CITATION REPORT List of articles citing

The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency

DOI: 10.1038/s41467-017-01216-w Nature Communications, 2017, 8, 1149.

Source: https://exaly.com/paper-pdf/66795194/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
222	Commentary: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. 2017 , 10, 412		6
221	Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. 2018 , 85, 192-204		25
220	Mechanistic effects of mesenchymal and hematopoietic stem cells: New therapeutic targets in myocardial infarction. 2018 , 119, 5274-5286		14
219	Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. 2018 , 418, 41-50		160
218	Analysis of human ES cell differentiation establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular. 2018 , 19, 276		27
217	The Circular RNA circPRKCI Promotes Tumor Growth in Lung Adenocarcinoma. 2018, 78, 2839-2851		170
216	CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. 2018 , 9, 417		391
215	The pro-metastasis effect of circANKS1B in breast cancer. 2018 , 17, 160		157
214	circRNA meets gene amplification. 2018 , 2,		1
213	Human papillomavirus 16 E7 oncoprotein alters the expression profiles of circular RNAs in Caski cells. 2018 , 9, 3755-3764		20
212	Circular RNAs in Cancer. 2018 , 1087, 215-230		29
211	Functional Role of Circular RNA in Regenerative Medicine. 2018 , 1087, 299-308		2
210	Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. 2018 , 17, 144		127
209	Association of microRNA-7 and its binding partner CDR1-AS with the prognosis and prediction of 1-line tamoxifen therapy in breast cancer. 2018 , 8, 9657		25
208	Noncoding RNAs: Potential players in the self-renewal of mammalian spermatogonial stem cells. 2018 , 85, 720-728		6
207	Functional role of circular RNAs in cancer development and progression. 2018, 15, 995-1005		109
206	The Biogenesis, Functions, and Challenges of Circular RNAs. 2018 , 71, 428-442		902

205	The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. 2018, 9, 9	93
204	The emerging landscape of circular RNA in cardiovascular diseases. 2018 , 122, 134-139	44
203	Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. 2018, 9, 402	1341
202	Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. 2018 , 46, 8168-8180	92
201	ESRP1-Induced CD44 v3 Is Important for Controlling Pluripotency in Human Pluripotent Stem Cells. 2018 , 36, 1525-1534	7
200	The biogenesis, biology and characterization of circular RNAs. 2019 , 20, 675-691	1343
199	Circular RNA PRKCI promotes glioma cell progression by inhibiting microRNA-545. 2019 , 10, 616	22
198	Circular RNAs: Biogenesis, Mechanism, and Function in Human Cancers. 2019 , 20,	92
197	circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. 2019 , 134, 1533-1546	72
196	Past, present, and future of circRNAs. 2019 , 38, e100836	365
195	Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. 2019 , 110, 2960-2972	40
194	The Role of CDR1as in Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells. 2019 , 2019, 2316834	13
193	Exposure to Ionizing Radiation Triggers Prolonged Changes in Circular RNA Abundance in the Embryonic Mouse Brain and Primary Neurons. 2019 , 8,	7
192	Functions and Potential Applications of Circular RNAs in Cancer Stem Cells. 2019 , 9, 500	13
191	Guidance of circular RNAs to proteins' behavior as binding partners. 2019 , 76, 4233-4243	27
190	The TWIST1-centered competing endogenous RNA network promotes proliferation, invasion, and migration of lung adenocarcinoma. 2019 , 8, 62	10
189	CircRNAs in cancer metabolism: a review. 2019 , 12, 90	140
188	Functional roles of circular RNAs during epithelial-to-mesenchymal transition. 2019 , 18, 138	50

