2023, 11, 187-200.	3.4	9
580	Structure and Wear Behavior of (Ti,Cr)C-Ni Detonation Sprayed Coatings. Solid State Phenomena, 0, 331, 151-156.	0.3	1
581	The Effect of Bainite Volume Fraction on Wear Behavior of AISI 4340 Ferrite–Bainite Dual-Phase Steel. Journal of Materials Engineering and Performance, 0, , 1.	1.2	Ο
582	Structure, functional groups analysis and tribo-mechanical behavior of carbide and nitride coatings deposited on AISI 1060 substrates by RF-magnetron sputtering. Journal of Materials Research and Technology, 2022, 18, 5432-5443.	2.6	2
583	Delivering quantum dots to lubricants: Current status and prospect. Friction, 2022, 10, 1751-1771.	3.4	9
584	Synthesis of MXene-Based Self-dispersing Additives for Enhanced Tribological Properties. Tribology Letters, 2022, 70, .	1.2	19
585	Carbon soot nanoparticles derived from wasted rubber: An additive in lubricating oil for efficient friction and wear reduction. Diamond and Related Materials, 2022, 126, 109050.	1.8	4
586	Sliding wear behavior of a sustainable Fe-based coating and its damage mechanisms. Wear, 2022, 500-501, 204375.	1.5	9
587	Role of fullerene carbon on tribological performance of polyimide composites at a large temperature span. Tribology International, 2022, 173, 107628.	3.0	8
588	Dry Sliding Wear and Corrosion Performance of Mg-Sn-Ti Alloys Produced by Casting and Extrusion. Materials, 2022, 15, 3533.	1.3	4
589	Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy, 2022, 99, 107370.	8.2	32

#	Article	IF	CITATIONS
590	PROSPECTS FOR CREATING SURFACE LAYERS OF DETA-LEU WITH INCREASED TRIBOLOGICAL CHARACTERISTICS USING GAS-DYNAMIC FILLING. Engineering Energy Transport Aic, 2022, , 83-95.	0.5	2
591	Study of dry sliding wear and corrosion behavior of nanocomposite Al-Si-N coated steel. Surface and Coatings Technology, 2022, 441, 128543.	2.2	2
592	Controllable fabrication of magnesium silicate hydroxide reinforced MoS2 hybrid nanomaterials as effective lubricant additives in PAO. Applied Surface Science, 2022, 597, 153777.	3.1	16
593	A critical review on liquid superlubricitive technology for attaining ultra-low friction. Renewable and Sustainable Energy Reviews, 2022, 165, 112626.	8.2	20
594	Facile synthesis of lipophilic alkylated boron nitride nanosheets as lubricating oil additive to greatly enhance the friction and heat-conducting properties. Tribology International, 2022, 173, 107655.	3.0	6
595	Friction and Wear Behavior of Graphene and Graphite Oxide–Reinforced Epoxy Composites. Tribology Transactions, 2022, 65, 716-727.	1.1	1
596	Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes. Lubricants, 2022, 10, 105.	1.2	4
597	Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction, 2023, 11, 513-523.	3.4	3
598	Molecules with a TEMPO-based head group as high-performance organic friction modifiers. Friction, 2023, 11, 316-332.	3.4	6
599	Carbon Structures and Tribological Properties of Fe-C-SiC Self-Lubricating Metal Matrix Composites Prepared with α/β-SiC Polytypes. Lubricants, 2022, 10, 112.	1.2	4
600	Tribological and Mechanical Performance of Ti ₂ AlC and Ti ₃ AlC ₂ Thin Films. Advanced Engineering Materials, 2022, 24, .	1.6	10
601	Linear alkyl-benzenesulfonate-based protic ionic liquids: Physicochemical properties and tribological performance as lubricant additives to a non-polar base oil. Journal of Molecular Liquids, 2022, 361, 119535.	2.3	3
602	Pulsed Plasma Surfacing of Titanium Matrix Cermet Based on B4C. Journal of Thermal Spray Technology, 2022, 31, 1975-1984.	1.6	3
603	Simultaneous low friction and ultra-low wear enabled by a 2,5-Furandicarboxylic acid derived bio-based ionic liquid. Tribology International, 2022, 174, 107683.	3.0	3
604	Structure design and performance investigation of 2-mercapto-5-methyl thiadiazole based ionic liquids as lubricants and corrosion inhibitors. Tribology International, 2022, 173, 107682.	3.0	8
605	Synergistic lubrication mechanisms of molybdenum disulfide film under graphene-oil lubricated conditions. Applied Surface Science, 2022, 598, 153845.	3.1	21
606	Breakdown of Archard law due to transition of wear mechanism from plasticity to fracture. Tribology International, 2022, 173, 107660.	3.0	14
608	Methyltrioctylammonium Octadecanoate as Lubricant Additive to Different Base Oils. Lubricants, 2022, 10, 128.	1.2	2

