Effects of ambient PM 1 air pollution on daily emergence epidemiological study

Lancet Planetary Health, The 1, e221-e229 DOI: 10.1016/s2542-5196(17)30100-6

Citation Report

#	Article	IF	CITATIONS
1	The smaller, the worse?. Lancet Planetary Health, The, 2017, 1, e210-e211.	5.1	19
2	Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 Communities Chinese Health Study. Lancet Planetary Health, The, 2018, 2, e64-e73.	5.1	164
3	Spatiotemporal variation of PM1 pollution in China. Atmospheric Environment, 2018, 178, 198-205.	1.9	65
4	Association of Long-term Exposure to Airborne Particulate Matter of 1 μm or Less With Preterm Birth in China. JAMA Pediatrics, 2018, 172, e174872.	3.3	77
5	Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS). Environmental Research, 2018, 164, 204-211.	3.7	88
6	Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environmental Pollution, 2018, 233, 1086-1094.	3.7	159
7	The impact of outdoor air pollutants on outpatient visits for respiratory diseases during 2012–2016 in Jinan, China. Respiratory Research, 2018, 19, 246.	1.4	21
8	Estimating PM1 concentrations from MODIS over Yangtze River Delta of China during 2014–2017. Atmospheric Environment, 2018, 195, 149-158.	1.9	36
9	Mortality burden attributable to PM1 in Zhejiang province, China. Environment International, 2018, 121, 515-522.	4.8	101
10	Is smaller worse? New insights about associations of PM1 and respiratory health in children and adolescents. Environment International, 2018, 120, 516-524.	4.8	68
11	Satellite-Derived 1-km-Resolution PM ₁ Concentrations from 2014 to 2018 across China. Environmental Science & Technology, 2019, 53, 13265-13274.	4.6	195
12	The trace of airborne particulate matter from smoking e-cigarette, tobacco heating system, conventional and hand-rolled cigarettes in a residential environment. Air Quality, Atmosphere and Health, 2019, 12, 1449-1457.	1.5	6
13	Quantifying PM2.5 mass concentration and particle radius using satellite data and an optical-mass conversion algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158, 90-98.	4.9	11
14	Ambient PM1 air pollution, blood pressure, and hypertension: Insights from the 33 Communities Chinese Health Study. Environmental Research, 2019, 170, 252-259.	3.7	49
15	Associations between size-fractionated particle number concentrations and COPD mortality in Shanghai, China. Atmospheric Environment, 2019, 214, 116875.	1.9	22
16	Characterization of size resolved atmospheric particles in the vicinity of iron and steelmaking industries in China. Science of the Total Environment, 2019, 694, 133534.	3.9	12
17	Short-term PM2.5 exposure and emergency hospital admissions for mental disease. Environmental Research, 2019, 171, 313-320.	3.7	63
18	Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring. Atmospheric Environment, 2019, 213, 424-432.	1.9	45

TION RED

|--|

#	Article	IF	CITATIONS
19	Estimating cardiovascular hospitalizations and associated expenses attributable to ambient carbon monoxide in Lanzhou, China: Scientific evidence for policy making. Science of the Total Environment, 2019, 682, 514-522.	3.9	19
20	Associations of long-term exposure to ambient PM1 with hypertension and blood pressure in rural Chinese population: The Henan rural cohort study. Environment International, 2019, 128, 95-102.	4.8	64
21	Source specific exposure and risk assessment for indoor aerosols. Science of the Total Environment, 2019, 668, 13-24.	3.9	49
22	Hourly associations between exposure to ambient particulate matter and emergency department visits in an urban population of Shenzhen, China. Atmospheric Environment, 2019, 209, 78-85.	1.9	34
23	PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland. Atmosphere, 2019, 10, 662.	1.0	7
24	Observed Daily Profiles of Polyaromatic Hydrocarbons and Quinones in the Gas and PM1 Phases: Sources and Secondary Production in a Metropolitan Area of Mexico. Sustainability, 2019, 11, 6345.	1.6	1
25	Indoor air quality performance in air-conditioned museum gallery. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042098.	0.3	1
26	Interactions between ambient air pollution and obesity on lung function in children: The Seven Northeastern Chinese Cities (SNEC) Study. Science of the Total Environment, 2020, 699, 134397.	3.9	41
27	Short-term impacts of ambient fine particulate matter on emergency department visits: Comparative analysis of three exposure metrics. Chemosphere, 2020, 241, 125012.	4.2	18
28	Financial crises and the attainment of the SDGs: an adjusted multidimensional poverty approach. Sustainability Science, 2020, 15, 1683-1698.	2.5	30
29	Ambient Airborne Particulates of Diameter â‰ቑ μm, a Leading Contributor to the Association Between Ambient Airborne Particulates of Diameter â‰û.5 μm and Children's Blood Pressure. Hypertension, 2020, 75, 347-355.	1.3	39
30	Age- and season-specific effects of ambient particles (PM1, PM2.5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere, 2020, 246, 125723.	4.2	25
31	Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. International Journal of Hygiene and Environmental Health, 2020, 224, 113418.	2.1	111
32	Short-term effect of PM1 on hospital admission for ischemic stroke: A multi-city case-crossover study in China. Environmental Pollution, 2020, 260, 113776.	3.7	32
33	Is PM1 similar to PM2.5? A new insight into the association of PM1 and PM2.5 with children's lung function. Environment International, 2020, 145, 106092.	4.8	43
34	Size-differentiated patterns of exposure to submicron particulate matter across regions and seasons in China. Atmospheric Environment, 2020, 238, 117745.	1.9	4
35	Attributable Risk and Economic Cost of Cardiovascular Hospital Admissions Due to Ambient Particulate Matter in Wuhan, China. International Journal of Environmental Research and Public Health, 2020, 17, 5453.	1.2	9
36	Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air. Toxicology Reports, 2020, 7, 1469-1479.	1.6	14

