Rayleigh–Taylor and Richtmyer–Meshkov instabili II

Physics Reports 723-725, 1-160 DOI: 10.1016/j.physrep.2017.07.008

Citation Report

#	Article	IF	CITATIONS
1	Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The <i>î,</i> -group collaboration. Physics of Fluids, 2017, 29, .	1.6	79
2	Density Ratio and Entrainment Effects on Asymptotic Rayleigh–Taylor Instability. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	11
3	Three-Dimensional Design Simulations of a High-Energy Density Reshock Experiment at the National Ignition Facility. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	3
4	Mach number effect on the instability of a planar interface subjected to a rippled shock. Physical Review E, 2018, 98, .	0.8	4
5	Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability. Physics of Fluids, 2018, 30, .	1.6	38
6	A localised dynamic closure model for Euler turbulence. International Journal of Computational Fluid Dynamics, 2018, 32, 326-378.	0.5	3
7	Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor Turbulence. Physical Review Letters, 2018, 121, 224501.	2.9	9
8	New Closures for More Precise Modeling of Landau Damping in the Fluid Framework. Physical Review Letters, 2018, 121, 135101.	2.9	24
9	Multidimensional simulations of ultrastripped supernovae to shock breakout. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3675-3689.	1.6	57
10	Quantitative Theory for the Growth Rate and Amplitude of the Compressible Richtmyer-Meshkov Instability at all Density Ratios. Physical Review Letters, 2018, 121, 174502.	2.9	28
11	Scaling laws for dynamical plasma phenomena. Physics of Plasmas, 2018, 25, .	0.7	24
12	Control of triple-shock configurations in high-speed flows over a cylindrically blunted plate in gases for different Mach numbers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 448-456.	0.7	3
13	Stratified Kelvin–Helmholtz turbulence of compressible shear flows. Nonlinear Processes in Geophysics, 2018, 25, 457-476.	0.6	6
14	Solution of the Noh problem with an arbitrary equation of state. Physical Review E, 2018, 98, 013105.	0.8	7
15	Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Physics of Plasmas, 2019, 26, .	0.7	154
16	Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants. Physical Review E, 2019, 100, 021201.	0.8	20
17	Local estimates of Hölder exponents in turbulent vector fields. Physical Review E, 2019, 99, 053114.	0.8	8
18	<i>A posteriori</i> tests of subgrid-scale models in strongly anisothermal turbulent flows. Physics of Fluids, 2019, 31, .	1.6	10

	Стат	CITATION REPORT	
#	Article	IF	CITATIONS
19	Direct simulation Monte Carlo on petaflop supercomputers and beyond. Physics of Fluids, 2019, 31, .	1.6	163
20	Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics. Physics of Plasmas, 2019, 26, .	0.7	26
21	Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability. Physics of Fluids, 2019, 31, .	1.6	26
22	Three-dimensional simulations of turbulent mixing in spherical implosions. Physics of Fluids, 2019, 31, .	1.6	21
23	Extreme Hardening of Pb at High Pressure and Strain Rate. Physical Review Letters, 2019, 123, 205701.	2.9	31
24	Tantalum strength at extreme strain rates from impact-driven Richtmyer-Meshkov instabilities. Physical Review E, 2019, 100, 053002.	0.8	25
25	Direct numerical simulations of multi-mode immiscible Rayleigh-Taylor instability with high Reynolds numbers. Physics of Fluids, 2019, 31, .	1.6	35
26	Understanding Uniturbulence: Self-cascade of MHD Waves in the Presence of Inhomogeneities. Astrophysical Journal, 2019, 882, 50.	1.6	24
27	Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios. Physics of Fluids, 2019, 31, .	1.6	41
28	Analytic solution for the zero-order postshock profiles when an incident planar shock hits a planar contact surface. Physical Review E, 2019, 100, 033107.	0.8	6
29	Numerical study of the Richtmyer–Meshkov instability induced by non-planar shock wave in non-uniform flows. Journal of Turbulence, 2019, , 1-25.	0.5	3
30	Coupling effect on shocked double-gas cylinder evolution. Physics of Fluids, 2019, 31, .	1.6	13
31	Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions. Physics of Plasmas, 2019, 26, .	0.7	35
32	Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Physical Review E, 2019, 99, 013109.	0.8	9
33	Incompressible Homogeneous Buoyancy-Driven Turbulence. ERCOFTAC Series, 2019, , 113-124.	0.1	0
34	Finite-thickness effect of the fluids on bubbles and spikes in Richtmyer–Meshkov instability for arbitrary Atwood numbers. Plasma Science and Technology, 2019, 21, 025001.	0.7	1
35	Shock-driven hydrodynamic instability of a sinusoidally perturbed, high-Atwood number, oblique interface. Physics of Plasmas, 2019, 26, .	0.7	11
36	Effects of the Atwood number on the Richtmyer-Meshkov instability in elastic-plastic media. Physical Review E, 2019, 99, 053102.	0.8	7

