Hard X-ray free-electron laser with femtosecond-scale

Nature Photonics 11, 708-713

DOI: 10.1038/s41566-017-0029-8

Citation Report

#	Article	IF	CITATIONS
2	Attosecond time–energy structure of X-ray free-electron laser pulses. Nature Photonics, 2018, 12, 215-220.	15.6	137
3	Coulomb-Driven Relativistic Electron Beam Compression. Physical Review Letters, 2018, 120, 044801.	2.9	9
4	Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nature Communications, 2018, 9, 1704.	5.8	55
5	Advances in instrumentation for gas-phase spectroscopy and diffraction with short-wavelength free electron lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907, 116-131.	0.7	24
6	Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope. Applied Physics Letters, 2018, 112, 113102.	1.5	7
7	Towards compact Free Electron–Laser based on laser plasma accelerators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 5-15.	0.7	7
8	S-band Traveling-Wave Deflecting Structures for the PAL-XFEL. Journal of the Korean Physical Society, 2018, 73, 1099-1102.	0.3	2
9	2D WPS System for Measuring the Location Changes in Real Time of PAL-XFEL Devices. Journal of the Korean Physical Society, 2018, 73, 1034-1041.	0.3	1
10	Assessment of the Radiation Dose Level of the PAL-XFEL Hard X-ray Beamlines under Accident Conditions. Journal of the Korean Physical Society, 2018, 73, 1061-1067.	0.3	1
11	Multi-Axis Nanopositioning System for the Hard X-ray Split-Delay System at the LCLS. Synchrotron Radiation News, 2018, 31, 15-20.	0.2	9
12	Toward the Generation of an Isolated TW-Attosecond X-ray Pulse in XFEL. Applied Sciences (Switzerland), 2018, 8, 1588.	1.3	6
13	Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors. Scientific Reports, 2018, 8, 17440.	1.6	43
14	Nonlinear energy chirp compensation with corrugated structures. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	1.3	7
15	First saturation of 14.5 keV free electron laser at PAL-XFEL. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 911, 51-54.	0.7	16
16	Review of fully coherent free-electron lasers. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	1.3	75
17	Undulator operation for PAL-XFEL large bandwidth modes. Journal of Instrumentation, 2018, 13, T08007-T08007.	0.5	1
18	On-chip THz spectrometer for bunch compression fingerprinting at fourth-generation light sources. Journal of Synchrotron Radiation, 2018, 25, 1509-1513.	1.0	0
19	Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 224-228.	0.7	18

#	ARTICLE	IF	CITATIONS
20	Soft X-ray harmonic lasing self-seeded free electron laser at Pohang Accelerator Laboratory X-ray free electron laser. Applied Physics Letters, 2018, 112, .	1.5	6
21	Carbonic anhydrase II microcrystals suitable for XFEL studies. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 327-330.	0.4	6
22	Coherent synchrotron radiation monitor for microbunching instability in XFEL. Review of Scientific Instruments, 2018, 89, 063302.	0.6	1
23	High-Power Femtosecond Soft X Rays from Fresh-Slice Multistage Free-Electron Lasers. Physical Review Letters, 2018, 120, 264801.	2.9	38
24	A stable pulsed power supply for multi-beamline XFEL operations. Review of Scientific Instruments, 2018, 89, 064704.	0.6	5
25	Studies of a terawatt x-ray free-electron laser. New Journal of Physics, 2018, 20, 073017.	1.2	13
26	Extreme Metrology for Ultrafast Electron Dynamics at the Atomic Scale. Journal of the Korean Physical Society, 2018, 73, 227-234.	0.3	1
27	Towards femtosecond-level intrinsic laser synchronization at fourth generation light sources. Optics Letters, 2018, 43, 2213.	1.7	2
28	South Korean science needs restructuring. Nature, 2018, 558, 511-513.	13.7	5
29	Machine Performance of PAL-XFEL. Journal of the Korean Physical Society, 2018, 73, 235-237.	0.3	0
30	The beam-based alignment for soft X-ray free-electron lasers via genetic algorithm. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 905, 104-111.	0.7	10
31	Power enhancement via an ion-channel in a Raman free-electron laser. Laser Physics, 2018, 28, 095002.	0.6	0
32	PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results. Review of Scientific Instruments, 2018, 89, 055105.	0.6	23
33	Isolated terawatt attosecond hard X-ray pulse generated from single current spike. Scientific Reports, 2018, 8, 7463.	1.6	15
34	Ultrafast Electron Diffraction Technology for Exploring Dynamics of Molecules. Journal of the Korean Physical Society, 2018, 73, 466-478.	0.3	2
35	Ab initiocalculation of electron-impact-ionization cross sections for ions in exotic electron configurations. Physical Review A, 2018, 98, .	1.0	3
36	Gain-guided X-ray free-electron laser oscillator. Applied Physics Letters, 2018, 113, 061106.	1,5	10
37	Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams. Physical Review X, 2018, 8, .	2.8	61

