Programmable base editing of A•T to G•C in genor

Nature 551, 464-471 DOI: 10.1038/nature24644

Citation Report

#	Article	IF	CITATIONS
2	Enhancing the RNA engineering toolkit. Science, 2017, 358, 996-997.	6.0	21
3	Engineering the Drosophila Genome for Developmental Biology. Journal of Developmental Biology, 2017, 5, 16.	0.9	19
4	Genome Editing Tools in Plants. Genes, 2017, 8, 399.	1.0	63
5	Precise A·T to G·C Base Editing in the Rice Genome. Molecular Plant, 2018, 11, 627-630.	3.9	195
6	Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Molecular Plant, 2018, 11, 631-634.	3.9	177
7	Highly efficient base editing in <i>Staphylococcus aureus</i> using an engineered CRISPR RNA-guided cytidine deaminase. Chemical Science, 2018, 9, 3248-3253.	3.7	64
8	Precision genome engineering through adenine and cytosine base editing. Nature Plants, 2018, 4, 148-151.	4.7	69
9	Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556, 57-63.	13.7	1,195
10	New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resistance Updates, 2018, 36, 30-46.	6.5	33
11	Advanced editing of the nuclear and plastid genomes in plants. Plant Science, 2018, 273, 42-49.	1.7	26
12	Strategies for In Vivo Genome Editing in Nondividing Cells. Trends in Biotechnology, 2018, 36, 770-786.	4.9	58
13	Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research, 2018, 46, 4677-4688.	6.5	65
14	Functional Assays to Screen and Dissect Genomic Hits. Circulation Genomic and Precision Medicine, 2018, 11, e002178.	1.6	18
15	Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes. Plant and Cell Physiology, 2018, 59, 1608-1620.	1.5	40
16	The <scp>CRISPR</scp> /Cas revolution reaches the <scp>RNA</scp> world: Cas13, a new Swiss Army knife for plant biologists. Plant Journal, 2018, 94, 767-775.	2.8	83
17	In vivo genome editing of ANGPTL3: a therapy for atherosclerosis?. Nature Reviews Cardiology, 2018, 15, 259-260.	6.1	10
18	Innovations in CRISPR technology. Current Opinion in Biotechnology, 2018, 52, 95-101.	3.3	17
19	Development and application of CRISPR/Cas9 technologies in genomic editing. Human Molecular Genetics, 2018, 27, R79-R88.	1.4	47

#	Article	IF	CITATIONS
20	High-throughput genetic screens using CRISPR–Cas9 system. Archives of Pharmacal Research, 2018, 41, 875-884.	2.7	23
21	Harnessing natural DNA modifying activities for editing of the genome and epigenome. Current Opinion in Chemical Biology, 2018, 45, 10-17.	2.8	12
22	Genome Editing B.C. (Before CRISPR): Lasting Lessons from the "Old Testament― CRISPR Journal, 2018, 1, 34-46.	1.4	52
23	Paediatric genomics: diagnosing rare disease in children. Nature Reviews Genetics, 2018, 19, 253-268.	7.7	369
24	Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 2018, 273, 110-119.	1.7	106
25	Rewritable multi-event analog recording in bacterial and mammalian cells. Science, 2018, 360, .	6.0	193
26	Recent Advances in CRISPR Base Editing: From A to RNA. Biochemistry, 2018, 57, 886-887.	1.2	3
27	The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology, 2018, 19, 275-276.	16.1	199
28	Programming gene and engineered-cell therapies with synthetic biology. Science, 2018, 359, .	6.0	180
29	Advancing Metabolic Engineering of <i>Saccharomyces cerevisiae</i> Using the CRISPR/Cas System. Biotechnology Journal, 2018, 13, e1700601.	1.8	41
30	Gene therapy comes of age. Science, 2018, 359, .	6.0	936
31	Genotyping genomeâ€edited mutations in plants using <scp>CRISPR</scp> ribonucleoprotein complexes. Plant Biotechnology Journal, 2018, 16, 2053-2062.	4.1	62
32	Transforming plant biology and breeding with <scp>CRISPR</scp> /Cas9, Cas12 and Cas13. FEBS Letters, 2018, 592, 1954-1967.	1.3	74
33	Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiology and Biochemistry, 2018, 131, 78-83.	2.8	31
34	Harnessing "A Billion Years of Experimentation― The Ongoing Exploration and Exploitation of CRISPR–Cas Immune Systems. CRISPR Journal, 2018, 1, 141-158.	1.4	44
35	Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nature Biotechnology, 2018, 36, 536-539.	9.4	345
36	CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nature Reviews Microbiology, 2018, 16, 333-339.	13.6	88
37	Concerns regarding â€~off-target' activity of genome editing endonucleases. Plant Physiology and Biochemistry, 2018, 131, 22-30.	2.8	32

#	Article	IF	CITATIONS
38	Cancer CRISPR Screens In Vivo. Trends in Cancer, 2018, 4, 349-358.	3.8	70
39	Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3201-E3210.	3.3	56
40	Programmable Single and Multiplex Base-Editing in <i>Bombyx mori</i> Using RNA-Guided Cytidine Deaminases. G3: Genes, Genomes, Genetics, 2018, 8, 1701-1709.	0.8	19
41	Exploration of genetic basis underlying individual differences in radiosensitivity within human populations using genome editing technology. Journal of Radiation Research, 2018, 59, ii75-ii82.	0.8	11
42	The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chemical Biology, 2018, 13, 313-325.	1.6	30
43	Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology, 2018, 13, 347-356.	1.6	25
44	Identification of on-target mutagenesis during correction of a beta-thalassemia splice mutation in iPS cells with optimised CRISPR/Cas9-double nickase reveals potential safety concerns. APL Bioengineering, 2018, 2, 046103.	3.3	14
46	Understanding and repurposing CRISPR-mediated alternative splicing. Genome Biology, 2018, 19, 184.	3.8	7
47	Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation?. Frontiers in Plant Science, 2018, 9, 1689.	1.7	152
48	Recurrent mutations at estrogen receptor binding sites alter chromatin topology and distal gene expression in breast cancer. Genome Biology, 2018, 19, 190.	3.8	28
49	Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell and Bioscience, 2018, 8, 59.	2.1	66
50	Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nature Communications, 2018, 9, 4804.	5.8	72
51	Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. Journal of Personalized Medicine, 2018, 8, 38.	1.1	48
52	Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Research and Clinical Practice, 2018, 37, 197-209.	0.9	47
53	Precise A•T to G•C base editing in the zebrafish genome. BMC Biology, 2018, 16, 139.	1.7	34
54	Development of a multi-locus CRISPR gene drive system in budding yeast. Scientific Reports, 2018, 8, 17277.	1.6	30
55	Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 563, 646-651.	13.7	414
56	Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics, 2018, 19, 542.	1.2	127

#	Article	IF	Citations
57	BE-FLARE: a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B. BMC Biology, 2018, 16, 150.	1.7	43
58	Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR Journal, 2018, 1, 379-404.	1.4	17
59	Engineering CRISPR-Cas9 RNA–Protein Complexes for Improved Function and Delivery. CRISPR Journal, 2018, 1, 367-378.	1.4	11
60	Repairing the Brain: Gene Therapy. Journal of Parkinson's Disease, 2018, 8, S123-S130.	1.5	4
61	Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biology, 2018, 16, e2005595.	2.6	75
62	Delivery of genome editing tools by bacterial extracellular vesicles. Microbial Biotechnology, 2019, 12, 71-73.	2.0	12
63	Revolution in Gene Medicine Therapy and Genome Surgery. Genes, 2018, 9, 575.	1.0	25
64	Machine learning finds Cas9-edited genotypes. Nature Biomedical Engineering, 2018, 2, 892-893.	11.6	5
65	Applications and potential of genome editing in crop improvement. Genome Biology, 2018, 19, 210.	3.8	286
66	A Well-Controlled BioID Design for Endogenous Bait Proteins. Journal of Proteome Research, 2019, 18, 95-106.	1.8	13
67	Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nature Medicine, 2018, 24, 1519-1525.	15.2	301
68	Towards therapeutic base editing. Nature Medicine, 2018, 24, 1493-1495.	15.2	6
69	Retroelement-Based Genome Editing and Evolution. ACS Synthetic Biology, 2018, 7, 2600-2611.	1.9	44
70	High-Throughput Genotyping of CRISPR/Cas Edited Cells in 96-Well Plates. Methods and Protocols, 2018, 1, 29.	0.9	6
71	DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. IScience, 2018, 6, 247-263.	1.9	25
72	CRISPR–Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nature Cell Biology, 2018, 20, 1315-1325.	4.6	54
73	Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies. Trends in Genetics, 2018, 34, 927-940.	2.9	89
74	CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and Systems Biotechnology, 2018, 3, 135-149.	1.8	91

#	Article	IF	CITATIONS
75	Towards quantitative and multiplexed in vivo functional cancer genomics. Nature Reviews Genetics, 2018, 19, 741-755.	7.7	45
76	Base editing a CRISPR way. Nature Methods, 2018, 15, 767-770.	9.0	28
77	Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast. G3: Genes, Genomes, Genetics, 2018, 8, 3163-3171.	0.8	19
78	CRISPR mutagenesis screening of mice. Nature Cell Biology, 2018, 20, 1235-1237.	4.6	3
79	Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody ExÂVivo Affinity Maturation. Cell Reports, 2018, 25, 884-892.e3.	2.9	28
80	The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology, 2018, 60, 1127-1153.	4.1	109
81	A Regeneration Toolkit. Developmental Cell, 2018, 47, 267-280.	3.1	41
82	Differentiation keeps skin cancer at bay. Nature Cell Biology, 2018, 20, 1237-1239.	4.6	2
83	Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR–Cas9 barcodes by scGESTALT. Nature Protocols, 2018, 13, 2685-2713.	5.5	55
84	Minimal PAM specificity of a highly similar SpCas9 ortholog. Science Advances, 2018, 4, eaau0766.	4.7	183
85	Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018, 3, 217-228.	1.8	20
86	Base editing: precision chemistry on the genome and transcriptome ofÂliving cells. Nature Reviews Genetics, 2018, 19, 770-788.	7.7	1,072
87	Acceleration of cancer science with genome editing and related technologies. Cancer Science, 2018, 109, 3679-3685.	1.7	20
88	Genome Editing for Crop Improvement – Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.). Frontiers in Plant Science, 2018, 9, 1607.	1.7	65
89	Trends in Synthetic Biology Applications, Tools, Industry, and Oversight and Their Security Implications. Health Security, 2018, 16, 320-333.	0.9	6
90	CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biology, 2018, 19, 169.	3.8	34
91	Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Translational Vision Science and Technology, 2018, 7, 6.	1.1	168
92	Targeted Base Editing Systems Are Available for Plants. Trends in Plant Science, 2018, 23, 955-957.	4.3	11

