Pressure Dependence of the Resistivity of Silicon

Physical Review 98, 1755-1757 DOI: 10.1103/physrev.98.1755

Citation Report

CITATION	

#	Article	IF	CITATIONS
1	The Electronic Energy Band Structure of Silicon and Germanium. Proceedings of the IEEE, 1955, 43, 1703-1732.	0.6	56
2	Theory of the Electrical Properties of Germanium and Silicon. Advances in Electronics and Electron Physics, 1955, 7, 85-182.	0.6	389
3	Infra-red Absorption in Semiconductors. Reports on Progress in Physics, 1956, 19, 107-155.	20.1	215
4	Evidence for Reduction ofM1K-Shell Internal Conversion Coefficient. Physical Review, 1956, 103, 1133-1134.	2.7	26
5	Effects of Pressure on the Electrical Properties of Semiconductors. Physical Review, 1956, 101, 1256-1263.	2.7	44
6	Polarization ofl ³ Rays inTa181. Physical Review, 1957, 105, 1346-1349.	2.7	34
7	Delayed Î ³ -ray angular correlations in tantalum 181. Philosophical Magazine and Journal, 1957, 2, 1325-1332.	1.7	2
8	Theory of Mobility of Electrons in Solids. Solid State Physics, 1957, 4, 199-366.	0.5	120
9	Radiative transfer ia the Earth's mantle. Transactions, American Geophysical Union, 1957, 38, 931-938.	0.1	107
10	Optical properties of semiconductors under hydrostatic pressure—II. Silicon. Journal of Physics and Chemistry of Solids, 1958, 5, 102-106.	4.0	32
11	Optical properties of semiconductors under hydrostatic pressure—III. Journal of Physics and Chemistry of Solids, 1958, 6, 6-15.	4.0	25
12	Effect of Dislocations on Breakdown in Silicon pâ€n Junctions. Journal of Applied Physics, 1958, 29, 1103-1110.	2.5	162
13	Effect of Pressure on the Infrared Absorption of Semiconductors. Physical Review, 1959, 113, 1495-1503.	2.7	41
14	The effect of pressure on zinc blende and wurtzite structures. Journal of Physics and Chemistry of Solids, 1959, 11, 140-148.	4.0	140
15	Pressure-dependence of the resistivity of germanium. Journal of Physics and Chemistry of Solids, 1959, 10, 12-18.	4.0	5
16	The effect of pressure on the properties of germanium and silicon. Journal of Physics and Chemistry of Solids, 1959, 8, 196-204.	4.0	98
17	Polarization Measurements on Nuclear Gamma Rays. Reviews of Modern Physics, 1959, 31, 711-758.	45.6	262
18	Physics at High Pressure. Solid State Physics, 1960, 11, 41-147.	0.5	23

# 19	ARTICLE Influence de la pression sur quelques propriétés des semiconducteurs. Le Journal De Physique Et Le Radium Publication De La Société Française De Physique, 1960, 21, 130-140.	IF 0.8	CITATIONS 2
20	Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 1961, 32, 1733-1735.	2.5	58
21	Interband Scattering inn-Type Germanium. Physical Review, 1961, 124, 391-407.	2.7	39
22	Microplasmas in Siliconp-nJunctions. Japanese Journal of Applied Physics, 1962, 1, 193-201.	1.5	16
23	Effect of Pressure on the Energy Levels of Impurities in Semiconductors. II. Gold in Silicon. Physical Review, 1962, 128, 38-42.	2.7	35
24	Effect of Pressure on the Energy Levels of Impurities in Semiconductors. I. Arsenic, Indium, and Aluminum in Silicon. Physical Review, 1962, 128, 30-38.	2.7	46
25	The attenuation of the angular correlation of 181Ta 133–482 keV cascade in liquids. Physica, 1962, 28, 705-710.	0.9	4
26	Pressure induced phase transitions in silicon, germanium and some Ill–V compounds. Journal of Physics and Chemistry of Solids, 1962, 23, 451-456.	4.0	478
27	Resistance of Elastically Deformed Shallow pâ€n Junctions. II. Journal of Applied Physics, 1963, 34, 1958-1970.	2.5	82
28	Anisotropic Stress Effect of SiliconpnJunctions. Japanese Journal of Applied Physics, 1964, 3, 256-261.	1.5	20
29	Lowering the Breakdown Voltage of Silicon pâ€n Junctions by Stress. Journal of Applied Physics, 1964, 35, 1851-1854.	2.5	25
30	Band Structure of Gallium Phosphide from Optical Experiments at High Pressure. Physical Review, 1964, 134, A1628-A1641.	2.7	182
31	Deformation of and Stress in Epitaxial Silicon Films on Singleâ€Crystal Sapphire. Journal of Applied Physics, 1965, 36, 2700-2703.	2.5	73
32	Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon and Germanium. Physical Review, 1966, 143, 636-647.	2.7	447
33	Form Factors and Ultraviolet Spectra of Semiconductors at High Pressure. Physical Review, 1967, 154, 647-653.	2.7	26
34	Hall effect measurements on single crystals at pressures extending to 70 kb. Journal of Physics E: Scientific Instruments, 1968, 1, 915-917.	0.7	48
35	Thin-film silicon: Preparation, properties, and device applications. Proceedings of the IEEE, 1969, 57, 1490-1498.	21.3	34
36	On the effect of pressure on the band extrema of covalent semiconductors. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1970, 4, 848-857.	0.4	13