#	Article	IF	CITATIONS
38	Hot-electron transport and ultrafast magnetization dynamics in magnetic multilayers and nanostructures following femtosecond laser pulse excitation. European Physical Journal B, 2018, 91, 1.	0.6	19
39	Data Acquisition System of Multi-Port Charge-Coupled Device for PAL-XFEL. Journal of the Korean Physical Society, 2019, 75, 22-26.	0.3	1
40	Realization of ultra-stable hard X-ray Free Electron Laser*., 2019, , .		0
41	Structural studies on tetrapyrrole containing proteins enabled by femtosecond X-ray pulses. Advances in Botanical Research, 2019, , 33-67.	0.5	5
42	An x-ray regenerative amplifier free-electron laser using diamond pinhole mirrors. New Journal of Physics, 2019, 21, 093028.	1.2	21
43	Laser systems for time-resolved experiments at the Pohang Accelerator Laboratory X-ray Free-Electron Laser beamlines. Journal of Synchrotron Radiation, 2019, 26, 868-873.	1.0	9
44	A host dTMP-bound structure of T4 phage dCMP hydroxymethylase mutant using an X-ray free electron laser. Scientific Reports, 2019, 9, 16316.	1.6	2
45	Beam Charge Monitor for quantitatively measuring electron bunch of very Low-charge pulse and Ultra-short pulse., 2019,,.		0
46	Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nature Communications, 2019, 10, 3606.	5.8	56
47	A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers. Structural Dynamics, 2019, 6, 054302.	0.9	10
48	Performance of an Indium-sealed S-band RF Photoelectron Gun for Time-resolved Electron Diffraction Experiments. Journal of the Korean Physical Society, 2019, 74, 24-29.	0.3	4
49	Charge-state populations for the neon-XFEL system*. Chinese Physics B, 2019, 28, 063203.	0.7	2
50	Scientific instruments for soft X-ray photon-in/photon-out spectroscopy on the PAL-XFEL. Journal of Synchrotron Radiation, 2019, 26, 1031-1036.	1.0	7
51	Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20170480.	1.6	20
52	Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers. International Journal of Molecular Sciences, 2019, 20, 1943.	1.8	8
53	Time-resolved ionization measurements with intense ultrashort XUV and X-ray free-electron laser pulses. Laser and Particle Beams, 2019, 37, 235-241.	0.4	2
54	Spatial and temporal pre-alignment of an X-ray split-and-delay unit by laser light interferometry. Review of Scientific Instruments, 2019, 90, 045106.	0.6	3
55	Auger-like correlations in the two-photon above threshold ionization of Ar. European Physical Journal D, 2019, 73, 1.	0.6	1

#	ARTICLE	IF	CITATIONS
56	Nylon mesh-based sample holder for fixed-target serial femtosecond crystallography. Scientific Reports, 2019, 9, 6971.	1.6	51
57	Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nature Photonics, 2019, 13, 555-561.	15.6	92
58	10 years of pioneering X-ray science at the Free-Electron Laser FLASH at DESY. Physics Reports, 2019, 808, 1-74.	10.3	106
59	Polyacrylamide injection matrix for serial femtosecond crystallography. Scientific Reports, 2019, 9, 2525.	1.6	37
60	Coherence and pulse duration characterization of the PAL-XFEL in the hard X-ray regime. Scientific Reports, 2019, 9, 3300.	1.6	15
61	Sample Delivery Media for Serial Crystallography. International Journal of Molecular Sciences, 2019, 20, 1094.	1.8	49
62	Terahertz Oscilloscope for Recording Time Information of Ultrashort Electron Beams. Physical Review Letters, 2019, 122, 144801.	2.9	48
63	Design of a compact hard x-ray split-delay system based on variable-gap channelcut crystals. AIP Conference Proceedings, 2019, , .	0.3	2
64	Recent advances in ultrafast X-ray sources. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180384.	1.6	89
65	BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	1.3	11
66	Hard X-ray self-seeding commissioning at PAL-XFEL. Journal of Synchrotron Radiation, 2019, 26, 1101-1109.	1.0	17
67	The Beam-based Alignment Simulation and Preliminary Experiment at SXFEL. Journal of Physics: Conference Series, 2019, 1350, 012042.	0.3	0
68	Laser-Driven Modulation of Electron Beams in a Dielectric Micro-Structure for X-Ray Free-Electron Lasers. Scientific Reports, 2019, 9, 19773.	1.6	6
69	FEL performance achieved at PAL-XFEL using a three-chicane bunch compression scheme. Journal of Synchrotron Radiation, 2019, 26, 1127-1138.	1.0	30
70	Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction. Structural Dynamics, 2019, 6, 054305.	0.9	36
71	Non-thermal fluence threshold for femtosecond pulsed x-ray radiation damage in perovskite complex oxide epitaxial heterostructures. Applied Physics Letters, 2019, 115, .	1.5	5
72	Capturing the photo-induced dynamics of nano-molecules by X-ray free electron laser induced Coulomb explosion. Journal of Chemical Physics, 2019, 151, 124305.	1.2	4
73	Generation and Characterization of Intense Ultralow-Emittance Electron Beams for Compact X-Ray Free-Electron Lasers. Physical Review Letters, 2019, 123, 234801.	2.9	19

#	ARTICLE	IF	CITATIONS
74	X-ray Spectroscopies of High Energy Density Matter Created with X-ray Free Electron Lasers. Applied Sciences (Switzerland), 2019, 9, 4812.	1.3	5
75	Many-electron character of two-photon above-threshold ionization of Ar. Physical Review A, 2019, 99,	1.0	4
76	Towards a free electron laser using laser plasma acceleration on COXINEL., 2019,,.		0
77	Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2020, 22, 2685-2692.	1.3	26
78	Towards jitter-free ultrafast electron diffraction technology. Nature Photonics, 2020, 14, 245-249.	15.6	55
79	A GdBCO bulk staggered array undulator. Superconductor Science and Technology, 2020, 33, 014004.	1.8	23
80	Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nature Photonics, 2020, 14, 30-36.	15.6	283
81	Benchmarking FLUKA, PHITS, MCNPX, and MARS15 codes with product yields of 209Bi(p, x) reactions. Nuclear Instruments & Methods in Physics Research B, 2020, 462, 154-162.	0.6	3
82	Approach of Serial Crystallography. Crystals, 2020, 10, 854.	1.0	9
83	Observation of Seeded Mn K \hat{l}^2 Stimulated X-Ray Emission Using Two-Color X-Ray Free-Electron Laser Pulses. Physical Review Letters, 2020, 125, 037404.	2.9	20
84	Attosecond Coherence Time Characterization in Hard X-Ray Free-Electron Laser. Scientific Reports, 2020, 10, 5961.	1.6	2
85	Demonstration of Transmission Mode Soft X-ray NEXAFS Using Third- and Fifth-Order Harmonics of FEL Radiation at SACLA BL1. Applied Sciences (Switzerland), 2020, 10, 7852.	1.3	2
86	Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science, 2020, 370, 978-982.	6.0	143
87	Guiding light to non-classicality. Nature Photonics, 2020, 14, 716-718.	15.6	0
89	Viscous-medium-based crystal support in a sample holder for fixed-target serial femtosecond crystallography. Journal of Applied Crystallography, 2020, 53, 1051-1059.	1.9	22
90	Method for developing a sub-10 fs ultrafast electron diffraction technology. Structural Dynamics, 2020, 7, 034301.	0.9	7
91	Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments. Symmetry, 2020, 12, 1258.	1.1	11
92	X-ray induced ultrafast dynamics in atoms, molecules, and clusters: experimental studies at an X-ray free-electron laser facility SACLA and modelling. Advances in Physics: X, 2020, 5, 1785327.	1.5	3