187	Circles in the heart and cardiovascular system. 2020 , 116, 269-278	22
186	Reconstruction of full-length circular RNAs enables isoform-level quantification. 2019 , 11, 2	59
185	Circular RNA: a novel biomarker and therapeutic target for human cancers. 2019 , 16, 292-301	151
184	CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. 2019 , 16, 1249-1262	52
183	CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. 2019 , 30, 157-173.e7	115
182	Noncoding RNAs as Regulators of Gene Expression in Pluripotency and Differentiation. 2019 , 73-105	
181	CircPCMTD1 Acts as the Sponge of miR-224-5p to Promote Glioma Progression. 2019 , 9, 398	27
180	Circular RNAs and human glioma. 2019 , 16, 11-23	32
179	MicroRNA-155: A Master Regulator of Inflammation. 2019 , 39, 321-330	74
178	Intriguing circles: Conflicts and controversies in circular RNA research. 2019 , 10, e1538	57
177	The emerging roles and functions of circular RNAs and their generation. 2019 , 26, 29	148
176	Altered expression profile of circular RNAs in conjunctival melanoma. 2019 , 11, 787-804	12
175	Circular RNAs: Diversity of Functions and a Regulatory Nova in Oral Medicine: A Pilot Review. 2019 , 28, 819-830	4
174	CircCDYL inhibits the expression of C-MYC to suppress cell growth and migration in bladder cancer. 2019 , 47, 1349-1356	20
173	FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. 2019 , 47, 5325-5340	58
172	Widespread and Functional RNA Circularization in Localized Prostate Cancer. 2019 , 176, 831-843.e22	214
171	Circular RNA circNOL10 Inhibits Lung Cancer Development by Promoting SCLM1-Mediated Transcriptional Regulation of the Humanin Polypeptide Family. 2019 , 6, 1800654	54
170	High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. 2019 , 12, 174	28

(2020-2019)

169	Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. 2019 , 16, 118-132	27
168	The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies. 2019 , 28, 867-881	14
167	Altered expression of circular RNAs in human placental chorionic plate-derived mesenchymal stem cells pretreated with hypoxia. 2019 , 33, e22825	7
166	Identification, characterization, and functional investigation of circular RNAs in subventricular zone of adult rat brain. 2019 , 120, 3428-3437	13
165	The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. 2020 , 98, 87-97	169
164	Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. 2020 , 27, 919-933	76
163	Methods for analysis of circular RNAs. 2020 , 11, e1566	17
162	The Landscape of Circular RNA Expression in the Human Brain. 2020 , 87, 294-304	27
161	Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases. 2020 , 180, 108825	19
160	circCAMSAP1 Promotes Tumor Growth in Colorectal Cancer via the miR-328-5p/E2F1 Axis. 2020 , 28, 914-928	62
160 159	circCAMSAP1 Promotes Tumor Growth in Colorectal Cancer via the miR-328-5p/E2F1 Axis. 2020 , 28, 914-928 Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. 2020 , 133, 593-604	62
159	Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. 2020 , 133, 593-604 Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the	1
159 158	Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. 2020 , 133, 593-604 Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/Etatenin pathway. 2020 , 10, 17443 The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p	1
159 158 157	Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. 2020, 133, 593-604 Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/Etatenin pathway. 2020, 10, 17443 The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1[translation. 2020, 19, 164 Genome-Wide Analysis of the Expression of Circular RNA Full-Length Transcripts and Construction	1 12 49
159 158 157	Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. 2020, 133, 593-604 Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/Etatenin pathway. 2020, 10, 17443 The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1[Itranslation. 2020, 19, 164 Genome-Wide Analysis of the Expression of Circular RNA Full-Length Transcripts and Construction of the circRNA-miRNA-mRNA Network in Cervical Cancer. 2020, 8, 603516 Hsa_circ_0046263 functions as a ceRNA to promote nasopharyngeal carcinoma progression by	1 12 49 8
159 158 157 156	Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. 2020, 133, 593-604 Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/Etatenin pathway. 2020, 10, 17443 The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1ltranslation. 2020, 19, 164 Genome-Wide Analysis of the Expression of Circular RNA Full-Length Transcripts and Construction of the circRNA-miRNA-mRNA Network in Cervical Cancer. 2020, 8, 603516 Hsa_circ_0046263 functions as a ceRNA to promote nasopharyngeal carcinoma progression by upregulating IGFBP3. 2020, 11, 562 A Parkinson's disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress.	1 12 49 8

