Iridiumâ€Based Multimetallic Porous Hollow Nanocrys Overallâ€Waterâ€Splitting Catalysis

Advanced Materials 29, 1703798 DOI: 10.1002/adma.201703798

Citation Report

#	Article	IF	CITATIONS
1	Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1121-1125.	3.0	49
2	Atomic Iridium Incorporated in Cobalt Hydroxide for Efficient Oxygen Evolution Catalysis in Neutral Electrolyte. Advanced Materials, 2018, 30, e1707522.	11.1	247
3	Electrochemically Activated Iridium Oxide Black as Promising Electrocatalyst Having High Activity and Stability for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1110-1115.	8.8	48
4	MOF-Templated Fabrication of Hollow Co ₄ N@N-Doped Carbon Porous Nanocages with Superior Catalytic Activity. ACS Applied Materials & amp; Interfaces, 2018, 10, 7191-7200.	4.0	130
5	Anionâ€Regulated Hydroxysulfide Monoliths as OER/ORR/HER Electrocatalysts and their Applications in Selfâ€Powered Electrochemical Water Splitting. Small Methods, 2018, 2, 1800055.	4.6	91
6	Colloidal Synthesis of Mo–Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800359.	1.9	42
7	Preparation of Hollow Nitrogen Doped Carbon via Stresses Induced Orientation Contraction. Small, 2018, 14, e1804183.	5.2	83
8	Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nature Communications, 2018, 9, 5236.	5.8	325
9	Modulating the Volmer Step by MOF Derivatives Assembled with Heterogeneous Ni ₂ P-CoP Nanocrystals in Alkaline Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, F1286-F1291.	1.3	13
10	Graphene layers-wrapped FeNiP nanoparticles embedded in nitrogen-doped carbon nanofiber as an active and durable electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 290, 649-656.	2.6	59
11	Anchoring of IrO ₂ on One-Dimensional Co ₃ O ₄ Nanorods for Robust Electrocatalytic Water Splitting in an Acidic Environment. ACS Applied Energy Materials, 2018, 1, 6374-6380.	2.5	20
12	Highly Efficient Acidic Oxygen Evolution Electrocatalysis Enabled by Porous Ir–Cu Nanocrystals with Three-Dimensional Electrocatalytic Surfaces. Chemistry of Materials, 2018, 30, 8571-8578.	3.2	75
13	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	1.7	29
14	Ir/g-C ₃ N ₄ /Nitrogen-Doped Graphene Nanocomposites as Bifunctional Electrocatalysts for Overall Water Splitting in Acidic Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 39161-39167.	4.0	80
15	Boosted Performance of Ir Species by Employing TiN as the Support toward Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 38117-38124.	4.0	100
16	Hierarchical Cobalt Borate/MXenes Hybrid with Extraordinary Electrocatalytic Performance in Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 3758-3765.	3.6	66
17	Scalable Solid‣tate Synthesis of Highly Dispersed Uncapped Metal (Rh, Ru, Ir) Nanoparticles for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801698.	10.2	149
18	Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis. Journal of the American Chemical Society, 2018, 140, 13644-13653.	6.6	430

#	Article	IF	CITATIONS
19	Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Central Science, 2018, 4, 1244-1252.	5.3	196
20	Design of Palladium-Doped <i>g</i> -C ₃ N ₄ for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2866-2873.	2.5	76
21	Cost-Effective Vertical Carbon Nanosheets/Iron-Based Composites as Efficient Electrocatalysts for Water Splitting Reaction. Chemistry of Materials, 2018, 30, 4762-4769.	3.2	48
22	Highly active and dual-function self-supported multiphase NiS–NiS ₂ –Ni ₃ S ₂ /NF electrodes for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 14207-14214.	5.2	91
23	Nanovoid Incorporated Ir _{<i>x</i>} Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.	8.8	129
24	FeN ₄ Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. Advanced Energy Materials, 2018, 8, 1801912.	10.2	188
25	In Situ "Chainmail Catalyst―Assembly in Lowâ€Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.	10.2	79
26	An IrRu alloy nanocactus on Cu _{2â^'x} S@IrS _y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. Journal of Materials Chemistry A, 2018, 6, 16130-16138.	5.2	58
27	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
28	IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions. ACS Applied Materials & Interfaces, 2018, 10, 24993-24998.	4.0	76
29	Single-Walled Carbon Nanotube Induced Optimized Electron Polarization of Rhodium Nanocrystals To Develop an Interface Catalyst for Highly Efficient Electrocatalysis. ACS Catalysis, 2018, 8, 8092-8099.	5.5	82
30	Trimetallic Au@PtPd Mesoporous Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 4891-4898.	2.5	24
31	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	5.8	54
32	Mesoporous Metallic Iridium Nanosheets. Journal of the American Chemical Society, 2018, 140, 12434-12441.	6.6	345
33	Assembling Ultrasmall Copperâ€Doped Ruthenium Oxide Nanocrystals into Hollow Porous Polyhedra: Highly Robust Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials, 2018, 30, e1801351.	11.1	353
34	Ir ⁴⁺ -Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chemical Communications, 2018, 54, 6400-6403.	2.2	114
35	Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane. Journal of Power Sources, 2018, 396, 148-154.	4.0	34
36	Facile Synthesis of IrCu Microspheres Based on Polyol Method and Study on Their Electro-Catalytic Performances to Oxygen Evolution Reaction. Nanomaterials, 2019, 9, 1145.	1.9	10

		Report	
#	Article	IF	Citations
37	Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019, 16, 388-424.	2.3	58
38	Low oordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie, 2019, 131, 12670-12674.	1.6	15
39	Low oordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 12540-12544.	7.2	208
40	Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cmâ^'2. Applied Catalysis B: Environmental, 2019, 258, 117965.	10.8	46
41	Nitrogenâ€doped Graphene Chainmail Wrapped IrCo Alloy Particles on Nitrogenâ€doped Graphene Nanosheet for Highly Active and Stable Full Water Splitting. ChemCatChem, 2019, 11, 5457-5465.	1.8	20
42	Facile Synthesis and Characterization of Pd@Ir _{<i>n</i>L} (<i>n</i> = 1–4) Core–Shell Nanocubes for Highly Efficient Oxygen Evolution in Acidic Media. Chemistry of Materials, 2019, 31, 5867-5875.	3.2	65
43	Design of Multiâ€Metallicâ€Based Electrocatalysts for Enhanced Water Oxidation. ChemPhysChem, 2019, 20, 2936-2945.	1.0	48
44	Electrolyte Effects on the Electrocatalytic Performance of Iridiumâ€Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes. ChemPhysChem, 2019, 20, 2956-2963.	1.0	44
45	Interconnected phosphorus-doped CoO-nanoparticles nanotube with three-dimensional accessible surface enables high-performance electrochemical oxidation. Nano Energy, 2019, 66, 104194.	8.2	35
46	Donutlike RuCu Nanoalloy with Ultrahigh Mass Activity for Efficient and Robust Oxygen Evolution in Acid Solution. ACS Applied Energy Materials, 2019, 2, 7483-7489.	2.5	23
47	Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. ACS Energy Letters, 2019, 4, 2719-2730.	8.8	218
48	Nanoporous Iridium-Based Alloy Nanowires as Highly Efficient Electrocatalysts Toward Acidic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 39728-39736.	4.0	71
49	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	5.2	28
50	Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019, 13, 13225-13234.	7.3	151
51	Iridium hromium Oxide Nanowires as Highly Performed OER Catalysts in Acidic Media. ChemCatChem, 2019, 11, 6008-6014.	1.8	60
52	Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nature Communications, 2019, 10, 162.	5.8	396
53	Insights into Compositional and Structural Effects of Bimetallic Hollow Mesoporous Nanospheres toward Ethanol Oxidation Electrocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 5490-5498.	2.1	38
54	Iridium on vertical graphene as an all-round catalyst for robust water splitting reactions. Journal of Materials Chemistry A, 2019, 7, 20590-20596.	5.2	61