#	Article	IF	CITATIONS
93	Time-resolved resonant elastic soft x-ray scattering at Pohang Accelerator Laboratory X-ray Free Electron Laser. Review of Scientific Instruments, 2020, 91, 083904.	0.6	14
94	Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector. Scientific Reports, 2020, 10, 18905.	1.6	2
95	Comparative analysis of the theoretical and experimental spectral properties of X-FELs. Results in Physics, 2020, 19, 103361.	2.0	15
96	Photon beam line of the water window FEL for the EuPRAXIA@SPARC_LAB project. Journal of Physics: Conference Series, 2020, 1596, 012039.	0.3	2
97	Diagnostics for Electron Pulse Trains at SwissFEL Obtained by Energy Modulation in a Laser-Driven Dielectric Structure. Journal of Physics: Conference Series, 2020, 1596, 012046.	0.3	1
98	Compact design delivers hard X-rays. Nature Photonics, 2020, 14, 715-716.	15.6	0
99	A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nature Photonics, 2020, 14, 748-754.	15.6	140
100	Fixed-Target Serial Synchrotron Crystallography Using Nylon Mesh and Enclosed Film-Based Sample Holder. Crystals, 2020, 10, 803.	1.0	24
101	Femtosecond Optical Laser System with Spatiotemporal Stabilization for Pump-Probe Experiments at SACLA. Applied Sciences (Switzerland), 2020, 10, 7934.	1.3	7
102	A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nature Photonics, 2020, 14, 391-397.	15.6	315
103	Femtosecond soft X-ray absorption spectroscopy of warm dense matter at the PAL-XFEL. Journal of Synchrotron Radiation, 2020, 27, 953-958.	1.0	4
104	Development of an Experimental Platform for Combinative Use of an XFEL and a High-Power Nanosecond Laser. Applied Sciences (Switzerland), 2020, 10, 2224.	1.3	16
105	Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates. Review of Scientific Instruments, 2020, 91, 045123.	0.6	10
106	Thermal loading on self-seeding monochromators in x-ray free electron lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 969, 163936.	0.7	7
107	Free electron laser generation of x-ray Poincaré beams. New Journal of Physics, 2020, 22, 072001.	1.2	9
108	Mapping the emergence of molecular vibrations mediating bond formation. Nature, 2020, 582, 520-524.	13.7	55
109	Generation of intense and coherent sub-femtosecond X-ray pulses in electron storage rings. Scientific Reports, 2020, 10, 10093.	1.6	5
110	X-Band Amplifier for the PAL-XFEL. Journal of the Korean Physical Society, 2020, 76, 573-576.	0.3	1

#	Article	IF	Citations
111	Subnanosecond phase transition dynamics in laser-shocked iron. Science Advances, 2020, 6, eaaz5132.	4.7	29
112	Double-pulse speckle contrast correlations with near Fourier transform limited free-electron laser light using hard X-ray split-and-delay. Scientific Reports, 2020, 10, 5054.	1.6	7
113	Laguerre-Gaussian Mode Laser Heater for Microbunching Instability Suppression in Free-Electron Lasers. Physical Review Letters, 2020, 124, 134801.	2.9	16
114	First full dynamic range scan of the JUNGFRAU detector performed at an XFEL with an accurate intensity reference. Journal of Instrumentation, 2020, 15, C02025-C02025.	0.5	5
115	Single-shot temporal characterization of XUV pulses with duration from $\hat{a}^{1}/410$ fs to $\hat{a}^{1}/4350$ fs at FLASH. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 184004.	0.6	11
116	Structural Investigation of Single Specimens with a Femtosecond X-Ray Laser: Routes to Signal-to-Noise Ratio Enhancement. Physical Review Applied, 2020, 13, .	1.5	4
117	Experimental demonstration of enhanced self-amplified spontaneous emission by photocathode temporal shaping and self-compression in a magnetic wiggler. New Journal of Physics, 2020, 22, 083030.	1.2	13
118	Free Electron Laser Performance within the EuPRAXIA Facility. Instruments, 2020, 4, 5.	0.8	2
119	Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL. Physical Review Letters, 2020, 124, 074801.	2.9	16
120	Effect of high slice energy spread of an electron beam on the generation of isolated, terawatt, attosecond X-ray free-electron laser pulse. Scientific Reports, 2020, 10, 1312.	1.6	4
121	Femtosecond Relativistic Electron Beam with Reduced Timing Jitter from THz Driven Beam Compression. Physical Review Letters, 2020, 124, 054802.	2.9	49
122	Characterizing the intrinsic properties of individual XFEL pulses via single-particle diffraction. Journal of Synchrotron Radiation, 2020, 27, 17-24.	1.0	7
123	Intense Reactivity in Sulfur–Hydrogen Mixtures at High Pressure under X-ray Irradiation. Journal of Physical Chemistry Letters, 2020, 11, 1828-1834.	2.1	11
124	Nanofocusing Optics for an X-Ray Free-Electron Laser Generating an Extreme Intensity of 100 EW/cm2 Using Total Reflection Mirrors. Applied Sciences (Switzerland), 2020, 10, 2611.	1.3	17
125	Design of a Deflecting Cavity with a Racetrack Cell. Journal of the Korean Physical Society, 2020, 76, 582-587.	0.3	0
126	Effect of a tightly focused chirped Gaussian laser pulse on electron acceleration in helical undulator. Physics of Plasmas, 2020, 27, 043105.	0.7	5
127	Two-dimensional tilt control of electron bunch for X-ray free electron laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986, 164726.	0.7	2
128	The 1-Megapixel pnCCD detector for the Small Quantum Systems Instrument at the European XFEL: system and operation aspects. Journal of Synchrotron Radiation, 2021, 28, 576-587.	1.0	11

