Reversing SKIâ€"SMAD4-mediated suppression is essen

Nature 551, 105-109 DOI: 10.1038/nature24283

Citation Report

#	Article	IF	CITATIONS
1	Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Research, 2018, 46, 3412-3428.	6.5	13
2	The role of transforming growth factor <i>l²</i> in T helper 17 differentiation. Immunology, 2018, 155, 24-35.	2.0	115
3	When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cellular and Molecular Immunology, 2018, 15, 458-469.	4.8	331
5	Tissue-Specific Control of Tissue-Resident Memory T Cells. Critical Reviews in Immunology, 2018, 38, 79-103.	1.0	28
6	Th17 response in patients with cervical cancer (Review). Oncology Letters, 2018, 16, 6215-6227.	0.8	36
7	RAS P21 Protein Activator 3 (RASA3) Specifically Promotes Pathogenic T Helper 17 Cell Generation by Repressing T-Helper-2-Cell-Biased Programs. Immunity, 2018, 49, 886-898.e5.	6.6	15
8	Effector T Helper Cell Subsets in Inflammatory Bowel Diseases. Frontiers in Immunology, 2018, 9, 1212.	2.2	189
9	TGF-Î ² in T Cell Biology: Implications for Cancer Immunotherapy. Cancers, 2018, 10, 194.	1.7	132
10	SKI and SMAD4 are essential for IL-21-induced Th17 differentiation. Molecular Immunology, 2019, 114, 260-268.	1.0	12
11	TGF-Î ² signaling in cell fate control and cancer. Current Opinion in Cell Biology, 2019, 61, 56-63.	2.6	89
12	Hero or villain? The heterogeneity of Th17 cells. Molecular Immunology, 2019, 112, 358-359.	1.0	1
13	Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Cell, 2019, 176, 882-896.e18.	13.5	135
14	Blockade of TGF-β signaling: a potential target for cancer immunotherapy?. Expert Opinion on Therapeutic Targets, 2019, 23, 679-693.	1.5	34
15	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	2.4	108
16	Epigenetic regulation of T helper cells and intestinal pathogenicity. Seminars in Immunopathology, 2019, 41, 379-399.	2.8	20
17	Inflammasome activation and Th17 responses. Molecular Immunology, 2019, 107, 142-164.	1.0	69
18	Phosphatase PP2A is essential for T _H 17 differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 982-987.	3.3	31
19	A Reciprocal Role of the Smad4-Taz Axis in Osteogenesis and Adipogenesis of Mesenchymal Stem Cells. Stem Cells, 2019, 37, 368-381.	1.4	39

#	Article	IF	CITATIONS
20	TGFâ€Î²/SMAD4 signaling pathway activates the HAS2–HA system to regulate granulosa cell state. Journal of Cellular Physiology, 2020, 235, 2260-2272.	2.0	13
21	(Inverse) Agonists of Retinoic Acid–Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annual Review of Pharmacology and Toxicology, 2020, 60, 371-390.	4.2	58
22	Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell, 2020, 180, 79-91.e16.	13.5	243
23	The Conserved Non-coding Sequences CNS6 and CNS9 Control Cytokine-Induced Rorc Transcription during T Helper 17 Cell Differentiation. Immunity, 2020, 53, 614-626.e4.	6.6	39
24	Retinoid-Related Orphan Receptor RORγt in CD4+ T-Cell–Mediated Intestinal Homeostasis and Inflammation. American Journal of Pathology, 2020, 190, 1984-1999.	1.9	38
25	CaMK4â€dependent phosphorylation of Akt/mTOR underlies Th17 excessive activation in experimental autoimmune prostatitis. FASEB Journal, 2020, 34, 14006-14023.	0.2	15
26	The role of Th17 cells in psoriasis. Immunologic Research, 2020, 68, 296-309.	1.3	63
27	SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death and Disease, 2020, 11, 373.	2.7	42
28	Age-of-onset information helps identify 76 genetic variants associated with allergic disease. PLoS Genetics, 2020, 16, e1008725.	1.5	27
29	The SKI proto-oncogene restrains the resident CD103+CD8+ T cell response in viral clearance. Cellular and Molecular Immunology, 2020, 18, 2410-2421.	4.8	11
30	The induction and function of the anti-inflammatory fate of TH17 cells. Nature Communications, 2020, 11, 3334.	5.8	27
31	T Cells in Fibrosis and Fibrotic Diseases. Frontiers in Immunology, 2020, 11, 1142.	2.2	163
32	Febrile Temperature Critically Controls the Differentiation and Pathogenicity of T Helper 17 Cells. Immunity, 2020, 52, 328-341.e5.	6.6	55
33	Molecular control of pathogenic Th17 cells in autoimmune diseases. International Immunopharmacology, 2020, 80, 106187.	1.7	53
34	<p>The Role of Tantalum Nanoparticles in Bone Regeneration Involves the BMP2/Smad4/Runx2 Signaling Pathway</p> . International Journal of Nanomedicine, 2020, Volume 15, 2419-2435.	3.3	11
35	SMAD4 mutation correlates with poor prognosis in non-small cell lung cancer. Laboratory Investigation, 2021, 101, 463-476.	1.7	16
36	The TGF-Î ² superfamily cytokine Activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation. Immunity, 2021, 54, 308-323.e6.	6.6	46
39	Cell type-specific modulation of healthspan by Forkhead family transcription factors in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9