#	Article	IF	CITATIONS
37	Two-Dimensional Silicon Fingerprints Reveal Dramatic Variations in the Sources of Particulate Matter in Beijing during 2013–2017. Environmental Science & Technology, 2020, 54, 7126-7135.	4.6	17
38	Short-term effects of air pollution on daily single- and co-morbidity cardiorespiratory outpatient visits. Science of the Total Environment, 2020, 729, 138934.	3.9	30
39	Size-fractionated particulate air pollution and myocardial infarction emergency hospitalization in Shanghai, China. Science of the Total Environment, 2020, 737, 140100.	3.9	20
40	The burden of acute conjunctivitis attributable to ambient particulate matter pollution in Singapore and its exacerbation during South-East Asian haze episodes. Science of the Total Environment, 2020, 740, 140129.	3.9	28
41	Is long-term PM1 exposure associated with blood lipids and dyslipidemias in a Chinese rural population?. Environment International, 2020, 138, 105637.	4.8	41
42	A PM ₁ , PM _{2.5} , and PM ₁₀ Airborne Particle Detector With Laser Illumination Stabilized by Optical Feedback. IEEE Sensors Journal, 2020, 20, 1988-1996.	2.4	3
43	Association between long-term exposure to ambient air pollution and obesity in a Chinese rural population: The Henan Rural Cohort Study. Environmental Pollution, 2020, 260, 114077.	3.7	46
44	Higher Risk of Cardiovascular Disease Associated with Smaller Size-Fractioned Particulate Matter. Environmental Science and Technology Letters, 2020, 7, 95-101.	3.9	92
45	Estimating high-resolution PM1 concentration from Himawari-8 combining extreme gradient boosting-geographically and temporally weighted regression (XGBoost-GTWR). Atmospheric Environment, 2020, 229, 117434.	1.9	15
46	The association of coal mine fire smoke with hospital emergency presentations and admissions: Time series analysis of Hazelwood Health Study. Chemosphere, 2020, 253, 126667.	4.2	18
47	Intraday effects of ambient PM1 on emergency department visits in Guangzhou, China: A case-crossover study. Science of the Total Environment, 2021, 750, 142347.	3.9	30
48	Associations between PM1 exposure and daily emergency department visits in 19 hospitals, Beijing. Science of the Total Environment, 2021, 755, 142507.	3.9	19
49	Particle number emission rates of aerosol sources in 40 German households and their contributions to ultrafine and fine particle exposure. Indoor Air, 2021, 31, 818-831.	2.0	11
50	Short-term exposure to ambient particulate matter and outpatient visits for respiratory diseases among children: A time-series study in five Chinese cities. Chemosphere, 2021, 263, 128214.	4.2	21
51	Airborne particulate matter in Tehran's ambient air. Journal of Environmental Health Science & Engineering, 2021, 19, 1179-1191.	1.4	7
52	Dietary Pattern and Long-Term Effects of Ambient Particulate Matter on Hypertension and Blood Pressure in Chinese Adults. SSRN Electronic Journal, 0, , .	0.4	0
53	Effects of Asian dust-derived particulate matter on ST-elevation myocardial infarction: retrospective, time series study. BMC Public Health, 2021, 21, 68.	1.2	3
54	Do socioeconomic factors modify the effects of PM1 and SO2 on lung cancer incidence in China?. Science of the Total Environment, 2021, 756, 143998.	3.9	27