#	Article	IF	CITATIONS
129	Plasma-cascade instability. Physical Review Accelerators and Beams, 2021, 24, .	0.6	6
130	FLASH2020+: The New High Repetition Rate Coherent Soft X-Ray Facility. , 2021, , .		0
131	Semi-analytical analysis of high-brightness microbunched beam dynamics with collective and intrabeam scattering effects. Physics of Plasmas, 2021, 28, 013112.	0.7	4
132	High-Throughput 3D Ensemble Characterization of Individual Core–Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS Nano, 2021, 15, 4066-4076.	7.3	17
133	Suppression of thermal nanoplasma emission in clusters strongly ionized by hard x-rays. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 044001.	0.6	7
134	Suppression of coherent synchrotron radiation induced emittance growth during electron-beam injection into plasma wakefields. Physical Review Accelerators and Beams, 2021, 24, .	0.6	2
135	Self-Amplification of Coherent Energy Modulation in Seeded Free-Electron Lasers. Physical Review Letters, 2021, 126, 084801.	2.9	21
136	A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Scientific Reports, 2021, 11, 3562.	1.6	5
137	Femtosecond X-ray Liquidography Visualizes Wavepacket Trajectories in Multidimensional Nuclear Coordinates for a Bimolecular Reaction. Accounts of Chemical Research, 2021, 54, 1685-1698.	7.6	6
138	Numerical study of the second harmonic generation in FELs. Journal of Synchrotron Radiation, 2021, 28, 681-687.	1.0	2
139	Harmonics Generation in Experiments with Free-Electron Lasers in the X-Ray Wavelength Range: a Theoretical Analysis. Technical Physics, 2021, 66, 481-490.	0.2	3
140	High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. Nature Photonics, 2021, 15, 435-441.	15.6	47
141	Femtosecond Charge Density Modulations in Photoexcited CuWO ₄ . Journal of Physical Chemistry C, 2021, 125, 7329-7336.	1.5	6
142	Atomic, molecular and optical physics applications of longitudinally coherent and narrow bandwidth Free-Electron Lasers. Physics Reports, 2021, 904, 1-59.	10.3	27
143	Molecular Dynamicsâ€"From Small Molecules to Macromolecules. International Journal of Molecular Sciences, 2021, 22, 3761.	1.8	17
144	Three-Dimensional, Time-Dependent Analysis of High- and Low-Q Free-Electron Laser Oscillators. Applied Sciences (Switzerland), 2021, 11, 4978.	1.3	6
145	Single-Shot Coherent X-ray Imaging Instrument at PAL-XFEL. Applied Sciences (Switzerland), 2021, 11, 5082.	1.3	5
146	Dependency of a compact and analytic gain function for the linac with multiple bunch compressors on the initial density modulation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 999, 165226.	0.7	0

#	ARTICLE	IF	CITATIONS
147	Studies of Ultrafast Molecular Dynamics by Femtosecond Extreme Ultraviolet Absorption Spectroscopy. Chemistry Letters, 2021, 50, 965-973.	0.7	3
148	Features and futures of X-ray free-electron lasers. Innovation(China), 2021, 2, 100097.	5.2	56
149	Investigation of warm dense matter using time-resolved X-ray absorption spectroscopy with third- and fourth- generation light sources. Current Applied Physics, 2021, 30, 58-58.	1.1	2
150	Analytical Account for Off-Axis Effects in X-Ray Radiation of Harmonics of Free-Electron Lasers. Russian Physics Journal, 2021, 64, 23-32.	0.2	1
151	Development and operation of fiber-based radiation protection beam-loss monitor for PAL-XFEL. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 521.	0.7	0
152	Two-color x-ray free-electron laser by photocathode laser emittance spoiler. Physical Review Accelerators and Beams, 2021, 24, .	0.6	7
153	Generating X-rays with orbital angular momentum in a free-electron laser oscillator. Optica, 2021, 8, 1020.	4.8	13
154	Control of reference orbit using wire position sensor for X-ray free electron laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1000, 165250.	0.7	0
155	New insights into correlated materials in the time domainâ€"combining far-infrared excitation with x-ray probes at cryogenic temperatures. Journal of Physics Condensed Matter, 2021, 33, 374001.	0.7	3
156	Two-Beam Free-Electron Lasers and Self-Injected Nonlinear Harmonic Generation. Applied Sciences (Switzerland), 2021, 11, 6462.	1.3	3
157	From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. Applied Sciences (Switzerland), 2021, 11, 6179.	1.3	36
158	High spatial coherence and short pulse duration revealed by the Hanbury Brown and Twiss interferometry at the European XFEL. Structural Dynamics, 2021, 8, 044305.	0.9	9
159	Pickup development for short low-charge bunches in x-ray free-electron lasers. Physical Review Accelerators and Beams, 2021, 24, .	0.6	1
160	First observation of laser-beam interaction in a dipole magnet. Advanced Photonics, 2021, 3, .	6.2	4
161	X-ray harmonic radiation in free electron lasers with variable deflection parameter of the undulators. European Physical Journal Plus, 2021, 136, 1.	1.2	7
162	Energy recovery operation for continuous-wave X-ray free-electron lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1005, 165410.	0.7	0
163	Strategies for solving the excited-state self-consistent-field problem for highly excited and multiply ionized states. Physical Review A, 2021, 104, .	1.0	0
164	Variable polarization states in free-electron lasers. Journal of Physics Communications, 2021, 5, 085011.	0.5	7