#	Article	IF	CITATIONS
55	Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nature Communications, 2019, 10, 3899.	5.8	355
56	Trifunctional Fishbone-like PtCo/Ir Enables High-Performance Zinc–Air Batteries to Drive the Water-Splitting Catalysis. Chemistry of Materials, 2019, 31, 8136-8144.	3.2	55
57	Laser Synthesis of Iridium Nanospheres for Overall Water Splitting. Materials, 2019, 12, 3028.	1.3	19
58	Low Iridium Content Confined inside a Co ₃ O ₄ Hollow Sphere for Superior Acidic Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 16640-16650.	3.2	30
59	A silicon-doped iridium electrode prepared by magnetron-sputtering as an advanced electrocatalyst for overall water splitting in acidic media. Sustainable Energy and Fuels, 2019, 3, 2321-2328.	2.5	9
60	Efficient oxygen evolution on mesoporous IrO _x nanosheets. Catalysis Science and Technology, 2019, 9, 3697-3702.	2.1	51
61	One-pot synthesis of copper–nickel sulfide nanowires for overall water splitting in alkaline media. Chemical Communications, 2019, 55, 8154-8157.	2.2	34
62	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 11868-11873.	7.2	229
63	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie, 2019, 131, 11994-11999.	1.6	28
64	O species-decorated graphene shell encapsulating iridium–nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15079-15088.	5.2	36
65	Designing Pd/O co-doped MoS _x for boosting the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15599-15606.	5.2	22
66	Topological Formation of a Mo–Ni-Based Hollow Structure as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solutions. ACS Applied Materials & Interfaces, 2019, 11, 21998-22004.	4.0	56
67	Advanced Multifunctional Electrocatalysts for Energy Conversion. ACS Energy Letters, 2019, 4, 1672-1680.	8.8	78
68	Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chemical Society Reviews, 2019, 48, 3181-3192.	18.7	756
69	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	1.7	79
70	A promising engineering strategy for water electro-oxidation iridate catalysts <i>via</i> coordination distortion. Chemical Communications, 2019, 55, 5801-5804.	2.2	24
71	Highly Active and Stable Water Splitting in Acidic Media Using a Bifunctional Iridium/Cucurbit[6]uril Catalyst. ACS Energy Letters, 2019, 4, 1301-1307.	8.8	54
72	Iridium Oxygen Evolution Activity and Durability Baselines in Rotating Disk Electrode Half-Cells. Journal of the Electrochemical Society, 2019, 166, F282-F294.	1.3	59

#	Article	IF	CITATIONS
73	Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. Journal of Materials Chemistry A, 2019, 7, 8376-8383.	5.2	72
74	Iridiumâ€Based Cubic Nanocages with 1.1â€nmâ€Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angewandte Chemie - International Edition, 2019, 58, 7244-7248.	7.2	89
75	Oxygen Evolution Reaction on Nanoporous Cold Modified with Ir and Pt: Synergistic Electrocatalysis between Structure and Composition. Electroanalysis, 2019, 31, 1026-1033.	1.5	10
76	Mesoporous Hollow Cu–Ni Alloy Nanocage from Core–Shell Cu@Ni Nanocube for Efficient Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 5084-5095.	5.5	116
77	One-step fabrication of trimetallic core–shell Au@PdAuCu mesoporous nanospheres for ethanol electrooxidation. Green Chemistry, 2019, 21, 2043-2051.	4.6	46
78	Iridiumâ€Based Cubic Nanocages with 1.1â€nmâ€Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angewandte Chemie, 2019, 131, 7322-7326.	1.6	12
79	Electroactive Edgeâ€Siteâ€Enriched α o 0.9 Fe 0.1 (OH) x Nanoplates for Efficient Overall Water Splitting. ChemElectroChem, 2019, 6, 2415-2422.	1.7	4
80	IrW nanobranches as an advanced electrocatalyst for pH-universal overall water splitting. Nanoscale, 2019, 11, 8898-8905.	2.8	59
81	Oxygenâ€Deficient Ti _{0.9} Nb _{0.1} O _{2â€x} as an Efficient Anodic Catalyst Support for PEM Water Electrolyzer. ChemCatChem, 2019, 11, 2511-2519.	1.8	19
82	Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Research, 2019, 12, 1173-1179.	5.8	65
83	Electronic-Structure Tuning of Water-Splitting Nanocatalysts. Trends in Chemistry, 2019, 1, 259-271.	4.4	99
84	3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy, 2019, 59, 146-153.	8.2	134
85	Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horizons, 2019, 4, 727-734.	4.1	43
86	Transitionâ€Metalâ€Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 2019, 31, e1900510.	11.1	449
87	AgCuO2 as a novel bifunctional electrocatalyst for overall water splitting in alkaline media. New Journal of Chemistry, 2019, 43, 4633-4639.	1.4	4
88	Ruthenium Oxide Nanosheets for Enhanced Oxygen Evolution Catalysis in Acidic Medium. Advanced Energy Materials, 2019, 9, 1803795.	10.2	147
89	Clarifying the controversial catalytic active sites of Co ₃ O ₄ for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 23191-23198.	5.2	115
90	Amorphization activated ruthenium-tellurium nanorods for efficient waterÂsplitting. Nature Communications, 2019, 10, 5692.	5.8	312

#	Article	IF	CITATIONS
91	Invigorating the catalytic performance of CoP through interfacial engineering by Ni ₂ P precipitation. Journal of Materials Chemistry A, 2019, 7, 26177-26186.	5.2	13
92	Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@carbon hybrids for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 533, 503-512.	5.0	40
93	One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction. Journal of Colloid and Interface Science, 2019, 539, 525-532.	5.0	141
94	Highly reversible Li-O2 battery induced by modulating local electronic structure via synergistic interfacial interaction between ruthenium nanoparticles and hierarchically porous carbon. Nano Energy, 2019, 57, 166-175.	8.2	73
95	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. CheM, 2019, 5, 445-459.	5.8	354
96	Double Perovskite LaFe _{<i>x</i>} Ni _{1â^'<i>x</i>} O ₃ Nanorods Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 2316-2320.	7.2	166
97	Photonâ€Induced Spintronic Polaron Channel Modulator of CeO _{2â€} <i>_x</i> NP Thin Films Hydrogen Evolution Cells. Advanced Electronic Materials, 2019, 5, 1800570.	2.6	9
98	Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. Nano Energy, 2019, 56, 330-337.	8.2	120
99	Epitaxial Heterogeneous Interfaces on Nâ€NiMoO ₄ /NiS ₂ Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting. Advanced Functional Materials, 2019, 29, 1805298.	7.8	378
100	Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy, 2019, 56, 127-137.	8.2	247
101	Double Perovskite LaFe _{<i>x</i>} Ni _{1â^'<i>x</i>} O ₃ Nanorods Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2019, 131, 2338-2342.	1.6	42
102	Cobalt/Molybdenum Phosphide and Oxide Heterostructures Encapsulated in N-Doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 6890-6899.	4.0	91
103	Topotactic Transformations in an Icosahedral Nanocrystal to Form Efficient Waterâ€Splitting Catalysts. Advanced Materials, 2019, 31, e1805546.	11.1	76
104	One-step and scalable synthesis of Ni2P nanocrystals encapsulated in N,P-codoped hierarchically porous carbon matrix using a bipyridine and phosphonate linked nickel metal–organic framework as highly efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 297, 755-766.	2.6	44
105	A Nanosized CoNi Hydroxide@Hydroxysulfide Core–Shell Heterostructure for Enhanced Oxygen Evolution. Advanced Materials, 2019, 31, e1805658.	11.1	203
106	Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1804212.	5.2	135
107	Irâ€Based Alloy Nanoflowers with Optimized Hydrogen Binding Energy as Bifunctional Electrocatalysts for Overall Water Splitting. Small Methods, 2020, 4, 1900129.	4.6	93
108	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Science China Materials, 2020, 63, 249-257.	3.5	59