#	Article	IF	CITATIONS
93	Guardian of Genome Editing. CRISPR Journal, 2018, 1, 258-260.	1.4	1
94	CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Applied and Environmental Microbiology, 2018, 84, .	1.4	113
95	The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clinical Science, 2018, 132, 1901-1924.	1.8	22
96	Transgenesis and Genome Editing in Poultry. , 2018, , .		2
97	Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell, 2018, 175, 544-557.e16.	13.5	166
98	DNA-based memory devices for recording cellular events. Nature Reviews Genetics, 2018, 19, 718-732.	7.7	107
99	CRISPR-Cas immunity, DNA repair and genome stability. Bioscience Reports, 2018, 38, .	1.1	27
100	Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9351-9358.	3.3	159
101	Genomic Editing—From Human Health to the "Perfect Child― , 2018, , 1-30.		0
102	Increasing the precision of gene editing inÂvitro, exÂvivo, and inÂvivo. Current Opinion in Biomedical Engineering, 2018, 7, 83-90.	1.8	8
103	CRAC channel-based optogenetics. Cell Calcium, 2018, 75, 79-88.	1.1	25
104	Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research. Journal of the American Chemical Society, 2018, 140, 11142-11152.	6.6	10
105	CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361, 866-869.	6.0	1,024
106	Emerging applications for DNA writers and molecular recorders. Science, 2018, 361, 870-875.	6.0	80
107	Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 2018, 25, 1234-1257.	2.5	776
108	Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36, 843-846.	9.4	644
109	Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems. Chemistry - A European Journal, 2018, 24, 10584-10594.	1.7	58
110	The new normal of structure/function studies in the era of CRISPR/Cas9. Biochemical Journal, 2018, 475, 1635-1642.	1.7	1

#	Article	IF	CITATIONS
111	All I's on the <scp>RADAR</scp> : role of <scp>ADAR</scp> in gene regulation. FEBS Letters, 2018, 592, 2860-2873.	1.3	31
112	Generation of genetically-engineered animals using engineered endonucleases. Archives of Pharmacal Research, 2018, 41, 885-897.	2.7	24
113	Use and application of 3D-organoid technology. Human Molecular Genetics, 2018, 27, R99-R107.	1.4	143
114	Editing the Epigenome: Reshaping the Genomic Landscape. Annual Review of Genomics and Human Genetics, 2018, 19, 43-71.	2.5	109
115	The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9, 1911.	5.8	1,159
116	Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells International, 2018, 2018, 1-11.	1.2	8
117	Optimized base editors enable efficient editing in cells, organoids and mice. Nature Biotechnology, 2018, 36, 888-893.	9.4	269
118	How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 2018, 46, 6435-6454.	6.5	37
119	Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy. Neural Plasticity, 2018, 2018, 1-15.	1.0	29
120	Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein and Cell, 2018, 9, 814-819.	4.8	68
121	Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Physiological Genomics, 2018, 50, 510-522.	1.0	17
122	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
123	Use of zebrafish models to investigate rare human disease. Journal of Medical Genetics, 2018, 55, 641-649.	1.5	42
124	Programmable base editing in zebrafish using a modified CRISPR-Cas9 system. Methods, 2018, 150, 19-23.	1.9	10
125	Fishing for understanding: Unlocking the zebrafish gene editor's toolbox. Methods, 2018, 150, 3-10.	1.9	22
126	Adenine base editing to mimic or correct disease mutations in rodents. Protein and Cell, 2018, 9, 752-753.	4.8	0
127	Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36, 894-898.	9.4	244
128	The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Frontiers in Physiology, 2018, 9, 700.	1.3	36

#	Article	IF	CITATIONS
129	Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Frontiers in Plant Science, 2018, 9, 424.	1.7	59
130	Optimizing CRISPR/Cas9 for the Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2018, 9, 740.	1.7	73
131	Gene Editing of Stem Cells to Model and Treat Disease. Current Stem Cell Reports, 2018, 4, 253-263.	0.7	0
132	The Current State and Future of CRISPR-Cas9 gRNA Design Tools. Frontiers in Pharmacology, 2018, 9, 749.	1.6	103
133	Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discovery, 2018, 4, 39.	3.1	35
134	Combining Zebrafish and CRISPR/Cas9: Toward a More Efficient Drug Discovery Pipeline. Frontiers in Pharmacology, 2018, 9, 703.	1.6	78
135	Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nature Communications, 2018, 9, 2892.	5.8	52
137	Effective and precise adenine base editing in mouse zygotes. Protein and Cell, 2018, 9, 808-813.	4.8	24
138	Commentary: Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Frontiers in Genetics, 2018, 9, 21.	1.1	14
139	Commentary: RNA editing with CRISPR-Cas13. Frontiers in Genetics, 2018, 9, 134.	1.1	20
140	Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases (Basel, Switzerland), 2018, 6, 43.	1.0	17
141	65 YEARS OF THE DOUBLE HELIX: The advancements of gene editing and potential application to hereditary cancer. Endocrine-Related Cancer, 2018, 25, T141-T158.	1.6	3
142	At the Heart of Genome Editing and Cardiovascular Diseases. Circulation Research, 2018, 123, 221-223.	2.0	6
143	A CRISPR edit for heart disease. Nature, 2018, 555, S23-S25.	13.7	14
144	Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 2018, 19, 59.	3.8	392
145	p53 Throws CRISPR a Curve. Trends in Pharmacological Sciences, 2018, 39, 783-784.	4.0	6
146	A Processive Protein Chimera Introduces Mutations across Defined DNA Regions <i>In Vivo</i> . Journal of the American Chemical Society, 2018, 140, 11560-11564.	6.6	75
147	Rescued from the fate of neurological disorder. Nature Biomedical Engineering, 2018, 2, 469-470.	11.6	4

		CITATION REPORT		
#	Article		IF	CITATIONS
148	Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9, 2	717.	5.8	119
149	Genotyping of single nucleotide polymorphisms using the SNP-RFLP method. BioScien 12, 240-246.	ce Trends, 2018,	1.1	9
150	CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities. Frontiers 9, 240.	in Genetics, 2018,	1.1	45
151	In Vivo Applications of CRISPR-Based Genome Editing in the Retina. Frontiers in Cell ar Biology, 2018, 6, 53.	id Developmental	1.8	26
152	CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Retina, 2018,	38, 1443-1455.	1.0	11
153	Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Comm Biology, 2018, 1, 32.	nunications	2.0	68
154	The best Cas scenario. Nature Medicine, 2018, 24, 528-530.		15.2	0
155	Snipping around for food: Economic, ethical and policy implications of CRISPR/Cas ger Geoforum, 2018, 96, 172-180.	nome editing.	1.4	48
156	Continuous directed evolution of proteins with improved soluble expression. Nature C Biology, 2018, 14, 972-980.	hemical	3.9	71
157	Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. International Jour 2018, 2018, 1-12.	nal of Genomics,	0.8	19
158	Is it â€ gene therapyâ€ . Journal of Law and the Biosciences, 2018, 5, 786-793.		0.8	9
159	The Implications of CRISPR-Cas9 Genome Editing for IR. Journal of Vascular and Interve Radiology, 2018, 29, 1264-1267.e1.	ntional	0.2	0
160	Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Hur Heterozygous Embryos. Molecular Therapy, 2018, 26, 2631-2637.	nan Cells and	3.7	120
161	CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deamin Editing in Pseudomonas Species. IScience, 2018, 6, 222-231.	ase-Mediated Base	1.9	142
162	CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biology, 2	018, 19, 107.	3.8	137
163	DNA Nucleases and their Use in Livestock Production. , 2018, , 123-148.			1
164	Precision gene editing technology andÂapplications in nephrology. Nature Reviews Ne 663-677.	phrology, 2018, 14,	4.1	38
165	Gene therapy for neurological disorders: progress and prospects. Nature Reviews Drug 2018, 17, 641-659.	Discovery,	21.5	222

		CITATION REPORT		
#	Article		IF	CITATIONS
166	Developmental barcoding of whole mouse via homing CRISPR. Science, 2018, 361, .		6.0	263
167	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced 1800132.	Biology, 2018, 2,	3.0	11
168	ExÂVivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRI Homology-Directed Repair. Molecular Therapy - Nucleic Acids, 2018, 12, 554-567.	SPR/Cas9 and	2.3	53
169	Genome Editing for Inherited Retinal Degenerations. Ophthalmology, 2018, 125, 1431	1432.	2.5	2
170	Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotech Journal, 2018, 13, e1700596.	Inology	1.8	39
171	Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases. Cardiology Reports, 2018, 20, 58.	Current	1.3	3
172	Editing plant genes one base at a time. Nature Plants, 2018, 4, 412-413.		4.7	12
173	Precision genome engineering through adenine base editing in plants. Nature Plants, 2	018, 4, 427-431.	4.7	227
174	In vivo base editing of post-mitotic sensory cells. Nature Communications, 2018, 9, 21	.84.	5.8	166
175	Mammoth, Arbor and Beam launch new wave of CRISPR startups. Nature Biotechnolog 479-480.	gy, 2018, 36,	9.4	2
176	Bacterial nanotechnology. Nature Nanotechnology, 2018, 13, 435-435.		15.6	1
177	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in (499-512.	Cancer, 2018, 4,	3.8	89
178	Genome Editing in Agricultural Biotechnology. Advances in Botanical Research, 2018,	86, 245-286.	0.5	7
179	Efficient generation of mouse models of human diseases via ABE- and BE-mediated bas Communications, 2018, 9, 2338.	se editing. Nature	5.8	120
180	qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome er and off-target sites. Nucleic Acids Research, 2018, 46, e101-e101.	diting in target	6.5	17
181	Public perception of genetically-modified (GM) food: A Nationwide Chinese Consumer Science of Food, 2018, 2, 10.	Study. Npj	2.5	132
182	What is Speciation Genomics? The roles of ecology, gene flow, and genomic architectu formation of species. Biological Journal of the Linnean Society, 2018, 124, 561-583.	ure in the	0.7	91
183	Disruption and development: the evolving CRISPR patent and technology landscape. P Patent Analyst, 2018, 7, 141-145.	harmaceutical	0.4	6