#	Article	IF	CITATIONS
165	Filming ultrafast roaming-mediated isomerization of bismuth triiodide in solution. Nature Communications, 2021, 12, 4732.	5.8	14
166	New mounting mechanism for cryogenically cooled thin crystal x-ray optics in high brightness high repetition rate free-electron laser applications. Review of Scientific Instruments, 2021, 92, 083904.	0.6	1
167	Theoretical analysis of Hanbury Brown and Twiss interferometry at soft-x-ray free-electron lasers. Physical Review A, 2021, 104, .	1.0	3
168	An alternative proposal for the regulatory framework of the large accelerator facilities in the Korean Nuclear Safety Act. Journal of Radiological Protection, 2021, 41, S150-S159.	0.6	0
169	High-charge ultrashort electron bunch generation by an energy chirping cell-attached rf electron gun and its measurement using a transverse deflecting cavity. Physical Review Accelerators and Beams, 2021, 24, .	0.6	1
170	Structural Evidence for Ultrafast Polarization Rotation in Ferroelectric/Dielectric Superlattice Nanodomains. Physical Review X, 2021, 11 , .	2.8	5
171	Theoretical Analysis of the Radiation Properties of Some Major Xâ€Ray Free Electron Lasers. Annalen Der Physik, 2021, 533, 2100091.	0.9	13
172	Development of a one-dimensional differential deposition system for X-ray mirror figure correction. Precision Engineering, 2021, 71, 1-6.	1.8	5
173	Undulator design for a laser-plasma-based free-electron-laser. Physics Reports, 2021, 937, 1-73.	10.3	10
174	Deriving x-ray pulse duration from center-of-energy shifts in THz-streaked ionized electron spectra. Optics Express, 2021, 29, 32739.	1.7	4
175	Overview of SwissFEL dual-photocathode laser capabilities and perspectives for exotic FEL modes. High Power Laser Science and Engineering, 0 , , 1 - 51 .	2.0	3
176	Novel Ultrabright and Airâ€Stable Photocathodes Discovered from Machine Learning and Density Functional Theory Driven Screening. Advanced Materials, 2021, 33, e2104081.	11.1	7
177	On the possibilities of amplification and radiation of harmonics in modern X-ray free electron lasers. Optics and Laser Technology, 2021, 143, 107296.	2.2	5
178	Analysis of the spectral properties of free electron lasers in X-RAY and other bands. Radiation Physics and Chemistry, 2021, 189, 109698.	1.4	15
179	Two-stage reflective self-seeding scheme for high-repetition-rate X-ray free-electron lasers. Journal of Synchrotron Radiation, 2021, 28, 44-51.	1.0	0
180	Nanosecond X-ray photon correlation spectroscopy using pulse time structure of a storage-ring source. IUCrJ, 2021, 8, 124-130.	1.0	15
181	Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. 4open, 2018, 1, 3.	0.1	48
182	An ultra-compact x-ray free-electron laser. New Journal of Physics, 2020, 22, 093067.	1.2	45

#	Article	IF	CITATIONS
183	High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects. Physical Review Accelerators and Beams, 2018, 21, .	0.6	6
184	Few-femtosecond electron beam with terahertz-frequency wakefield-driven compression. Physical Review Accelerators and Beams, 2018, 21, .	0.6	13
185	Time-domain analysis of attosecond pulse generation in an x-ray free-electron laser. Physical Review Accelerators and Beams, $2018, 21, \ldots$	0.6	7
186	Terahertz-based subfemtosecond metrology of relativistic electron beams. Physical Review Accelerators and Beams, 2019, 22, .	0.6	61
187	Generation of large-bandwidth x-ray free electron laser with evolutionary many-objective optimization algorithm. Physical Review Accelerators and Beams, 2019, 22, .	0.6	11
188	Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation. Physical Review Accelerators and Beams, 2019, 22, .	0.6	37
189	X-ray free electron laser tuning for variable-gap undulators. Physical Review Accelerators and Beams, 2019, 22, .	0.6	9
190	Experimental observations of seed growth and accompanying pedestal contamination in a self-seeded, soft x-ray free-electron laser. Physical Review Accelerators and Beams, 2019, 22, .	0.6	18
191	Multienergy operation analysis in a superconducting linac based on off-frequency detune method. Physical Review Accelerators and Beams, 2019, 22, .	0.6	2
192	Coherent photons with angular momentum in a helical afterburner. Physical Review Accelerators and Beams, 2020, 23, .	0.6	6
193	Polarization control of an x-ray free electron laser oscillator. Physical Review Accelerators and Beams, 2020, 23, .	0.6	6
194	Simulation analysis and optimization of fresh-slice multistage free-electron lasers. Physical Review Accelerators and Beams, 2020, 23, .	0.6	4
195	High-resolution dispersion-based measurement of the electron beam energy spread. Physical Review Accelerators and Beams, 2020, 23, .	0.6	9
196	Thermal loading on crystals in an x-ray free-electron laser oscillator. Physical Review Accelerators and Beams, 2020, 23, .	0.6	4
197	Noninvasive THz spectroscopy for bunch current profile reconstructions at MHz repetition rates. Physical Review Accelerators and Beams, 2020, 23, .	0.6	3
198	Refractive Guide Switching a Regenerative Amplifier Free-Electron Laser for High Peak and Average Power Hard X Rays. Physical Review Letters, 2020, 125, 254801.	2.9	25
199	Breakdown of frustrated absorption in x-ray sequential multiphoton ionization. Physical Review Research, 2020, 2, .	1.3	9
200	Electronic-structure calculations for nonisothermal warm dense matter. Physical Review Research, 2020, 2, .	1.3	8