		IKEI OKI	, ,
#	Article	IF	CITATIONS
609	Predicting EHL film thickness parameters by machine learning approaches. Friction, 2023, 11, 992-1013.	3.4	22
610	The influence of alloying elements on tribological properties of Fe-Cu-C based metal matrix composite bearing materials produced by powder metallurgy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2023, 237, 288-299.	1.0	3
611	The Twelve Principles of Green Tribology: Studies, Research, and Case Studies—A Brief Anthology. Lubricants, 2022, 10, 129.	1.2	12
612	Adsorption and decomposition of ZDDP on lightweight metallic substrates: Ab initio and experimental insights. Applied Surface Science, 2022, 600, 153947.	3.1	7
613	Effect of multifunction cavitation-treated carbon steel surface on fracture toughness. Journal of Materials Research and Technology, 2022, 19, 3546-3553.	2.6	4
614	Analysis of textured journal bearing with slip boundary condition and pseudoplastic lubricants. International Journal of Mechanical Sciences, 2022, 228, 107458.	3.6	15
615	Carbon quantum dots doped with silver as lubricating oil additive for enhancing tribological performance at various temperatures. Applied Surface Science, 2022, 599, 154029.	3.1	19
616	Phospholipids and Hyaluronan: From Molecular Interactions to Nano- and Macroscale Friction. Colloids and Interfaces, 2022, 6, 38.	0.9	1
617	Recent Patents on Friction and Wear Tester. Recent Patents on Engineering, 2022, 17, .	0.3	0
618	Surface Mo or Ni-Enrichment Applied to Granulated Self-Lubricating Composites: Microstructural and Tribological Evaluation. Frontiers in Mechanical Engineering, 0, 8, .	0.8	1
619	Recent advances on graphene: Synthesis, properties and applications. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107051.	3.8	90
620	Disclosing the Microscopic Picture: An Interdisciplinary Investigation of Friction and Wetting Using a Gecko-Inspired Tape. Journal of Chemical Education, 2022, 99, 2520-2529.	1.1	1
621	Tribological Properties of Ti6Al4V Titanium Textured Surfaces Created by Laser: Effect of Dimple Density. Lubricants, 2022, 10, 138.	1.2	11
622	Macroscopic superlubricity of potassium hydroxide solution achieved by incorporating in-situ released graphene from friction pairs. Friction, 2023, 11, 567-579.	3.4	6
623	CFD Investigation of Reynolds Flow around a Solid Obstacle. Lubricants, 2022, 10, 150.	1.2	1
624	Effect of Incomplete Replacement of Cr for Cu in the Deposited Alloy of Fe–C–Cr–B–Ti Alloying System with a Medium Boron Content (0.5% wt.) on its Corrosion Resistance. Metallofizika I Noveishie Tekhnologii, 2022, 44, 493-513.	0.2	14
625	Combining surface textures and MXene coatings—towards enhanced wear-resistance and durability. Surface Topography: Metrology and Properties, 2022, 10, 033001.	0.9	17
626	Lubrication Performance of Sunflower Oil Reinforced with Halloysite Clay Nanotubes (HNT) as Lubricant Additives. Lubricants, 2022, 10, 139.	1.2	4

#	Article	IF	CITATIONS
627	Adjustable superlubricity system using polyalkylene glycol with various acid aqueous solutions. Friction, 2023, 11, 1138-1149.	3.4	9
628	Combining micro-infrared reflection absorption spectroscopy with density functional theory for investigating the adsorption of organic friction modifiers on steel surfaces. Vibrational Spectroscopy, 2022, 121, 103403.	1.2	1
629	Logical Analysis on the Strategy for a Sustainable Transition of the World to Green Energy—2050. Smart Cities and Villages Coupled to Renewable Energy Sources with Low Carbon Footprint. Sustainability, 2022, 14, 8622.	1.6	21
630	Energy and comfort evaluation of a novel hybrid control algorithm for smart electrochromic windows: A simulation study. Solar Energy, 2022, 241, 671-685.	2.9	8
631	Gear and bearing power losses: from dip to minimum quantity lubrication. Industrial Lubrication and Tribology, 2022, 74, 985-994.	0.6	3
632	Effect of functional groups on tribological properties of lubricants and mechanism investigation. Friction, 2023, 11, 911-926.	3.4	18
633	Monitoring of oil lubrication limits, fuel consumption, and excess CO2 production on civilian vehicles in Mexico. Energy, 2022, 257, 124765.	4.5	4
634	On the tribological performance of laser-treated self-lubricating thin films in contact with rubber. Tribology International, 2022, 174, 107758.	3.0	3
635	Ultra-dispersive sulfonated graphene as water-based lubricant additives for enhancing tribological performance. Tribology International, 2022, 174, 107759.	3.0	13
636	Tribological behaviors of nanotwinned Al alloys. Applied Surface Science, 2022, 600, 154108.	3.1	5
637	Supramolecular Gel Lubricants with Excellent Lubricity and Loadâ€Carrying Performances Act Synergistically via Two Layers of Tribofilm. Advanced Materials Interfaces, 2022, 9, .	1.9	6
638	Improved tribological performance of epoxy self-lubricating composite coating by BNNSs/Ag. Progress in Organic Coatings, 2022, 171, 107020.	1.9	5
639	Interlayer superlubricity of layered Metal-organic frameworks and its heterojunctions enabled by highly oriented crystalline films. Chemical Engineering Journal, 2022, 450, 138249.	6.6	5
640	Quenched and tempered high strength steel: A review. , 2020, 30, 19-29.		4
641	Electrotunable friction with ionic liquid lubricants. Nature Materials, 2022, 21, 848-858.	13.3	27
642	Frictional Characteristics of Deep-Drawing Quality Steel Sheets in the Flat Die Strip Drawing Test. Materials, 2022, 15, 5236.	1.3	8
643	Statistical mechanics of rate-independent stick-slip on a corrugated surface composed of parabolic wells. Continuum Mechanics and Thermodynamics, 2022, 34, 1343-1372.	1.4	5
644	Time-Dependant Microstructural Evolution and Tribological Behaviour of a 26 wt% Cr White Cast Iron Subjected to a Destabilization Heat Treatment. Metals and Materials International, 2023, 29, 934-947.	1.8	4

#	Article	IF	CITATIONS
645	Astonishingly distinct lubricity difference between the ionic liquid modified carbon nanoparticles grafted by anion and cation moieties. Friction, 2023, 11, 949-965.	3.4	7
646	Insight into the Nanotribological Mechanism of Two-Dimensional Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 40173-40181.	4.0	7
647	The mechanisms and applications of friction energy dissipation. Friction, 2023, 11, 839-864.	3.4	17
648	Study on the influence of interfacial slip on the lubrication performance of a step slider bearing. Tribology International, 2022, 176, 107822.	3.0	4
649	Research progress of surface modification and solid–liquid lubrication synergistic friction reduction and wear resistance. International Journal of Advanced Manufacturing Technology, 2022, 122, 1115-1141.	1.5	3
650	Nanofriction Properties of Mono- and Double-Layer Ti ₃ C ₂ T _{<i>x</i>} MXenes. ACS Applied Materials & Interfaces, 2022, 14, 36815-36824.	4.0	10
651	Assessment of the tribolological behavior of a metallic tribopair: LM25 alloy-Si3N4 composites against EN 31 steel. Materials Today: Proceedings, 2022, 67, 431-437.	0.9	1
652	Experimental investigations on the tribological behaviour of thermoplastic composites with partial sand replacements. Materials Today: Proceedings, 2022, , .	0.9	0
653	Synergistic Lubrication Effect between Oxidized Black Phosphorus and Oil Molecules Triggers Superlubricity. Journal of Physical Chemistry Letters, 0, , 8245-8253.	2.1	4
654	How to improve superlubricity performance of diketone at steel interface: Effects of oxygen gas. Friction, 2023, 11, 927-937.	3.4	3
655	Low friction of superslippery and superlubricity: A review. Friction, 2023, 11, 1121-1137.	3.4	18
656	Effect of laser heat treatment on AlxTi1-xN-based PVD coatings, deposited on carbon and tool steel substrates. Surface and Coatings Technology, 2022, 446, 128771.	2.2	1
657	Tribo-performance of the ionic liquids derived from dicarboxylic acids as lubricant additives for reducing wear and friction. Journal of Molecular Liquids, 2022, 364, 119941.	2.3	5
658	Enhanced superlubricity on a-C films by lubrication with 3-hydroxypropionic acid. Carbon, 2022, 199, 161-169.	5.4	5
659	Design of novel lubricating structured MOF-on-MOF heterostructure towards the tribological application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129873.	2.3	11
660	Tribological properties of vanadium oxides investigated with reactive molecular dynamics. Tribology International, 2022, 175, 107795.	3.0	0
661	Differences between energy consumption and regional economic growth under the energy environment. Energy Reports, 2022, 8, 10017-10024.	2.5	15
662	Tuning super-lubricity via molecular adsorption. Applied Materials Today, 2022, 29, 101615.	2.3	1

