Incorporation of tetanus-epitope into virus-like particle in older recipients in models of psoriasis, Alzheimer‧

Npj Vaccines 2, 30 DOI: 10.1038/s41541-017-0030-8

Citation Report

#	Article	IF	CITATIONS
1	Treating insect-bite hypersensitivity in horses with active vaccination against IL-5. Journal of Allergy and Clinical Immunology, 2018, 142, 1194-1205.e3.	1.5	56
2	Bionanotechnology for vaccine design. Current Opinion in Biotechnology, 2018, 52, 80-88.	3.3	23
3	The Prospects of an Active Vaccine Against Asthma Targeting IL-5. Frontiers in Microbiology, 2018, 9, 2522.	1.5	4
5	New Routes and Opportunities for Modular Construction of Particulate Vaccines: Stick, Click, and Glue. Frontiers in Immunology, 2018, 9, 1432.	2.2	115
6	Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International, 2018, 27, 245-255.	0.9	38
7	Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection. Vaccines, 2019, 7, 72.	2.1	33
8	Virus-Like Particles as an Instrument of Vaccine Production. Molecular Biology, 2019, 53, 323-334.	0.4	62
9	Multiple Antigenic Peptide System Coupled with Amyloid Beta Protein Epitopes As An Immunization Approach to Treat Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 2794-2800.	1.7	6
10	Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects. Journal of Allergy and Clinical Immunology, 2019, 144, 193-203.	1.5	42
11	Vaccination with nanoparticles combined with micro-adjuvants protects against cancer. , 2019, 7, 114.		41
12	Active immunisation targeting nerve growth factor attenuates chronic pain behaviour in murine osteoarthritis. Annals of the Rheumatic Diseases, 2019, 78, 672-675.	0.5	37
13	New Strategies for Prevention and Treatment of Insect Bite Hypersensitivity in Horses. Current Dermatology Reports, 2019, 8, 303-312.	1.1	15
14	Active vaccination against interleukinâ€5 as longâ€ŧerm treatment for insectâ€bite hypersensitivity in horses. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 572-582.	2.7	42
15	A vaccine against Alzheimer`s disease: anything left but faith?. Expert Opinion on Biological Therapy, 2019, 19, 73-78.	1.4	27
16	Virusâ€ ŀ ike particles for vaccination against cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1579.	3.3	74
17	Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. Journal of Allergy and Clinical Immunology, 2020, 145, 1240-1253.e3.	1.5	72
18	All the small things: How virusâ€like particles and liposomes modulate allergic immune responses. European Journal of Immunology, 2020, 50, 17-32.	1.6	12
19	COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 2020, 8, 404.	2.1	81

CITATION REPORT

#	Article	IF	CITATIONS
20	Multifactorial Design of a Supramolecular Peptide Anti-IL-17 Vaccine Toward the Treatment of Psoriasis. Frontiers in Immunology, 2020, 11, 1855.	2.2	19
21	Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT®). Frontiers in Immunology, 2020, 11, 594911.	2.2	12
22	The <i>3Ds</i> in virusâ€like particle basedâ€vaccines: " <i>Design, Delivery and Dynamics</i> â€e Immunological Reviews, 2020, 296, 155-168.	2.8	57
23	Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses. Vaccines, 2020, 8, 213.	2.1	12
24	A novel rapid modularized hepatitis B core virus-like particle-based platform for personalized cancer vaccine preparation via fixed-point coupling. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102223.	1.7	8
25	Biogenic nanoparticles as immunomodulator for tumor treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1646.	3.3	21
26	Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection. International Archives of Allergy and Immunology, 2020, 181, 624-628.	0.9	20
27	Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette–Guérin Vaccination to Improve Antiviral Antibody Responses. Journal of Immunology, 2020, 205, 425-437.	0.4	3
28	Immunization of Cats against Fel d 1 Results in Reduced Allergic Symptoms of Owners. Viruses, 2020, 12, 288.	1.5	19
29	Recent Advances in the Use of Plant Virus-Like Particles as Vaccines. Viruses, 2020, 12, 270.	1.5	41
30	Mechanisms of Particles in Sensitization, Effector Function and Therapy of Allergic Disease. Frontiers in Immunology, 2020, 11, 1334.	2.2	15
31	Engineered hepatitis B core virus-like particle carrier for precise and personalized Alzheimer's disease vaccine preparation via fixed-point coupling. Applied Materials Today, 2020, 19, 100575.	2.3	7
32	Vaccination against Allergy: A Paradigm Shift?. Trends in Molecular Medicine, 2020, 26, 357-368.	3.5	24
33	Factors That Govern the Induction of Long-Lived Antibody Responses. Viruses, 2020, 12, 74.	1.5	28
35	Virus-Like Particle-Mediated Vaccination against Interleukin-13 May Harbour General Anti-Allergic Potential beyond Atopic Dermatitis. Viruses, 2020, 12, 438.	1.5	4
36	Bioengineering of Virus-like Particles for the Prevention or Treatment of Allergic Diseases. Allergy, Asthma and Immunology Research, 2021, 13, 23.	1.1	4
37	Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. Advanced NanoBiomed Research, 2021, 1, 2000063.	1.7	5
38	The impact of size on particle drainage dynamics and antibody response. Journal of Controlled Release, 2021, 331, 296-308.	4.8	27