#	Article	IF	CITATIONS
109	Facile Aqueous-Phase Synthesis of Bimetallic (AgPt, AgPd, and CuPt) and Trimetallic (AgCuPt) Nanoparticles. Materials, 2020, 13, 254.	1.3	11
110	Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 3539-3546.	4.0	39
111	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
112	Self-supported nanostructured iridium-based networks as highly active electrocatalysts for oxygen evolution in acidic media. Journal of Materials Chemistry A, 2020, 8, 1066-1071.	5.2	43
113	Porosityâ€Engineering of MXene as a Support Material for a Highly Efficient Electrocatalyst toward Overall Water Splitting. ChemSusChem, 2020, 13, 945-955.	3.6	55
114	Modulating ternary Mo–Ni–P by electronic reconfiguration and morphology engineering for boosting all-pH electrocatalytic overall water splitting. Electrochimica Acta, 2020, 330, 135294.	2.6	30
115	Asymmetric PdPtCu mesoporous hemispheres on nitrogen-functionalized graphene for methanol oxidation electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15706-15714.	5.2	22
116	Amorphous WO ₃ induced lattice distortion for a low-cost and high-efficient electrocatalyst for overall water splitting in acid. Sustainable Energy and Fuels, 2020, 4, 1712-1722.	2.5	14
117	Mn-Doped RuO ₂ Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. ACS Catalysis, 2020, 10, 1152-1160.	5.5	302
118	Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952.	3.2	64
118 119	Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952. Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573.	3.2 1.6	64 19
118 119 120	Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952. Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.	3.2 1.6 5.2	64 19 29
118 119 120 121	Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952.Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573.High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	3.2 1.6 5.2 5.5	64 19 29 28
118 119 120 121 122	Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952. Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790. Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, . Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853.	3.2 1.6 5.2 5.5 11.1	64 19 29 28 93
 118 119 120 121 122 123 	Fe, Moâ€"N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N\sub>2 Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952.Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573.High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .Continuous Synthesis of Hollow Highâ <entropy and="" applications.<br="" catalysis="" energy="" for="" nanoparticles=""></entropy> Advanced Materials, 2020, 32, e2002853.Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy, 2020, 78, 105392.	 3.2 1.6 5.2 5.5 11.1 8.2 	 64 19 29 28 93 86
 118 119 120 121 122 123 124 	Fe, Moâ€"N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952. Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790. Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, . Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853. Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy, 2020, 78, 105392. Selective Loading of Atomic Platinum on a RuCeO _{<i>> Support Enables Stable Hydrogen Evolution, 2020, 59, 20423-20427.</i>}	 3.2 1.6 5.2 5.5 11.1 8.2 7.2 	 64 19 29 28 93 86 112
 118 119 120 121 122 123 124 125 	Fe, Moâć "N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15946-15952. Low-iridium electrocatalysts for acidic oxygen evolution. Dalton Transactions, 2020, 49, 15568-15573. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790. Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, . Continuous Synthesis of Hollow Highâ Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy, 2020, 78, 105392. Selective Loading of Atomic Platinum on a RuCeO _{<i>>x</i>} Hydrogen Evolution at High Current Densities. Angewandte Chemie - International Edition, 2020, 59, 20423-20427. IrCo nanocacti on Co _x IrCo nanocacti on Co _x	 3.2 1.6 5.2 5.5 11.1 8.2 7.2 2.8 	 64 19 29 28 93 86 112 11

#	Article	IF	CITATIONS
127	Selective dissolution of A-site cations of La0.6Sr0.4Co0.8Fe0.2O3 perovskite catalysts to enhance the oxygen evolution reaction. Applied Surface Science, 2020, 529, 147165.	3.1	35
128	Recent advances in rational design of efficient electrocatalyst for full water splitting across all pH conditions. MRS Bulletin, 2020, 45, 539-547.	1.7	26
129	Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient. Nano Research, 2020, 13, 2641-2649.	5.8	17
130	Ultrafine oxygen-defective iridium oxide nanoclusters for efficient and durable water oxidation at high current densities in acidic media. Journal of Materials Chemistry A, 2020, 8, 24743-24751.	5.2	45
131	Ultrafine IrNi Bimetals Encapsulated in Zeolitic Imidazolate Frameworksâ€Derived Porous Nâ€Doped Carbon for Boosting Oxygen Evolution in Both Alkaline and Acidic Electrolytes. Advanced Materials Interfaces, 2020, 7, 2001145.	1.9	18
132	Ce-Doped IrO ₂ Electrocatalysts with Enhanced Performance for Water Oxidation in Acidic Media. ACS Applied Materials & amp; Interfaces, 2020, 12, 37006-37012.	4.0	47
133	Selective Loading of Atomic Platinum on a RuCeO _{<i>x</i>} Support Enables Stable Hydrogen Evolution at High Current Densities. Angewandte Chemie, 2020, 132, 20603-20607.	1.6	28
134	Iridium-based nanomaterials for electrochemical water splitting. Nano Energy, 2020, 78, 105270.	8.2	192
135	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 122, 12217-12314.	23.0	563
136	The hexagonal perovskite Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^î^} as an efficient electrocatalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4488-4497.	3.0	16
137	Polypyrrole assisted synthesis of nanosized iridium oxide for oxygen evolution reaction in acidic medium. International Journal of Hydrogen Energy, 2020, 45, 33491-33499.	3.8	11
138	Ultra-thin layers of iridium electrodeposited on Ti2AlC support as cost effective catalysts for hydrogen production by water electrolysis. Journal of Electroanalytical Chemistry, 2020, 878, 114575.	1.9	9
139	Selective Surface Reconstruction of a Defective Iridiumâ€Based Catalyst for Highâ€Efficiency Water Splitting. Advanced Functional Materials, 2020, 30, 2004375.	7.8	85
140	Boosted Oxygen Evolution Reactivity via Atomic Iron Doping in Cobalt Carbonate Hydroxide Hydrate. ACS Applied Materials & Interfaces, 2020, 12, 40220-40228.	4.0	42
141	Polyoxometalateâ€Đerived Ir/WO _x /rGO Nanocomposites for Enhanced Electrocatalytic Water Splitting. Energy and Environmental Materials, 2021, 4, 681-686.	7.3	17
142	Hollow IrCo Nanoparticles for High-Performance Overall Water Splitting in an Acidic Medium. ACS Applied Nano Materials, 2020, 3, 11916-11922.	2.4	16
143	Mesoporous PdAgIr nanoalloys to catalyze formate oxidation with an unprecedentedly low onset potential. Journal of Materials Chemistry A, 2020, 8, 25780-25790.	5.2	14
144	Ultrafine Ir Nanowires with Microporous Channels and Superior Electrocatalytic Activity for Oxygen Evolution Reaction. ChemCatChem, 2020, 12, 3060-3067.	1.8	19