#	ARTICLE	IF	Citations
37	Rayleigh-Taylor-instability experiments with elastic-plastic materials. Physical Review E, 2019, 99, 053104.	0.8	14
38	On the role of rarefaction/compression waves in Richtmyer-Meshkov instability with reshock. Physics of Fluids, 2019, 31, .	1.6	43
39	Linear motion of multiple superposed viscous fluids. Physical Review E, 2019, 99, 043104.	0.8	3
40	<i>A posteriori</i> tests of subgrid-scale models in an isothermal turbulent channel flow. Physics of Fluids, 2019, 31, .	1.6	12
41	A Relaxation Filtering Approach for Two-Dimensional Rayleigh–Taylor Instability-Induced Flows. Fluids, 2019, 4, 78.	0.8	7
42	Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities. Reviews of Modern Physics, 2019, 91, .	16.4	77
43	Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physical Review E, 2019, 99, 023112.	0.8	17
44	Early Time Evolution of Circumferential Perturbation of Initial Particle Volume Fraction in Explosive Cylindrical Multiphase Dispersion. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	8
45	The Evolution of Magnetic Rayleigh–Taylor Unstable Plumes and Hybrid KH-RT Instability into a Loop-like Eruptive Prominence. Astrophysical Journal, 2019, 874, 57.	1.6	13
46	Two mode coupling of the ablative Rayleigh-Taylor instabilities. Physics of Plasmas, 2019, 26, .	0.7	20
47	Initiation of Richtmyer–Meshkov instability by a detonation wave. Journal of Physics: Conference Series, 2019, 1404, 012058.	0.3	3
48	Direct Monte Carlo simulation of development of the Richtmyer-Meshkov instability on the Ar/He interface. Journal of Physics: Conference Series, 2019, 1404, 012109.	0.3	2
49	Computational study of instability and fill tube mitigation strategies for double shell implosions. Physics of Plasmas, 2019, 26, .	0.7	12
50	Improved Richtmyer-Meshkov Instability Experiments for Very-High-Rate Strength and Application to Tantalum. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 101-104.	0.3	0
51	Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave. Physical Review E, 2019, 99, 013103.	0.8	9
52	Modeling of Rayleigh-Taylor mixing using single-fluid models. Physical Review E, 2019, 99, 013104.	0.8	30
53	Adaptive Wavelet-based Delayed Detached Eddy Simulations of Anisothermal Channel Flows with High Transverse Temperature Gradients. , 2019, , .		2
54	Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a semiconfined configuration: bubble dynamics in the central region of the Gaussian spot. Physica Scripta, 2019, 94, 015001	1.2	10

#	Article	IF	CITATIONS
55	Gaussian models for late-time evolution of two-dimensional shock–light cylindrical bubble interaction. Shock Waves, 2020, 30, 169-184.	1.0	9
56	Dynamic bridging modeling for coarse grained simulations of shock driven turbulent mixing. Computers and Fluids, 2020, 199, 104430.	1.3	9
57	Self-similar solutions of asymmetric Rayleigh-Taylor mixing. Physics of Fluids, 2020, 32, 015103.	1.6	8
58	Effect of turbulent Mach number on the thermodynamic fluctuations in canonical shock-turbulence interaction. Computers and Fluids, 2020, 197, 104354.	1.3	9
59	Magnetically induced Rayleigh-Taylor instability under rotation: Comparison of experimental and theoretical results. Physical Review E, 2020, 102, 043101.	0.8	3
60	A unified model to study the effects of elasticity, viscosity, and magnetic fields on linear Richtmyer–Meshkov instability. Journal of Applied Physics, 2020, 128, 125901.	1.1	5
61	Experimental measurement of two copropagating shocks interacting with an unstable interface. Physical Review E, 2020, 102, 043212.	0.8	8
62	The rate of development of atomic mixing and temperature equilibration in inertial confinement fusion implosions. Physics of Plasmas, 2020, 27, .	0.7	17
63	Effects of transverse shock waves on early evolution of multi-mode chevron interface. Physics of Fluids, 2020, 32, .	1.6	16
64	Multimode Hydrodynamic Instability Growth of Preimposed Isolated Defects in Ablatively Driven Foils. Physical Review Letters, 2020, 125, 055001.	2.9	9
65	Isolated defect evolution in laser accelerated targets. Physics of Plasmas, 2020, 27, 072706.	0.7	6
66	Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows. Physical Review E, 2020, 102, 033310.	0.8	8
67	Multi-mode hydrodynamic evolution of perturbations seeded by isolated surface defects. Physics of Plasmas, 2020, 27, .	0.7	6
68	Energy transport characteristics of converging Richtmyer–Meshkov instability. AIP Advances, 2020, 10, 105302.	0.6	5
69	Three-dimensional viscous Rayleigh-Taylor instability at the cylindrical interface. Physical Review E, 2020, 102, 023112.	0.8	10
70	Modeling of turbulent mixing with an improved K–L model. Physics of Fluids, 2020, 32, .	1.6	18
71	Numerical study and buoyancy–drag modeling of bubble and spike distances in three-dimensional spherical implosions. Physics of Fluids, 2020, 32, 124107.	1.6	9
72	Elastic Rayleigh–Taylor and Richtmyer–Meshkov instabilities in spherical geometry. Physics of Fluids, 2020, 32, .	1.6	11