#	Article	IF	CITATIONS
663	Plastic–elastic Model for Water-based Lubrication Considering Surface Force. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	1
664	Achieving enhanced interfacial adhesion and highly oriented structure in PA6/Graphite composites for excellent tribological performance. Composites Science and Technology, 2022, 229, 109719.	3.8	7
665	Synthesis of poly(1,2-butylene oxide-stat-tetrahydrofuran) by controllable polymerization over Sc(OTf)3 for use in high-performance lubricating oil. European Polymer Journal, 2022, 179, 111483.	2.6	2
666	Constructing 3D interconnected CNTs network in PA6 composites with well-dispersed UHMWPE for excellent tribological and heat dissipation properties. Composites Part B: Engineering, 2022, 246, 110252.	5.9	9
667	Influence of process parameters on the particle–matrix interaction of WC-Co metal matrix composites produced by laser-directed energy deposition. Materials and Design, 2022, 223, 111172.	3.3	15
668	Ag nanoparticle decorated graphene for improving tribological properties of fabric/phenolic composites. Tribology International, 2022, 176, 107889.	3.0	5
669	Experimental and numerical study on wear characteristics of steel surfaces involving the tribochemistry of a fully formulated oil. Part I: Experiments. Tribology International, 2022, 176, 107888.	3.0	3
670	Understanding of the tribological behaviors of magnetic lubrication particle under magnetic field. Tribology International, 2022, 176, 107931.	3.0	0
671	A review of tribological properties and deposition methods for selected hard protective coatings. Tribology International, 2022, 176, 107919.	3.0	32
672	Numerical Analysis of the Erosion Mechanism inside the Tube Sockets of Main Steam Thermometers in a Coal-Fired Power Plant. Fluid Dynamics and Materials Processing, 2023, 19, 379-397.	0.5	0
673	Effect of Water and Oxygen at Sliding Interface on Friction and Wear of Diamond-like Carbon/Steel: Reactive Molecular Dynamics Simulations. Journal of Computer Chemistry Japan -International Edition, 2022, 8, n/a.	0.2	1
674	Carbon Spheres and Carbon Soot for Tribological Applications. Advances in Material Research and Technology, 2022, , 191-216.	0.3	0
675	Super-wetting interfaces as a multiphase composite prototype for ultra-low friction. Green Chemistry, 2022, 24, 7492-7499.	4.6	7
676	Synergistic effect of hexagonal boron nitride and carbon nanofibers on tribological behavior of nanolubricant. Tribology International, 2023, 177, 107957.	3.0	11
677	CREATING SURFACE LAYERS OF PARTS WITH INCREASED TRIBOLOGICAL CHARACTERISTICS USING COLD GAS-DYNAMIC SPRAYING. Vibrations in Engineering and Technology, 2022, , 65-75.	0.3	1
678	Nano X-ray Tomography Application for Quantitative Surface Layer Geometry Analysis after Laser Beam Modification. Materials, 2022, 15, 5935.	1.3	0
679	Experimental Investigation on Synergetic Effects of Micro Grooves and WSe2 in Sliding Contact. Lubricants, 2022, 10, 208.	1.2	2
680	Roughness Effects of Textured Surfaces in Hydrodynamic Lubrication. International Journal of Applied Mechanics and Engineering, 2022, 27, 9-21.	0.3	0

#	Article	IF	CITATIONS
681	Piezoelectric effect of crystal nanodomains on the friction force. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, 052803.	0.6	1
682	The Effect of 1T Phase Molybdenum Disulfide on the Tribological Performance of Polyethylene Glycol. Journal of Macromolecular Science - Physics, 2022, 61, 971-985.	0.4	1
683	Study of metal-ceramic WC/Cu nano-wear behavior and strengthening mechanism. Chinese Physics B, O,	0.7	0
684	Optimizing Tribological Performance of Laser-Induced Elliptical Textures on Nickel Aluminum Bronze Surface based on Genetic Algorithm. Journal of Materials Engineering and Performance, 2023, 32, 4676-4690.	1.2	2
685	A Comparative Study on the Anti-Friction Performance of Amorphous Silicon Films Enhanced by WS2 Nanoflakes. Silicon, 2023, 15, 1291-1302.	1.8	3
686	Temperature-dependent wall slip of Newtonian lubricants. Journal of Fluid Mechanics, 2022, 948, .	1.4	2
687	Effects of particle size on structural, physical, mechanical and tribology behaviour of agricultural waste (corncob micro/nano-filler) based epoxy biocomposites. Journal of Material Cycles and Waste Management, 2022, 24, 2527-2544.	1.6	7
688	Activated Carbon Nano-Particles from Recycled Polymers Waste as a Novel Nano-Additive to Grease Lubrication. Lubricants, 2022, 10, 214.	1.2	5
689	Comparison of Three-Body Abrasion Behaviors of High-Cr-Mo- and High-Cr-Based Multicomponent White Cast Irons. Journal of Materials Engineering and Performance, 0, , .	1.2	2
690	Dynamometer Testing of Energy Efficient Hydraulic Fluids and Fuel Savings Analysis for US Army Construction and Material Handling Equipment. Lubricants, 2022, 10, 216.	1.2	1
691	Overview of Friction and Wear Performance of Sliding Bearings. Coatings, 2022, 12, 1303.	1.2	7
692	Microstructure and high-temperature tribological properties of TiSiN-Ag coatings deposited by multi-arc ion plating. Journal of Materials Science, 2022, 57, 16892-16903.	1.7	3
693	Strain hardening and strengthening mechanism of laser melting deposition (LMD) additively manufactured FeCoCrNiAl0.5 high-entropy alloy. Materials Characterization, 2022, 194, 112365.	1.9	10
694	On the tribological performance of magnetron sputtered W-S-C coatings with conventional and graded composition. Surface and Coatings Technology, 2022, 449, 128929.	2.2	3
695	Synergistic Lubrication for Textured Surfaces Using Polar and Nonpolar Lubricants. Journal of Tribology, 2023, 145, .	1.0	1
696	Experimental and numerical study on wear characteristics of steel surfaces involving the tribochemistry of a fully formulated oil. Part II: Computational modelling. Tribology International, 2023, 177, 107976.	3.0	1
697	Tribological characteristics of glass/carbon fibre-reinforced thermosetting polymer composites: a critical review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	2
698	Development of ZnO-coated bearings with the preferred crystal orientation for micro gas turbines. Thin Solid Films, 2022, 761, 139522.	0.8	0