ARTICLE IF CITATIONS # CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal, 2018, 475, 184 1.7 177 1955-1964. Gene Editing on Center Stage. Trends in Genetics, 2018, 34, 600-611. Genome editing by natural and engineered CRISPR-associated nucleases. Nature Chemical Biology, 2018, 186 3.9 91 14, 642-651. EditR: A Method to Quantify Base Editing from Sanger Sequencing. CRISPR Journal, 2018, 1, 239-250. 304 CRISPRâ€Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnology Journal, 2018, 188 1.8 30 13, e1700586. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular 189 Biology, 2019, 431, 88-101. Genome editing in the mammalian brain using the CRISPR–Cas system. Neuroscience Research, 2019, 141, 190 1.0 21 4-12. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnology Journal, 2019, 17, 4.1 168 499-504. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA Part A: DNA Mapping, 192 0.7 20 Sequencing, and Analysis, 2019, 30, 214-221. Functional Genomics via CRISPR–Cas. Journal of Molecular Biology, 2019, 431, 48-65. Expanding C–T base editing toolkit with diversified cytidine deaminases. Nature Communications, 2019, 194 49 5.8 10, 3612. Improving Editing Efficiency for the Sequences with NGH PAM Using xCas9-Derived Base Editors. 2.3 Molecular Therapy - Nucleić Acids, 2019, 17, 626-635. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. 196 1.6 87 Microorganisms, 2019, 7, 269. Single-Nucleotide-Resolution Computing and Memory in Living Cells. Molecular Cell, 2019, 75, 4.5 769-780.e4. Off-Target Editing by CRISPR-Guided DNA Base Editors. Biochemistry, 2019, 58, 3727-3734. 198 1.2 40 Genome editing of potato using CRISPR technologies: current development and future prospective. 199 1.2 29 Plant Cell, Tissue and Organ Culture, 2019, 139, 403-416. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Scientific Reports, 200 1.6 17 2019, 9, 11151. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Human Gene Therapy, 2019, 30, 1274-1283. 1.4

#	Article	IF	CITATIONS
202	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	2.3	22
203	The Expanding Class 2 CRISPR Toolbox: Diversity, Applicability, and Targeting Drawbacks. BioDrugs, 2019, 33, 503-513.	2.2	11
204	BEAT: A Python Program to Quantify Base Editing from Sanger Sequencing. CRISPR Journal, 2019, 2, 223-229.	1.4	19
205	A transient reporter for editing enrichment (TREE) in human cells. Nucleic Acids Research, 2019, 47, e120-e120.	6.5	33
206	Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnology Advances, 2019, 37, 107433.	6.0	23
207	Expanding targeting scope, editing window, and base transition capability of base editing in <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2019, 116, 3016-3029.	1.7	42
208	Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Molecular Plant, 2019, 12, 1047-1059.	3.9	118
209	Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases (Basel, Switzerland), 2019, 7, 47.	1.0	11
210	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	4.7	294
211	Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nature Methods, 2019, 16, 722-730.	9.0	44
212	Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nature Biotechnology, 2019, 37, 1059-1069.	9.4	168
213	Efficient Generation of Pathogenic A-to-G Mutations in Human Tripronuclear Embryos via ABE-Mediated Base Editing. Molecular Therapy - Nucleic Acids, 2019, 17, 289-296.	2.3	16
214	CRISPR Craze to Transform Cardiac Biology. Trends in Molecular Medicine, 2019, 25, 791-802.	3.5	21
215	Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019, 37, 1070-1079.	9.4	215
216	Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends in Genetics, 2019, 35, 672-684.	2.9	125
218	An overview of OECD activities related to modern techniques of biotechnology and genome editing. Transgenic Research, 2019, 28, 41-44.	1.3	3
219	Mammalian synthetic biology by CRISPRs engineering and applications. Current Opinion in Chemical Biology, 2019, 52, 79-84.	2.8	7
220	CRISPR Base Editing in Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2045, 337-346.	0.4	11

ARTICLE IF CITATIONS # CRISPR–Cas Gene Editing for Neurological Disease. , 2019, , 365-376. 221 1 Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 5.8 2019, 10, 2852. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature, 2019, 223 13.7 330 571, 275-278. Base pair editing in goat: nonsense codon introgression into <i><scp>FGF</scp>5</i> results in longer 224 hair. FEBS Journal, 2019, 286, 4675-4692. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576, 225 13.7 2,662 149-157. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnology Reports, 2019, 13, 447-457. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proceedings of the 227 3.3 119 National Academy of Sciences of the United States of America, 2019, 116, 20366-20375. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS 228 2.6 Biology, 2019, 17, e3000496. Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 229 1.1 24 2019, 8, 33-41. Directed Evolution of CRISPR-Cas9 Base Editors. Trends in Biotechnology, 2019, 37, 1151-1153. Genome editing for horticultural crop improvement. Horticulture Research, 2019, 6, 113. 231 79 2.9 Hierarchically Structured Selfâ€Healing Actuators with Superfast Light―and Magneticâ€Response. 129 Advanced Fúnctional Materials, 2019, 29, 1906198. Numerical simulation of NC spinning manufacturing on tantalum tungsten alloy cylinder part. 233 0.3 0 Journal of Physics: Conference Series, 2019, 1303, 012143. Fracture-cave carbonate reservoir permeability modelling based on conventional log and well deliverability predication: A case study of the Amu Darya Gas field in Turkmenistan. IOP Conference Series: Earth and Environmental Science, 2019, 349, 012041. 234 0.2 235 Using CRISPR/Cas9 to model human liver disease. JHEP Reports, 2019, 1, 392-402. 20 2.6 Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Letters, 2019, 593, 3623-3648. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 237 292 4.3 2019, 24, 1102-1125. Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of 238 2.3 X-Linked Juvenile Retinoschisis. Stem Cell Reports, 2019, 13, 906-923.

#	Article	IF	CITATIONS
239	Recent advances in the CRISPR genome editing tool set. Experimental and Molecular Medicine, 2019, 51, 1-11.	3.2	120
240	A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chemical Biology, 2019, 14, 2497-2511.	1.6	8
241	Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany, 2019, 70, 6539-6547.	2.4	21
242	Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nature Communications, 2019, 10, 4906.	5.8	83
243	More precise, more universal and more specific – the next generation of RNAâ€guided endonucleases for genome editing. FEBS Journal, 2019, 286, 4657-4660.	2.2	9
244	Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discovery, 2019, 5, 41.	3.1	35
245	Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, 2019, , .	0.8	6
246	Stem Cells and Aging. Methods in Molecular Biology, 2019, , .	0.4	2
247	Development of genetically modified nonhuman primates toward models for translational research. Translational and Regulatory Sciences, 2019, 1, 15-23.	0.2	2
248	Opioid Addiction, Genetic Susceptibility, and Medical Treatments: A Review. International Journal of Molecular Sciences, 2019, 20, 4294.	1.8	59
249	Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood, 2019, 134, 1203-1213.	0.6	74
250	CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nature Biotechnology, 2019, 37, 1041-1048.	9.4	236
251	N6-Methyladenosine Modulates Nonsense-Mediated mRNA Decay in Human Glioblastoma. Cancer Research, 2019, 79, 5785-5798.	0.4	181
252	A Highly Efficient CRISPR-Cas9-Based Genome Engineering Platform in Acinetobacter baumannii to Understand the H2O2-Sensing Mechanism of OxyR. Cell Chemical Biology, 2019, 26, 1732-1742.e5.	2.5	55
253	Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnology Reports, 2019, 13, 423-445.	0.9	43
254	A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. Journal of NeuroImmune Pharmacology, 2019, 14, 578-594.	2.1	5
255	CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances, 2019, 37, 107447.	6.0	59
256	Mapping human cell phenotypes to genotypes with single-cell genomics. Science, 2019, 365, 1401-1405.	6.0	71

#	Article	IF	CITATIONS
257	BE-PICS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduction and Targeted Therapy, 2019, 4, 36.	7.1	27
258	Engineered materials for in vivo delivery of genome-editing machinery. Nature Reviews Materials, 2019, 4, 726-737.	23.3	139
259	Adenine base editors catalyze cytosine conversions in human cells. Nature Biotechnology, 2019, 37, 1145-1148.	9.4	95
260	Homologous Recombination-Based Genome Editing by Clade F AAVs Is Inefficient in the Absence of a Targeted DNA Break. Molecular Therapy, 2019, 27, 1726-1736.	3.7	20
261	Structural insights into a high fidelity variant of SpCas9. Cell Research, 2019, 29, 183-192.	5.7	39
262	CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 281-295.	12.5	127
263	Gene editing in plants: progress and challenges. National Science Review, 2019, 6, 421-437.	4.6	215
264	Illuminating the dark phosphoproteome. Science Signaling, 2019, 12, .	1.6	219
265	Engineering of high-precision base editors for site-specific single nucleotide replacement. Nature Communications, 2019, 10, 439.	5.8	119
266	Directed evolution studies of a thermophilic Type II-C Cas9. Methods in Enzymology, 2019, 616, 265-288.	0.4	9
267	Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Molecular Diagnosis and Therapy, 2019, 23, 173-186.	1.6	23
268	Genome editing in large animals: current status and future prospects. National Science Review, 2019, 6, 402-420.	4.6	63
269	Development of an <i>Agrobacterium</i> â€delivered <scp>CRISPR</scp> /Cas9 system for wheat genome editing. Plant Biotechnology Journal, 2019, 17, 1623-1635.	4.1	155
270	CRISPR-Cas Genome Editing: Another Revolution in Molecular Biology. , 2019, , 345-361.		0
271	Nucleic Acid Databases and Molecular-Scale Computing. ACS Nano, 2019, 13, 6256-6268.	7.3	56
272	Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis—Learning from Other Diseases. Genes, 2019, 10, 387.	1.0	24
273	CRISPR/Cas-based devices for mammalian synthetic biology. Current Opinion in Chemical Biology, 2019, 52, 23-30.	2.8	10
274	Singleâ€nucleotide editing: From principle, optimization to application. Human Mutation, 2019, 40, 2171-2183.	1.1	7