#	Article	IF	CITATIONS
73	Characterizing most irregular small-scale structures in turbulence using local Hölder exponents. Physical Review E, 2020, 102, 063105.	0.8	9
74	Two-stage growth mode for lift-off mechanism in oblique shock-wave/jet interaction. Physics of Fluids, 2020, 32, .	1.6	19
75	Experimental and Numerical Investigation on Interfacial Mass Transfer Mechanism for Rayleigh Convection in Hele-Shaw Cell. Industrial & Engineering Chemistry Research, 2020, 59, 10195-10209.	1.8	13
76	Use of hydrodynamic theory to estimate electrical current redistribution in metals. Physics of Plasmas, 2020, 27, 052703.	0.7	16
77	Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field. Physical Review E, 2020, 101, 053110.	0.8	8
78	Analysis of Rayleigh–Taylor instability at high Atwood numbers using fully implicit, non-dissipative, energy-conserving large eddy simulation algorithm. Physics of Fluids, 2020, 32, 054101.	1.6	19
79	Unified prediction of reshocked Richtmyer–Meshkov mixing with K-L model. Physics of Fluids, 2020, 32, 032107.	1.6	24
80	Simulations of Young Type Ia Supernova Remnants Undergoing Shock Acceleration in a Turbulent Medium. Astrophysical Journal, 2020, 891, 75.	1.6	7
81	Merging of soap bubbles and why surfactant matters. Applied Physics Letters, 2020, 116, .	1.5	7
82	Critical Balance and the Physics of Magnetohydrodynamic Turbulence. Astrophysical Journal, 2020, 897, 37.	1.6	39
83	Temporal–Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh–Taylor Mixing Zone. Entropy, 2020, 22, 652.	1.1	1
84	On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow [*] . Chinese Physics Letters, 2020, 37, 015201.	1.3	5
85	S-N border instability, magnetic flux trapping and cumulative effect during pulsed S-N switching of high quality YBaCuO thin films. Superconductor Science and Technology, 2020, 33, 095013.	1.8	4
86	Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution. Physical Review E, 2020, 101, 063103.	0.8	5
87	Effect of the numerical discretization scheme in Shock-Driven turbulent mixing simulations. Computers and Fluids, 2020, 201, 104487.	1.3	12
88	Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios. Physics of Fluids, 2020, 32, .	1.6	21
89	Knudsen Number Effects on Two-Dimensional Rayleigh–Taylor Instability in Compressible Fluid: Based on a Discrete Boltzmann Method. Entropy, 2020, 22, 500.	1.1	20
90	Modeling of Thermodynamic Fluctuations in Canonical Shock–Turbulence Interaction. AIAA Journal, 2020, 58, 3076-3089.	1.5	6