CITATION REPORT

#	Article	IF	CITATIONS
40	Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. Journal of Immunology Research, 2021, 2021, 1-19.	0.9	17
41	Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells. OncoTargets and Therapy, 2021, Volume 14, 2531-2540.	1.0	11
42	The Adjuvants Polyphosphazene (PCEP) and a Combination of Curdlan Plus Leptin Promote a Th17-Type Immune Response to an Intramuscular Vaccine in Mice. Vaccines, 2021, 9, 507.	2.1	4
43	ROR: Nuclear Receptor for Melatonin or Not?. Molecules, 2021, 26, 2693.	1.7	35
44	Neonatal T Helper 17 Responses Are Skewed Towards an Immunoregulatory Interleukin-22 Phenotype. Frontiers in Immunology, 2021, 12, 655027.	2.2	10
45	T cell transgressions: Tales of T cell form and function in diverse disease states. International Reviews of Immunology, 2021, , 1-42.	1.5	3
46	DNA methylation and exposure to violence among African American young adult males. Brain, Behavior, & Immunity - Health, 2021, 14, 100247.	1.3	7
47	SKI Expression Suppresses Pathogenic Th17 Cell Response and Mitigates Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2021, 12, 707899.	2.2	3
48	SMAD4 Feedback Activates the Canonical TGF-β Family Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 10024.	1.8	13
49	Arkadia-SKI/SnoN signaling differentially regulates TGF-β–induced iTreg and Th17 cell differentiation. Journal of Experimental Medicine, 2021, 218, .	4.2	18
50	Th17 Cells in Periodontitis and Its Regulation by A20. Frontiers in Immunology, 2021, 12, 742925.	2.2	22
51	Role of Interleukin-17 in Acute Pancreatitis. Frontiers in Immunology, 2021, 12, 674803.	2.2	11
52	Epigenetic Alterations: The Relation Between Occupational Exposure and Biological Effects in Humans. RNA Technologies, 2019, , 265-293.	0.2	2
53	A Fever-Th17 Cell Immune Axis: Some SMADs Like It Hot. Immunity, 2020, 52, 209-211.	6.6	3
56	A transcription factor DAF-5 functions in Haemonchus contortus development. Parasites and Vectors, 2021, 14, 529.	1.0	3
57	Papers of note in <i>Nature</i> 551 (7678). Science Signaling, 2017, 10, .	1.6	0
58	Radiation-free quantification of head malformations in craniosynostosis patients from 3D photography. , 2018, 10575, .		4
60	<i>Smad4</i> Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancerâ€Autonomous DNA‧ensing Signaling Axis. Advanced Science, 2022, 9, e2103029.	5.6	7

#	Article	IF	CITATIONS
61	The peroxisome proliferator-activated receptor agonist rosiglitazone specifically represses tumour metastatic potential in chromatin inaccessibility-mediated FABP4-deficient gastric cancer. Theranostics, 2022, 12, 1904-1920.	4.6	10
62	The Anti-fibrosis drug Pirfenidone modifies the immunosuppressive tumor microenvironment and prevents the progression of renal cell carcinoma by inhibiting tumor autocrine TGF-Î2. Cancer Biology and Therapy, 2022, 23, 150-162.	1.5	13
63	Melatonin Nuclear Receptors Mediate Green-and-Blue-Monochromatic-Light-Combinations-Inhibited B Lymphocyte Apoptosis in the Bursa of Chickens via Reducing Oxidative Stress and Nflºb Expression. Antioxidants, 2022, 11, 748.	2.2	2
64	Parthenolide Suppresses T Helper 17 and Alleviates Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2022, 13, 856694.	2.2	2
65	SMAD4 TGF-β–independent function preconditions naive CD8+ T cells to prevent severe chronic intestinal inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	18
66	Impact of KRAS Mutation Subtypes and Co-Occurring Mutations on Response and Outcome in Advanced NSCLC Patients following First-Line Treatment. Journal of Clinical Medicine, 2022, 11, 4003.	1.0	3
67	The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2023, 29, 818-829.	0.9	11
68	Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors?. Frontiers in Immunology, 0, 13, .	2.2	6
69	Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Research, 2023, 323, 198979.	1.1	5
70	TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nature Reviews Immunology, 2023, 23, 346-362.	10.6	23
72	GPX4 aggravates experimental autoimmune encephalomyelitis by inhibiting the functions of CD4+ T cells. Biochemical and Biophysical Research Communications, 2023, 642, 57-65.	1.0	1
73	T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomedicine and Pharmacotherapy, 2023, 161, 114483.	2.5	5
74	TGF-β Regulation of T Cells. Annual Review of Immunology, 2023, 41, 483-512.	9.5	21
78	Intricacies of TGF-Î ² signaling in Treg and Th17 cell biology. , 2023, 20, 1002-1022.		20
81	Context-dependent TGFÎ ² family signalling in cell fate regulation. Nature Reviews Molecular Cell Biology, 2023, 24, 876-894.	16.1	4