	CHATOWR		
#	Article	IF	CITATIONS
275	Nature Biotechnology's academic spinouts of 2018. Nature Biotechnology, 2019, 37, 601-612.	9.4	6
276	CRISPR/Cas9 applications in gene therapy for primary immunodeficiency diseases. Emerging Topics in Life Sciences, 2019, 3, 277-287.	1.1	8
277	Editing the Central Nervous System Through CRISPR/Cas9 Systems. Frontiers in Molecular Neuroscience, 2019, 12, 110.	1.4	31
278	The amphipod crustacean <i>Parhyale hawaiensis</i> : An emerging comparative model of arthropod development, evolution, and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e355.	5.9	22
279	Towards precise, safe genome editing. Cell Research, 2019, 29, 687-689.	5.7	0
280	Synthetic evolution. Nature Biotechnology, 2019, 37, 730-743.	9.4	63
281	Genome Editing in Agriculture: Technical and Practical Considerations. International Journal of Molecular Sciences, 2019, 20, 2888.	1.8	51
282	CRISPR as system: Toward a more efficient technology for genome editing and beyond. Journal of Cellular Biochemistry, 2019, 120, 16379-16392.	1.2	9
283	The evolving CRISPR technology. Protein and Cell, 2019, 10, 783-786.	4.8	7
284	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	2.4	108
285	CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors. Molecular Therapy, 2019, 27, 1364-1371.	3.7	34
286	RNA-guided DNA insertion with CRISPR-associated transposases. Science, 2019, 365, 48-53.	6.0	448
287	Cas9 Ribonucleoprotein Complex Delivery: Methods and Applications for Neuroinflammation. Journal of NeuroImmune Pharmacology, 2019, 14, 565-577.	2.1	10
288	Conditional Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnology. ACS Central Science, 2019, 5, 1241-1249.	5.3	83
289	Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences, 2019, 20, 2542.	1.8	40
290	The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019, 20, 490-507.	16.1	957
291	Chromatin modification and remodeling in schizophrenia. , 2019, , 303-330.		1
292	Cas Endonuclease Technology—A Quantum Leap in the Advancement of Barley and Wheat Genetic Engineering. International Journal of Molecular Sciences, 2019, 20, 2647.	1.8	26

#	Article	IF	CITATIONS
293	Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Research, 2019, 38, 101467.	0.3	19
294	Principles of and strategies for germline gene therapy. Nature Medicine, 2019, 25, 890-897.	15.2	49
295	DNA event recorders send past information of cells to the time of observation. Current Opinion in Chemical Biology, 2019, 52, 54-62.	2.8	12
296	Gene editing based hearing impairment research and therapeutics. Neuroscience Letters, 2019, 709, 134326.	1.0	3
297	Genome editing for blood disorders: state of the art and recent advances. Emerging Topics in Life Sciences, 2019, 3, 289-299.	1.1	4
298	Base Editing: Efficient Installation of Point Mutations with Minimal Byproducts. Stem Cells and Development, 2019, 28, 712-713.	1.1	0
299	Therapeutic application of the CRISPR system: current issues and new prospects. Human Genetics, 2019, 138, 563-590.	1.8	16
300	Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems. Genes and Genomics, 2019, 41, 871-877.	0.5	15
301	Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biology, 2019, 20, 101.	3.8	20
302	Analysis and minimization of cellular RNA editing by DNA adenine base editors. Science Advances, 2019, 5, eaax5717.	4.7	206
303	Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature, 2019, 569, 433-437.	13.7	434
304	CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Seminars in Cell and Developmental Biology, 2019, 96, 100-106.	2.3	32
305	CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 2019, 164-165, 109-119.	1.9	42
306	Development of hRad51–Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nature Communications, 2019, 10, 2212.	5.8	76
307	Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology, 2019, 37, 626-631.	9.4	207
309	Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Human Gene Therapy Methods, 2019, 30, 71-80.	2.1	8
310	Engineering CRISPR mouse models of cancer. Current Opinion in Genetics and Development, 2019, 54, 88-96.	1.5	25
311	â€~Artificial spermatid'-mediated genome editingâ€. Biology of Reproduction, 2019, 101, 538-548.	1.2	8

#	Article	IF	CITATIONS
312	Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Molecular Plant, 2019, 12, 1027-1036.	3.9	159
313	In vivo continuous evolution of metabolic pathways for chemical production. Microbial Cell Factories, 2019, 18, 82.	1.9	24
314	The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Reports, 2019, 38, 1065-1080.	2.8	78
315	Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica, 2019, 104, e497-e501.	1.7	32
316	Interrogating the noncoding genome in a high-throughput fashion. National Science Review, 2019, 6, 397-399.	4.6	1
317	Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Frontiers in Plant Science, 2019, 10, 550.	1.7	62
318	The <scp>CRIPSR</scp> /Cas geneâ€editing system—an immature but useful toolkit for experimental and clinical medicine. Animal Models and Experimental Medicine, 2019, 2, 5-8.	1.3	7
319	In vivo ways to unveil off-targets. Cell Research, 2019, 29, 339-340.	5.7	3
320	Precise editing of plant genomes – Prospects and challenges. Seminars in Cell and Developmental Biology, 2019, 96, 115-123.	2.3	15
321	Development and Application of Base Editors. CRISPR Journal, 2019, 2, 91-104.	1.4	46
322	Chipping in on Diagnostics. CRISPR Journal, 2019, 2, 69-71.	1.4	4
323	Base Editors and Off-Targeting: The Deaminase Matters. CRISPR Journal, 2019, 2, 71-73.	1.4	1
324	Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Molecular Plant, 2019, 12, 1003-1014.	3.9	116
325	Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology, 2019, 19, 176.	1.6	128
326	Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cellular and Molecular Life Sciences, 2019, 76, 4155-4164.	2.4	7
327	Functional analysis tools for postâ€ŧranslational modification: a postâ€ŧranslational modification database for analysis of proteins and metabolic pathways. Plant Journal, 2019, 99, 1003-1013.	2.8	55
328	Off-target challenge for base editor-mediated genome editing. Cell Biology and Toxicology, 2019, 35, 185-187.	2.4	11
329	De Novo Domestication: An Alternative Route toward New Crops for the Future. Molecular Plant, 2019, 12, 615-631.	3.9	267

#	Article	IF	CITATIONS
330	Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Research, 2019, 47, e75-e75.	6.5	79
331	Versatile and multifaceted CRISPR/Cas gene editing tool for plant research. Seminars in Cell and Developmental Biology, 2019, 96, 107-114.	2.3	9
332	Construction of non-canonical PAM-targeting adenosine base editors by restriction enzyme-free DNA cloning using CRISPR-Cas9. Scientific Reports, 2019, 9, 4939.	1.6	29
333	Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening. BMC Genomics, 2019, 20, 225.	1.2	23
334	Cell-Selective Regulation of CFTR Gene Expression: Relevance to Gene Editing Therapeutics. Genes, 2019, 10, 235.	1.0	21
335	Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27, 735-746.	3.7	148
336	Applications of CRISPR systems in respiratory health: Entering a new â€ [~] red pen' era in genome editing. Respirology, 2019, 24, 628-637.	1.3	13
337	Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annual Review of Biochemistry, 2019, 88, 191-220.	5.0	120
338	Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 13.	1.8	102
339	Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nature Reviews Nephrology, 2019, 15, 327-345.	4.1	327
340	CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discovery Today, 2019, 24, 955-970.	3.2	52
341	CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of Plant Biology, 2019, 70, 667-697.	8.6	959
342	Base editing the mammalian genome. Methods, 2019, 164-165, 100-108.	1.9	14
343	A New Class of Medicines through DNA Editing. New England Journal of Medicine, 2019, 380, 947-959.	13.9	184
344	Modeling human point mutation diseases in <i>Xenopus tropicalis</i> with a modified CRISPR/Cas9 system. FASEB Journal, 2019, 33, 6962-6968.	0.2	15
345	Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364, 289-292.	6.0	573
346	Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364, 292-295.	6.0	491
347	Delivering on the promise of gene editing for cystic fibrosis. Genes and Diseases, 2019, 6, 97-108.	1.5	40

		EPORT	
#	Article	IF	CITATIONS
348	Therapeutic gene editing, making a point. Cardiovascular Research, 2019, 115, e39-e40.	1.8	2
349	Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends in Biotechnology, 2019, 37, 870-881.	4.9	73
350	Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nature Biotechnology, 2019, 37, 430-435.	9.4	151
351	Tracking CRISPR's Footprints. Methods in Molecular Biology, 2019, 1961, 13-28.	0.4	7
352	Editing the microbiome the CRISPR way. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180103.	1.8	70
353	Unbiased Forward Genetic Screening with Chemical Mutagenesis to Uncover Drug–Target Interactions. Methods in Molecular Biology, 2019, 1953, 23-31.	0.4	Ο
354	Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance. Biochemistry, 2019, 58, 1905-1917.	1.2	26
355	Opportunities and Challenges for Molecular Understanding of Ciliopathies–The 100,000 Genomes Project. Frontiers in Genetics, 2019, 10, 127.	1.1	71
356	Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Research, 2019, 29, 843-847.	2.4	59
357	Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic To Translational Science, 2019, 4, 122-131.	1.9	32
358	CRISPR-Cas in <i>Streptococcus pyogenes</i> . RNA Biology, 2019, 16, 380-389.	1.5	86
359	Therapeutic gene editing in haematological disorders with <scp>CRISPR</scp> /Cas9. British Journal of Haematology, 2019, 185, 821-835.	1.2	32
360	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. , 2019, 9, 665-714.		7
361	Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nature Communications, 2019, 10, 1234.	5.8	36
363	LION: a simple and rapid method to achieve CRISPR gene editing. Cellular and Molecular Life Sciences, 2019, 76, 2633-2645.	2.4	3
364	Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Advances in Immunology, 2019, 141, 51-103.	1.1	26
365	Next-generation human genetics for organism-level systems biology. Current Opinion in Biotechnology, 2019, 58, 137-145.	3.3	5
366	An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nature Communications, 2019, 10, 1610.	5.8	48

#	Article	IF	CITATIONS
367	Off-target effects and the solution. Nature Plants, 2019, 5, 341-342.	4.7	14
368	An adenine base editor with expanded targeting scope using SpCas9â€ <scp>NG</scp> v1 in rice. Plant Biotechnology Journal, 2019, 17, 1476-1478.	4.1	52
369	CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives. Emerging Topics in Life Sciences, 2019, 3, 313-326.	1.1	6
370	"Russisches Roulette" in der Genforschung am Menschen?. Ethik in Der Medizin, 2019, 31, 1-5.	1.0	5
371	Advancements and Obstacles of CRISPR-Cas9 Technology in Translational Research. Molecular Therapy - Methods and Clinical Development, 2019, 13, 359-370.	1.8	74
372	CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends in Biotechnology, 2019, 37, 1121-1142.	4.9	259
373	Off-Targeting of Base Editors: BE3 but not ABE induces substantial off-target single nucleotide variants. Signal Transduction and Targeted Therapy, 2019, 4, 9.	7.1	20
374	BioBits Health: Classroom Activities Exploring Engineering, Biology, and Human Health with Fluorescent Readouts. ACS Synthetic Biology, 2019, 8, 1001-1009.	1.9	55
375	Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Computational Biology, 2019, 15, e1006658.	1.5	83
376	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.0	5
377	Development of a CRISPR/Cas9 System for Methylococcus capsulatus <i>In Vivo</i> Gene Editing. Applied and Environmental Microbiology, 2019, 85, .	1.4	40
378	Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids. ACS Chemical Biology, 2019, 14, 603-612.	1.6	23
379	RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry, 2019, 58, 1947-1957.	1.2	19
380	A highâ€throughput transient expression system for rice. Plant, Cell and Environment, 2019, 42, 2057-2064.	2.8	53
381	<i>beditor</i> : A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics, 2019, 212, 377-385.	1.2	32
382	Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Molecular Diagnosis and Therapy, 2019, 23, 187-200.	1.6	22
383	DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells. PLoS Genetics, 2019, 15, e1008101.	1.5	28
384	New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. Frontiers in Plant Science, 2019, 10, 525.	1.7	32