#	Article	IF	CITATIONS
91	Effects of Rayleigh-Taylor instabilities on turbulent premixed flames in a curved rectangular duct. Proceedings of the Combustion Institute, 2021, 38, 6059-6066.	2.4	6
92	Understanding the transport and break up of reactive ejecta. Physica D: Nonlinear Phenomena, 2021, 415, 132787.	1.3	10
93	Magnetic-field generation and its effect on ablative Rayleigh–Taylor instability in diffusive ablation fronts. Physics of Plasmas, 2021, 28, .	0.7	12
94	Investigation on the Effects of Atwood Number on the Combustion Performance of Hydrogen-Oxygen Supersonic Mixing Layer. Lecture Notes in Electrical Engineering, 2021, , 23-42.	0.3	0
95	Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows. Physical Review E, 2021, 103, 013106.	0.8	9
96	Vortex-sheet modeling of hydrodynamic instabilities produced by an oblique shock interacting with a perturbed interface in the HED regime. Physics of Plasmas, 2021, 28, .	0.7	4
97	Filtering, averaging, and scale dependency in homogeneous variable density turbulence. Physics of Fluids, 2021, 33, 025115.	1.6	10
98	A K–L model with improved realizability for turbulent mixing. Physics of Fluids, 2021, 33, 022104.	1.6	10
99	Evolutions of Young Type Ia Supernova Remnants with Two Initial Density Profiles in a Turbulent Medium. Astrophysical Journal, 2021, 909, 173.	1.6	3
100	Rayleigh–Taylor instability with gravity reversal. Physica D: Nonlinear Phenomena, 2021, 417, 132832.	1.3	18
101	The effect of initial amplitude and convergence ratio on instability development and deposited fluctuating kinetic energy in the single-mode Richtmyer–Meshkov instability in spherical implosions. Computers and Fluids, 2021, 218, 104842.	1.3	1
102	Turbulence in space plasmas: Who needs it?. Physics of Plasmas, 2021, 28, 032306.	0.7	49
103	Impact of numerical hydrodynamics in turbulent mixing transition simulations. Physics of Fluids, 2021, 33, .	1.6	12
104	Constraining computational modeling of indirect drive double shell capsule implosions using experiments. Physics of Plasmas, 2021, 28, .	0.7	17
105	Coarse grained simulations of shock-driven turbulent material mixing. Physics of Fluids, 2021, 33, .	1.6	14
106	Scalings of Rayleigh-Taylor Instability at Large Viscosity Contrasts in Porous Media. Physical Review Letters, 2021, 126, 094501.	2.9	22
107	Universal perturbation growth of Richtmyer–Meshkov instability for minimum-surface featured interface induced by weak shock waves. Physics of Fluids, 2021, 33, .	1.6	12
108	Bell–Plesset effects on Rayleigh–Taylor instability at cylindrically divergent interfaces between viscous fluids. Physics of Fluids, 2021, 33, .	1.6	9

#	Article	IF	CITATIONS
109	Vortex dynamics and fractal structures in reactive and nonreactive Richtmyer–Meshkov instability. Physics of Fluids, 2021, 33, 044114.	1.6	9
110	Numerical investigations of Rayleigh–Taylor instability with a density gradient layer. Computers and Fluids, 2021, 220, 104869.	1.3	8
111	Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST). Solar Physics, 2021, 296, 1.	1.0	65
112	A simplified approximate analytical model for Rayleigh–Taylor instability in elastic–plastic solid and viscous fluid with thicknesses*. Chinese Physics B, 2021, 30, 044702.	0.7	1
113	Ion kinetic effects on the evolution of Richtmyer–Meshkov instability and interfacial mix. New Journal of Physics, 2021, 23, 053010.	1.2	2
114	Scalar mixing in a Kelvin-Helmholtz shear layer and implications for Reynolds-averaged Navier-Stokes modeling of mixing layers. Physical Review E, 2021, 103, 053108.	0.8	11
115	Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers. Physics of Fluids, 2021, 33, .	1.6	19
116	Role of non-zero bulk viscosity in three-dimensional Rayleigh-Taylor instability: Beyond Stokes' hypothesis. Computers and Fluids, 2021, 225, 104995.	1.3	14
117	Growth mechanism of interfacial fluid-mixing width induced by successive nonlinear wave interactions. Physical Review E, 2021, 103, 053109.	0.8	7
118	Data Assimilation for Ionospheric Space-Weather Forecasting in the Presence of Model Bias. Frontiers in Applied Mathematics and Statistics, 2021, 7, .	0.7	4
119	Micron-scale phenomena observed in a turbulent laser-produced plasma. Nature Communications, 2021, 12, 2679.	5.8	17
120	Immiscible Rayleigh-Taylor turbulence using mesoscopic lattice Boltzmann algorithms. Physical Review Fluids, 2021, 6, .	1.0	6
121	Entangled-photon interferometry for plasmas. Physics of Plasmas, 2021, 28, 060703.	0.7	0
122	Effects of perturbing the particle volume fraction distribution in blast-driven multiphase instability. Shock Waves, 2021, 31, 337-360.	1.0	5
123	Effects of viscosity and elasticity on Rayleigh–Taylor instability in a cylindrical geometry. Physics of Plasmas, 2021, 28, .	0.7	8
124	Simulations of the shock-driven Kelvin–Helmholtz instability in inclined gas curtains. Physics of Fluids, 2021, 33, .	1.6	10
125	Predicting different turbulent mixing problems with the same k–ɛ model and model coefficients. AIP Advances, 2021, 11, 075213.	0.6	5
126	xmins:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:msub><mml:mi>i><mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>i<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:msub><mml:mi>i><mml:mi><mml:mn>2</mml:mn></mml:mi></mml:mi></mml:msub></mml:math>, <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>ıml:mrow: 1.3</td><td>> 16</td></mml:math></mml:mi></mml:mrow></mml:mi></mml:mi></mml:msub>	ıml:mrow: 1.3	> 16