#	Article	IF	CITATIONS
145	Electronic structure inspired a highly robust electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2020, 56, 8071-8074.	2.2	15
146	Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. Nanoscale, 2020, 12, 13249-13275.	2.8	183
147	Study of the Oxygen Evolution Reaction at Strontium Palladium Perovskite Electrocatalyst in Acidic Medium. International Journal of Molecular Sciences, 2020, 21, 3785.	1.8	13
148	IrO2 nanoparticle-decorated single-layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chemical Engineering Journal, 2020, 399, 125738.	6.6	60
149	Synthesis in Silica Nanoreactor: Copper Pyrophosphate Quantum Dots and Silver Oxide Nanocrystallites Inside Silica Mezochannels. Materials, 2020, 13, 2009.	1.3	5
150	Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal–Organic Framework Self-Dissolution. ACS Applied Materials & Interfaces, 2020, 12, 29414-29423.	4.0	6
151	Electroactivation-induced IrNi nanoparticles under different pH conditions for neutral water oxidation. Nanoscale, 2020, 12, 14903-14910.	2.8	14
152	Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2020, 571, 30-37.	5.0	14
153	Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Applied Surface Science, 2020, 514, 145943.	3.1	37
154	Engineering oxygen vacancies on dendrite-like IrO2 for the oxygen evolution reaction in acidic solution. Sustainable Energy and Fuels, 2020, 4, 2462-2468.	2.5	10
155	<i>In situ</i> observation of heterogeneous charge distribution at the electrode unraveling the mechanism of electric field-enhanced electrochemical activity. Chemical Science, 2020, 11, 4158-4163.	3.7	7
156	Nature-inspired electrocatalysts and devices for energy conversion. Chemical Society Reviews, 2020, 49, 3107-3141.	18.7	84
157	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	18.7	1,466
158	Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2020, 12, 14064-14070.	4.0	91
159	Catalytic Nanoframes and Beyond. Advanced Materials, 2020, 32, e2001345.	11.1	57
160	Intermolecular electron modulation by P/O bridging in an IrO ₂ -CoPi catalyst to enhance the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8273-8280.	5.2	16
161	Strong Electronic Coupling between Ultrafine Iridium–Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media. ACS Catalysis, 2020, 10, 3571-3579.	5.5	122
162	Synthesis of 3D IrRuMn Sphere as a Superior Oxygen Evolution Electrocatalyst in Acidic Environment. Chemistry - A European Journal, 2020, 26, 5662-5666.	1.7	19

#	Article	IF	CITATIONS
163	Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media. Applied Catalysis B: Environmental, 2020, 266, 118643.	10.8	57
164	Electronic Asymmetric Distribution of RhCu Bimetallic Nanocrystals for Enhancing Trifunctional Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 10299-10306.	4.0	23
165	Construction of Defectâ€Rich RhCu Nanotubes with Highly Active Rh ₃ Cu ₁ Alloy Phase for Overall Water Splitting in All pH Values. Advanced Energy Materials, 2020, 10, 1903038.	10.2	102
166	Self-assembly of homointerface engineered IrCo0.14 bracelet-like nanorings as efficient and stable bifunctional catalysts for electrochemical water splitting in acidic media. Electrochimica Acta, 2020, 337, 135738.	2.6	16
167	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
168	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe ₂ O ₄ nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale, 2020, 12, 10977-10986.	2.8	24
169	Identifying Key Structural Subunits and Their Synergism in Low-Iridium Triple Perovskites for Oxygen Evolution in Acidic Media. Chemistry of Materials, 2020, 32, 3904-3910.	3.2	29
170	Facile fabrication of Ir/CNT/rGO nanocomposites with enhanced electrocatalytic performance for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3288-3292.	2.5	16
171	Ultrafine-Grained Porous Ir-Based Catalysts for High-Performance Overall Water Splitting in Acidic Media. ACS Applied Energy Materials, 2020, 3, 3736-3744.	2.5	26
172	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	10.2	162
173	Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting. Journal of Materials Chemistry A, 2020, 8, 9871-9881.	5.2	144
174	Three-Dimensional Amorphous NiCoFe Nanowire@Nanosheets Catalysts for Enhanced Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2020, 167, 064514.	1.3	7
175	Transition metal based heterogeneous electrocatalysts for the oxygen evolution reaction at near-neutral pH. Nanoscale, 2020, 12, 9924-9934.	2.8	25
176	Nanoengineering 2D Dendritic PdAgPt Nanoalloys with Edge-Enriched Active Sites for Enhanced Alcohol Electroxidation and Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 21569-21578.	4.0	40
177	A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range <i>via</i> electronic coupling with carbon dots. Journal of Materials Chemistry A, 2020, 8, 9638-9645.	5.2	88
178	Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 280, 119433.	10.8	69
179	Theoretical insight into the role of nitrogen in the formic acid decomposition over Pt13/N-GNS. Applied Surface Science, 2021, 539, 148192.	3.1	15
180	Electronic modulation and interface engineering of electrospun nanomaterialsâ€based electrocatalysts toward water splitting. , 2021, 3, 101-128.		134

ARTICLE IF CITATIONS Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores 181 37 6.6 for oxygen evolution reaction. Chemical Engineering Journal, 2021, 416, 127884. Multilayer hollow MnCo2O4 microsphere with oxygen vacancies as efficient electrocatalyst for 6.6 84 oxygen evolution reaction. Chemical Engineering Journal, 2021, 421, 127831. Nanocatalyst Design for Longâ€Term Operation of Proton/Anion Exchange Membrane Water 183 10.2 89 Electrolysis. Advanced Energy Materials, 2021, 11, 2003188. Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water 184 splitting. Journal of Materials Chemistry A, 2021, 9, 857-874. Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient 185 5.2 21 oxygén reduction. Journal of Materials Chemistry A, 2021, 9, 1127-1133. Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602. 7.8 Fe-Induced electronic optimization of mesoporous Co–Ni oxide nanosheets as an efficient binder-free 187 1.4 4 electrode for the oxygen evolution reaction. New Journal of Chemistry, 2021, 45, 6424-6431. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. Journal of Materials Chemistry A, 2021, 9, 20131-20163. 188 5.2 Plasma-assisted defect engineering of N-doped NiCo₂O₄for efficient oxygen 189 1.3 22 reduction. Physical Chemistry Chemical Physics, 2021, 23, 6591-6599. Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. 3.2 Materials Chemistry Frontiers, 2021, 5, 4445-4473. Ir-based bifunctional electrocatalysts for overall water splitting. Catalysis Science and Technology, 191 2.1 53 2021, 11, 4673-4689. Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen 3.1 evolution reactions. Journal of Catalysis, 2021, 393, 303-312. Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework 193 nanoarrays: enhancement from electronic structure modulation. Journal of Materials Chemistry A, 5.2 48 2021, 9, 14270-14275. From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions. Nature Communications, 2021, 12, 373. 194 5.8 Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm, 195 1.3 8 2021, 23, 6454-6469. Anodic hydrazine oxidation assisted hydrogen evolution over bimetallic RhIr mesoporous nanospheres. Journal of Materials Chemistry A, 2021, 9, 18323-18328. Engineering Mo_xC nanoparticles confined in N,P-codoped porous carbon hollow spheres 197 1.6 14 for enhanced hydrogen evolution reaction. Dalton Transactions, 2021, 50, 499-503. 198 Highly Efficient Electrocatalytic Water Splitting., 2021, , 1335-1367.