#	Article	IF	CITATIONS
385	Plant genome editing using xCas9 with expanded PAM compatibility. Journal of Genetics and Genomics, 2019, 46, 277-280.	1.7	24
386	Functional-genetic approaches to understanding drug response and resistance. Current Opinion in Genetics and Development, 2019, 54, 41-47.	1.5	3
387	Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerging Topics in Life Sciences, 2019, 3, 261-275.	1.1	2
388	Development and Application of CRISPR/Cas System in Rice. Rice Science, 2019, 26, 69-76.	1.7	12
389	Simultaneous targeting of linked loci in mouse embryos using base editing. Scientific Reports, 2019, 9, 1662.	1.6	12
390	Site-Directed Genome Modification in Triticeae Cereals Mediated by Cas Endonucleases. , 2019, , 121-133.		0
391	CRISPR–Cas9 ^{D10A} nickaseâ€assisted base editing in the solvent producer <i>Clostridium beijerinckii</i> . Biotechnology and Bioengineering, 2019, 116, 1475-1483.	1.7	57
392	A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nature Cell Biology, 2019, 21, 522-530.	4.6	117
393	CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome. Rice Science, 2019, 26, 125-128.	1.7	54
394	Improvements of TKC Technology Accelerate Isolation of Transgene-Free CRISPR/Cas9-Edited Rice Plants. Rice Science, 2019, 26, 109-117.	1.7	30
395	Implementation of a CRISPR-Based System for Gene Regulation in <i>Candida albicans</i> . MSphere, 2019, 4, .	1.3	38
396	Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Scientific Reports, 2019, 9, 2788.	1.6	31
397	Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nature Medicine, 2019, 25, 423-426.	15.2	115
398	A CRISPR Interference Platform for Efficient Genetic Repression in <i>Candida albicans</i> . MSphere, 2019, 4, .	1.3	49
399	A CRISPR Technology and Biomolecule Production by Synthetic Biology Approach. , 2019, , 143-161.		6
400	Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides. CRISPR Journal, 2019, 2, 51-63.	1.4	60
401	Mimicking natural polymorphism in <i><scp>elF</scp>4E</i> by <scp>CRISPR</scp> as9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal, 2019, 17, 1736-1750.	4.1	129
402	From fiction to science: clinical potentials and regulatory considerations of gene editing. Clinical and Translational Medicine, 2019, 8, 27.	1.7	26

#	Article	IF	CITATIONS
403	Liver targeted gene therapy: Insights into emerging therapies. Drug Discovery Today: Technologies, 2019, 34, 9-19.	4.0	3
404	Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Reports, 2019, 52, 475-481.	1.1	21
406	Prospects for Cell-Directed Curative Therapy of Phenylketonuria (PKU). Molecular Frontiers Journal, 2019, 03, 110-121.	0.9	0
407	The Many Faces of Gene Regulation in Cancer: A Computational Oncogenomics Outlook. Genes, 2019, 10, 865.	1.0	34
408	Genome Editing with CRISPR as: An Overview. Current Protocols in Essential Laboratory Techniques, 2019, 19, e36.	2.6	12
409	Got mutation? â€~Base editors' fix genomes one nucleotide at a time. Nature, 2019, 575, 553-555.	13.7	11
410	Autologous Stem-Cell-Based Gene Therapy for Inherited Disorders: State of the Art and Perspectives. Frontiers in Pediatrics, 2019, 7, 443.	0.9	66
411	Off-target effects of cytidine base editor and adenine base editor: What can we do?. Journal of Genetics and Genomics, 2019, 46, 509-512.	1.7	2
412	Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. Journal of Hematology and Oncology, 2019, 12, 127.	6.9	44
413	Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nature Communications, 2019, 10, 5222.	5.8	135
414	An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR Journal, 2019, 2, 376-394.	1.4	37
416	Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. Journal of Genetics and Genomics, 2019, 46, 513-521.	1.7	45
417	Double-Check Base Editing for Efficient A to G Conversions. ACS Synthetic Biology, 2019, 8, 2629-2634.	1.9	14
418	Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nature Communications, 2019, 10, 5353.	5.8	52
419	Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synthetic Biology, 2019, 8, 2607-2619.	1.9	5
420	Modeling Niemann–Pick disease type C in a human haploid cell line allows for patient variant characterization and clinical interpretation. Genome Research, 2019, 29, 2010-2019.	2.4	14
421	Advances in genome editing through control of DNA repair pathways. Nature Cell Biology, 2019, 21, 1468-1478.	4.6	271
422	Advances and opportunities in gene editing and gene regulation technology for Yarrowia lipolytica. Microbial Cell Factories, 2019, 18, 208.	1.9	23

		CITATION RE	PORT	
#	Article		IF	CITATIONS
423	Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants.	Rice, 2019, 12, 95.	1.7	53
424	Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engine Cell Factories, 2019, 18, 204.	ering. Microbial	1.9	20
425	AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genom 2019, 14, e0226694.	ies. PLoS ONE,	1.1	5
426	Prime Editing: A Novel Cas9-Reverse Transcriptase Fusion May Revolutionize Genome E Gene Therapy, 2019, 30, 1445-1446.	Editing. Human	1.4	6
427	Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecul 2019, 20, 6041.	ar Sciences,	1.8	74
428	CRISPR. Current Opinion in Lipidology, 2019, 30, 172-176.		1.2	7
429	Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas Discovery, 2019, 5, 58.	9 variant. Cell	3.1	14
430	Progress in the application of CRISPR: From gene to base editing. Medicinal Research R 665-683.	leviews, 2019, 39,	5.0	21
431	Gene therapy for visual loss: Opportunities and concerns. Progress in Retinal and Eye R 68, 31-53.	lesearch, 2019,	7.3	78
432	RNAi/CRISPR Screens: from a Pool to a Valid Hit. Trends in Biotechnology, 2019, 37, 38	-55.	4.9	90
433	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a me genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	diated plant	4.1	120
434	DNA-Free Genome Editing: Past, Present and Future. Frontiers in Plant Science, 2018, 9	9, 1957.	1.7	135
435	Generation of genetically engineered nonâ€human primate models of brain function a disorders. American Journal of Primatology, 2019, 81, e22931.	nd neurological	0.8	34
436	CRISPR/Cas-based genome engineering in natural product discovery. Natural Product R 1262-1280.	teports, 2019, 36,	5.2	88
437	CRISPR RNA-guided autonomous delivery of Cas9. Nature Structural and Molecular Bio 14-24.	logy, 2019, 26,	3.6	27
438	Basic and Clinical Application of Adeno-Associated Virus–Mediated Genome Editing. Therapy, 2019, 30, 673-681.	Human Gene	1.4	5
439	R-loop formation by dCas9 is mutagenic in <i>Saccharomyces cerevisiae</i> . Nucleic A 2019, 47, 2389-2401.	cids Research,	6.5	28
440	Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with ribonucleoproteins. Nature Communications, 2019, 10, 45.	Cas9-sgRNA	5.8	195

	Сітатіоі	n Report	
#	Article	IF	Citations
441	A Bump-Hole Approach for Directed RNA Editing. Cell Chemical Biology, 2019, 26, 269-277.e5.	2.5	28
442	Gene disruption through base editingâ€induced <scp>messenger RNA</scp> missplicing in plants. New Phytologist, 2019, 222, 1139-1148.	3.5	46
443	Chemical Biology: Here to Stay?. Israel Journal of Chemistry, 2019, 59, 7-17.	1.0	2
444	Designing an Elusive C•G→G•C CRISPR Base Editor. Trends in Biochemical Sciences, 2019, 44, 91-94.	3.7	10
445	Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium. Cells, 2019, 8, 46.	1.8	12
446	The first genetically geneâ€edited babies: It's "irresponsible and too early― Animal Models and Experimental Medicine, 2019, 2, 1-4.	1.3	7
447	Plant DNA Repair Pathways and Their Applications in Genome Engineering. Methods in Molecular Biology, 2019, 1917, 3-24.	0.4	16
448	Base-Editing-Mediated R17H Substitution in Histone H3 Reveals Methylation-Dependent Regulation of Yap Signaling and Early Mouse Embryo Development. Cell Reports, 2019, 26, 302-312.e4.	2.9	21
449	Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nature Communications, 2019, 10, 67.	5.8	103
450	In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biology, 2019, 17, 4.	1.7	59
451	A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site. Blood, 2019, 133, 852-856.	0.6	46
452	CRISPR/Cas9â€Based Genome Editing and its Applications for Functional Genomic Analyses in Plants. Small Methods, 2019, 3, 1800473.	4.6	24
453	CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell, 2019, 176, 254-267.e16.	13.5	73
454	Phenotypic and genome-wide association with the local environment of Arabidopsis. Nature Ecology and Evolution, 2019, 3, 274-285.	3.4	67
455	Emerging Genetic Therapy for Sickle Cell Disease. Annual Review of Medicine, 2019, 70, 257-271.	5.0	90
456	Genome Editing: A New Horizon for Oral and Craniofacial Research. Journal of Dental Research, 2019, 98, 36-45.	2.5	13
457	CRISPR/Cas system: A game changing genome editing technology, to treat human genetic diseases. Gene, 2019, 685, 70-75.	1.0	37
458	CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 2019, 70, 239-255.	5.0	130