	Сіта	CITATION REPORT	
#	Article	IF	Citations
127	Fundamental factors affecting thermonuclear ignition. Nuclear Fusion, 2021, 61, 096010.	1.6	7
128	Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers. Physics of Fluids, 2021, 33, .	1.6	17
129	Linear analysis of Rayleigh-Taylor instability in viscoelastic materials. Physical Review E, 2021, 104, 025110.	0.8	3
130	Efficient sensing of von Kármán vortices using compressive sensing. Computers and Fluids, 2021, 226 104975.	^{),} 1.3	6
131	Partially averaged Navier-Stokes closure modeling for variable-density turbulent flow. Physical Review Fluids, 2021, 6, .	1.0	6
132	Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study. Physics of Fluids, 2021, 33, .	1.6	21
133	Local wave-number model for inhomogeneous two-fluid mixing. Physical Review E, 2021, 104, 025105.	0.8	4
135	Self-similar Reynolds-averaged mechanical–scalar turbulence models for Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instability-induced mixing in the small Atwood number limit. Physics of Fluids, 2021, 33, .	1.6	17
136	Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Physical Review E, 2021, 104, 035108.	0.8	1
137	Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability. Physics of Plasmas, 2021, 28, .	0.7	4
138	Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion. Physics of Plasmas, 2020, 27, .	0.7	21
139	On aggregated regularized equations for homogeneous binary gas mixture flows with viscous compressible components. AIP Conference Proceedings, 2020, , .	0.3	2
140	Development of the Rayleigh-Taylor instability. Results of numerical simulation at low Reynolds numbers. AIP Conference Proceedings, 2020, , .	0.3	2
141	Experimental and numerical investigation of the Rayleigh-Taylor instability of the Newtonian and dilatant fluid system. Physica Scripta, 2020, 95, 115207.	1.2	2
142	Rayleigh-Taylor turbulence with singular nonuniform initial conditions. Physical Review Fluids, 2018, 3, .	1.0	18
143	Permanence of large eddies in Richtmyer-Meshkov turbulence with a small Atwood number. Physical Review Fluids, 2018, 3, .	1.0	20
144	Experimental adventures in variable-density mixing. Physical Review Fluids, 2018, 3, .	1.0	8
145	Frozen waves in turbulent mixing layers. Physical Review Fluids, 2019, 4, .	1.0	5