ARTICLE IF CITATIONS # Directed assembly of ultrasmall nitrogen coordinated Ir nanoparticles for enhanced 199 2.6 10 electrocatalysis. Électrochimica Acta, 2021, 370, 137710. Abundant Active Sites on the Basal Plane and Edges of Layered van der Waals 19 Fe₃GeTe₂ for Highly Efficient Hydrogen Evolution., 2021, 3, 313-319. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 201 4.6 59 2021, 8, nwab019. Recent progress in in situ/operando analysis tools for oxygen electrocatalysis. Journal Physics D: Applied Physics, 2021, 54, 173001. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Advanced Materials, 203 11.1 392 2021, 33, e2006328. Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 8243-8250. 204 IrCuNi Deeply Concave Nanocubes as Highly Active Oxygen Evolution Reaction Electrocatalyst in Acid 205 4.5 49 Electrolyte. Nano Letters, 2021, 21, 2809-2816. Iridium Oxide Modified with Silver Single Atom for Boosting Oxygen Evolution Reaction in Acidic 206 8.8 Media. ACS Energy Letters, 0, , 1588-1595. Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 207 10.1 68 2021, 3, 100053. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. Small, 2021, 17, 208 5.2 e2005354. Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. 209 1.6 18 Angewandte Chemie, 2021, 133, 8324-8331. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Advanced 11.1 284 Materials, 2021, 33, e2004243. Trimetallic Spinel NiCo_{2â^'<i>x</i>}Fe_{<i>x</i>}O₄ Nanoboxes for 211 1.6 33 Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 11947-11952. Electrocatalytic oxygen evolution reaction (OER) on mixed nanoporous Rulr borides. Journal of 1.5 Applied Electrochemistry, 2021, 51, 1101-1108 Dopants in the Design of Noble Metal Nanoparticle Electrocatalysts and their Effect on Surface Energy and Coordination Chemistry at the Nanocrystal Surface. Advanced Energy Materials, 2021, 11, 213 10.2 25 2100265. Trimetallic Spinel NiCo_{2â[~]<i>x</i>}Fe_{<i>x</i>}O₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 214 247 60, 11841-11846. State-of-the-Art Iridium-Based Catalysts for Acidic Water Electrolysis: A Minireview of Wet-Chemistry 215 0.5 7 Synthesis Methods. Johnson Matthey Technology Review, 2021, 65, 247-262. Highly Active and Abundant MAB Phases Ni_{<i>n</i>+1}ZnB_{<i>n</i>} (<i>n</i>)a€‰=a€‰], Tj ETQq1 1 0.78

#	Article	IF	CITATIONS
217	Advanced Transition Metalâ€Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small, 2021, 17, e2100129.	5.2	293
218	Uniform Formation of Amorphous Cobalt Phosphate on Carbon Nanotubes for Hydrogen Evolution Reaction ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2113-2118.	2.6	12
219	Recent progress on precious metal single atom materials for water splitting catalysis. SusMat, 2021, 1, 194-210.	7.8	86
220	High Valence M-Incorporated PdCu Nanoparticles (M = Ir, Rh, Ru) for Water Electrolysis in Alkaline Solution. Nano Letters, 2021, 21, 5774-5781.	4.5	30
221	Coupled Co and Ir nanocrystals on graphite as pH-wide and efficient electrocatalyst for hydrogen evolution. Surfaces and Interfaces, 2021, 24, 101049.	1.5	3
222	Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Applied Catalysis B: Environmental, 2021, 286, 119881.	10.8	155
223	Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coordination Chemistry Reviews, 2021, 436, 213825.	9.5	136
224	Defectâ€Rich Highâ€Entropy Oxide Nanosheets for Efficient 5â€Hydroxymethylfurfural Electrooxidation. Angewandte Chemie, 2021, 133, 20415-20420.	1.6	29
225	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie, 2021, 133, 18969-18977.	1.6	30
226	High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nature Communications, 2021, 12, 4271.	5.8	75
227	Growth of IrCu nanoislands with rich IrCu/Ir interfaces enables highly efficient overall water splitting in non-acidic electrolytes. Chemical Engineering Journal, 2021, 416, 129128.	6.6	41
228	Defectâ€Rich Highâ€Entropy Oxide Nanosheets for Efficient 5â€Hydroxymethylfurfural Electrooxidation. Angewandte Chemie - International Edition, 2021, 60, 20253-20258.	7.2	184
229	Heterojunction catalyst in electrocatalytic water splitting. Coordination Chemistry Reviews, 2021, 439, 213953.	9.5	195
230	Aâ€site Cation Defects (Ba _{0.} <scp>₅Sr₀</scp> _{.5}) _{1–} <scp>_{<i>> Perovskites as Active Oxygen Evolution Reaction Catalyst in Alkaline Electrolyte^{â€}. Chinese Journal of Chemistry, 2021, 39, 2692-2698.</i>}</scp>	<,≤/sub	>Co _{O<}
231	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 18821-18829.	7.2	346
232	Advantageous metal-atom-escape towards super-hydrophilic interfaces assembly for efficient overall water splitting. Journal of Power Sources, 2021, 499, 229941.	4.0	75
233	Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5, 1704-1731.	11.7	416
234	Heterostructured Au–Ir Catalysts for Enhanced Oxygen Evolution Reaction. , 2021, 3, 1440-1447		20

#	Article	IF	CITATIONS
235	Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Research, 2021, 14, 4321-4327.	5.8	19
236	Phosphazene-Based Covalent Organic Polymer Decorated with NiCo ₂ O ₄ Nanocuboids as a Trifunctional Electrocatalyst: A Unique Replacement for the Conventional Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 9341-9352.	2.5	15
237	<scp>Iridiumâ€cobalt</scp> alloy nanotubes as a bifunctional electrocatalyst for <scp>pHâ€universal</scp> overall water splitting. Bulletin of the Korean Chemical Society, 2021, 42, 1524-1533.	1.0	11
238	Porous Pd/NiFeO _x Nanosheets Enhance the pHâ€Universal Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2107181.	7.8	61
239	Heterojunctionâ€Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. Angewandte Chemie, 2021, 133, 25970-25974.	1.6	7
240	Heterojunctionâ€Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. Angewandte Chemie - International Edition, 2021, 60, 25766-25770.	7.2	52
241	One-Pot Synthesis of Ternary Alloy Hollow Nanostructures with Controlled Morphologies for Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 45538-45546.	4.0	10
242	Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem, 2021, 14, 4636-4657.	3.6	28
243	Material libraries for electrocatalytic overall water splitting. Coordination Chemistry Reviews, 2021, 444, 214049.	9.5	123
244	Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy, 2021, 88, 106276.	8.2	49
245	Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media. Applied Catalysis B: Environmental, 2021, 298, 120528.	10.8	55
246	Recent advances in engineering cobalt carbonate hydroxide for enhanced alkaline water splitting. Journal of Alloys and Compounds, 2021, 887, 161405.	2.8	23
247	Hydrous cobalt–iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Advances, 2021, 3, 1976-1996.	2.2	14
248	Etching to unveil active sites of nanocatalysts for electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 3962-3985.	3.2	6
249	A self-supported FeNi layered double hydroxide anode with high activity and long-term stability for efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 3205-3212.	2.5	3
250	Ar/H ₂ /O ₂ ontrolled Growth Thermodynamics and Kinetics to Create Zeroâ€; Oneâ€; and Twoâ€Dimensional Ruthenium Nanocrystals towards Acidic Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2007344.	7.8	16
251	Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. Journal of Materials Chemistry A, 2021, 9, 5890-5914.	5.2	65
252	Interlayer confinement synthesis of Ir nanodots/dual carbon as an electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 4176-4183.	5.2	14

