A generative vision model that trains with high data eff CAPTCHAs

Science 358, DOI: 10.1126/science.aag2612

Citation Report

#	Article	IF	CITATIONS
1	Artificial intelligence test: a case study of intelligent vehicles. Artificial Intelligence Review, 2018, 50, 441-465.	9.7	102
2	Research on Deep Learning Techniques in Breaking Text-Based Captchas and Designing Image-Based Captcha. IEEE Transactions on Information Forensics and Security, 2018, 13, 2522-2537.	4.5	66
3	Sharpening of Hierarchical Visual Feature Representations of Blurred Images. ENeuro, 2018, 5, ENEURO.0443-17.2018.	0.9	13
4	Low-Shot Learning from Imaginary Data. , 2018, , .		441
5	Sample-Efficient Optimization Using Bayesian Neural Networks. , 2018, , .		0
6	Evaluation of Ergonomically Designed CAPTCHAs using Deep Learning Technology. Journal of Information Processing, 2018, 26, 625-636.	0.3	1
7	High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nature Communications, 2018, 9, 5142.	5.8	34
8	Interactive Robot Knowledge Patching Using Augmented Reality. , 2018, , .		47
9	Unsupervised Learning using Pretrained CNN and Associative Memory Bank. , 2018, , .		16
10	Yet Another Text Captcha Solver. , 2018, , .		80
11	Estimating Protein Structure Prediction Models Quality Using Convolutional Neural Networks. , 2018, , .		3
12	Application of knowledgeâ€based cognitive CAPTCHA in Cloud of Things security. Concurrency Computation Practice and Experience, 2018, 30, e4769.	1.4	11
13	Robust procedural model fitting with a new geometric similarity estimator. Pattern Recognition, 2019, 85, 120-131.	5.1	12
14	Decade progress of palmprint recognition: A brief survey. Neurocomputing, 2019, 328, 16-28.	3.5	103
15	Deep Learning: The Good, the Bad, and the Ugly. Annual Review of Vision Science, 2019, 5, 399-426.	2.3	142
16	Artificial intelligence and machine learning in clinical development: a translational perspective. Npj Digital Medicine, 2019, 2, 69.	5.7	282
17	Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners. Applied Sciences (Switzerland), 2019, 9, 2331.	1.3	71
18	A Survey of Research on CAPTCHA Designing and Breaking Techniques. , 2019, , .		17

#	Article		CITATIONS
19	ProbLP., 2019,,.		13
20	Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PLoS ONE, 2019, 14, e0209409.	1.1	27
21	Activity-dependent neuron model for noise resistance. Neurocomputing, 2019, 357, 240-247.	3.5	2
22	A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things. Chemical Reviews, 2019, 119, 7996-8027.	23.0	197
23	An integrative computational architecture for object-driven cortex. Current Opinion in Neurobiology, 2019, 55, 73-81.	2.0	24
24	Neural algorithms and computing beyond Moore's law. Communications of the ACM, 2019, 62, 110-110.	3.3	30
25	Recognizing offline handwritten mathematical expressions efficiently. , 2019, , .		8
26	The neural and cognitive architecture for learning from a small sample. Current Opinion in Neurobiology, 2019, 55, 133-141.	2.0	23
27	The Future(s) of Social Machines: The Research Agenda. Lecture Notes in Social Networks, 2019, , 201-217.	0.8	0
28	Semisupervised Discriminant Multimanifold Analysis for Action Recognition. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 2951-2962.	7.2	20
29	Small Sample Meta-leaming Towards Object Recognition Through UAV Observations. , 2019, , .		1
30	What Does It Mean to Learn in Deep Networks? And, How Does One Detect Adversarial Attacks?. , 2019, ,		21
31	AOGNets: Compositional Grammatical Architectures for Deep Learning. , 2019, , .		11
32	Image Decomposition and Classification Through a Generative Model. , 2019, , .		1
33	Greedy Structure Learning of Hierarchical Compositional Models. , 2019, , .		2
34	A Survey on the New Generation of Deep Learning in Image Processing. IEEE Access, 2019, 7, 172231-172263.	2.6	129
35	AR CAPTCHA: Recognizing robot by augmented reality. Concurrency Computation Practice and Experience, 2021, 33, e5585.	1.4	3
36	Recurrence is required to capture the representational dynamics of the human visual system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21854-21863.	3.3	266