151	Circular RNA circSnx5 Controls Immunogenicity of Dendritic Cells through the miR-544/SOCS1 Axis and PU.1 Activity Regulation. 2020 , 28, 2503-2518	17
150	The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. 2020 , 1	44
149	Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. 2020 , 183, 76-93.e22	84
148	Circular RNAs: The Brain Transcriptome Comes Full Circle. 2020 , 43, 752-766	26
147	Circular RNAs in cell differentiation and development. 2020 , 147,	15
146	Biological functions of circRNAs and their progress in livestock and poultry. 2020 , 55, 1667-1677	4
145	Epstein-Barr virus-derived circular RNA LMP2A induces stemness in EBV-associated gastric cancer. 2020 , 21, e49689	31
144	Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress. 2020 , 24, 11397-11408	26
143	Circular RNAs in Hematopoiesis with a Focus on Acute Myeloid Leukemia and Myelodysplastic Syndrome. 2020 , 21,	О
142	Non-Coding RNA-Driven Regulation of rRNA Biogenesis. 2020 , 21,	3
141	Biogenesis and functions of circular RNAs and their role in diseases of the female reproductive system. 2020 , 18, 104	6
140	The expanding regulatory mechanisms and cellular functions of circular RNAs. 2020 , 21, 475-490	318
139	Circular RNA in Diseased Heart. 2020 , 9,	18
138	circ5615 functions as a ceRNA to promote colorectal cancer progression by upregulating TNKS. 2020 , 11, 356	30
137	Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles. 2020 , 8, 322	13
136	Circular RNAs in Embryogenesis and Cell Differentiation With a Focus on Cancer Development. 2020 , 8, 389	10
135	circ_0000638 inhibits neodymium oxide-induced bronchial epithelial cell inflammation through the miR-498-5p/NF- B axis. 2020 , 195, 110455	10
134	Circular RNA-protein interactions: functions, mechanisms, and identification. 2020 , 10, 3503-3517	169

(2021-2020)

133	Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. 2020 , 19, 65	69
132	A circular RNA map for human induced pluripotent stem cells of foetal origin. 2020 , 57, 102848	6
131	CircHIPK3 Promotes Clear Cell Renal Cell Carcinoma (ccRCC) Cells Proliferation and Metastasis via Altering of miR-508-3p/CXCL13 Signal. 2020 , 13, 6051-6062	10
130	Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. 2020 , 19, 33	63
129	CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal. 2020 , 524, 839-846	30
128	circSamd4 represses myogenic transcriptional activity of PUR proteins. 2020 , 48, 3789-3805	34
127	Circular RNAs and their participation in stemness of cancer. 2020 , 37, 42	12
126	Ultrasensitive detection of circular RNA by accurate recognition of the specific junction site using stem-loop primer induced double exponential amplification. 2020 , 217, 121021	9
125	CircRNA BIRC6 promotes non-small cell lung cancer cell progression by sponging microRNA-145. 2020 , 43, 477-488	19
124	Direct recognition and sensitive detection of circular RNA with ligation-based PCR. 2020 , 18, 3269-3273	9
123	Clinical and functional significance of circular RNAs in cytogenetically normal AML. 2020, 4, 239-251	16
122	Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway. 2021 , 264, 118626	18
121	The roles of circRNAs in cancers: Perspectives from molecular functions. 2021 , 767, 145182	9
120	CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin B expression. 2021 , 28, 283-302	29
119	TV-circRGPD6 Nanoparticle Suppresses Breast Cancer Stem Cell-Mediated Metastasis via the miR-26b/YAF2 Axis. 2021 , 29, 244-262	9
118	CircCDK8 regulates osteogenic differentiation and apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia. 2021 , 1485, 56-70	20
117	The emerging roles of circular RNAs in regulating the fate of stem cells. 2021, 476, 231-246	3
116	Non-coding RNAs: the new central dogma of cancer biology. 2021 , 64, 22-50	24