#	Article	IF	Citations
146	Diffused-interface Rayleigh-Taylor instability with a nonlinear equation of state. Physical Review Fluids, 2019, 4, .	1.0	10
147	High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with reshock. Physical Review Fluids, 2019, 4, .	1.0	31
148	Density-ratio-invariant mean-species profile of classical Rayleigh-Taylor mixing. Physical Review Fluids, 2020, 5, .	1.0	15
149	Permanence of large eddies in decaying variable-density homogeneous turbulence with small Mach numbers. Physical Review Fluids, 2020, 5, .	1.0	6
150	Quantifying mixing of Rayleigh-Taylor turbulence. Physical Review Fluids, 2020, 5, .	1.0	11
151	Richtmyer-Meshkov instability of an imploding flow with a two-fluid plasma model. Physical Review Fluids, 2020, 5, .	1.0	4
152	Magnetic–Internal–Kinetic Energy Interactions in High-Speed Turbulent Magnetohydrodynamic Jets. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	0.8	4
153	Scalar Power Spectra and Scalar Structure Function Evolution in the Richtmyer–Meshkov Instability Upon Reshock. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	0.8	7
154	Fresnel zone plate development for x-ray radiography of hydrodynamic instabilities at the National Ignition Facility. Applied Optics, 2020, 59, 10777.	0.9	15
155	Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 044701.	0.2	8
156	Enhancement of Ablative Rayleigh-Taylor Instability Growth by Thermal Conduction Suppression in a Magnetic Field. Physical Review Letters, 2021, 127, 165001.	2.9	13
157	Contribution of Mach number to the evolution of the Richtmyer-Meshkov instability induced by a shock-accelerated square light bubble. Physical Review Fluids, 2021, 6, .	1.0	8
158	Alfvén Number for the Richtmyer–Meshkov Instability in Magnetized Plasmas. Astrophysical Journal, 2021, 920, 29.	1.6	3
159	Bubble merger in initial Richtmyer-Meshkov instability on inverse-chevron interface. Physical Review Fluids, 2019, 4, .	1.0	8
160	Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Physical Review E, 2021, 104, 045213.	0.8	7
161	Impact of roughness on gas compression in inertial confinement fusion. Journal of Physics: Conference Series, 2020, 1686, 012025.	0.3	2
162	Unified prediction of turbulent mixing induced by interfacial instabilities via Besnard â^' Harlow â^' Rauenzahn-2 model. Physics of Fluids, 2021, 33, .	1.6	7
163	Effects of Atwood number and stratification parameter on compressible multi-mode Rayleigh–Taylor instability. Physics of Fluids, 2021, 33, .	1.6	12

#	Article	IF	CITATIONS
164	Scaling of Small-scale Dynamo Properties in the Rayleigh–Taylor Instability. Astrophysical Journal, 2021, 921, 75.	1.6	6
165	Modeling and simulation of transitional Rayleigh–Taylor flow with partially averaged Navier–Stokes equations. Physics of Fluids, 2021, 33, .	1.6	7
166	Scaling law of mixing layer in cylindrical Rayleigh-Taylor turbulence. Physical Review E, 2021, 104, 055104.	0.8	3
167	Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability. Physical Review E, 2022, 105, 015103.	0.8	3
168	Temperature relaxation in strongly-coupled binary ionic mixtures. Nature Communications, 2022, 13, 15.	5.8	7
169	The transition to turbulence in rarefaction-driven Rayleigh–Taylor mixing: Effects of diffuse interface. Physics of Fluids, 2022, 34, .	1.6	8
170	Permanence of large eddies in Richtmyer–Meshkov turbulence for weak shocks and high Atwood numbers. Physical Review Fluids, 2022, 7, .	1.0	2
171	Dynamic Calibration of Differential Equations using Machine Learning, with Application to Turbulence Models. Journal of Computational Physics, 2022, , 110924.	1.9	1
172	Terminal velocities and vortex dynamics of weakly compressible Rayleigh–Taylor Instability. AIP Advances, 2022, 12, 015325.	0.6	1
173	Limited and unlimited spike growth from grooved free surface of shocked solid. Journal of Applied Physics, 2022, 131, .	1.1	5
174	Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh-Taylor instability. Physical Review Fluids, 2022, 7, .	1.0	8
175	Design of a high-resolution Rayleigh-Taylor experiment with the Crystal Backlighter Imager on the National Ignition Facility. Journal of Instrumentation, 2022, 17, P02025.	0.5	4
176	The phase effect on the Richtmyer–Meshkov instability of a fluid layer. Physics of Fluids, 2022, 34, .	1.6	10
177	Experiments on the single-mode Richtmyer–Meshkov instability with reshock at high energy densities. Physics of Plasmas, 2022, 29, .	0.7	4
178	Linear stability of an impulsively accelerated density interface in an ideal two-fluid plasma. Physics of Fluids, 2022, 34, .	1.6	3
179	A mechanism for reduced compression in indirectly driven layered capsule implosions. Physics of Plasmas, 2022, 29, .	0.7	18
180	Critical temperature for volume ignition of deuterium–tritium fuel in inertial confinement fusion: Effects of hydrodynamic instabilities. Physics of Plasmas, 2022, 29, 042705.	0.7	2
181	Correlation between vorticity, Liutex and shear in boundary layer transition. Computers and Fluids, 2022, 238, 105371.	1.3	6