#	Article	IF	CITATIONS
37	Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs. Science Robotics, 2019, 4, .	9.9	33
38	Assessing the future plausibility of catastrophically dangerous Al. Futures, 2019, 107, 45-58.	1.4	13
39	Combining knowledge with data for efficient and generalizable visual learning. Pattern Recognition Letters, 2019, 124, 31-38.	2.6	4
40	A novel background subtraction algorithm based on parallel vision and Bayesian GANs. Neurocomputing, 2020, 394, 178-200.	3.5	63
41	An End-to-End Attack on Text CAPTCHAs. IEEE Transactions on Information Forensics and Security, 2020, 15, 753-766.	4.5	43
42	Skeleton Filter: A Self-Symmetric Filter for Skeletonization in Noisy Text Images. IEEE Transactions on Image Processing, 2020, 29, 1815-1826.	6.0	11
43	ImCAPTCHA: Imperceptible CAPTCHA Based on Cursor Trajectories. IEEE Consumer Electronics Magazine, 2020, 9, 74-82.	2.3	3
44	Knowledge Graph Completion: A Review. IEEE Access, 2020, 8, 192435-192456.	2.6	101
45	Knowledge Based Versus Data Based. Neuroimaging Clinics of North America, 2020, 30, 401-415.	0.5	6
46	Machine learning algorithm for clustering of heart disease and chemoinformatics datasets. Computers and Chemical Engineering, 2020, 143, 107068.	2.0	11
47	Generative models, linguistic communication and active inference. Neuroscience and Biobehavioral Reviews, 2020, 118, 42-64.	2.9	55
48	Combining Compositional Models and Deep Networks For Robust Object Classification under Occlusion. , 2020, , .		27
49	Clustering of mixed datasets using deep learning algorithm. Chemometrics and Intelligent Laboratory Systems, 2020, 204, 104123.	1.8	4
50	Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge. Asia-Pacific Journal of Ophthalmology, 2020, 9, 299-307.	1.3	31
51	Robust Object Detection Under Occlusion With Context-Aware CompositionalNets. , 2020, , .		52
52	Exploratory Overview on Breaking CAPTCHAs Using the Theory of the Consolidated Meta-Analytic Approach. , 2020, , .		1
53	Compositional Convolutional Neural Networks: A Deep Architecture With Innate Robustness to Partial Occlusion. , 2020, , .		50
54	From CAPTCHA to Commonsense: How Brain Can Teach Us About Artificial Intelligence. Frontiers in Computational Neuroscience, 2020, 14, 554097.	1.2	9

#	Article	IF	Citations
55	ToyArchitecture: Unsupervised learning of interpretable models of the environment. PLoS ONE, 2020, 15, e0230432.	1.1	0
56	Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence. Frontiers in Computational Neuroscience, 2020, 14, 39.	1.2	12
57	Clustering algorithm for mixed datasets using density peaks and Self-Organizing Generative Adversarial Networks. Chemometrics and Intelligent Laboratory Systems, 2020, 203, 104070.	1.8	5
58	Awareness as inference in a higher-order state space. Neuroscience of Consciousness, 2020, 2020, niz020.	1.4	47
59	Metasurface inverse design using machine learning approaches. Journal Physics D: Applied Physics, 2020, 53, 275105.	1.3	61
60	Simple and Easy: Transfer Learning-Based Attacks to Text CAPTCHA. IEEE Access, 2020, 8, 59044-59058.	2.6	22
61	Radical analysis network for learning hierarchies of Chinese characters. Pattern Recognition, 2020, 103, 107305.	5.1	31
62	Efficient inverse graphics in biological face processing. Science Advances, 2020, 6, eaax5979.	4.7	55
63	Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition, 2020, 108, 107482.	5.1	74
64	The building blocks of a brain-inspired computer. Applied Physics Reviews, 2020, 7, .	5.5	117
65	Unified deep neural network for segmentation and labeling of multipanel biomedical figures. Journal of the Association for Information Science and Technology, 2020, 71, 1327-1340.	1.5	2
66	Teach machine to learn: hand-drawn multi-symbol sketch recognition in one-shot. Applied Intelligence, 2020, 50, 2239-2251.	3.3	6
67	Applying Visual Cryptography to Enhance Text Captchas. Mathematics, 2020, 8, 332.	1.1	8
68	Robust CAPTCHAs Towards Malicious OCR. IEEE Transactions on Multimedia, 2021, 23, 2575-2587.	5.2	10
69	SP-GAN: Self-Growing and Pruning Generative Adversarial Networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 2458-2469.	7.2	14
70	Biologically inspired visual computing: the state of the art. Frontiers of Computer Science, 2021, 15, 1.	1.6	5
71	End-to-end attack on text-based CAPTCHAs based on cycle-consistent generative adversarial network. Neurocomputing, 2021, 433, 223-236.	3.5	20
72	Deep Nets: What have They Ever Done for Vision?. International Journal of Computer Vision, 2021, 129, 781-802.	10.9	36