#	Apticie	IE	CITATIONS
π 253	Construction of AuPdPt spherical nanodendrites with a multilayered structure by manipulating etching and regrowth in seeded growth. CrystEngComm, 2021, 23, 6879-6891.	1.3	5
254	Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation. Journal of Materials Chemistry A, 2021, 9, 21440-21447.	5.2	21
255	Graphitic carbon nitride (g ₃ N ₄)â€based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting. , 2020, 2, 223-250.		114
256	Ultrathin RuRh@(RuRh)O ₂ core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 15746-15751.	5.2	24
257	Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process. Journal of Electrochemical Science and Technology, 2019, 10, 402-407.	0.9	9
258	Sub-monolayers of iridium electrodeposited on Ti2AlC substrate as catalysts for hydrogen evolution reaction in sulfuric acid solution. Materials Protection, 2020, 61, 181-191.	0.1	4
259	Ultradispersed Ir _{<i>x</i>} Ni clusters as bifunctional electrocatalysts for high-efficiency water splitting in acid electrolytes. RSC Advances, 2021, 11, 33179-33185.	1.7	9
260	Iridium in Tungsten Trioxide Matrix as an Efficient Biâ€Functional Electrocatalyst for Overall Water Splitting in Acidic Media. Small, 2021, 17, e2102078.	5.2	28
261	Nickel Nitrate Hydroxide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis in Alkaline Condition. Electrocatalysis, 2022, 13, 37-46.	1.5	4
262	Interface Engineering of CoP ₃ /Ni ₂ P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & Interfaces, 2021, 13, 52598-52609.	4.0	20
263	Preparation of <i>fcc</i> â€2Hâ€ <i>fcc</i> Heterophase Pd@Ir Nanostructures for Highâ€Performance Electrochemical Hydrogen Evolution. Advanced Materials, 2022, 34, e2107399.	11.1	48
264	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
265	Recent developments of Co ₃ O ₄ -based materials as catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2022, 12, 436-461.	2.1	39
266	Regulating Electron Redistribution of Intermetallic Iridium Oxide by Incorporating Ru for Efficient Acidic Water Oxidation. Advanced Energy Materials, 2021, 11, .	10.2	64
267	Ce-Substituted Spinel CuCo ₂ O ₄ Quantum Dots with High Oxygen Vacancies and Greatly Improved Electrocatalytic Activity for Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 19136-19144.	1.9	23
268	Synergistic electronic and morphological modulation by trace Ir introduction boosting oxygen evolution performance over a wide pH range. Chemical Engineering Journal, 2022, 433, 133577.	6.6	7
269	Self-supporting CoP-C nanosheet arrays derived from a metal–organic framework as synergistic catalysts for efficient water splitting. Dalton Transactions, 2021, 50, 17549-17558.	1.6	8
270	Nanoconfinement Effects of Ni@CNT for Efficient Electrocatalytic Oxygen Reduction and Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0

ARTICLE IF CITATIONS Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a 271 2.6 17 sustainable future. Materials Advances, 2022, 3, 1359-1400. Nanoconfinement effects of Ni@CNT for efficient electrocatalytic oxygen reduction and evolution 2.8 reaction. Journal of Alloys and Compounds, 2022, 897, 163206. Mesoporous IrNiTa metal glass ribbon as a superior self-standing bifunctional catalyst for water 273 6.6 16 electrolysis. Chemical Engineering Journal, 2022, 431, 134210. Understanding ultra-dispersed CeO modified iridium clusters as bifunction electrocatalyst for 274 2.5 high-efficiency water splitting in acid electrolytes. Journal of Rare Earths, 2023, 41, 208-214. CoP/Co2P hollow spheres embedded in porous N-doped carbon as highly efficient multifunctional electrocatalyst for Żn–air battery driving water splitting device. Electrochimica Acta, 2022, 403, 275 2.6 9 139643. Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic 6.6 Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217. 277 Iridiumâ€based electrocatalysts toward sustainable energy conversion. EcoMat, 2022, 4, . 6.8 16 WO₃ Nanosheet-Supported IrW Alloy for High-Performance Acidic Overall Water 278 2.5 Splitting with Low Ir Loading. ACS Applied Energy Materials, 2022, 5, 970-980. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica 279 2.6 8 Ácta, 2022, 409, 139835. An environmental approach for the photodegradation of toxic pollutants from wastewater using Ptâ€"Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications. Environmental Research, 2022, 208, 112708. Synthesis of Remarkably Thin Coâ€"Fe Phosphide/Carbon Nanosheet for Enhanced Oxygen Evolution Reaction Electrocatalysis Driven by Readily Generated Active Oxyhydroxide. ACS Applied Energy 281 7 2.5 Materials, 2022, 5, 2400-2411. Enhanced oxygen evolution performance by the partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in an Fe-containing alkaline electrolyte. Inorganic Chemistry 3.0 Frontiers, 0, , . Facile Hybrid Strategy of Srco0.5fe0.3mo0.2o3-î"/Co3o4 Heterostructure for Efficient Oxygen Evolution 283 0.4 0 Reaction. SSRN Electronic Journal, 0, , . Density Functional Theory Study of N2 Adsorption and DissociationÂOn 3d Transition Metal Atoms DopedÂlr(100)ÂSurface. SSRN Electronic Journal, 0, , . 284 0.4 Advances in Oxygen Evolution Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. 285 10.2 105 Advanced Energy Materials, 2022, 12, . Bifunctional WCâ€Supported RuO₂ Nanoparticles for Robust Water Splitting in Acidic 89 Media. Angewandte Chemie - International Edition, 2022, 61, . Bifunctional WCâ€Supported RuO₂ Nanoparticles for Robust Water Splitting in Acidic 287 1.6 11 Media. Angewandte Chemie, 2022, 134, . Lowâ€Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current 288 Density Operation, and Longâ€term Stability. Advanced Functional Materials, 2022, 32, .

# 289	ARTICLE Surface Engineering of Defective and Porous Ir Metallene with Polyallylamine for Hydrogen Evolution Electrocatalysis. Advanced Materials, 2022, 34, e2110680.	IF 11.1	Citations 95
290	Nanostructured Transition Metal Nitrides as Emerging Electrocatalysts for Water Electrolysis: Status and Challenges. EnergyChem, 2022, 4, 100072.	10.1	55
291	Structurally Disordered RuO ₂ Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angewandte Chemie, 2022, 134, .	1.6	25
292	Electron Redistributed Sâ€Doped Nickel Iron Phosphides Derived from Oneâ€Step Phosphatization of MOFs for Significantly Boosting Electrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	93
293	Structurally Disordered RuO ₂ Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2022, 61, .	7.2	135
294	Low Ir-content Ir/Fe@NCNT bifunctional catalyst for efficient water splitting. International Journal of Hydrogen Energy, 2022, 47, 13371-13385.	3.8	15
295	Identification of the electrical connection in the catalyst layer of the polymer electrolyte membrane water electrolyzer. International Journal of Hydrogen Energy, 2022, 47, 14017-14026.	3.8	8
296	Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts. Nano Research, 2022, 15, 3065-3072.	5.8	17
297	Heterostructure of core–shell IrCo@IrCoO _x as efficient and stable catalysts for oxygen evolution reaction. Nanotechnology, 2022, 33, 125702.	1.3	6
298	Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions. InformaÄnÃ-Materiály, 2022, 4, .	8.5	21
299	Bimetallic Ir _{<i>x</i>} Pb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11196-11204.	5.2	6
300	Equilibrated PtIr/IrO <i>_x</i> Atomic Heterojunctions on Ultrafine 1D Nanowires Enable Superior Dualâ€Electrocatalysis for Overall Water Splitting. Small, 2022, 18, e2201333.	5.2	21
301	Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. EScience, 2022, 2, 304-310.	25.0	171
302	Two-Dimensionally Assembled Pd–Pt–Ir Supernanosheets with Subnanometer Interlayer Spacings toward High-Efficiency and Durable Water Splitting. ACS Catalysis, 2022, 12, 5305-5315.	5.5	26
303	Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. Journal of Materials Chemistry A, 2022, 10, 13170-13189.	5.2	47
304	Engineering Heterostructure of Bimetallic Nickel-Silver Sulfide as an Efficient Electrocatalyst for Overall Water Splitting in Alkaline Media. SSRN Electronic Journal, 0, , .	0.4	0
305	Progress on the anode catalysts for proton exchange membrane water electrolysis. Chinese Science Bulletin, 2022, 67, 2889-2905.	0.4	2
306	A sulfur selfâ€doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. , 2022, 4, 491-505.		43