#	Article	IF	CITATIONS
201	Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography. Journal of Applied Crystallography, 2020, 53, 477-485.	1.9	25
202	A simple instrument to find spatiotemporal overlap of optical/X-ray light at free-electron lasers. Journal of Synchrotron Radiation, 2019, 26, 647-652.	1.0	6
203	Arrival timing diagnostics at a soft X-ray free-electron laser beamline of SACLA BL1. Journal of Synchrotron Radiation, 2019, 26, 887-890.	1.0	11
204	Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods. Journal of Synchrotron Radiation, 2019, 26, 874-886.	1.0	19
205	Compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources. Journal of Synchrotron Radiation, 2019, 26, 1052-1057.	1.0	9
206	A simple and compact scheme to enhance the brightness of self-amplified spontaneous emission free-electron-lasers. Journal of Synchrotron Radiation, 2019, 26, 1085-1091.	1.0	2
207	Intense sub-micrometre focusing of soft X-ray free-electron laser beyond 1016 Wâ€cmâ^'2 with an ellipsoidal mirror. Journal of Synchrotron Radiation, 2019, 26, 1406-1411.	1.0	23
208	Accurate contrast determination for X-ray speckle visibility spectroscopy. Journal of Synchrotron Radiation, 2020, 27, 999-1007.	1.0	13
209	Generation of an X-ray nanobeam of a free-electron laser using reflective optics with speckle interferometry. Journal of Synchrotron Radiation, 2020, 27, 883-889.	1.0	8
210	Two-color X-ray free-electron laser consisting of broadband and narrowband beams. Journal of Synchrotron Radiation, 2020, 27, 1720-1724.	1.0	3
211	Theoretical spectral analysis of FEL radiation from multi-harmonic undulators. Journal of Synchrotron Radiation, 2020, 27, 1648-1661.	1.0	14
212	Atomic level three-dimensional structure of individual particles with XFELs. IUCrJ, 2018, 5, 522-523.	1.0	2
213	EuPRAXIA Conceptual Design Report. European Physical Journal: Special Topics, 2020, 229, 3675-4284.	1.2	64
214	Non-locally coded Fourier-transform ghost imaging. Optics Express, 2019, 27, 2937.	1.7	8
215	Comparing the spatial coherence of the natural and focused X-rays from a free electron laser. Optics Express, 2019, 27, 19573.	1.7	7
216	Analytical model for monochromator performance characterizations under thermal load. Optics Express, 2020, 28, 30075.	1.7	6
217	High-resolution micro channel-cut crystal monochromator processed by plasma chemical vaporization machining for a reflection self-seeded X-ray free-electron laser. Optics Express, 2020, 28, 25706.	1.7	6
218	Initial observations of the femtosecond timing jitter at the European XFEL. Optics Letters, 2019, 44, 1650.	1.7	17

#	Article	IF	CITATIONS
219	Numerical characterization of quasi-steady thermal load for thin crystal at cryogenic temperature with nondiffusive heat transfer. Journal of Applied Physics, $2021,130,$.	1.1	3
220	Ultrafast Carrier–Lattice Interactions and Interlayer Modulations of Bi ₂ Se ₃ by X-ray Free-Electron Laser Diffraction. Nano Letters, 2021, 21, 8554-8562.	4.5	10
221	Demonstration of a compact x-ray free-electron laser using the optical klystron effect. Applied Physics Letters, 2021, 119, .	1.5	6
222	Statistical analysis of correlations in the x-ray induced Coulomb explosion of iodopyridine. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 194001.	0.6	2
223	Flexible and Coherent Soft X-ray Pulses at High Repetition Rate: Current Research and Perspectives. Applied Sciences (Switzerland), 2021, 11, 9729.	1.3	6
224	Investigation of Nonequilibrium Electronic Dynamics of Warm Dense Copper with Femtosecond X-Ray Absorption Spectroscopy. Physical Review Letters, 2021, 127, 175003.	2.9	8
225	Timing and X-ray pulse characterization at the Small Quantum Systems instrument of the European X-ray Free Electron Laser. Optics Express, 2021, 29, 37429.	1.7	8
226	Precision Synchronization for large scale Accelerators. , 2019, , .		0
227	Higher order modes at FELs: a machine interpretation. , 2019, , .		0
228	Simple generation of two-color FEL pulses using a sextupole magnet. , 2019, , .		0
230	Generating three-color pulses in high-gain harmonic-generation free-electron lasers with aÂtilted electron bunch. Journal of Synchrotron Radiation, 2019, 26, 1473-1480.	1.0	0
231	Simple and robust free-electron laser doubler. Physical Review Accelerators and Beams, 2019, 22, .	0.6	0
232	Intensity optimization of x-ray free-electron laser by using phase shifters. Physical Review Accelerators and Beams, 2020, 23, .	0.6	4
233	Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins. Membranes, 2021, 11, 823.	1.4	5
234	A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy. Applied Sciences (Switzerland), 2021, 11, 10041.	1.3	3
236	Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs. Journal of Synchrotron Radiation, 2020, 27, 633-645.	1.0	3
237	Coherence time characterization method for hard X-ray free-electron lasers. Optics Express, 2020, 28, 10928.	1.7	0
238	Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I. Scientific Reports, 2021, 11, 21787.	1.6	11

#	Article	IF	CITATIONS
239	Transverse-to-longitudinal emittance-exchange in optical wavelength. New Journal of Physics, 2020, 22, 063034.	1.2	3
240	FEL Simulation of New Hard X-ray Undulator Line at PAL-XFEL. Journal of the Korean Physical Society, 2020, 77, 429-437.	0.3	0
241	Perspectives towards Sub-Ãngström Working Regime of the European X-ray Free-Electron Laser with Low-Emittance Electron Beams. Applied Sciences (Switzerland), 2021, 11, 10768.	1.3	5
242	Electron beam shaping via laser heater temporal shaping. Physical Review Accelerators and Beams, 2021, 24, .	0.6	6
243	UV-induced dissociation of CH ₂ BrI probed by intense femtosecond XUV pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 014001.	0.6	7
245	Recent Progress of the PAL-XFEL. Applied Sciences (Switzerland), 2022, 12, 1010.	1.3	10
246	Prospects of a terahertz free-electron laser for field application. Journal of the Korean Physical Society, 2022, 80, 367-376.	0.3	4
247	Self-synchronized and cost-effective time-resolved measurements at x-ray free-electron lasers with femtosecond resolution. Physical Review Research, 2022, 4, .	1.3	7
248	Development of an experimental apparatus to observe ultrafast phenomena by tender X-ray absorption spectroscopy at PAL-XFEL. Journal of Synchrotron Radiation, 2022, 29, 194-201.	1.0	1
249	Shot-to-shot flat-field correction at X-ray free-electron lasers. Optics Express, 2022, 30, 10633.	1.7	5
250	ARIA—A VUV Beamline for EuPRAXIA@SPARC_LAB. Condensed Matter, 2022, 7, 11.	0.8	5
252	Observation of a Novel Lattice Instability in Ultrafast Photoexcited SnSe. Physical Review X, 2022, 12, .	2.8	10
253	Online single-shot characterization of ultrafast pulses from high-gain free-electron lasers. Fundamental Research, 2022, 2, 929-936.	1.6	3
254	Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. Nuclear Science and Techniques/Hewuli, 2022, 33, 1.	1.3	4
255	Theoretical investigation of orbital alignment of x-ray-ionized atoms in exotic electronic configurations. Physical Review A, 2022, 105, .	1.0	6
256	Asymmetric electron angular distributions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> induced by intense ultrashort soft-x-ray laser pulses. Physical Review A. 2022. 105.	1.0	1
257	Direct measurement of photocathode time response in a high-brightness photoinjector. Applied Physics Letters, 2022, 120, .	1.5	11
258	Hard x-ray intensity autocorrelation using direct two-photon absorption. Physical Review Research, 2022, 4, .	1.3	8