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
73	Compositional Convolutional Neural Networks: A Robust and Interpretable Model for Object Recognition Under Occlusion. International Journal of Computer Vision, 2021, 129, 736-760.	10.9	39	
74	Multi-label fault diagnosis of rolling bearing based on meta-learning. Neural Computing and Applications, 2021, 33, 5393-5407.	3.2	44	
75	Fostering Compositionality in Latent, Generative Encodings to Solve the Omniglot Challenge. Lecture Notes in Computer Science, 2021, , 525-536.	1.0	2	
77	Knowledge-guided semantic computing network. Neurocomputing, 2021, 426, 70-84.	3.5	6	
79	Compositional Generative Networks and Robustness to Perceptible Image Changes. , 2021, , .		1	
80	Robust pixel-wise concrete crack segmentation and properties retrieval using image patches. Automation in Construction, 2021, 123, 103535.	4.8	20	
81	A cloud endpoint coordinating CAPTCHA based on multi-view stacking ensemble. Computers and Security, 2021, 103, 102178.	4.0	6	
82	Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	33	
83	Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps. Nature Communications, 2021, 12, 2392.	5.8	37	
84	A First Look at Private Communications in Video Games using Visual Features. Proceedings on Privacy Enhancing Technologies, 2021, 2021, 433-452.	2.3	0	
85	EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. Journal of Imaging, 2021, 7, 92.	1.7	8	
86	PhiNet of Things: Things Connected by Physical Space From the Natural View. IEEE Internet of Things Journal, 2021, 8, 8680-8692.	5.5	5	
87	Training Deep Generative Models in Highly Incomplete Data Scenarios with Prior Regularization. , 2021, , .		1	
88	Research on image classification method based on improved multi-scale relational network. PeerJ Computer Science, 2021, 7, e613.	2.7	136	
89	Adaptive Synapse Arrangement in Cortical Learning Algorithm. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2021, 25, 450-466.	0.5	5	
90	A deep learningâ€based attack on text CAPTCHAs by using object detection techniques. IET Information Security, 2022, 16, 97-110.	1.1	7	
91	Handwritten CAPTCHA recognizer: a text CAPTCHA breaking method based on style transfer network. Multimedia Tools and Applications, 2023, 82, 13025-13043.	2.6	1	
92	MIRAI: A Modifiable, Interpretable, and Rational AI Decision ÂSystem. Studies in Computational Intelligence, 2021, , 127-141.	0.7	0	

ARTICLE IF CITATIONS Breaking Text-Based CAPTCHA with Sparse Convolutional Neural Networks. Lecture Notes in Computer 93 1.0 3 Science, 2019, , 404-415. 94 Image Feature Learning with Genetic Programming. Lecture Notes in Computer Science, 2020, , 63-78. 1.0 The Foundations of Deep Learning with a Path Towards General Intelligence. Lecture Notes in 96 1.0 3 Computer Science, 2018, , 162-173. Going in circles is the way forward: the role of recurrence in visual inference. Current Opinion in Neurobiology, 2020, 65, 176-193. A survey of CAPTCHA technologies to distinguish between human and computer. Neurocomputing, 98 3.5 18 2020, 408, 292-307. A Generic Solver Combining Unsupervised Learning and Representation Learning for Breaking Text-Based Captchas., 2020,,. Using Generative Adversarial Networks to Break and Protect Text Captchas. ACM Transactions on 103 2.2 12 Privacy and Security, 2020, 23, 1-29. Patching interpretable Andâ€Orâ€Graph knowledge representation using augmented reality. Applied AI 1.4 Letters, 0, , e43. 107 Context-Driven Proactive Decision Support for Hybrid Teams. AI Magazine, 2019, 40, 41-57. 1.4 3 Grammatically Recognizing Images with Tree Convolution., 2020, , . Simple Convolutional-Based Models: Are They Learning the Task or the Data?. Neural Computation, 111 1.3 5 2021, 33, 3334-3350. Unsupervised One-Shot Learning of Both Specific Instances and Generalised Classes with a Hippocampal Architecture. Lecture Notes in Computer Science, 2020, , 395-406. Robust Instance Segmentation through Reasoning about Multi-Object Occlusion., 2021,,. 113 16 Biomorphic Artificial Intelligence: Achievements and Challenges. Studies in Computational 114 Intelligence, 2021, , 537-556. Digitizing the Pharma Neurons – A Technological Operation in Progress!. Reviews on Recent Clinical 115 0.4 0 Trials, 2020, 15, 178-187. De-CAPTCHA: A novel DFS based approach to solve CAPTCHA schemes. Computers and Electrical Engineering, 2022, 97, 107593. 117 Industrial Robot Control Based on Probablistic Network Image Recognition., 2020,,. 0 Text-based CAPTCHA Vulnerability Assessment using a Deep Learning-based Solver., 2021, , .