#	Article	IF	CITATIONS
182	Finite boundary effects on the spherical Rayleigh–Taylor instability between viscous fluids. AIP Advances, 2022, 12, 045009.	0.6	1
183	Descriptive model of the transition from superconducting to normal state in thin high quality YBaCuO films by nanosecond electrical pulses. Thin Solid Films, 2022, 748, 139159.	0.8	2
184	Numerical study of the effect of magnetic field on laser-driven RayleighõTaylor instability. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	2
185	Analysis of second moments and their budgets for Richtmyer-Meshkov instability and variable-density turbulence induced by reshock. Physical Review Fluids, 2022, 7, .	1.0	9
186	Material effects on dynamics in triple-nozzle gas-puff <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi> pinches. Physical Review E, 2022, 105, 045205.</mml:math 	0.8	2
187	Vorticity Transport in Different Regions of a Strut-Based Scramjet. AIAA Journal, 2022, 60, 4532-4543.	1.5	2
188	Faster ablative Kelvin–Helmholtz instability growth in a magnetic field. Physics of Plasmas, 2022, 29, .	0.7	2
189	Ray-tracking methods for characterizing the dynamics of curved detonation. Physics of Fluids, 2022, 34, .	1.6	3
190	Effect of an applied magnetic field on Kelvin–Helmholtz instability driven by a laser under multi-mode disturbance. Physics of Plasmas, 2022, 29, 052110.	0.7	3
191	The temperatures of ejecta transporting in vacuum and gases. Journal of Applied Physics, 2022, 131, 195104.	1.1	2
193	Statistical Dynamics of Mean Flows Interacting with Rossby Waves, Turbulence, and Topography. Fluids, 2022, 7, 200.	0.8	1
194	Effect of collisions with a second fluid on the temporal development of nonlinear, single-mode, Rayleigh-Taylor instability. Physical Review E, 2022, 105, .	0.8	1
195	Effects of variable deceleration periods on Rayleigh-Taylor instability with acceleration reversals. Physical Review E, 2022, 105, .	0.8	5
196	Liutex based new fluid kinematics. Journal of Hydrodynamics, 2022, 34, 355-371.	1.3	15
197	Rayleigh–Taylor and Richtmyer–Meshkov instabilities in the presence of an inclined magnetic field. Physics of Plasmas, 2022, 29, 072104.	0.7	0
198	Role of self-generated magnetic fields in the inertial fusion ignition threshold. Physics of Plasmas, 2022, 29, 072701.	0.7	2
199	Design optimization for Richtmyer–Meshkov instability suppression at shock-compressed material interfaces. Physics of Fluids, 2022, 34, .	1.6	10
200	Quantitative theory for spikes and bubbles in the Richtmyer â^' Meshkov instability at arbitrary density ratios in three dimensions. Physics of Fluids, 2022, 34, .	1.6	2

#	Article	IF	CITATIONS
201	Discrete Boltzmann modeling of Rayleigh-Taylor instability: Effects of interfacial tension, viscosity, and heat conductivity. Physical Review E, 2022, 106, .	0.8	12
202	Hydrodynamic instabilities in a highly radiative environment. Physics of Plasmas, 2022, 29, .	0.7	1
203	RichtmyerMeshkov instability with ionization at extreme impact conditions. Physics of Fluids, 2022, 34, .	1.6	5
204	Temporal evolution of scalar modes in Richtmyer–Meshkov instability of inclined interface using high-speed PIV and PLIF measurements at 60 kHz. Measurement Science and Technology, 2022, 33, 105206.	1.4	1
205	Analytical model for viscous and elastic Rayleigh–Taylor instabilities in convergent geometries at static interfaces. AIP Advances, 2022, 12, 075217.	0.6	1
206	Transitional model for rarefaction-driven Rayleighâ^'Taylor mixing on the diffuse interface. Physics of Fluids, 2022, 34, .	1.6	2
207	Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of three Rayleigh-Taylor mixing configurations with gravity reversal. Physical Review E, 2022, 106, .	0.8	4
208	High spatial resolution and contrast radiography of hydrodynamic instabilities at the National Ignition Facility. Physics of Plasmas, 2022, 29, .	0.7	2
209	Large-amplitude effects on interface perturbation growth in Richtmyer–Meshkov flows with reshock. Physics of Fluids, 2022, 34, .	1.6	8
210	Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport. Matter and Radiation at Extremes, 2022, 7, .	1.5	11
212	Three-dimensional simulations of reshocked inclined Richtmyer-Meshkov instability: Effects of initial perturbations. Physical Review Fluids, 2022, 7, .	1.0	8
213	Quantitative theory for spikes and bubbles in the Richtmyer-Meshkov instability at arbitrary density ratios. Physical Review Fluids, 2022, 7, .	1.0	5
214	Experimental and theoretical studies on heavy fluid layers with reshock. Physics of Fluids, 2022, 34, .	1.6	6
215	Fresnel zone plate point spread function approximation for zeroth order mitigation in millimetric field of view x-ray imaging. Review of Scientific Instruments, 2022, 93, .	0.6	0
216	Mixing and energy transfer in compressible Rayleigh-Taylor turbulence for initial isothermal stratification. Physical Review Fluids, 2022, 7, .	1.0	4
217	Investigation on the fusion reaction rate of deuterium and tritium under heterogeneous mixing. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.2	0
218	Study of the effect of magnetic field characteristics on Rayleigh-Taylor instability with density gradient layers. Computers and Fluids, 2023, 250, 105726.	1.3	2
219	Rayleigh Taylor Instability of Radiation Pressure Driven Foils: 2D Effects. Physica Scripta, 0, , .	1.2	0