115	circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. <i>Nature Communications</i> , 2021 , 12, 295	91
114	Genome-Wide Circular RNA Expression Patterns Reflect Resistance to Immunomodulatory Drugs in Multiple Myeloma Cells. 2021 , 13,	8
113	Circular RNAs in stem cell differentiation: a sponge-like role for miRNAs. 2021 , 18, 2438-2448	6
112	Current research on circular RNAs and their potential clinical implications in breast cancer. 2021,	2
111	Engineering circular RNA regulators to specifically promote circular RNA production. 2021, 11, 7322-7336	1
110	Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. 2021 , 11, 7507-7526	12
109	Research advances on epigenetics and cancer metabolism. 2021 , 50, 1-16	3
108	Circular RNAs as Novel Regulators of ECell Functions under Physiological and Pathological Conditions. 2021 , 22,	8
107	Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. 2021 , 20, 26	27
106	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. 2021 , 9, 640587	14
105	Investigating the Underlying Mechanisms of Circular RNAs and Their Application in Clinical Research of Cervical Cancer. 2021 , 12, 653051	2
104	Circular RNA-HIPK3 regulates human pulmonary artery endothelial cells function and vessel growth by regulating microRNA-328-3p/STAT3 axis. 2021 , 11, 20458940211000234	5
103	Circular RNA RBPMS inhibits bladder cancer progression via miR-330-3p/RAI2 regulation. 2021 , 23, 872-886	14
102	CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated Eatenin stabilization. 2021 , 40, 103	17
101	Functions and mechanisms of circular RNAs in regulating stem cell differentiation. 2021, 18, 2136-2149	4
100	CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. 2021 , 25, 4501-4515	6
99	Tip of the Iceberg: Roles of CircRNAs in Cancer Glycolysis. 2021 , 14, 2379-2395	2
98	Role of Virally Encoded Circular RNAs in the Pathogenicity of Human Oncogenic Viruses. 2021 , 12, 657036	6

97	HNRNPL Circularizes ARHGAP35 to Produce an Oncogenic Protein. 2021, 8, 2001701	11
96	Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. 2021 , 35, 109198	1
95	Non-coding RNAs in exosomes and adipocytes cause fat loss during cancer cachexia. 2021 , 6, 80-85	1
94	The circACC1/miR-29c-3p/FOXP1 network plays a key role in gastric cancer by regulating cell proliferation. 2021 , 557, 221-227	2
93	A Potential circRNA-miRNA-mRNA Regulatory Network in Asthmatic Airway Epithelial Cells Identified by Integrated Analysis of Microarray Datasets. 2021 , 8, 703307	3
92	Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. 2021 , 11, 664290	5
91	Circular RNA TADA2A promotes proliferation and migration via modulating of miR-638/KIAA0101 signal in non-small cell lung cancer. 2021 , 46,	2
90	MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. 2021 , 11,	2
89	Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives. 2021 , 22,	2
88	Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling. 2021 , 48, 1091-1091	3
87	N-methyladenosine-modified circIGF2BP3 inhibits CD8 T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. 2021 , 20, 105	20
86	Emerging Role of Circular RNA-Protein Interactions. 2021 , 7,	8
85	Generation of iPSCs from endangered Grevyll zebra and comparative transcriptomic analysis of mammalian PSCs.	
84	Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. 2021 , 25, 355-371	3
83	A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis. 2021 , 297, 101182	5
82	circ-NOL10 regulated by MTDH/CASC3 inhibits breast cancer progression and metastasis via multiple miRNAs and PDCD4. 2021 , 26, 773-786	2
81	Non-coding RNAs rewire cancer metabolism networks. 2021 , 75, 116-126	3
80	Cancer-related circular RNA: diverse biological functions. 2021 , 21, 11	17