#	Article	IF	CITATIONS
259	Ultrafast isolated molecule imaging without crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122793119.	3.3	5
260	Single-shot transverse coherence in seeded and unseeded free-electron lasers: A comparison. Physical Review Accelerators and Beams, 2022, 25, .	0.6	2
261	High-temporal-resolution X-ray spectroscopy with free-electron and optical lasers. Optica, 2022, 9, 429.	4.8	11
262	Methods of Coherent X-Ray Diffraction Imaging. Crystallography Reports, 2021, 66, 867-882.	0.1	6
263	Achievement and prospect of the PAL-XFEL. Journal of the Korean Physical Society, 2022, 80, 684-692.	0.3	1
264	The SXFEL Upgrade: From Test Facility to User Facility. Applied Sciences (Switzerland), 2022, 12, 176.	1.3	23
265	Energy recovery linac based fully coherent light source. Scientific Reports, 2021, 11, 23875.	1.6	6
266	Theory of polarization-averaged core-level molecular-frame photoelectron angular distributions: III. New formula for p- and s-wave interference analogous to Young's double-slit experiment for core-level photoemission from hetero-diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics. 2021, 54, 244002.	0.6	4
267	Optically Induced Picosecond Lattice Compression in the Dielectric Component of a Strongly Coupled Ferroelectric/Dielectric Superlattice. Advanced Electronic Materials, 0, , 2101051.	2.6	1
268	High repetition rate seeded free electron laser with an optical klystron in high-gain harmonic generation. Physical Review Accelerators and Beams, 2021, 24, .	0.6	3
269	Analysis of slice transverse emittance evolution in a very-high-frequency gun photoinjector. Physical Review Accelerators and Beams, 2021, 24, .	0.6	2
270	Inducing thermodynamically blocked atomic ordering via strongly driven nonequilibrium kinetics. Science Advances, 2021, 7, eabj8552.	4.7	6
271	Xå°"线自ç"±ç"µå激光åŠå…¶åœ¨è¶…快结构动力å¦ç"ç©¶ä¸çš"应用. Scientia Sinica: Physica, Mechai	ni αa.£ t Ast	ronomica, 20
272	Applicability of semiclassical methods for modeling laser-enhanced fusion rates in a realistic setting. Physical Review C, 2022, 105, .	1.1	7
273	Widely tunable two-color x-ray free-electron laser pulses. Physical Review Research, 2022, 4, .	1.3	8
274	The Gamification of XFEL Education Using XFEL Crystal Blaster. Crystals, 2022, 12, 671.	1.0	2
275	Angular X-ray cross-correlation analysis applied to the scattering data in 3D reciprocal space from a single crystal. IUCrJ, 2022, 9, 425-438.	1.0	2
276	Electron acceleration in an inverse free electron laser with a tapered wiggler field. Journal of Physics: Conference Series, 2022, 2267, 012068.	0.3	0

#	Article	IF	Citations
277	Radiation Reaction in Spatially Modulated Fields Accelerators. Brazilian Journal of Physics, 2022, 52, .	0.7	0
278	Subpicosecond Optical Stress Generation in Multiferroic BiFeO ₃ . Nano Letters, 2022, 22, 4294-4300.	4.5	4
279	Preliminary XFEL data from spontaneously grown endo-1,4 \hat{l}^2 -xylanase crystals from <i>Hypocrea virens</i> . Acta Crystallographica Section F, Structural Biology Communications, 2022, 78, 226-231.	0.4	7
280	Delayed Onset and Directionality of X-Ray-Induced Atomic Displacements Observed on Subatomic Length Scales. Physical Review Letters, 2022, 128, .	2.9	9
281	Review of technical achievements in PAL-XFEL. AAPPS Bulletin, 2022, 32, .	2.7	2
282	Reaction dynamics studied <i>via</i> femtosecond X-ray liquidography at X-ray free-electron lasers. Chemical Science, 2022, 13, 8457-8490.	3.7	7
283	Coherent and ultrashort soft x-ray pulses from echo-enabled harmonic cascade free-electron lasers. Optica, 2022, 9, 785.	4.8	9
284	Control Scheme of Phase-Shifter for Photon Energy Scan. Photonics, 2022, 9, 418.	0.9	0
285	X-Ray Free-Electron Lasers with Variable Deflection Parameter of Undulators. Russian Physics Journal, 0, , .	0.2	1
286	Performance Measurements of Photodiodes for X-Ray Detection. IEEE Transactions on Nuclear Science, 2022, 69, 1953-1959.	1.2	2
287	Highly spin-polarized multi-GeV electron beams generated by single-species plasma photocathodes. Physical Review Research, 2022, 4, .	1.3	1
288	Combination of an inject-and-transfer system for serial femtosecond crystallography. Journal of Applied Crystallography, 2022, 55, 813-822.	1.9	12
289	Optimization and stability analysis of the cascaded EEHG-HGHG free-electron laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1039, 167065.	0.7	1
290	Pump–probe capabilities at the SPB/SFX instrument of the European XFEL. Journal of Synchrotron Radiation, 2022, 29, 1273-1283.	1.0	8
291	Femtosecond diagnostics of ultrashort electron beam using a pinhole-based THz-driven deflector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, 167279.	0.7	1
292	Computational study of optoelectronic properties of oxadiazole-based compounds for organic light emitting diodes. Molecular Physics, 2022, 120, .	0.8	1
293	Novel approach to push the limit of temporal resolution in ultrafast electron diffraction accelerators. Scientific Reports, 2022, 12, .	1.6	3
294	Radiation Damage of Polydimethylsiloxane and Polyimide by X-ray Free-Electron Laser. Applied Sciences (Switzerland), 2022, 12, 8431.	1.3	2