ARTICLE IF CITATIONS Motivating Ru-bri site of RuO2 by boron doping toward high performance acidic and neutral oxygen 307 5.8 20 evolution. Nano Research, 2022, 15, 7008-7015. Fe5Ge2Te2: Ironâ€rich Layered Chalcogenide for Highly Efficient Hydrogen Evolution. Zeitschrift Fur Anorganische Und Allgemeine Chemie, O, , . Cobalt, Ferrum Co-Doped Ni3Se4 Nano-Flake Array: An Efficient Electrocatalyst for the Alkaline 309 1.0 4 Hydrogen Evolution and Overall Water Splitting. Crystals, 2022, 12, 666. Noble metal oxide based electrodes interfaces design for application in water splitting. , 2022, , 97-128. Density functional theory study of N2 adsorption and dissociation on 3d transition metal atoms 311 3.1 7 doped Ir(100) surface. Applied Surface Science, 2022, 597, 153678. PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects., 2022, 1, . Strategies to improve electrocatalytic performance of MoS₂-based catalysts for 313 1.7 10 hydrogen evolution reactions. RSC Advances, 2022, 12, 17959-17983. A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. Enérgy 314 15.6 44 and Environmental Science, 2022, 15, 3449-3461. Engineering Heterostructure of Bimetallic Nickel-Silver Sulfide as an Efficient Electrocatalyst for 315 0.4 0 Overall Water Splitting in Alkaline Media. SSRN Electronic Journal, 0, , . Iridium nanohollows with porous walls for acidic water splitting. Journal of Materials Chemistry A, 5.2 2022, 10, 20005-20010. Oxygen-vacancy-rich TiO2 enables highly active and durable water electrolysis of urchin-like RuO2 317 2.0 6 catalyst. Science China Technological Sciences, 2022, 65, 2317-2324. Controllable Synthesis of Ultrathin Defectâ€Rich LDH Nanoarrays Coupled with MOFâ€Derived Coâ€NC 5.2 54 Microarrays for Efficient Overall Water Splitting. Small, 2022, 18, . Hydrothermal synthesis of Ir and Irâ€"Pd nanoparticles on carbon nanotubes. Russian Chemical 319 0.4 4 Bulletin, 2022, 71, 1164-1172. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution 5.8 145 reaction performance. Nature Communications, 2022, 13, . Fe single-atom catalysts with pre-organized coordination structure for efficient electrochemical 321 10.8 55 nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 317, 121750. Non-equilibrium synthesis of stacking faults-abundant Ru nanoparticles towards electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 316, 121682. Nanoarchitectonics of binary transition metal phosphides embedded in carbon fibers as a bifunctional 323 2.8 10 electrocatalysts for electrolytic water splitting. Journal of Alloys and Compounds, 2022, 923, 166472. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic 324 5.8 hydrogen evolution activity. Nature Communications, 2022, 13, .

#	Article	IF	CITATIONS
325	Dynamics of Both Active Phase and Catalysis Pathway for Spinel Waterâ€Oxidation Catalysts. Advanced Functional Materials, 2022, 32, .	7.8	21
326	Mechanistic Insights of Electrochemical Cl ₂ and O ₂ Generation from Lanthanum Cobalt Manganese Oxide. Advanced Materials Interfaces, 2022, 9, .	1.9	4
327	Nd ₆ Ir ₂ O ₁₃ as an Efficient Electrocatalyst Boosts the Oxygen Evolution Reaction in Acidic Media. ACS Sustainable Chemistry and Engineering, 2022, 10, 10658-10665.	3.2	11
328	Controllable Construction of IrCo Nanoclusters and the Performance for Water Electrolysis. Catalysts, 2022, 12, 914.	1.6	2
329	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
330	Lattice Strain Enhances the Activity of Irâ^IrO ₂ /C for Acidic Oxygen Evolution Reaction. ChemElectroChem, 2022, 9, .	1.7	4
331	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie, 2022, 134, .	1.6	4
332	Tuning the band (p and d) center and enhancing the active sites by nitrogen(N) doping on iridium diphosphide (IrP2) for accelerating pH-universal water electrolysis. Applied Catalysis B: Environmental, 2022, 319, 121906.	10.8	15
333	Recent progress of hollow structure platform in assisting oxygen evolution reaction. Chemical Engineering Journal, 2023, 452, 139232.	6.6	5
334	Electronic structure engineering for electrochemical water oxidation. Journal of Materials Chemistry A, 2022, 10, 20218-20241.	5.2	75
335	Electrocatalyst design for the conversion of energy molecules: electronic state modulation and mass transport regulation. Chemical Communications, 2022, 58, 10907-10924.	2.2	11
336	A mini-review on transition metals-based 1D nanotubular bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 32372-32393.	3.8	16
337	Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction. Journal of Electrochemical Science and Technology, 2022, 13, 417-423.	0.9	2
338	Unraveling the Role of Defects in Electrocatalysts for Water Splitting: Recent Advances and Perspectives. Energy & Fuels, 2022, 36, 11660-11690.	2.5	15
339	Multistage Electron Distribution Engineering of Iridium Oxide byÂCodoping W and Sn for Enhanced Acidic Water Oxidation Electrocatalysis. Small, 2022, 18, .	5.2	15
340	Effect of Components and Operating Conditions on the Performance of PEM Electrolyzers: A Review. Electrochem, 2022, 3, 581-612.	1.7	16
341	Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid. Nano Research, 2023, 16, 334-342.	5.8	11
342	Engineering heterostructure of bimetallic nickel-silver sulfide as an efficient electrocatalyst for overall water splitting in alkaline media. Journal of Solid State Chemistry, 2022, 316, 123556.	1.4	2

#	Article	IF	CITATIONS
343	Dimension Engineering in Nobleâ€Metalâ€Based Electrocatalysts for Water Splitting. Chemical Record, 2023, 23, .	2.9	3
344	Integrating multifunctional catalytic sites in COF@ZIF-67 derived carbon for the HER and ORR. Chemical Communications, 2022, 58, 13214-13217.	2.2	10
345	Controllable fabrication of a nickel–iridium alloy network by galvanic replacement engineering for high-efficiency electrocatalytic water splitting. Inorganic Chemistry Frontiers, 2022, 9, 6225-6236.	3.0	9
346	Enhanced Acidic Water Oxidation by Dynamic Migration of Oxygen Species at the Ir/Nb ₂ O _{5â~<i>x</i>} Catalyst/Support Interfaces. Angewandte Chemie - International Edition, 2022, 61, .	7.2	59
347	Iridium-incorporated cobalt nanofibers as efficient and robust bifunctional catalysts for high-performance water electrolysis. Science China Materials, 2023, 66, 1024-1032.	3.5	9
348	Enhanced Acidic Water Oxidation by Dynamic Migration of Oxygen Species at the Ir/Nb ₂ O _{5â^²<i>x</i>} Catalyst/Support Interfaces. Angewandte Chemie, 2022, 134, .	1.6	2
349	Weakening s-d orbital hybridization of metallic iridium by tungsten atoms for acidic water splitting. Applied Catalysis A: General, 2023, 649, 118941.	2.2	23
350	Modulation to favorable surface adsorption energy for oxygen evolution reaction intermediates over carbon-tunable alloys towards sustainable hydrogen production. Materials for Renewable and Sustainable Energy, 2022, 11, 169-213.	1.5	3
351	Aerogels-Inspired based Photo and Electrocatalyst for Water Splitting to Produce Hydrogen. Applied Materials Today, 2022, 29, 101670.	2.3	4
352	Iridium–Nickel Nanoparticle-Based Aerogels for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 18060-18069.	2.4	2
353	Vacancy defect tuning of electronic structures of transition metal (hydr)oxide-based electrocatalysts for enhanced oxygen evolution. Energy Advances, 2023, 2, 73-85.	1.4	5
354	The mechanisms and topologies of Ru-based water oxidation catalysts: A comprehensive review. Ceramics International, 2023, 49, 4030-4045.	2.3	1
355	Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coordination Chemistry Reviews, 2023, 477, 214952.	9.5	27
356	The role of various components in Ru-NiCo alloys in boosting the performance of overall water splitting. Journal of Colloid and Interface Science, 2023, 633, 189-198.	5.0	16
357	Ni optimizes Ir reaction pathway through IrNi alloy synergistic effect to improve overall water splitting efficiency. International Journal of Hydrogen Energy, 2023, 48, 8440-8449.	3.8	7
358	Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. Advanced Materials, 2023, 35, .	11.1	35
360	Activating catalytic behavior of binary transition metal sulfide-shelled carbon nanotubes by iridium incorporation toward efficient overall water splitting. Materials Today Nano, 2023, 21, 100296.	2.3	4
361	Controlled fabrication of Ru–O–Se composites for enhanced acidic oxygen evolution. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	2