		CITATION REPORT	
#	Article	IF	CITATIONS
220	Cascade of circulicity in compressible turbulence. Physical Review Fluids, 2022, 7, .	1.0	0
222	Modeling of droplet dynamics with soluble surfactant by multi-relaxation-time phase-field lattice Boltzmann method. Physics of Fluids, 2023, 35, .	1.6	5
223	Experimentally consistent large-eddy simulation of re-shocked Richtmyer–Meshkov turbulent mixi Physics of Fluids, 2022, 34, .	ng. 1.6	4
224	Coupled model analysis of the ablitive Rayleigh-Taylor instability. Plasma Science and Technology, 0,	,. 0.7	0
225	High-amplitude effect on single-mode Richtmyer–Meshkov instability of a light–heavy interface. Physics of Fluids, 2023, 35, .	1.6	4
226	Effects of the parameters of inner air cylinder on evolution of annular SF ₆ cylinder accelerated by a planar shock wave. Physics of Fluids, 2022, 34, 126107.	1.6	0
227	Multifidelity validation of digital surrogates using variable-density turbulent mixing models. Physical Review Fluids, 2023, 8, .	1.0	1
228	Surface topologies and self interactions in reactive and nonreactive Richtmyer–Meshkov instabilit Scientific Reports, 2023, 13, .	y. 1.6	0
229	On the shock-driven hydrodynamic instability in square and rectangular light gas bubbles: A comparative study from numerical simulations. Physics of Fluids, 2023, 35, .	1.6	7
230	Numerical simulation of the Rayleigh-Taylor instability in rarefied mixture of monatomic gases using continuum and kinetic approaches. AIP Conference Proceedings, 2023, , .	0.3	0
231	Synchrotron radiography of Richtmyer–Meshkov instability driven by exploding wire arrays. Physic of Fluids, 2023, 35, .	CS 1.6	7
232	Scale-to-scale energy transfer in rarefaction-driven Rayleigh–Taylor instability-induced transitional mixing. Physics of Fluids, 2023, 35, 025136.	1.6	2
233	Linear analytical model for magneto-Rayleigh–Taylor and sausage instabilities in a cylindrical liner. Physics of Plasmas, 2023, 30, .	0.7	1
234	Thermal large-eddy simulation methods to model highly anisothermal and turbulent flows. Physics o Fluids, 2023, 35, .	f 1.6	1
235	The effect of collisions on the multi-fluid plasma Richtmyer–Meshkov instability. Physics of Plasma 2023, 30, .	as, 0.7	1
236	Intricate structure of the plasma Rayleigh–Taylor instability in shock tubes. Physics of Plasmas, 20 30, 022709.	23, 0.7	0
237	Exploring the parameter space of MagLIF implosions using similarity scaling. II. Current scaling. Physics of Plasmas, 2023, 30, .	0.7	8
238	Exploring the parameter space of MagLIF implosions using similarity scaling. I. Theoretical framewor Physics of Plasmas, 2023, 30, .	k. 0.7	10

#	Article	IF	CITATIONS
239	Detailed look into the unstable S-N border during propagation of the N-zone into the thin YBaCuO film. Physica Scripta, 2023, 98, 055924.	1.2	0
240	Dynamic of shock–bubble interactions and nonlinear evolution of ablative hydrodynamic instabilities initialed by capsule interior isolated defects. Physics of Plasmas, 2023, 30, .	0.7	4
242	A SHOCK TUBE WITH THE DRIVER GAS PRESSURE INTRODUCED THROUGH AN INLET PORT. , 2023, , .		0
261	Laser-driven Rayleigh-Taylor instability experiments on solid copper along two different adiabatic paths. AIP Conference Proceedings, 2023, , .	0.3	1
276	Algorithm to Generate Liutex Core Lines Based on Forward Liutex Magnitude Gradient Lines. , 0, , .		0