#	Article	IF	CITATIONS
699	Tribological Systems. Synthesis Lectures on Engineering Science and Technology, 2022, , 37-71.	0.2	0
700	Biosphere-Technosphere Transformations: Thirty Workable Resolutions. , 2022, , 313-447.		0
701	Ultralow Friction and High Robustness of Monolayer Ionic Liquids. ACS Nano, 2022, 16, 16471-16480.	7.3	6
703	Effect of dry sliding wear parameters on the specific wear rate of α-MnO ₂ -epoxy nanocomposites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622211324.	1.1	0
704	Synthesis and polishing characteristics of a novel green GO/diamond hybrid slurry under ultrasonic technology. Ceramics International, 2023, 49, 5986-5996.	2.3	6
705	A Review of Nanomaterials with Different Dimensions as Lubricant Additives. Nanomaterials, 2022, 12, 3780.	1.9	15
706	Understanding the mechanisms of adhesive wear for heterogeneous materials through atomistic simulations. Extreme Mechanics Letters, 2022, 57, 101913.	2.0	3
707	Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants, 2022, 10, 281.	1.2	21
708	Nanotribology of Hydrogenated Amorphous Silicon: Sliding-Dependent Friction and Implications for Nanoelectromechanical Systems. ACS Applied Nano Materials, 2022, 5, 15546-15556.	2.4	4
709	Tribological Properties of Borate-Based Protic Ionic Liquids as Neat Lubricants and Biolubricant Additives for Steel-Steel Contact. Lubricants, 2022, 10, 269.	1.2	1
710	The role of oleic acid on the structural changes of graphite nanoplatelets in enhancing the tribological performance of a palm oil-based lubricant. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 0, , 135065012211341.	1.0	0
711	Synthesis of ultrathin two-dimensional metal-organic framework nanosheets for lubricant additives. Materials and Design, 2022, 223, 111251.	3.3	8
712	Properties of compression molded ultra-high molecular weight polyethylene: effects of varying process conditions. Journal of Polymer Engineering, 2022, .	0.6	0
713	The Role of Machine Learning in Tribology: A Systematic Review. Archives of Computational Methods in Engineering, 2023, 30, 1345-1397.	6.0	23
714	Insights into the stability of retained austenite during wear. Philosophical Magazine, 0, , 1-20.	0.7	0
715	Influence mechanism of organic-modified $\hat{I}\pm$ -zirconium phosphate on tribological properties of UHMWPE. Wear, 2023, 512-513, 204548.	1.5	2
716	Recycled carbon fibers as an alternative reinforcement in UHMWPE composite. Circular economy within polymer tribology. Sustainable Materials and Technologies, 2022, 34, e00510.	1.7	2
717	Tribology as emerging science for warm mix technology: A review. Construction and Building Materials, 2022, 359, 129445.	3.2	5

#	Article	IF	CITATIONS
718	Functionalized carbon nanostructures as lubricant additives – A review. Carbon, 2023, 201, 1200-1228.	5.4	45
719	Nano-eutectic structure induced oxide layer improving the wear resistance of CoCrxNiMoCB laser-clad coating. Materials Letters, 2023, 330, 133325.	1.3	2
720	The performance of textured surface in friction reducing: A review. Tribology International, 2023, 177, 108010.	3.0	21
721	Iron ions induced self-assembly of graphene oxide lubricating coating with self-adapting low friction characteristics. Carbon, 2023, 201, 1151-1159.	5.4	11
722	Investigation on anti-wear and corrosion-resistance behavior of steel-steel friction pair enhanced by ionic liquid additives under conductive conditions. Tribology International, 2023, 177, 108002.	3.0	8
723	Friction induced mechanochemistry: self-adaptive lubrication through in-situ tribo-click system. Chemical Engineering Journal, 2023, 454, 139772.	6.6	17
724	Characterization of organic friction modifiers using lateral force microscopy and Eyring activation energy model. Tribology International, 2023, 178, 108052.	3.0	6
725	Friction Behavior of Rough Surfaces on the Basis of Contact Mechanics: A Review and Prospects. Micromachines, 2022, 13, 1907.	1.4	3
726	A Review of Ultrasonic Reflectometry for the Physical Characterization of Lubricated Tribological Contacts: History, Methods, Devices, and Technological Trends. Tribology Letters, 2022, 70, .	1.2	6
727	Flake Graphene as an Innovative Additive to Grease with Improved Tribological Properties. Materials, 2022, 15, 7775.	1.3	1
728	Surface-Functionalized Ti ₃ C ₂ T _{<i>x</i>} MXene as a Kind of Efficient Lubricating Additive for Supramolecular Gel. ACS Applied Materials & Interfaces, 2022, 14, 52566-52573.	4.0	13
729	Natural Cholesterol-Derived Ionic Liquids Enhancing the Antiwear Property and Biodegradability of Mineral/Vegetable Oils. ACS Sustainable Chemistry and Engineering, 2022, 10, 15574-15588.	3.2	2
730	Active control of friction realized by vibrational excitation: Numerical simulation based on the Prandtl-Tomlinson model and molecular dynamics. Friction, 2023, 11, 1225-1238.	3.4	3
731	Negative-positive oscillation in interfacial friction of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>In</mml:mi><mml:mi -graphene heterojunction. Physical Review B, 2022, 106, .</mml:mi </mml:msub></mml:mrow></mml:math 	ז>21/mml	:man>
732	ANALYSIS OF THE INFLUENCE OF HEXAGONAL BORON NITRIDE ON TRIBOLOGICAL PROPERTIES OF GREASE. Tribologia, 2022, 301, 101-112.	0.0	0
733	Probing the tribological behaviors of diamond-like carbon film in water-based drilling fluid environment by varying normal loads. Diamond and Related Materials, 2022, 130, 109552.	1.8	4
734	Study on wear behaviour of nickel tungsten coated mild steel using finite element analysis (FEA). AIP Conference Proceedings, 2022, , .	0.3	0
735	Aromatic molecules as sustainable lubricants explored by ab initio simulations. Carbon, 2023, 203, 717-726.	5.4	0