		CITATION REPORT		
#	Article		IF	CITATIONS
39	An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics, 202	1, 13, 455.	2.0	55
41	Development of a Vaccine against SARS-CoV-2 Based on the Receptor-Binding Domain Virus-Like Particles. Vaccines, 2021, 9, 395.	Displayed on	2.1	32
42	Neutralization of MERS coronavirus through a scalable nanoparticle vaccine. Npj Vaccir 107.	1es, 2021, 6,	2.9	12
43	Nanoparticles in allergen immunotherapy. Current Opinion in Allergy and Clinical Immu 21, 576-582.	nology, 2021,	1.1	6
44	A scalable and highly immunogenic virusâ€like particleâ€based vaccine against SARSâ€ European Journal of Allergy and Clinical Immunology, 2022, 77, 243-257.	CoVâ€2. Allergy:	2.7	35
47	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporat Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	tes Both	2.1	10
49	Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. Journal of 2022, 60, 335-346.	Microbiology,	1.3	18
50	Induction of Broadly Cross-Reactive Antibodies by Displaying Receptor Binding Domain on Virus-like Particles. Vaccines, 2022, 10, 307.	s of SARS-CoV-2	2.1	4
52	Intranasal administration of a virus like particlesâ€based vaccine induces neutralizing a against SARSâ€CoVâ€2 and variants of concern. Allergy: European Journal of Allergy ar Immunology, 2022, 77, 2446-2458.	ntibodies Id Clinical	2.7	14
54	Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for N Generation. Vaccines, 2022, 10, 485.	Vaccine	2.1	4
55	Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapie	es. , 2022, 4, .		5
56	Virus-Like Particles Are Efficient Tools for Boosting mRNA-Induced Antibodies. Frontiers Immunology, 0, 13, .	in	2.2	8
57	Virus-Like particles as a Novel Targeted Drug Delivery Platform for Biomedical Applicati Journal of Pharmacy and Technology, 2022, , 2801-2808.	ons. Research	0.2	0
58	Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cell antitumor immune responses. Science Advances, 2022, 8, .	ular	4.7	10
59	Virus-like particle vaccinology, from bench to bedside. , 2022, 19, 993-1011.			61
60	Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines 1431.	s, 2022, 10,	2.1	8
61	In situ delivery of nanoparticles formulated with micron-sized crystals protects from mi melanoma. , 2022, 10, e004643.	urine		1
62	Suitability of potyviral recombinant virus-like particles bearing a complete food allerger immunotherapy vaccines. Frontiers in Immunology, 0, 13, .	for	2.2	5

#	Article	IF	CITATIONS
63	Strategies for the development of hepatitis B virus vaccines. , 2023, , 173-189.		0
64	CuMV VLPs Containing the RBM from SARS-CoV-2 Spike Protein Drive Dendritic Cell Activation and Th1 Polarization. Pharmaceutics, 2023, 15, 825.	2.0	1
65	Protein-based nano-vaccines against SARS-CoV-2: Current design strategies and advances of candidate vaccines. International Journal of Biological Macromolecules, 2023, 236, 123979.	3.6	4
66	Vaccination using mutated receptor binding domains of SARS-CoV-2: Evidence for partial immune escape but not serotype formation. Frontiers in Immunology, 0, 14, .	2.2	0
67	The next generation virusâ€like particle platform for the treatment of peanut allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 1980-1996.	2.7	7
68	Bacterial expression systems based on Tymovirus-like particles for the presentation of vaccine antigens. Frontiers in Microbiology, 0, 14, .	1.5	0
72	Noninfectious Disease Vaccines. , 2023, , 736-746.e4.		0
75	Encyclopedia of food allergy: Innovative approaches to immunization. , 2023, , .		0

CITATION REPORT