		CITATION RE	PORT	
#	Article		IF	Citations
55	Long-term exposures to ambient PM ₁ and NO ₂ pollution in r cognitive impairment of male veterans in China. Environmental Research Letters, 2021,	elation to mild 16, 025013.	2.2	6
56	Systemic Inflammation (C-Reactive Protein) in Older Chinese Adults Is Associated with I Exposure to Ambient Air Pollution. International Journal of Environmental Research and Health, 2021, 18, 3258.	Long-Term Public	1.2	17
57	Acute effects of particulate matter with different sizes on respiratory mortality in Shenz Environmental Science and Pollution Research, 2021, 28, 37195-37203.	zhen, China.	2.7	8
58	Meteorology-driven variability of air pollution (PM _{1with explainable machine learning. Atmospheric Chemistry and Physics, 2021, 21, 3919}	amp;gt;) revealed)-3948.	1.9	46
59	Effects of ambient air pollution on emergency room visits of children for acute respirato in Delhi, India. Environmental Science and Pollution Research, 2021, 28, 45853-45866.	ory symptoms	2.7	15
60	Investigating the roles of meteorological factors in COVID-19 transmission in Northern Environmental Science and Pollution Research, 2021, 28, 48459-48470.	Italy.	2.7	11
61	Size-specific particulate air pollution and hospitalization for cardiovascular diseases: A case-crossover study in Shenzhen, China. Atmospheric Environment, 2021, 251, 11827	1.	1.9	14
62	Climatic modification effects on the association between PM1 and lung cancer incidence BMC Public Health, 2021, 21, 880.	ce in China.	1.2	12
63	Long-term exposure to PM1 and PM2.5 is associated with serum cortisone level and me moderation role. Ecotoxicology and Environmental Safety, 2021, 215, 112133.	at intake plays a	2.9	1
64	The impacts of pollution and its associated spatial spillover effects on ill-health in China Environmental Science and Pollution Research, 2021, 28, 59630-59639.		2.7	4
65	Ambient particulate matter (PM1, PM2.5, PM10) and childhood pneumonia: The smalle greater short-term impact?. Science of the Total Environment, 2021, 772, 145509.	r particle, the	3.9	48
66	Lower-than-standard particulate matter air pollution reduced life expectancy in Hong Ko time-series analysis of 8.5 million years of life lost. Chemosphere, 2021, 272, 129926.	ong: A	4.2	15
67	The short-term association of ambient fine particulate air pollution with hypertension cl multi-community study in Guangzhou, China. Science of the Total Environment, 2021, 3	linic visits: A 774, 145707.	3.9	14
68	Satellite-derived long-term estimates of full-coverage PM1 concentrations across China stacking decision tree model. Atmospheric Environment, 2021, 255, 118448.	based on a	1.9	3
69	Evaluation of life expectancy loss associated with submicron and fine particulate matte 68134-68143.	r (PM1 and) Tj ETQq0 0 0	rgBT /Ove 2.7	rlock 10 Tf 5 9
70	Comparative Modelling Analysis of Air Pollutants, PM2.5 and Energy Efficiency Using Th Strategies in a High-Rise Building: A Case Study in Suzhou, China. Sustainability, 2021,	rree Ventilation 13, 8453.	1.6	4
71	Particulate matter concentration and health risk assessment for a residential building d COVID-19 pandemic in Abha, Saudi Arabia. Environmental Science and Pollution Resear 65822-65831.	uring ch, 2021, 28,	2.7	9
72	Dietary Pattern and Long-Term Effects of Particulate Matter on Blood Pressure: A Large Cross-Sectional Study in Chinese Adults. Hypertension, 2021, 78, 184-194.		1.3	21