#	Article	IF	CITATIONS
736	Steady superlubricity achieved by epoxy resin composite coatings containing polydimethylsiloxane. Progress in Organic Coatings, 2023, 175, 107361.	1.9	2
737	Macroscopic superlubricity enabled by the tribopair of nc-Ag/MoS2 and hydrogenated graphitic-like carbon films under high contact stress. Applied Surface Science, 2023, 611, 155814.	3.1	Ο
738	Robust macroscale superlubricity enabled by tribo-induced structure evolution of MoS2/metal superlattice coating. Composites Part B: Engineering, 2023, 250, 110460.	5.9	5
739	Lubrication behavior of fluorescent graphene quantum dots hybrid polyethylene glycol lubricant. Applied Surface Science, 2023, 612, 155933.	3.1	8
740	Physico-chemical characterisation and tribological behaviour of ground micro-arc oxidation coating on aluminium alloy – Comparison with hard anodised oxidation. Wear, 2023, 516-517, 204591.	1.5	5
741	Macroscale superlubricity induced by film-forming polymer brush-grafted colloidal additives. Journal of Colloid and Interface Science, 2023, 634, 703-714.	5.0	4
742	Tribotronic control of anÂionic boundary layer in operandoÂextends the limits of lubrication. Scientific Reports, 2022, 12, .	1.6	7
743	Numerical Wear Modeling in the Mixed and Boundary Lubrication Regime. Lubricants, 2022, 10, 334.	1.2	4
744	Bearing Aluminum-Based Alloys: Microstructure, Mechanical Characterizations, and Experiment-Based Modeling Approach. Materials, 2022, 15, 8394.	1.3	2
745	Effect of Cavitation and Temperature on Fluid Film Bearing Using CFD and FSI Technique: A Review. Archives of Computational Methods in Engineering, 2023, 30, 1623-1636.	6.0	4
746	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as Lubricant Additives to Lower Friction under High Loads, Sliding Ratios, and Elevated Temperatures. ACS Applied Nano Materials, 2023, 6, 729-737.	2.4	11
747	Fabrication of wear-resistant PA6 composites with superior thermal conductivity and mechanical properties via constructing highly oriented hybrid network of SiC-packed BN platelets. Journal of Materials Science and Technology, 2023, 146, 200-210.	5.6	5
749	Experimental Study on the Lubrication Enhancement of Slider-on-Disc Contact by Stearic Acid Adsorption under Limited Lubricant Supply. Lubricants, 2022, 10, 353.	1.2	3
750	Nanoscale friction characteristics of layered-structure materials in dry and wet environments. Frontiers in Mechanical Engineering, 0, 8, .	0.8	Ο
751	Roughness Evaluation of Burnished Topography with a Precise Definition of the S-L Surface. Applied Sciences (Switzerland), 2022, 12, 12788.	1.3	3
753	Micro-scale deterministic asperity contact FEM simulation. Surface Topography: Metrology and Properties, 2022, 10, 044011.	0.9	1
754	Low Friction Achieved on Plasma Electrolytic Oxidized TC4 Alloy in the Presence of PAO Base Oil Containing MoDTC. Lubricants, 2023, 11, 4.	1.2	0
755	Thermal and Tribological Properties Enhancement of PVE Lubricant Modified with SiO2 and TiO2 Nanoparticles Additive. Nanomaterials, 2023, 13, 42.	1.9	8

#	Article	IF	CITATIONS
756	Well-dispersed graphene toward robust lubrication via reorganization of sliding interface. Journal of Industrial and Engineering Chemistry, 2023, 119, 619-632.	2.9	6
757	Three-Body Abrasive Wear Performance of High Chromium White Cast Iron with Different Ti and C Content. Lubricants, 2022, 10, 348.	1.2	5
758	The tribovoltaic effect. Materials Today, 2023, 62, 111-128.	8.3	28
759	Quasi-Static Sliding Wear Analysis of 3D Rough Surface Considering Changes in the Point of Contact. Applied Sciences (Switzerland), 2022, 12, 12465.	1.3	0
760	Potential dependent friction: role of interfacial hydrated molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 130862.	2.3	0
761	Mathematical analyses and experimental verification of elimination of measurement error in UMT-2 rotating friction system. Measurement: Journal of the International Measurement Confederation, 2023, 208, 112401.	2.5	2
762	Deformation Behavior of Crystalline Cr–Ni Multilayer Coatings by Using Molecular Dynamics Simulation. Lubricants, 2022, 10, 357.	1.2	1
763	Synthesis of Eco-Friendly Carbon Dots as Self-Repairing Additives of Polyalphaolefin by Means of a Green Solvation Effect. Langmuir, 2022, 38, 15756-15765.	1.6	7
764	Effect of texture on hydrodynamic journal bearing performance under starvation lubrication. Surface Topography: Metrology and Properties, 2023, 11, 015008.	0.9	1
765	Superlubricity of PTFE triggered by green ionic liquids. Applied Surface Science, 2023, 614, 156241.	3.1	12
766	Tribological Properties of Protic Ionic Liquid as an Additive in Aqueous Glycerol Solution for Ruby-Bearing Steel Tribo-Contact. Lubricants, 2023, 11, 34.	1.2	2
767	Three-Body Abrasive Wear-Resistance Characteristics of a 27Cr-Based 3V-3Mo-3W-3Co Multicomponent White Cast Iron with Different Ti Additions. Journal of Manufacturing and Materials Processing, 2023, 7, 21.	1.0	0
768	Friction Reduction by Dimple Type Textured Cylinder Liners—An Experimental Investigation. Materials, 2023, 16, 665.	1.3	3
769	A review on tailoring the corrosion and oxidation properties of MoS ₂ -based coatings. Journal of Materials Chemistry A, 2023, 11, 3172-3209.	5.2	13
770	Graphene superlubricity: A review. Friction, 2023, 11, 1953-1973.	3.4	23
771	Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant. Friction, 2023, 11, 748-762.	3.4	14
772	Tribology Performance of Polyol-Ester Based TiO2, SiO2, and Their Hybrid Nanolubricants. Lubricants, 2023, 11, 18.	1.2	12
773	Surface modification technologies for enhancing the tribological properties of cemented carbides: A review. Tribology International, 2023, 180, 108257.	3.0	14