#	Article	IF	CITATIONS
362	Heterostructured Core–Shell Ni–Co@Fe–Co Nanoboxes of Prussian Blue Analogues for Efficient Electrocatalytic Hydrogen Evolution from Alkaline Seawater. ACS Catalysis, 2023, 13, 1349-1358.	5.5	25
363	Single Cobalt Atoms Immobilized on Palladiumâ€Based Nanosheets as 2D Singleâ€Atom Alloy for Efficient Hydrogen Evolution Reaction. Small, 2023, 19, .	5.2	10
364	Space-confined ultrafine Co4N nanodots within an N-doped carbon framework on carbon cloth for highly efficient universal pH overall water splitting. Science China Materials, 2023, 66, 1362-1372.	3.5	7
365	lrO ₂ /Ir Composite Nanoparticles (IrO ₂ @Ir) Supported on TiN _x O _y Coated TiN: Efficient and Robust Oxygen Evolution Reaction Catalyst for Water Electrolysis. ChemCatChem, 2023, 15, .	1.8	15
366	Ultrafine Ruthenium-Embedded P-Doped Carbon Materials as Bifunctional Catalysts for Solar-Assistant Water Splitting. Energy & Fuels, 0, , .	2.5	1
367	The effect of iridium content in boron carbide-supported iridium catalyst on the activity and stability of proton exchange membrane water electrolyzer. Materials Today Energy, 2023, 32, 101237.	2.5	3
368	Amorphous mixed Ir–Mn oxide catalysts for the oxygen evolution reaction in PEM water electrolysis for H2 production. International Journal of Hydrogen Energy, 2023, 48, 10532-10544.	3.8	9
369	Rare-earth modified platinum-based electrocatalysts incorporating anodic glycerol oxidation reactions while promoting cathodic hydrogen evolution reactions. International Journal of Hydrogen Energy, 2023, 48, 14742-14748.	3.8	2
370	Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER. Frontiers in Chemistry, 0, 11, .	1.8	2
371	Boosting Ferroptosis Therapy with Iridium Singleâ€Atom Nanocatalyst in Ultralow Metal Content. Advanced Materials, 2023, 35, .	11.1	24
372	Iridium-based electrocatalysts for the acidic oxygen evolution reaction: engineering strategies to enhance the activity and stability. Materials Chemistry Frontiers, 2023, 7, 1248-1267.	3.2	6
373	High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Science China Materials, 2023, 66, 1681-1701.	3.5	24
374	WOx nanowire supported ultra-fine Ir-IrOx nanocatalyst with compelling OER activity and durability. Chemical Engineering Journal, 2023, 464, 142613.	6.6	9
375	The construction of defect-rich CoP@CoP@(Co/Ni)2P triple-shell hollow nanospheres with boosted electrocatalytic hydrogen evolution performances over a wide pH range. Chemical Engineering Journal, 2023, 463, 142448.	6.6	13
376	Low-iridium doped single-crystalline hydrogenated titanates (H2Ti3O7) with large exposed {100} facets for enhanced oxygen evolution reaction under acidic conditions. Journal of Alloys and Compounds, 2023, 946, 169466.	2.8	1
377	Understanding the copper-iridium nanocrystals as highly effective bifunctional pH-universal electrocatalysts for water splitting. Journal of Colloid and Interface Science, 2023, 642, 779-788.	5.0	2
378	Theoretical screening of synergistic transition metal dual-atom catalysts for overall water splitting. Computational Materials Science, 2023, 220, 112034.	1.4	1
379	In Situ Electroplating of Ir@Carbon Cloth as High-Performance Selective Oxygen Evolution Reaction Catalyst for Direct Electrolytic Recovery of Lead. Catalysts, 2023, 13, 322.	1.6	6

#	Article	IF	CITATIONS
380	Metallic-Ir-based anode catalysts in PEM water electrolyzers: Achievements, challenges, and perspectives. Current Opinion in Electrochemistry, 2023, 38, 101227.	2.5	7
381	Coaxial Nanofiber IrO _{<i>x</i>} @SbSnO _{<i>x</i>} as an Efficient Electrocatalyst for Proton Exchange Membrane Dehumidifier. ACS Applied Materials & Interfaces, 2023, 15, 10606-10620.	4.0	1
382	Iron-Doped Monoclinic Strontium Iridate as a Highly Efficient Oxygen Evolution Electrocatalyst in Acidic Media. Nanomaterials, 2023, 13, 797.	1.9	1
383	Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. , 2023, 2, e9120056.		55
384	Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting. IScience, 2023, 26, 106326.	1.9	4
385	Electronic and Lattice Engineering of Ruthenium Oxide towards Highly Active and Stable Water Splitting. Advanced Energy Materials, 2023, 13, .	10.2	32
386	Tailored Electronic Structure of Ir in High Entropy Alloy for Highly Active and Durable Bifunctional Electrocatalyst for Water Splitting under an Acidic Environment. Advanced Materials, 2023, 35, .	11.1	51
387	Ir–Ru Electrocatalysts Embedded in Nâ€Đoped Carbon Matrix for Proton Exchange Membrane Water Electrolysis. Advanced Functional Materials, 2023, 33, .	7.8	7
388	Metal Oxide‧upported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. Small Methods, 2023, 7, .	4.6	6
389	Ultrathin fan-like multimetallic oxide as a superior oxygen evolution electrocatalyst in alkaline water and seawater. International Journal of Hydrogen Energy, 2023, 48, 26729-26739.	3.8	1
409	Understanding the Structural Evolution of IrFeCoNiCu High-Entropy Alloy Nanoparticles under the Acidic Oxygen Evolution Reaction. Nano Letters, 2023, 23, 6637-6644.	4.5	10
411	Recent advances in proton exchange membrane water electrolysis. Chemical Society Reviews, 2023, 52, 5652-5683.	18.7	27
413	Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. Nano-Micro Letters, 2023, 15, .	14.4	11
418	Preparation of Ir–Cu/C nanosheets for the oxygen evolution reaction by room temperature plasma carbonization. Chemical Communications, 2023, 59, 11260-11263.	2.2	1
438	Recent advances and perspectives of Ir-based anode catalysts in PEM water electrolysis. Energy Advances, 0, , .	1.4	0
442	IrNi Nanoparticles as Highly Efficient Electrocatalysts Towards the Oxygen Evolution Reaction in an Acidic Medium. Springer Proceedings in Physics, 2024, , 99-107.	0.1	0
447	In situ/operando X-ray absorption spectroscopy in small molecule–based electrocatalysis. , 2024, , 199-214.		0