#	Article	IF	CITATIONS
73	Early-life exposure to submicron particulate air pollution in relation to asthma development in Chinese preschool children. Journal of Allergy and Clinical Immunology, 2021, 148, 771-782.e12.	1.5	45
74	Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. Lancet Planetary Health, The, 2021, 5, e579-e587.	5.1	109
75	Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sensing of Environment, 2021, 264, 112617.	4.6	79
76	Urban-rural differences in the association between long-term exposure to ambient air pollution and obesity in China. Environmental Research, 2021, 201, 111597.	3.7	21
77	Assessment of the Oxidative Potential and Oxidative Burden from Occupational Exposures to Particulate Matter. Annals of Work Exposures and Health, 2021, , .	0.6	0
78	Exercising under particulate matter exposure: Providing theoretical support for lung deposition and its relationship with COVID-19. Environmental Research, 2021, 202, 111755.	3.7	5
79	The Application of an Air Pollution Measuring System Built for Home Living. Communications in Computer and Information Science, 2018, , 75-89.	0.4	4
80	Urban-Rural Differences in Respiratory Tract Infections in Medieval and Early Modern Polish Subadult Samples. Bioarchaeology and Social Theory, 2020, , 245-272.	0.3	1
81	Mortality Risk Associated with Short-Term Exposure to Particulate Matter in China: Estimating Error and Implication. Environmental Science & amp; Technology, 2021, 55, 1110-1121.	4.6	22
82	The Effect of Sampling Inlet Direction and Distance on Particle Source Measurements for Dispersion Modelling. Aerosol and Air Quality Research, 2019, 19, 1114-1125.	0.9	2
83	Ambient Ozone, PM1 and Female Lung Cancer Incidence in 436 Chinese Counties. International Journal of Environmental Research and Public Health, 2021, 18, 10386.	1.2	12
85	Exposure to Ambient Ultra-Fine Particles and Stroke. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 954-958.	0.1	9
86	Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 725-738.	1.9	15
87	Polyethylene scaffold net and synthetic grass fragmentation: a source of microplastics in the atmosphere?. Journal of Hazardous Materials, 2022, 429, 128391.	6.5	22
88	PM Dimensional Characterization in an Urban Mediterranean Area: Case Studies on the Separation between Fine and Coarse Atmospheric Aerosol. Atmosphere, 2022, 13, 227.	1.0	2
89	Differential associations of particle size ranges and constituents with stroke emergency-room visits in Shanghai, China. Ecotoxicology and Environmental Safety, 2022, 232, 113237.	2.9	4
90	Smaller particular matter, larger risk of female lung cancer incidence? Evidence from 436 Chinese counties. BMC Public Health, 2022, 22, 344.	1.2	8
91	Laboratory determination of gravimetric correction factors for real-time area measurements of electronic cigarette aerosols. Aerosol Science and Technology, 2022, 56, 517-529.	1.5	7

#	Article	IF	CITATIONS
92	Using Real Time Measurements to Derive the Indoor and Outdoor Contributions of Submicron Particulate Species and Trace Gases. Toxics, 2022, 10, 161.	1.6	4
93	Particle Size, Mass Concentration, and Microbiota in Dental Aerosols. Journal of Dental Research, 2022, 101, 785-792.	2.5	4
94	Community-level ambient fine particulate matter and seasonal influenza among children in Guangzhou, China: A Bayesian spatiotemporal analysis. Science of the Total Environment, 2022, 826, 154135.	3.9	9
95	Association of ambient PM1 with hospital admission and recurrence of stroke in China. Science of the Total Environment, 2022, 828, 154131.	3.9	14
96	Comparison of 3R4F cigarette smoke and IQOS heated tobacco product aerosol emissions. Environmental Science and Pollution Research, 2022, 29, 27051-27069.	2.7	7
97	Removal of Size-Dependent Submicron Particles Using Metal–Organic Framework-Based Nanofiber Air Filters. ACS Applied Materials & Interfaces, 2022, 14, 23570-23576.	4.0	15
99	Association between sub-daily exposure to ambient air pollution and risk of asthma exacerbations in Australian children. Environmental Research, 2022, 212, 113556.	3.7	11
100	Experimental and Numerical Analysis of Indoor Air Quality Affected by Outdoor Air Particulate Levels (Pm1.0, Pm2.5 and Pm10), Room Infiltration Rate, and Occupants' Behaviour. SSRN Electronic Journal, 0, , .	0.4	0
101	Short-term PM1 and PM2.5 exposure and asthma mortality in Jiangsu Province, China: What's the role of neighborhood characteristics?. Ecotoxicology and Environmental Safety, 2022, 241, 113765.	2.9	7
102	Characteristics of airborne PM1.0 and associated chemical constituents at a roadside area in Korea. Environmental Engineering Research, 2023, 28, 220089-0.	1.5	2
103	Ambient air pollutants relate to hospital admissions for chronic obstructive pulmonary disease in Ganzhou, China. Revista De Saude Publica, 0, 56, 46.	0.7	2
104	Pattern of Wintertime Southern Rainfall and Northern Pollution over Eastern China: The Role of the Strong Eastern Pacific El Niño. Journal of Climate, 2022, 35, 7259-7273.	1.2	5
105	Experimental and numerical analysis of indoor air quality affected by outdoor air particulate levels (PM1.0, PM2.5 and PM10), room infiltration rate, and occupants' behaviour. Science of the Total Environment, 2022, 851, 158026.	3.9	9
106	Association of short-term exposure to air pollution with emergency visits for respiratory diseases in children. IScience, 2022, 25, 104879.	1.9	9
107	Characterizing the distribution pattern of submicron and coarse particles on high-density container truck roads through mobile monitoring. Atmospheric Pollution Research, 2022, 13, 101561.	1.8	3
108	Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation(China), 2022, 3, 100312.	5.2	13
109	Systemic inflammation accelerates the adverse effects of air pollution on metabolic syndrome: Findings from the China health and Retirement Longitudinal Study (CHARLS). Environmental Research, 2022, 215, 114340.	3.7	15
110	Impacts of traffic-related particulate matter pollution on semen quality: A retrospective cohort study relying on the random forest model in a megacity of South China. Science of the Total Environment, 2022, 851, 158387.	3.9	6