#	Article	IF	CITATIONS
774	Nanomaterials for lubricating oil application: A review. Friction, 2023, 11, 647-684.	3.4	42
775	Dependency of Lithium Complex Grease on the Size of hBN Particles for Enhanced Performance. Tribology Letters, 2023, 71, .	1.2	6
776	Achieving ultrafast superlubricity with layered double hydroxides. Nano Research, 2023, 16, 6940-6950.	5.8	4
777	Evolution of the low-temperature tribological performance of polychlorotrifluoroethylene and polyimide. Tribology International, 2023, 180, 108271.	3.0	4
778	Prediction of the tribological properties of a polymer surface in a wide temperature range using machine learning algorithm based on friction noise. Tribology International, 2023, 180, 108213.	3.0	9
779	Tribology of polymer-based nanocomposites reinforced with 2D materials. Materials Today Communications, 2023, 34, 105397.	0.9	7
780	Theoretical superlubricity and its friction stability of amorphous carbon film induced by simple surface graphitization. Applied Surface Science, 2023, 615, 156318.	3.1	3
781	Self-lubrication of single-phase high-entropy ceramic enabled by tribo-induced amorphous carbon. Scripta Materialia, 2023, 227, 115273.	2.6	4
782	Computational Fluid Mechanics Model for Numerical Investigation of Frictional Tribo-pair during Mixed Lubrication. , 2022, , .		0
783	2D Mo ₂ CT _x Reinforced Polyimide Nanocomposites for Enhancement of Surface Tribological Performance at Elevated Temperatures. Advanced Materials Interfaces, 2023, 10, .	1.9	0
784	A review of recent advances and applications of machine learning in tribology. Physical Chemistry Chemical Physics, 2023, 25, 4408-4443.	1.3	12
785	Contact size in fretting. , 2023, , 201-227.		0
786	Tailored Laser Structuring of Tungsten Carbide Cutting Tools for Improving Their Tribological Performance in Turning Aluminum Alloy Al6061 T6. Materials, 2023, 16, 1205.	1.3	4
787	Friction and wear mechanism of polymers, their composites and nanocomposites. , 2023, , 51-117.		2
788	Combining Molecular Dynamics and Machine Learning to Analyze Shear Thinning for Alkane and Globular Lubricants in the Low Shear Regime. ACS Applied Materials & Interfaces, 2023, 15, 8567-8578.	4.0	4
789	Tribological analysis—general test standards. , 2023, , 17-50.		1
790	Numerical optimization of highly loaded microtextured contacts: understanding and mastering complexity. Industrial Lubrication and Tribology, 2023, 75, 741-747.	0.6	0
791	Novel nano-lamellar AlCoCrFeMn0.5Mo0.1Nbx eutectic high-entropy alloy coatings by ultrasonic assisted laser cladding: Microstructure and tribological behaviors. Intermetallics, 2023, 156, 107851.	1.8	8

		CITATION REPORT		
#	Article		IF	CITATIONS
792	Sustainable Development and Polymer Tribology. Journal of Friction and Wear, 2022, 4	3, 353-358.	0.1	1
793	Tribological performance of electrically conductive and self-lubricating polypropyleneât composites. RSC Advances, 2023, 13, 8000-8014.	E"ionic-liquid	1.7	4
794	MoS ₂ nanoflower-decorated lignin nanoparticles for superior lubricant pro Nanoscale, 2023, 15, 9014-9021.	operties.	2.8	3
795	Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (â^1⁄41 Acid-Based Complex Green Liquid Lubricants. ACS Applied Materials & amp; Interfaces, 1 10302-10314.	s) through Phytic 2023, 15,	4.0	9
796	Scale Effect of Surface Asperities on Stick–Slip Behavior of Zinc-Coated Steel. Langm 5561-5568.	uir, 2023, 39,	1.6	3
797	The role of tribofilm chemical composition on wear of austenitic stainless steel lubricat water-glycol containing ionic-liquids as additives. Wear, 2023, 520-521, 204672.	ed with	1.5	0
798	Robust and universal macroscale superlubricity with natural phytic acid solutions. Tribc International, 2023, 183, 108387.	logy	3.0	6
799	Assessment of sustainability of machining Ti-6Al-4V under cryogenic condition using er approach. Engineering Science and Technology, an International Journal, 2023, 41, 101	iergy map 357.	2.0	1
800	Synergy of silica sand and waste plastics as thermoplastic composites on abrasive wea characteristics under conditions of different loads and sliding speeds. Chemosphere, 20	, 023, 323, 138233.	4.2	5
801	A monosurfactant-stabilized dual-responsive and versatile emulsion lubricant. Journal o Production, 2023, 406, 137089.	f Cleaner	4.6	1
802	A numerical algorithm to model wall slip and cavitation in two-dimensional hydrodynan lubricated contacts. Tribology International, 2023, 184, 108444.	nically	3.0	2
803	Revealing the structure-property relationships of amorphous carbon tribofilms on plati surfaces. Wear, 2023, 522, 204690.	num-gold	1.5	4
804	Open-source tribometer with high repeatability: Development and performance assess International, 2023, 184, 108421.	nent. Tribology	3.0	0
805	Iron aluminides – A step towards sustainable high-temperature wear resistant materi 523, 204754.	als. Wear, 2023,	1.5	1
806	Self-assembled multilayer WS2/GO films on amorphous silicon coating for enhancing t properties. Applied Surface Science, 2023, 624, 157184.	ne lubricating	3.1	4
807	Challenges and potentials in the classification of wear mechanisms by artificial intellige 2023, 522, 204725.	nce. Wear,	1.5	2
808	Twisting Dynamics of Large Lattice-Mismatch van der Waals Heterostructures. ACS Ap & Interfaces, 2023, 15, 19616-19623.	plied Materials	4.0	2
809	Synthesis of polyzwitterionic carbon dots with superior friction and fatigue control beh under water lubrication. Chemical Engineering Journal, 2023, 465, 142986.	aviors	6.6	14