CITATION REPORT

#	Article	IF	CITATIONS
37	Stress in silicon films deposited heteroepitaxially on insulating substrates with particular reference to corundum. Journal Physics D: Applied Physics, 1970, 3, 770-777.	2.8	11
38	Dependence of the zone structure and interzone transitions on pressure for tetrahedral semiconductors as determined by the equivalent orbital method. Journal of Structural Chemistry, 1971, 12, 505-506.	1.0	0
39	Effects of Uniaxial Stress on the Indirect Exciton Spectrum of Silicon. Physical Review B, 1971, 3, 2623-2636.	3.2	228
40	Evaluation of local perturbation contribution of the potential to the band boundary shifting during substitutional solid solution formation. Solid State Communications, 1973, 13, 1405-1408.	1.9	2
41	High pressure in coordination chemistry. Coordination Chemistry Reviews, 1974, 12, 185-220.	18.8	24
42	Surface quantum oscillations in silicon (100) inversion layers under uniaxial pressure. Physical Review B, 1978, 18, 794-802.	3.2	17
43	Electronic properties of chemically deposited polycrystalline silicon. Journal of Applied Physics, 1979, 50, 377-382.	2.5	73
44	Effect of pressure on the electrical resistivity of amorphous silicon. Physical Review B, 1981, 24, 2282-2284.	3.2	5
45	Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering. Solar Energy Materials and Solar Cells, 1981, 5, 229-316.	0.4	178
46	Stress-sensitive properties of silicon-gate MOS devices. Solid-State Electronics, 1981, 24, 221-232.	1.4	73
47	Electron transport and pressure coefficients associated with theL1Candî"1Cminima of germanium. Physical Review B, 1986, 34, 2319-2328.	3.2	20
48	First Principles Calculation of Ground State and Electronic Properties of C and Si. Physica Scripta, 1987, 35, 706-709.	2.5	6
49	A highâ€pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: Results for Bi, Ba, Ni, and Si. Journal of Applied Physics, 1989, 65, 3943-3950.	2.5	21
50	Pressure Dependence of a Deep Excitonic Level in Silicon. Materials Research Society Symposia Proceedings, 1989, 163, 27.	0.1	0
51	Temperature dependence of In-doped silicon strain gages. , 0, , .		0
52	Effects of thermal vibrations on the valence-electron density and the forbidden x-ray reflections in C and Si. Physical Review B, 1991, 44, 6131-6136.	3.2	4
53	Effects of hydrostatic pressure on the photoluminescence of porous silicon. Physical Review B, 1995, 52, R11577-R11579.	3.2	9
54	Model for the photoluminescence behavior of porous silicon. Physical Review B, 1996, 54, 4416-4419.	3.2	43

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Chapter 1 High Pressure in Semiconductor Physics: A Historical Overview. Semiconductors and Semimetals, 1998, 54, 1-48.	0.7	7
56	A new stress chip design for electronic packaging applications. , 0, , .		8
57	Silicon piezoresistive stress sensors and their application in electronic packaging. IEEE Sensors Journal, 2001, 1, 14-30.	4.7	257
58	Thermoelastic effect of silicon for strain sensing. Journal of Micromechanics and Microengineering, 2001, 11, 443-451.	2.6	1
59	Reconstruction of FCC Crystal Lattice Dynamics from Elastic Moduli. Journal of Low Temperature Physics, 2005, 139, 651-664.	1.4	10
60	MEMS sensors: past, present and future. Sensor Review, 2007, 27, 7-13.	1.8	144
61	An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. Journal of Materials Research, 2007, 22, 578-586.	2.6	64
62	High-resolution characterization of defects in oxide thin films. Applied Physics Letters, 2008, 93, 182101.	3.3	6
63	High Sensitivity MEMS Strain Sensor: Design and Simulation. Sensors, 2008, 8, 2642-2661.	3.8	50
64	On the Feasibility of a New Approach for Developing a Piezoresistive 3D Stress Sensing Rosette. IEEE Sensors Journal, 2011, 11, 1861-1871.	4.7	23
65	Characterization of the Electrical Properties of Individual p-Si Microwire/Polymer/n-Si Microwire Assemblies. Journal of Physical Chemistry C, 2011, 115, 24945-24950.	3.1	15
66	Electrical Characterization of Si Microwires and of Si Microwire/Conducting Polymer Composite Junctions. Journal of Physical Chemistry Letters, 2011, 2, 675-680.	4.6	17
67	On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies. Nano Letters, 2012, 12, 4200-4205.	9.1	133
68	Testing of a single-polarity piezoresistive three-dimensional stress-sensing chip. Journal of Micromechanics and Microengineering, 2013, 23, 095036.	2.6	10
69	Characterization and Modeling of Photostriction in Silicon Cantilevers Fabricated on Silicon-on-Insulator Substrates. Journal of Microelectromechanical Systems, 2015, 24, 182-191.	2.5	2
70	MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors, 2015, 15, 6441-6468.	3.8	125
71	Effect of isotropic pressure on structural and electronic properties of silicon system with Fd-3m space group. Journal of Physics: Conference Series, 2019, 1204, 012117.	0.4	0
72	The Effects of Elastic Strain on the Conductivity of Homopolar Semiconductors. , 1958, , 236-246.		0

#	Article	IF	CITATIONS
73	Bibliographical references. , 1961, , 42-64.		0
74	Piezoresistivity in Semiconducting Ferroelectrics. , 1988, , 201-226.		0
75	Silicon (Si), indirect energy gap. , 0, , 1-9.		0