79	Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. 2020 , 18, 16-25	2
78	Circular RNAs: New players in thyroid cancer. 2020 , 216, 153217	26
77	High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome.	2
76	Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer. 2018 , 10, 2606-2623	35
75	Circular RNAs in leukemia. 2019 , 11, 4757-4771	9
74	Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation. 2019 , 11, 8015-8034	8
73	Hsa_circ_0006948 enhances cancer progression and epithelial-mesenchymal transition through the miR-490-3p/HMGA2 axis in esophageal squamous cell carcinoma. 2019 , 11, 11937-11954	40
7²	A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR-101b by targeting TGFRI. 2020 , 22, 3785-3794	13
71	Research advances in molecular mechanisms underlying the pathogenesis of cystic fibrosis: From technical improvement to clinical applications (Review). 2020 , 22, 4992-5002	3
70	A circular RNA derived from FAT atypical cadherin 3 promotes lung cancer progression via forming a regulatory loop with oncogenic ELAV like RNA binding protein 1. 2021 ,	O
69	circ-ZNF609: A potent circRNA in human cancers. 2021 , 25, 10349-10361	4
68	CircITCH: A Circular RNA With Eminent Roles in the Carcinogenesis. 2021 , 11, 774979	1
67	CircNPHP4 in monocyte-derived small extracellular vesicles controls heterogeneous adhesion in coronary heart atherosclerotic disease. 2021 , 12, 948	7
66	The Landscape Of Circular RNA Expression In The Human Brain.	1
65	Circular RNA profiling in the oocyte and cumulus cells reveals thatcircARMC4is essential for porcine oocyte maturation.	
64	CircETFA upregulates CCL5 by sponging miR-612 and recruiting EIF4A3 to promote hepatocellular carcinoma. 2021 , 7, 321	2
63	From circRNAs to fusion circRNAs in hematological malignancies. 2021 , 6,	О
62	Dissecting the Role of Circular RNAs in Sarcomas with Emphasis on Osteosarcomas. 2021 , 9,	O

61	The emerging prospects of circular RNA in tumor immunity. 2020 , 8, 1091	3
60	circRNA is a potential target for cardiovascular diseases treatment. 2021 , 1	Ο
59	Circular RNAs in Stem Cells: from Basic Research to Clinical Implications 2021,	3
58	The emerging prospects of circular RNA in tumor immunity. 2020 , 8, 1091-1091	3
57	CircRNA CORO1C Regulates miR-654-3p/USP7 Axis to Mediate Laryngeal Squamous Cell Carcinoma Progression 2022 , 1	O
56	Emergent Roles of Circular RNAs in Metabolism and Metabolic Disorders 2022 , 23,	0
55	Circular RNA circDVL1 inhibits clear cell renal cell carcinoma progression through the miR-412-3p/PCDH7 axis 2022 , 18, 1491-1507	O
54	Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer 2022 , 234, 108123	3
53	CircZNF652 promotes the goblet cell metaplasia by targeting the miR-452-5p/JAK2 signaling pathway in allergic airway epithelia 2022 ,	1
52	Circular RNAs Modulate Cancer Hallmark and Molecular Pathways to Support Cancer Progression and Metastasis 2022 , 14,	1
51	CircRNA ACVR2A Sponges miR-1290 to Modulate Cell Progression in Gastric Cancer 2022 , 2022, 9461054	0
50	Circular RNAs in physiology and non-immunological diseases. 2021 ,	4
49	The emerging roles of circRNAs in cancer and oncology 2021 ,	25
48	Overview on miRNA classification, biogenesis, and functions. 2022 , 3-20	1
47	Circr, a Computational Tool to Identify miRNA:circRNA Associations. 2022 , 2,	
46	Non-coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications 2022 , e2100256	
45	CircUBE2Q2 promotes differentiation of cattle muscle stem cells and is a potential regulatory molecule of skeletal muscle development 2022 , 23, 267	1
44	Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma 2021 , 14,	Ο