#	Article	IF	CITATIONS
459	Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Current Opinion in Biotechnology, 2019, 56, 61-68.	3.3	36
460	Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nature Plants, 2019, 5, 14-17.	4.7	154
461	Developing a highly efficient and wildly adaptive <scp>CRISPR</scp> â€ <i>Sa</i> Cas9 toolset for plant genome editing. Plant Biotechnology Journal, 2019, 17, 706-708.	4.1	50
462	Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjugate Chemistry, 2019, 30, 418-431.	1.8	11
463	Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry, 2019, 58, 330-335.	1.2	10
464	Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. Annual Review of Cancer Biology, 2019, 3, 345-363.	2.3	9
465	CRISPR–Cas molecular beacons as tool for studies of assembly of CRISPR–Cas effector complexes and their interactions with DNA. Methods in Enzymology, 2019, 616, 337-363.	0.4	6
466	CRISPR/Cas-mediated genome editing for crop improvement: current applications and future prospects. Plant Biotechnology Reports, 2019, 13, 1-10.	0.9	20
467	Nodal and BMP dispersal during early zebrafish development. Developmental Biology, 2019, 447, 14-23.	0.9	38
468	New literacy challenge for the twenty-first century: genetic knowledge is poor even among well educated. Journal of Community Genetics, 2019, 10, 73-84.	0.5	87
469	Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. Journal of Integrative Plant Biology, 2020, 62, 269-286.	4.1	52
470	Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 2020, 4, 125-130.	11.6	136
471	Highâ€efficient and precise base editing of C•G to T•A in the allotetraploid cotton (<i>Gossypium) Tj ETQqC 2020, 18, 45-56.</i>) 0 0 rgBT 4.1	/Overlock 10 114
472	CRISPR technology for immuno-oncology applications. Methods in Enzymology, 2020, 635, 251-266.	0.4	1
473	Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice. Crop Journal, 2020, 8, 396-402.	2.3	16
474	CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovascular Research, 2020, 116, 894-907.	1.8	40
475	Genome editing in grass plants. ABIOTECH, 2020, 1, 41-57.	1.8	11
476	Discriminated sgRNAs-Based SurroGate System Greatly Enhances the Screening Efficiency of Plant Base-Edited Cells. Molecular Plant, 2020, 13, 169-180.	3.9	25

#	Article	IF	CITATIONS
477	Applications of genome editing in farm animals. , 2020, , 131-149.		5
478	Base Editor Correction of COL7A1 in RecessiveÂDystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. Journal of Investigative Dermatology, 2020, 140, 338-347.e5.	0.3	69
479	An Allele-Specific Functional SNP Associated with Two Systemic Autoimmune Diseases Modulates IRF5 Expression by Long-Range Chromatin Loop Formation. Journal of Investigative Dermatology, 2020, 140, 348-360.e11.	0.3	25
480	Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal, 2020, 18, 20-31.	4.1	152
481	Fuchs endothelial corneal dystrophy and corneal endothelial diseases: East meets West. Eye, 2020, 34, 427-441.	1.1	20
482	A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene, 2020, 39, 30-35.	2.6	64
483	Prefrontal GABA and glutamate levels correlate with impulsivity and cognitive function of prescription opioid addicts: A ¹ Hâ€magnetic resonance spectroscopy study. Psychiatry and Clinical Neurosciences, 2020, 74, 77-83.	1.0	20
484	Multiplex Gene Disruption by Targeted Base Editing of <i>Yarrowia lipolytica</i> Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Biotechnology Journal, 2020, 15, e1900238.	1.8	40
485	CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research, 2020, 29, 1-35.	1.3	31
486	Synthetic lethality as an engine for cancer drug target discovery. Nature Reviews Drug Discovery, 2020, 19, 23-38.	21.5	295
487	Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnology Journal, 2020, 18, 770-778.	4.1	72
488	FE parametric study on the longitudinal tensile strength and damage mechanism of Zâ€pinned laminates. Polymer Composites, 2020, 41, 585-599.	2.3	5
489	Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133, 1603-1622.	1.8	28
490	SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. G3: Genes, Genomes, Genetics, 2020, 10, 489-494.	0.8	35
491	Context-Dependent Strategies for Enhanced Genome Editing of Genodermatoses. Cells, 2020, 9, 112.	1.8	29
492	Programmable adenine deamination in bacteria using a Cas9–adenine-deaminase fusion. Chemical Science, 2020, 11, 1657-1664.	3.7	21
493	Metabolomics should be deployed in the identification and characterization of geneâ€edited crops. Plant Journal, 2020, 102, 897-902.	2.8	30
494	Nano-enabled cellular engineering for bioelectric studies. Nano Research, 2020, 13, 1214-1227.	5.8	11

#	Article	IF	CITATIONS
495	Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop Journal, 2020, 8, 449-456.	2.3	55
496	Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. IScience, 2020, 23, 100789.	1.9	81
497	Clinical and genetic characterization of limb girdle muscular dystrophy R7 telethonin-related patients from three unrelated Chinese families. Neuromuscular Disorders, 2020, 30, 137-143.	0.3	12
498	Establishment of SLC15A1/PEPT1-Knockout Human-Induced Pluripotent Stem Cell Line for Intestinal Drug Absorption Studies. Molecular Therapy - Methods and Clinical Development, 2020, 17, 49-57.	1.8	14
499	Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. Molecular Therapy - Nucleic Acids, 2020, 19, 683-695.	2.3	11
500	Highly efficient base editing with expanded targeting scope using SpCas9â€NG in rabbits. FASEB Journal, 2020, 34, 588-596.	0.2	18
501	Strategies for Developing CRISPRâ€Based Gene Editing Methods in Bacteria. Small Methods, 2020, 4, 1900560.	4.6	19
502	A Universal Surrogate Reporter for Efficient Enrichment of CRISPR/Cas9-Mediated Homology-Directed Repair in Mammalian Cells. Molecular Therapy - Nucleic Acids, 2020, 19, 775-789.	2.3	23
503	Base editing in plants: Current status and challenges. Crop Journal, 2020, 8, 384-395.	2.3	71
504	Computational approaches for effective CRISPR guide RNA design and evaluation. Computational and Structural Biotechnology Journal, 2020, 18, 35-44.	1.9	119
505	CRISPR-Cas nucleases and base editors for plant genome editing. ABIOTECH, 2020, 1, 74-87.	1.8	16
506	Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nature Biotechnology, 2020, 38, 165-168.	9.4	59
507	ExÂVivo/InÂvivo Gene Editing in Hepatocytes Using "All-in-One―CRISPR-Adeno-Associated Virus Vectors with a Self-Linearizing Repair Template. IScience, 2020, 23, 100764.	1.9	33
508	Strategies for the CRISPR-Based Therapeutics. Trends in Pharmacological Sciences, 2020, 41, 55-65.	4.0	39
509	Efficient Gene Silencing by Adenine Base Editor-Mediated Start Codon Mutation. Molecular Therapy, 2020, 28, 431-440.	3.7	37
510	Increasing the targeting scope and efficiency of base editing with Proxyâ€BE strategy. FEBS Letters, 2020, 594, 1319-1328.	1.3	3
511	Recent advances in mammalian reproductive biology. Science China Life Sciences, 2020, 63, 18-58.	2.3	23
512	Prostate cancer research: The next generation; report from the 2019 Coffeyâ€Holden Prostate Cancer Academy Meeting. Prostate, 2020, 80, 113-132.	1.2	25

#	Article	IF	CITATIONS
513	In situ readout of DNA barcodes and single base edits facilitated by in vitro transcription. Nature Biotechnology, 2020, 38, 66-75.	9.4	52
514	A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Research, 2020, 48, 472-485.	6.5	20
515	Optimizing plant adenine base editor systems by modifying the transgene selection system. Plant Biotechnology Journal, 2020, 18, 1495-1497.	4.1	19
516	Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein. Virologica Sinica, 2020, 35, 191-199.	1.2	8
517	CRISPR Diagnosis and Therapeutics with Single Base Pair Precision. Trends in Molecular Medicine, 2020, 26, 337-350.	3.5	30
518	Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants. Plant and Cell Physiology, 2020, 61, 1946-1953.	1.5	63
519	Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences, 2020, 21, 6925.	1.8	11
520	Synthetic regulation of multicellular systems for regenerative engineering. Current Opinion in Biomedical Engineering, 2020, 16, 42-51.	1.8	4
521	Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery, 2020, 19, 839-859.	21.5	218
522	Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies. Molecular and Cellular Biology, 2021, 41, .	1.1	7
523	Precise Genome Editing in Poultry and Its Application to Industries. Genes, 2020, 11, 1182.	1.0	17
524	Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. Plants, 2020, 9, 1360.	1.6	18
525	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11, 1113.	1.0	37
526	Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nature Communications, 2020, 11, 4871.	5.8	46
527	Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21, 661-677.	16.1	433
528	New prospects on the horizon: Genome editing to engineer plants for desirable traits. Current Plant Biology, 2020, 24, 100171.	2.3	26
529	CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology, 2020, 5, 277-292.	1.8	33
530	Base Editing Mediated Generation of Point Mutations Into Human Pluripotent Stem Cells for Modeling Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 590581.	1.8	22

#	Article	IF	CITATIONS
531	CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease—A Narrative Review. Neurology and Therapy, 2020, 9, 419-434.	1.4	24
532	Progresses, Challenges, and Prospects of Genome Editing in Soybean (Glycine max). Frontiers in Plant Science, 2020, 11, 571138.	1.7	26
533	Gene Editing by Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 7362.	1.8	30
534	RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Scientific Reports, 2020, 10, 17304.	1.6	15
535	Sharpening gene editing toolbox in Arabidopsis for plants. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 769-784.	0.9	12
536	A guide for bioinformaticians: â€~omics-based drug discovery for precision oncology. Drug Discovery Today, 2020, 25, 1897-1904.	3.2	10
537	Type II anti-CRISPR proteins as a new tool for synthetic biology. RNA Biology, 2021, 18, 1085-1098.	1.5	7
538	InÂVivo Repair of a Protein Underlying a Neurological Disorder by Programmable RNA Editing. Cell Reports, 2020, 32, 107878.	2.9	44
539	Computational Methods for Analysis of Large-Scale CRISPR Screens. Annual Review of Biomedical Data Science, 2020, 3, 137-162.	2.8	4
540	Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf―CAR T and CAR NK Cells. Frontiers in Immunology, 2020, 11, 1965.	2.2	85
541	Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Briefings in Bioinformatics, 2020, 21, 1182-1195.	3.2	29
542	Terminal Uridylyl Transferase Mediated Site-Directed Access to Clickable Chromatin Employing CRISPR-dCas9. Journal of the American Chemical Society, 2020, 142, 13954-13965.	6.6	13
543	Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease. Frontiers in Genetics, 2020, 11, 731.	1.1	14
544	Microbes as Biosensors. Annual Review of Microbiology, 2020, 74, 337-359.	2.9	35
545	A Guide to Understanding "State-of-the-Art―Basic Research Techniques in Anesthesiology. Anesthesia and Analgesia, 2020, 131, 450-463.	1.1	2
546	Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Frontiers in Oncology, 2020, 10, 1460.	1.3	30
547	CRISPR-sub: Analysis of DNA substitution mutations caused by CRISPR-Cas9 in human cells. Computational and Structural Biotechnology Journal, 2020, 18, 1686-1694.	1.9	17
548	BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Cells, 2020, 9, 1690.	1.8	16