#	Article	IF	CITATIONS
810	Estimating of cutting force and surface roughness in turning of GFRP composites with different orientation angles using artificial neural network. Reviews on Advanced Materials Science, 2022, 61, 955-968.	1.4	2
811	The novel hybrid concept on designing advanced multi-component cast irons: Effect of boron and titanium (Thermodynamic modelling, microstructure and mechanical property evaluation). Materials Characterization, 2023, 197, 112691.	1.9	3
812	Macroscale superlubricity and durability of in situ grown hydrogenated graphene coatings. Chemical Engineering Journal, 2023, 459, 141521.	6.6	12
813	Evolution of the microstructure and lubrication mechanism of AgTaO3 films at high temperatures: A MD simulation study. Tribology International, 2023, 180, 108282.	3.0	0
815	Improvement of cutting tools using laser-induced periodic surface structures for machining aluminium alloy Al 6061 T6. , 2023, , .		0
816	In Situ Graphene Formation Induced by Tribochemical Reaction for Sustainable Lubrication. ACS Sustainable Chemistry and Engineering, 2023, 11, 2238-2248.	3.2	3
817	Superlubricity transition from ball bearing to nanocoating in the third-body lubrication. Tribology International, 2023, 181, 108320.	3.0	1
818	The effect of nanofluids reinforced with different surfactants on the machining and friction-wear properties of Waspaloy. Tribology International, 2023, 181, 108316.	3.0	9
819	Superior macro-scale tribological performance of steel contacts based on graphene quantum dots in aqueous glycerol. Tribology International, 2023, 181, 108328.	3.0	7
820	Superlubricity of TiN coating using glycerol with the addition of Cu nanoparticles. Tribology International, 2023, 181, 108327.	3.0	3
821	Micro-Arcs Oxidation Layer Formation on Aluminium and Coatings Tribological Properties—A Review. Coatings, 2023, 13, 373.	1.2	8
822	Augmenting the lubrication performance of nano-oils through synergistic co-functioning of nanoparticles. Tribology International, 2023, 182, 108332.	3.0	5
823	Effect of reaming on surface properties of self-lubricating composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45, .	0.8	0
824	Tribological behaviour of Ti3C2Tx nano-sheets: Substrate-dependent tribo-chemical reactions. Friction, 2023, 11, 1522-1533.	3.4	5
825	Establishment and Calibration of a Digital Twin to Replicate the Friction Behaviour of a Pin-on-Disk Tribometer. Lubricants, 2023, 11, 75.	1.2	4
826	è¶å^†åå‡èƒ¶æ¶¦æ»'ææ–™çš"ç"ç©¶èį›å±•. Scientia Sinica Chimica, 2023, , .	0.2	0
827	Tribological properties of UHMWPE/PAANa/Ph ₄ Sn composite materials in seawater lubrication. Journal of Polymer Engineering, 2023, 43, 333-342.	0.6	0
829	Effect of hydrogen plasma treatment of nanodiamond on the tribological properties of polytetrafluoroethylene-based nanocomposite coating. Composite Interfaces, 2023, 30, 1063-1074.	1.3	2

	C	tation Report	
#	Article	IF	Citations
830	Stable macroscopic liquid superlubricity induced by asymmetric contact of a mixture of unequal-diameter nanosphere additives. Ceramics International, 2023, 49, 18728-18734.	2.3	2
831	Synergy Study Between a Lubricant Oil Layer and a Microstructural Graphite to Reduce Friction and Wear of a Thermally Modified Low-Carbon Gray Cast-Iron Cylinder Liner. Tribology Transactions, 2023 66, 413-421.	, 1.1	0
832	Tribochemistry of alcohols and their tribological properties: a review. Frontiers of Materials Science, 2023, 17, .	1.1	0
833	Dynamics of Sliding Friction between Laser-Induced Periodic Surface Structures (LIPSS) on Stainless Steel and PMMA Microspheres. ACS Applied Materials & Interfaces, 0, , .	4.0	1
834	Preparation and tribological behavior of a self-assemble copper base carbon quantum dot films. Wear 2023, 524-525, 204673.	, 1.5	1
835	Effect of direct injection and pivot stiffness on the static performance parameters of tilting pad journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2023, 237, 1487-1510.	1.0	1
836	Wear performance of AISI 4140 low-alloy steel PVD coated with TiN. Advances in Materials and Processing Technologies, 0, , 1-17.	0.8	2
837	Interfacial friction at action: Interactions, regulation, and applications. Friction, 2023, 11, 2153-2180.	. 3.4	8
838	Friction and Wear Testing. , 2022, , 341-352.		0
839	Metastable hybridized structure transformation in amorphous carbon films during friction—A study combining experiments and MD simulation. Friction, 2023, 11, 1708-1723.	3.4	12
840	Effect of Characteristic Parameters and Distribution of Friction Pair Surface Texture on Lubrication Properties. Lubricants, 2023, 11, 139.	1.2	2
841	Direct laser interference patterning of cemented cutting tools. , 2023, , .		Ο
842	Study on the Dispersion and Lubrication Properties of LDH in Lubricating Oil. Lubricants, 2023, 11, 14	47. 1.2	1
843	Wear characteristics, reduction techniques and its application in automotive parts – A review. Cogent Engineering, 2023, 10, .	1.1	0
844	Wear study on flexible brush-type soil removal component for removing soil used to protect grapevines against cold. Biosystems Engineering, 2023, 228, 88-104.	1.9	2
845	Tribological properties of lyophilized graphene loading nano-copper as lubricating oil additive. Industrial Lubrication and Tribology, 2023, 75, 325-332.	0.6	1
846	Superlubricity induced by partially oxidized black phosphorus on engineering steel. Friction, 2023, 11 1592-1605.	, 3.4	3
847	Stability and Tribological Performance of Nanostructured 2D Turbostratic Graphite and Functionalised Graphene as Low-Viscosity Oil Additives. Lubricants, 2023, 11, 155.	1.2	2