43	CircRNA FAT1 Regulates Osteoblastic Differentiation of Periodontal Ligament Stem Cells via miR-4781-3p/SMAD5 Pathway 2021 , 2021, 5177488	4
42	Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment 2022 , 23,	O
41	Image_1.TIF. 2020 ,	
40	Table_1.DOCX. 2020 ,	
39	Data_Sheet_1.zip. 2020 ,	
38	Image_1.JPEG. 2019 ,	
37	Table_1.DOC. 2019 ,	
36	The Expression Profile, Clinical Application and Potential Tumor Suppressing Mechanism of hsa_circ_0001675 in Head and Neck Carcinoma. 2022 , 12,	
35	CRISPR/Cas13a induced exponential amplification for highly sensitive and specific detection of circular RNA 2022 , 246, 123521	О
34	Circular RNAs: Characterization, cellular roles, and applications 2022,	11
33	Biogenesis and Regulatory Roles of Circular RNAs. 2022 , 38,	5
32	Emerging roles of circular RNAs in stem cells. 2022 ,	
31	Circular RNAs Acting as miRNAs©ponges and Their Roles in Stem Cells. 2022 , 11, 2909	0
30	Circular RNAs Acting as miRNAs ponges and Their Roles in Stem Cells. 2022 , 11, 2909 CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. 2022 , 13,	0
	CircSCAF8 promotes growth and metastasis of prostate cancer through the	
30	CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. 2022 , 13,	1
30	CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. 2022, 13, CircRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. 12, A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	1

25	Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. 2022 , 12,	1
24	Circular RNAs in diabetes mellitus and its complications. 13,	O
23	CircNDST1 Regulates Bovine Myoblasts Proliferation and Differentiation via the miR-411a/Smad4 Axis. 2022 , 70, 10044-10057	1
22	High Percentage of Cancer Stem Cells in Metastatic Locations: Upregulation of circBIRC6 in Highly Metastatic Breast Cancer Subline.	
21	New Insights on Circular RNAs and Their Potential Applications as Biomarkers, Therapeutic Agents, and Preventive Vaccines in Viral Infections: with a glance at SARS-CoV-2. 2022 ,	O
20	Circular RNA BIRC6 depletion promotes osteogenic differentiation of periodontal ligament stem cells via the miR-543/PTEN/PI3K/AKT/mTOR signaling pathway in the inflammatory microenvironment. 2022 , 13,	O
19	Circular RNA circTmem241 drives group III innate lymphoid cell differentiation via initiation of Elk3 transcription. 2022 , 13,	O
18	CircRNA circUSP36 impairs the stability of NEDD4L mRNA through recruiting PTBP1 to enhance ULK1-mediated autophagic granulosa cell death. 2022 , 153, 103681	0
17	CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease. 2022 , 56, 102430	O
16	Identification of lncRNA biomarkers in hepatocellular carcinoma by comprehensive analysis of the lncRNA-mediated ceRNA network. 13,	O
15	Global circRNA expression changes predate clinical and histological improvements of psoriasis patients upon secukinumab treatment. 2022 , 17, e0275219	1
14	circSMAD4 Promotes Experimental Colitis and Impairs Intestinal Barrier Functions by Targeting Janus Kinase 2 Through Sponging miR-135a-5p.	O
13	The function and clinical implication of circular RNAs in lung cancer. 12,	O
12	The emerging regulatory mechanisms and biological function of circular RNAs in skeletal muscle development. 2022 , 1865, 194888	O
11	Functions and clinical significance of circular RNAs in acute myeloid leukemia. 13,	O
10	High percentage of Cancer Stem cells in metastatic locations: Upregulation of cicBIRC6 in highly metastatic breast Cancer Subline.	O
9	Exosomal circular RNA: a signature for lung cancer progression. 2022 , 22,	О
8	The Role of Circular RNAs in the Physiology and Pathology of the Mammalian Ovary. 2022 , 23, 15204	O

7	Hsa_circ_0015278 Regulates FLT3-ITD AML Progression via Ferroptosis-Related Genes. 2023 , 15, 71	О
6	Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. 2023 , 225, 1152-1163	O
5	Downregulation of circBIRC6 and circCORO1C during differentiation of human cord blood-derived CD34+ cells. 2023 , 35, 201147	0
4	A Circular RNA Expressed from the FAT3 Locus Regulates Neural Development.	O
3	CircRNA: A new class of targets for gastric cancer drug resistance therapy. 29,	0
2	The RNA interactome in the Hallmarks of Cancer.	O
1	Potential functions of circular RNAs in the osteogenic differentiation of human adipose- derived stem cells.	0