# 549	ARTICLE Development of a Single Construct System for Site-Directed RNA Editing Using MS2-ADAR. International Journal of Molecular Sciences, 2020, 21, 4943.	IF 1.8	Citations
550	Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunology Letters, 2020, 226, 71-82.	1.1	9
551	Cost-effective generation of A-to-G mutant mice by zygote electroporation of adenine base editor ribonucleoproteins. Journal of Genetics and Genomics, 2020, 47, 337-340.	1.7	3
552	Probing the diversity and regulation of tRNA modifications. Current Opinion in Microbiology, 2020, 57, 41-48.	2.3	17
553	CRISPR–Cas immune systems and genome engineering. , 2020, , 157-177.		0
554	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	1.6	6
555	Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination. Nature Communications, 2020, 11, 5827.	5.8	17
556	CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594347.	2.0	17
557	Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs. Frontiers in Genetics, 2020, 11, 592623.	1.1	12
558	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	1.4	18
559	Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environmental Sciences Europe, 2020, 32, .	2.6	43
560	Precision Genome Engineering Through Cytidine Base Editing in Rapeseed (Brassica napus. L). Frontiers in Genome Editing, 2020, 2, 605768.	2.7	5
561	CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering. Cells, 2020, 9, 2518.	1.8	21
562	Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes, 2020, 11, 1376.	1.0	18
563	The milestone of genetic screening: Mammalian haploid cells. Computational and Structural Biotechnology Journal, 2020, 18, 2471-2479.	1.9	4
564	From Basic Biology to Patient Mutational Spectra of GATA2 Haploinsufficiencies: What Are the Mechanisms, Hurdles, and Prospects of Genome Editing for Treatment. Frontiers in Genome Editing, 2020, 2, 602182.	2.7	5
565	A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nature Communications, 2020, 11, 6073.	5.8	45
566	Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities. Horticultural Plant Journal, 2020, 6, 372-384.	2.3	18

#	Article	IF	CITATIONS
567	Base Editing in Human Cells to Produce Singleâ€Nucleotideâ€Variant Clonal Cell Lines. Current Protocols in Molecular Biology, 2020, 133, e129.	2.9	4
568	Generation of Common Marmoset Model Lines of Spinocerebellar Ataxia Type 3. Frontiers in Neuroscience, 2020, 14, 548002.	1.4	8
569	Photocontrol of CRISPR/Cas9 function by site-specific chemical modification of guide RNA. Chemical Science, 2020, 11, 11478-11484.	3.7	22
570	An optimized base editor with efficient C-to-T base editing in zebrafish. BMC Biology, 2020, 18, 190.	1.7	17
571	Detection of CRISPR-mediated genome modifications through altered methylation patterns of CpG islands. BMC Genomics, 2020, 21, 856.	1.2	1
572	Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit―Genome-Editing Tools. Cells, 2020, 9, 2572.	1.8	4
573	Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. Vaccines, 2020, 8, 733.	2.1	10
574	Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection. Transgenic Research, 2020, 29, 587-598.	1.3	5
575	CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. Cancer Gene Therapy, 2021, 28, 566-580.	2.2	4
576	Programmable Liveâ€Cell CRISPR Imaging with Toeholdâ€Switchâ€Mediated Strand Displacement. Angewandte Chemie, 2020, 132, 20793-20799.	1.6	9
578	Recent advances of genome editing and related technologies in China. Gene Therapy, 2020, 27, 312-320.	2.3	5
579	Current Status and Challenges of DNA Base Editing Tools. Molecular Therapy, 2020, 28, 1938-1952.	3.7	72
580	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	1.0	3
581	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	3.6	32
582	Gene Editing for Treatment and Prevention of Human Diseases: A Global Survey of Gene Editing-Related Researchers. Human Gene Therapy, 2020, 31, 852-862.	1.4	7
583	Applying gene editing to tailor precise genetic modifications in plants. Journal of Biological Chemistry, 2020, 295, 13267-13276.	1.6	29
584	DNA capture by a CRISPR-Cas9–guided adenine base editor. Science, 2020, 369, 566-571.	6.0	114
585	AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects. Cells, 2020, 9, 1786.	1.8	24

		CITATION RE	PORT	
#	Article		IF	CITATIONS
586	The Role of Noncoding Variants in Heritable Disease. Trends in Genetics, 2020, 36, 880-8	91.	2.9	67
587	Applications of CRISPR technology in studying plant-pathogen interactions: overview and Phytopathology Research, 2020, 2, .	perspective.	0.9	21
588	Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Frontiers in Endocrinology, 2020, 11, 489.		1.5	74
589	First progeria monkey model generated using base editor. Protein and Cell, 2020, 11, 86.	2-865.	4.8	1
590	Programmable Liveâ€Cell CRISPR Imaging with Toeholdâ€Switchâ€Mediated Strand Disp Angewandte Chemie - International Edition, 2020, 59, 20612-20618.	lacement.	7.2	48
591	CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Edit Start Codon Mutations. Molecular Therapy - Nucleic Acids, 2020, 21, 1062-1073.	ing-Induced	2.3	16
592	Correction of Airway Stem Cells: Genome Editing Approaches for the Treatment of Cystic Human Gene Therapy, 2020, 31, 956-972.	Fibrosis.	1.4	19
593	Production of Herbicide-Sensitive Strain to Prevent Volunteer Rice Infestation Using a CR Cytidine Deaminase Fusion. Frontiers in Plant Science, 2020, 11, 925.	ISPR-Cas9	1.7	13
594	Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drou Wheat. Frontiers in Plant Science, 2020, 11, 1149.	ght-Tolerant	1.7	24
595	Large-Fragment Deletions Induced by Cas9 Cleavage while Not in the BEs System. Molec Nucleic Acids, 2020, 21, 523-526.	ular Therapy -	2.3	48
596	Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Molecul 79, 728-740.e6.	ar Cell, 2020,	4.5	104
597	The Development and Application of a Base Editor in Biomedicine. BioMed Research Inter 2020, 1-12.	national, 2020,	0.9	2
598	Long-Term Rewritable Report and Recording of Environmental Stimuli in Engineered Bact Populations. ACS Synthetic Biology, 2020, 9, 2440-2449.	erial	1.9	13
599	Genome-wide specificity of dCpf1 cytidine base editors. Nature Communications, 2020,	11, 4072.	5.8	17
600	GOTI, a method to identify genome-wide off-target effects of genome editing in mouse e Protocols, 2020, 15, 3009-3029.	mbryos. Nature	5.5	24
601	Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far?. Journal of Cl 2020, 9, 2577.	nical Medicine,	1.0	15
602	Patient derived stem cells for discovery and validation of novel pathogenic variants in inh retinal disease. Progress in Retinal and Eye Research, 2021, 83, 100918.	erited	7.3	16
603	Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Per Frontiers in Plant Science, 2020, 11, 577313.	spectives.	1.7	53

#	Article	IF	CITATIONS
604	Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair, 2020, 95, 102943.	1.3	25
605	Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. Journal of Biosciences, 2020, 45, 1.	0.5	18
606	Biologia futura: animal testing in drug development—the past, the present and the future. Biologia Futura, 2020, 71, 443-452.	0.6	6
607	Aglycosylated antibody-producing mice for aglycosylated antibody-lectin coupled immunoassay for the quantification of tumor markers (ALIQUAT). Communications Biology, 2020, 3, 636.	2.0	2
608	New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annual Review of Genetics, 2020, 54, 287-307.	3.2	23
609	Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC Biology, 2020, 18, 111.	1.7	28
610	The Roles of TGF-β Signaling in Cerebrovascular Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 567682.	1.8	20
611	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences, 2020, 21, 6240.	1.8	179
612	Application of different types of CRISPR/Cas-based systems in bacteria. Microbial Cell Factories, 2020, 19, 172.	1.9	87
613	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.	3.8	97
613 614	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .	3.8	97 20
613 614 615	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, . Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.	3.8 1.7 1.5	97 20 8
613614615616	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.	3.8 1.7 1.5 2.9	97 20 8 37
 613 614 615 616 617 	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.	3.8 1.7 1.5 2.9 0.3	97 20 8 37 0
 613 614 615 616 617 618 	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biology, 2020, 18, 131.	3.8 1.7 1.5 2.9 0.3 1.7	97 20 8 37 0 41
 613 614 615 616 617 618 619 	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biology, 2020, 18, 131.Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Research, 2020, 48, 10576-10589.	3.8 1.7 1.5 2.9 0.3 1.7 6.5	 97 20 8 37 0 41 104
 613 614 615 616 617 618 619 620 	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biology, 2020, 18, 131.Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Research, 2020, 48, 10576-10589.Genome scale analysis of pathogenic variants targetable for single base editing. BMC Medical Genomics, 2020, 13, 80.	 3.8 1.7 1.5 2.9 0.3 1.7 6.5 0.7 	 97 20 8 37 0 41 104 6