#	Δρτιςι ε	IF	CITATIONS
" 111	Particulate matter pollution and asthma mortality in China: A nationwide time-stratified case-crossover study from 2015 to 2020. Chemosphere, 2022, 308, 136316.	4.2	21
112	Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan. Science of the Total Environment, 2023, 856, 159070.	3.9	2
113	A Geo-Social Characterization of Health Impact from Air Pollution in Mexico Valley. Mobile Information Systems, 2022, 2022, 1-14.	0.4	1
114	Quantification of multifactorial effects on particle distributions at urban neighborhood scale using machine learning and unmanned aerial vehicle measurement. Journal of Cleaner Production, 2022, 378, 134494.	4.6	2
115	Associations of Early-Life Exposure to Submicron Particulate Matter With Childhood Asthma and Wheeze in China. JAMA Network Open, 2022, 5, e2236003.	2.8	11
116	Short-term exposure to ambient particulate matter and mortality among HIV/AIDS patients: Case-crossover evidence from all counties of Hubei province, China. Science of the Total Environment, 2023, 857, 159410.	3.9	2
117	Spatio-temporal statistical analysis of PM1 and PM2.5 concentrations and their key influencing factors at Guayaquil city, Ecuador. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1093-1117.	1.9	4
118	Short-term effects of PM1, PM2.5, and PM2.5 constituents on myocardial infarction mortality in qingdao, China: A time-stratified case-crossover analysis. Atmospheric Environment, 2023, 294, 119478.	1.9	5
119	Association between PM1 Exposure and Lung Function in Children and Adolescents: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 15888.	1.2	6
120	Seasonal Variation of Chemical Compositions in PM1.0 in the Atmosphere of Seoul. Journal of Korean Society for Atmospheric Environment, 2022, 38, 852-868.	0.2	2
121	Concentration, chemical composition and toxicological responses of the ultrafine fraction of urban air particles in PM1. Environment International, 2022, 170, 107661.	4.8	1
122	Coagulation effect of atmospheric submicron particles on plant leaves: Key functional characteristics and a comparison with dry deposition. Science of the Total Environment, 2023, 868, 161582.	3.9	4
123	Estimating causal links of long-term exposure to particulate matters with all-cause mortality in South China. Environment International, 2023, 171, 107726.	4.8	8
124	Associations of long-term exposure to particulate matter with gallstone risks in Chinese adults: A large cross-sectional study. Ecotoxicology and Environmental Safety, 2023, 252, 114644.	2.9	1
125	Secondary Formation of Submicron and Supermicron Organic and Inorganic Aerosols in a Highly Polluted Urban Area. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
126	Emergency Department Visits in Children Associated with Exposure to Ambient PM1 within Several Hours. International Journal of Environmental Research and Public Health, 2023, 20, 4910.	1.2	0
127	Long-term exposure to particulate matter on cardiovascular and respiratory diseases in low- and middle-income countries: A systematic review and meta-analysis. Frontiers in Public Health, 0, 11, .	1.3	0