CITATION REPORT

#

#	Article	IF	CITATIONS
119	Brain-inspired models for visual object recognition: an overview. Artificial Intelligence Review, 2022, 55, 5263-5311.	9.7	8
121	A novel CAPTCHA solver framework using deep skipping Convolutional Neural Networks. PeerJ Computer Science, 2022, 8, e879.	2.7	5
122	A Framework for Evaluating Dashboards in Healthcare. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 1715-1731.	2.9	11
123	A separable neural code in monkey IT enables perfect CAPTCHA decoding. Journal of Neurophysiology, 2022, 127, 869-884.	0.9	2
124	Counteracting Dark Web Text-Based CAPTCHA with Generative Adversarial Learning for Proactive Cyber Threat Intelligence. ACM Transactions on Management Information Systems, 2022, 13, 1-21.	2.1	9
125	A Semi-supervised Deep Learning-Based Solver for Breaking Text-Based CAPTCHAs. , 2021, , .		0
126	Planning Rational Behavior of Cognitive Semiotic Agents in a Dynamic Environment. Scientific and Technical Information Processing, 2021, 48, 502-516.	0.3	2
127	A Few Shot Classification Methods Based on Multiscale Relational Networks. Applied Sciences (Switzerland), 2022, 12, 4059.	1.3	100
128	Using brain inspired principles to unsupervisedly learn good representations for visual pattern recognition. Neurocomputing, 2022, 495, 97-104.	3.5	4
130	Configurable image recognition framework design based on KNN and bit-based similarity model. , 2022, , ,		0
131	Projection: a mechanism for human-like reasoning in Artificial Intelligence. Journal of Experimental and Theoretical Artificial Intelligence, 2023, 35, 1269-1293.	1.8	2
132	Invariance, Encodings, and Generalization: Learning Identity Effects With Neural Networks. Neural Computation, 2022, 34, 1756-1789.	1.3	0
133	Inferring the nature of linguistic computations in the brain. PLoS Computational Biology, 2022, 18, e1010269.	1.5	7
134	Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Survey of Ophthalmology, 2023, 68, 17-41.	1.7	18
135	Attack-filtered interactive arabic CAPTCHAs. Journal of Information Security and Applications, 2022, 70, 103318.	1.8	1
136	An Experimental Investigation of Text-based CAPTCHA Attacks and Their Robustness. ACM Computing Surveys, 2023, 55, 1-38.	16.1	2
137	Learning Degradation-Invariant Representation for Robust Real-World Person Re-Identification. International Journal of Computer Vision, 2022, 130, 2770-2796.	10.9	3
139	Border Ownership, Category Selectivity and Beyond. Lecture Notes in Computer Science, 2022, , 27-38.	1.0	0

		CITATION REPORT		
#	Article		IF	Citations
140	Deep problems with neural network models of human vision. Behavioral and Brain Sciences, 2023	46,.	0.4	31
141	Extended Research on the Security of Visual Reasoning CAPTCHA. IEEE Transactions on Dependab Secure Computing, 2023, 20, 4976-4992.	le and	3.7	1
142	Understanding How Cells Probe the World: A Preliminary Step towards Modeling Cell Behavior?. International Journal of Molecular Sciences, 2023, 24, 2266.		1.8	0
143	Robust odor identification in novel olfactory environments in mice. Nature Communications, 2023	, 14,	5.8	8
144	A Survey on Adversarial Perturbations and Attacks on CAPTCHAs. Applied Sciences (Switzerland), 13, 4602.	2023,	1.3	2
145	Neural mechanism of long-term memory storage andmodulation. Chinese Science Bulletin, 2023,		0.4	0
146	Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensiona time-frequency signature and meta-learning convolutional shrinkage neural network. Petroleum Science, 2023, 20, 1142-1154.	I	2.4	4
147	Remembrance of things perceived: Adding thalamocortical function to artificial neural networks. Frontiers in Integrative Neuroscience, 0, 17, .		1.0	0
148	Brain-like Combination of Feedforward and Recurrent Network Components Achieves Prototype Extraction and Robust Pattern Recognition. Lecture Notes in Computer Science, 2023, , 488-501.		1.0	0
153	GeeSolver: A Generic, Efficient, and Effortless Solver with Self-Supervised Learning for Breaking Te Captchas. , 2023, , .	ĸt		1
160	A Novel Deep Learning Based Fully Automated Framework for Captcha Security Vulnerability Chec Lecture Notes in Networks and Systems, 2024, , 431-443.	king.	0.5	0
166	Learning Hidden Markov Model ofÂStochastic Environment withÂBio-inspired Probabilistic Tempo Memory. Studies in Computational Intelligence, 2024, , 330-339.	ral	0.7	0