#	Article	IF	CITATIONS
295	Upgraded Combined Inject-and-Transfer System for Serial Femtosecond Crystallography. Applied Sciences (Switzerland), 2022, 12, 9125.	1.3	2
296	Ultrafast X-Ray hyperspectral imaging of the photo-induced phase transition in VO2. , 2022, , .		1
297	Self-seeded XFEL for Science Applications. , 2022, , .		0
298	Ultrafast Suppression of the Ferroelectric Instability in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>KTaO</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>ıml:mn>3</td><td>«/<mark>m</mark>ml:mn» «</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ıml:mn>3	«/ <mark>m</mark> ml:mn» «
299	Effect of nuclear charge on laser-induced fusion enhancement in advanced fusion fuels. Physical Review C, 2022, 106, .	1.1	0
300	First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray free-electron laser facility. Nuclear Science and Techniques/Hewuli, 2022, 33, .	1.3	8
301	Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL. Journal of Synchrotron Radiation, 2022, 29, 1454-1464.	1.0	6
302	Statistical analysis of hard X-ray radiation at the PAL-XFEL facility performed by Hanbury Brown and Twiss interferometry. Journal of Synchrotron Radiation, 2022, 29, 1465-1479.	1.0	2
303	A machine learning photon detection algorithm for coherent x-ray ultrafast fluctuation analysis. Structural Dynamics, 2022, 9, .	0.9	2
304	Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers. Advances in Physics: X, 2023, 8, .	1.5	5
305	Characterization of a hard X-ray self-seeding diamond crystal orientation. Optics Express, 0, , .	1.7	0
306	Pink-Beam Serial Synchrotron Crystallography at Pohang Light Source II. Crystals, 2022, 12, 1637.	1.0	8
307	Ultrafast quantum dynamics driven by the strong space charge field of a relativistic electron beam. Optica, 0, , .	4.8	0
308	Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties. Structural Dynamics, 2022, 9, 064101.	0.9	6
309	The structure of tick-borne encephalitis virus determined at X-ray free-electron lasers. Simulations. Journal of Synchrotron Radiation, 2023, 30, 24-34.	1.0	0
310	Analytical study of higher harmonic bunching and matrix formalism in linear high-gain free-electron laser model. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048, 167974.	0.7	1
311	Theoretical Analysis of Radiation Properties of X-Ray Free-Electron Lasers. Radiophysics and Quantum Electronics, 2022, 65, 88-117.	0.1	2
312	Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nature Physics, 0, , .	6.5	11

#	Article	IF	CITATIONS
313	State-resolved ionization dynamics of a neon atom induced by x-ray free-electron-laser pulses. Physical Review A, 2023, 107 , .	1.0	3
314	The MING proposal at SHINE: megahertz cavity enhanced X-ray generation. Nuclear Science and Techniques/Hewuli, 2023, 34, .	1.3	13
315	Time-resolved measurements of sub-optical-cycle relativistic electron beams. New Journal of Physics, 0, , .	1.2	0
316	X-ray-Induced Heating in the Vicinity of the X-ray Interaction Point. Applied Sciences (Switzerland), 2023, 13, 717.	1.3	3
317	Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice. Nature Communications, 2023, 14, .	5.8	15
318	Spectral phase interferometry for direct electric-field reconstruction of synchrotron radiation. Optica, 2023, 10, 302.	4.8	6
320	Virtual commissioning of the European XFEL for advanced user experiments at photon energies beyond 25 keV using low-emittance electron beams. Journal of Physics: Conference Series, 2023, 2420, 012026.	0.3	0
321	A non-destructive correlated energy spread monitor using multi-stripline electrodes for X-ray free electron lasers. Journal of the Korean Physical Society, 0, , .	0.3	0
322	Ultrafast Energy Transfer Process in Confined Gold Nanospheres Revealed by Femtosecond X-ray Imaging and Diffraction. Nano Letters, 2023, 23, 1481-1488.	4.5	2
323	Testing the data framework for an Al algorithm in preparation for high data rate X-ray facilities. , 2022, , .		1
324	Fast and flexible control of beam longitudinal phase space for high-repetition-rate x-ray free-electron lasers. Review of Scientific Instruments, 2023, 94, 024706.	0.6	2
325	Optical beat notes assisted attosecond soft x-ray pulse generation in high-gain free electron lasers. High Power Laser Science and Engineering, 0, , 1-12.	2.0	1
326	Few-femtosecond X-ray pulse generation and pulse duration control in a seeded free-electron laser. Frontiers in Physics, $0,11,1$	1.0	1
327	Single-pulse characterization of the focal spot size of X-ray free-electron lasers using coherent diffraction imaging. Journal of Synchrotron Radiation, 2023, 30, 505-513.	1.0	2
328	Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm. Nuclear Science and Techniques/Hewuli, 2023, 34, .	1.3	2
329	Frequency and spatially chirped free-electron laser pulses. Physical Review Research, 2023, 5, .	1.3	1
330	EuPRAXIA@SPARC_LAB status update., 2023,,.		0
340	Timing stabilization and diagnostic of femtosecond optical laser system for pump-probe experiments in SACLA., 2022,,.		0

#	Article	IF	CITATIONS
354	Design of a soft x-ray free-electron lasers arrival time diagnostic device., 2023,,.		0
366	Imaging Clusters and Their Dynamics with Single-shot Coherent Diffraction. , 2023, , 172-232.		0
367	Free Electron Lasers for X-ray Scattering and Diffraction. , 2023, , 301-343.		0
379	Ultrafast X-Ray Scattering and Non-equilibrium States of Matter. Springer Theses, 2023, , 1-12.	0.0	0
383	Timing Stabilization and Diagnostic of Femtosecond Optical Laser System for Pump-Probe Experiments in SACLA., 2022,,.		0