#	Article	IF	CITATIONS
848	Influence of water content on elastohydrodynamic friction and film thickness of water-containing polyalkylene glycols. Frontiers in Mechanical Engineering, 0, 9, .	0.8	1
849	Multiscale Wear Simulation in Textured, Lubricated Contacts. Coatings, 2023, 13, 697.	1.2	0
850	Ionothermal Synthesis of Novel Layered Magnesium Phosphate and its Tribological Properties asÂGreaseÂadditives. Chemistry - an Asian Journal, 0, , .	1.7	0
851	Friction properties of black phosphorus: a first-principles study. Nanotechnology, 2023, 34, 275703.	1.3	0
852	AFM probe for measuring â^1⁄410â^'5 ultra-low friction coefficient: Design and application. Friction, 2024, 12, 64-73.	3.4	1
853	Creation of Material Functions by Nanostructuring. Springer Series in Optical Sciences, 2023, , 827-886.	0.5	2
855	Mechanism of thermoviscoelasticity driven solid–liquid interface reducing friction for polymer alloy coating. Friction, 0, , .	3.4	1
856	Experimental investigation and optimization of manufacturing processes of Ni–P–Y2O3 composite coatings by multiple linear regression method based on genetic algorithm. International Journal of Advanced Manufacturing Technology, 0, , .	1.5	1
858	Surface-Modified MoS ₂ Nanoparticles as Tribological Additives in a Glycerol Solution. ACS Applied Nano Materials, 2023, 6, 6662-6669.	2.4	2
859	Influence of Different Contact Conditions on Friction Properties of AISI 430 Steel Sheet with Deep Drawing Quality. Coatings, 2023, 13, 771.	1.2	4
860	A Study of the Three-Body Abrasive Wear Resistance of 5V/5Nb-5Cr-5Mo-5W-5Co-Fe Multicomponent Cast Alloys with Different Carbon Percentages. Materials, 2023, 16, 3102.	1.3	3
861	Liquid-Phase Friction of Two-Dimensional Molybdenum Disulfide at the Atomic Scale. ACS Applied Materials & Interfaces, 2023, 15, 21595-21601.	4.0	1
862	Wear performance under dry and lubricated conditions of duplex treatment TiN/TiCrN coatings deposited with different numbers of CrN interlayers on steel substrates. Wear, 2023, 526-527, 204931.	1.5	4
863	Influence of processing condition and post-spray heat treatment on the tribological performance of high velocity air-fuel sprayed Cr3C2-25NiCr coatings. Surface and Coatings Technology, 2023, 463, 129498.	2.2	3
864	Mechanism on heterogeneous transfer film formed by diamond-like carbon film under molybdenum disulfide hybrid polyethylene glycol lubrication. Carbon, 2023, 210, 118030.	5.4	4
865	Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films. Cell Reports Physical Science, 2023, 4, 101390.	2.8	3
866	Effect of Temperature and Load on Tribological Behavior in Laser-Cladded FeCrSiNiCoC Coatings. Materials, 2023, 16, 3263.	1.3	0
867	Tribo-catalysis triggered the in-situ formation of amphiphilic molecules to reduce friction and wear. Tribology International, 2023, 185, 108541.	3.0	2

#	άρτις ε	IF	CITATIONS
" 868	Effect of Carbon and Titanium Addition on Erosive Wear Behavior of High Chromium White Cast Irons. International Journal of Metalcasting, 0, , .	1.5	0
869	Interplay between the microstructure and tribological performance of a destabilized 26Âwt% Cr HCCI: The influence of temperature and heating rate. Tribology International, 2023, 185, 108532.	3.0	1
888	Practical applications of tribology. , 2023, , 455-519.		0
889	Introduction to engineering tribology. , 2023, , 1-32.		4
892	A Critical Review on Design and Examination of High-Temperature Thermal Spray Carbon-Based Composite Coatings at High Temperature. Lecture Notes in Mechanical Engineering, 2023, , 853-860.	0.3	0
910	An Overview of Tribology and its Industrial Applications. , 2023, , .		0
936	Review of tribological properties of nanoparticle-based lubricants and their hybrids and composites. Friction, 2024, 12, 569-590.	3.4	2
977	Wind Climates and Annual Energy Production. , 2023, , .		0
1021	Robotic-Based Selection, Manipulation and Characterization of 3D Microscale Particles with Complex Structures in SEM. , 2023, , .		0
1024	MELHORIA DA EFICIÊNCIA ENERGÉTICA ATRAVÉS DA SUBSTITUIÇÃO DO LUBRIFICANTE MINERAL PELO SINTÉTICO. Sitefa, 0, , .	0.0	0
1025	Contribution of Green Chemicals and Advanced Materials to Sustainable Development Goals. , 2023, , .		0
1028	Status of high-speed laser cladding process: an up-to-date review. Progress in Additive Manufacturing, 0, , .	2.5	0
1047	State-of-the-art review of applications of image processing techniques for tool condition monitoring on conventional machining processes. International Journal of Advanced Manufacturing Technology, 2024, 130, 57-85.	1.5	0
1048	Recent advances in metal–organic frameworks for lubrication. Molecular Systems Design and Engineering, 2024, 9, 243-253.	1.7	2
1062	Tribologische Systeme. , 2023, , 37-73.		0
1072	Research and developments of ceramic-reinforced steel matrix composites—a comprehensive review. International Journal of Advanced Manufacturing Technology, 2024, 131, 125-149.	1.5	0
1074	Application of nanofluids and future directions. , 2024, , 289-309.		0
1079	Comparative Analysis of Battery Management System Equalization Methods. , 2023, , .		0

ARTICLE

IF CITATIONS