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
622	A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 2252-2257.	1.9	24
623	CRISPR Screens in Plants: Approaches, Guidelines, and Future Prospects. Plant Cell, 2020, , tpc.00463.2020.	3.1	9
624	Synthetic Virus-Derived Nanosystems (SVNs) for Delivery and Precision Docking of Large Multifunctional DNA Circuitry in Mammalian Cells. Pharmaceutics, 2020, 12, 759.	2.0	13
625	New Directions in Pulmonary Gene Therapy. Human Gene Therapy, 2020, 31, 921-939.	1.4	10
626	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes, 2020, 11, 976.	1.0	9
627	Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics, 2020, 12, 767.	2.0	23
628	sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine. Genome Biology, 2020, 21, 222.	3.8	15
629	Nanoparticleâ€mediated gene transformation strategies for plant genetic engineering. Plant Journal, 2020, 104, 880-891.	2.8	74
630	Mitochondrial DNA Base Editing: Good Editing Things Still Come in Small Packages. Molecular Cell, 2020, 79, 708-709.	4.5	6
631	Innovative Therapies for Hemoglobin Disorders. BioDrugs, 2020, 34, 625-647.	2.2	7
632	Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis, 2020, 3, 813-823.	16.1	23
633	Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Frontiers in Neuroscience, 2020, 14, 838.	1.4	12
634	Cellular therapy options for genetic skin disorders with a focus on recessive dystrophic epidermolysis bullosa. British Medical Bulletin, 2020, 136, 30-45.	2.7	5
635	A polyclonal allelic expression assay for detecting regulatory effects of transcript variants. Genome Medicine, 2020, 12, 79.	3.6	5
636	Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 148.	1.4	20
637	Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines, 2020, 8, 332.	1.4	13
638	CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS ONE, 2020, 15, e0235942.	1.1	33
639	New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. Frontiers in Plant Science, 2020, 11, 1234.	1.7	32
	Сітаті	CITATION REPORT	
-----	---	-----------------	-----------
#	Article	IF	CITATIONS
640	CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes, 2020, 11, 921.	1.0	27
641	Generation and characterisation of a COV434 cell clone carrying a monoallelic FecBB mutation introduced by CRISPR/Cas9. Reproduction, Fertility and Development, 2020, , .	0.1	0
642	Treating Cystic Fibrosis with mRNA and CRISPR. Human Gene Therapy, 2020, 31, 940-955.	1.4	35
643	CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biology, 2020, 21, 204.	3.8	14
644	Using Gene Editing Approaches to Fine-Tune the Immune System. Frontiers in Immunology, 2020, 11, 570672.	2.2	13
645	Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Science Advances, 2020, 6, .	4.7	88
646	Sharing the CRISPR Toolbox with an Expanding Community. CRISPR Journal, 2020, 3, 248-252.	1.4	5
647	Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Frontiers in Genome Editing, 2020, 2, 602970.	2.7	17
648	Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33426-33435.	3.3	14
649	CRISPR-Cas Systems: Prospects for Use in Medicine. Applied Sciences (Switzerland), 2020, 10, 9001.	1.3	5
650	Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences, 2020, 21, 9604.	1.8	57
651	AsCRISPR: A Web Server for Allele-Specific Single Guide RNA Design in Precision Medicine. CRISPR Journal, 2020, 3, 512-522.	1.4	8
652	Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 613252.	2.7	31
653	A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biology, 2020, 18, 193.	1.7	10
654	In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nature Communications, 2020, 11, 6436.	5.8	47
655	Functional Genomics in Pancreatic Î ² Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Frontiers in Endocrinology, 2020, 11, 576632.	1.5	13
656	Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Science China Life Sciences, 2021, 64, 1624-1633.	2.3	49
657	CRISPR/Cas9 nickaseâ€mediated efficient and seamless knockâ€in of lethal genes in the medaka fish <i>Oryzias latipes</i> . Development Growth and Differentiation, 2020, 62, 554-567.	0.6	11

#	Article	IF	CITATIONS
658	Screening for functional transcriptional and splicing regulatory variants with GenIE. Nucleic Acids Research, 2020, 48, e131-e131.	6.5	8
659	Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing. Cell Reports, 2020, 33, 108350.	2.9	25
660	Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. IScience, 2020, 23, 101478.	1.9	55
661	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95
662	Engineering biosynthetic enzymes for industrial natural product synthesis. Natural Product Reports, 2020, 37, 1122-1143.	5.2	55
663	Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Scientific Reports, 2020, 10, 7411.	1.6	8
664	Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Molecular Therapy, 2020, 28, 1673-1683.	3.7	24
665	Genome editing technology and application in soybean improvement. Oil Crop Science, 2020, 5, 31-40.	0.9	32
666	A Cas9 with PAM recognition for adenine dinucleotides. Nature Communications, 2020, 11, 2474.	5.8	77
667	Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11274-11282.	3.3	20
668	Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology, 2020, 22, 740-750.	4.6	69
669	Base editing goes into hyperdrive. Nature Cell Biology, 2020, 22, 617-618.	4.6	0
670	Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nature Reviews Rheumatology, 2020, 16, 316-333.	3.5	400
671	An engineered ScCas9 with broad PAM range and high specificity and activity. Nature Biotechnology, 2020, 38, 1154-1158.	9.4	93
672	Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes, 2020, 11, 511.	1.0	86
673	Multiplex precise base editing in cynomolgus monkeys. Nature Communications, 2020, 11, 2325.	5.8	28
674	Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, 2020, 9, 687.	1.6	27
675	Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology, 2020, 38, 856-860.	9.4	165

#	Article	IF	Citations
676	A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nature Biotechnology, 2020, 38, 861-864.	9.4	168
677	CLUE: a bioinformatic and wet-lab pipeline for multiplexed cloning of custom sgRNA libraries. Nucleic Acids Research, 2020, 48, e78.	6.5	2
678	Genomics-guided pre-clinical development of cancer therapies. Nature Cancer, 2020, 1, 482-492.	5.7	23
679	Plant Genome Editing and the Relevance of Off-Target Changes. Plant Physiology, 2020, 183, 1453-1471.	2.3	68
680	CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS Discovery, 2020, 25, 552-567.	1.4	14
681	Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 2020, 20, 234.	1.6	152
682	An overview of development in gene therapeutics in China. Gene Therapy, 2020, 27, 338-348.	2.3	25
683	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 711.	2.0	37
684	Genome Editing in Cereals: Approaches, Applications and Challenges. International Journal of Molecular Sciences, 2020, 21, 4040.	1.8	82
685	Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38, 824-844.	9.4	1,277
686	Synthetic Genomes. Annual Review of Biochemistry, 2020, 89, 77-101.	5.0	48
687	Development of Highly Efficient Dualâ€AAV Split Adenosine Base Editor for In Vivo Gene Therapy. Small Methods, 2020, 4, 2000309.	4.6	34
688	Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293.	2.6	12
689	In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Science Translational Medicine, 2020, 12, .	5.8	114
690	Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839.	1.8	164
691	Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. International Journal of Molecular Sciences, 2020, 21, 3903.	1.8	39
692	Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme and Microbial Technology, 2020, 140, 109619.	1.6	22
693	Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00135.	1.9	9

#	Article	IF	CITATIONS
694	SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biology, 2020, 21, 141.	3.8	38
695	Density functional theory studies on cytosine analogues for inducing double-proton transfer with guanine. Scientific Reports, 2020, 10, 9671.	1.6	8
696	CRISPR with a Happy Ending: Nonâ€Templated DNA Repair for Prokaryotic Genome Engineering. Biotechnology Journal, 2020, 15, e1900404.	1.8	9
697	CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2020, 9, 1781-1789.	1.9	38
698	Prime Editing: Genome Editing for Rare Genetic Diseases Without Double-Strand Breaks or Donor DNA. Frontiers in Genetics, 2020, 11, 528.	1.1	46
699	Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns. Frontiers in Genome Editing, 2020, 2, 5.	2.7	51
700	Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell, 2020, 182, 463-480.e30.	13.5	166
701	Repurposing type l–F CRISPR–Cas system as a transcriptional activation tool in human cells. Nature Communications, 2020, 11, 3136.	5.8	45
702	Synthetic Biology Speeds Up Drug Target Discovery. Frontiers in Pharmacology, 2020, 11, 119.	1.6	13
703	Development of a Simple and Quick Method to Assess Base Editing in Human Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 580-588.	2.3	9
704	Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Horticulture Research, 2020, 7, 36.	2.9	52
705	Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 2020, 38, 883-891.	9.4	502
706	Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38, 582-585.	9.4	544
707	Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020, 26, 535-541.	15.2	196
708	Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nature Methods, 2020, 17, 471-479.	9.0	158
709	Models of Technology Transfer for Genome-Editing Technologies. Annual Review of Genomics and Human Genetics, 2020, 21, 509-534.	2.5	10
710	CRISPR-Cas9 for therapy: the challenges and ways to overcome them. , 2020, , 101-110.		0
711	Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Reports, 2020, 30, 3280-3295.e6.	2.9	7

		CITATION R	EPORT	
#	Article		IF	CITATIONS
712	Engineering salinity tolerance in plants: progress and prospects. Planta, 2020, 251, 76.		1.6	123
713	Application of CRISPR/Cas-mediated base editing for directed protein evolution in plant Life Sciences, 2020, 63, 613-616.	ts. Science China	2.3	5
714	Overcoming bottlenecks in plant gene editing. Current Opinion in Plant Biology, 2020,	54, 79-84.	3.5	71
715	Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of M Medicine, 2020, 98, 615-632.	10lecular	1.7	66
716	Recent advances in CRISPR research. Protein and Cell, 2020, 11, 786-791.		4.8	12
717	Allele-specific genome targeting in the development of precision medicine. Theranostic 3118-3137.	s, 2020, 10,	4.6	18
718	Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Annual Review of Plant Biology, 2020, 71, 575-603.	Breeding.	8.6	125
719	Highly efficient CRISPR-SaKKH tools for plant multiplex cytosine base editing. Crop Jour 418-423.	mal, 2020, 8,	2.3	11
720	Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. 368, 290-296.	Science, 2020,	6.0	714
721	Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13	3, 667-670.	3.9	148
722	A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DN scope. PLoS Biology, 2020, 18, e3000686.	IA targeting	2.6	96
723	Principles of Genetic Engineering. Genes, 2020, 11, 291.		1.0	41
724	CRISPR-mediated accelerated domestication of African rice landraces. PLoS ONE, 2020	, 15, e0229782.	1.1	53
725	Targeted genome editing using CRISPR/Cas9 system in fungi. , 2020, , 45-67.			0
726	CRISPR/Cas9 Editing: Sparking Discussion on Safety in Light of the Need for New Thera Gene Therapy, 2020, 31, 794-807.	peutics. Human	1.4	2
727	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransfer Biotechnology, 2020, 38, 1431-1440.	ase. Nature	9.4	173
728	Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate re Nucleic Acids Research, 2020, 48, 7958-7972.	ecognition.	6.5	33
729	Highly efficient generation of sheep with a defined FecBB mutation via adenine base ec Selection Evolution, 2020, 52, 35.	liting. Genetics	1.2	21

#	Article	IF	CITATIONS
730	Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Trends in Cardiovascular Medicine, 2021, 31, 341-348.	2.3	5
731	A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences, 2020, 45, 874-888.	3.7	23
732	In vivo functional screening for systems-level integrative cancer genomics. Nature Reviews Cancer, 2020, 20, 573-593.	12.8	44
733	Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells, 2020, 9, 1608.	1.8	257
734	Therapeutic Editing of the TP53 Gene: Is CRISPR/Cas9 an Option?. Genes, 2020, 11, 704.	1.0	31
735	A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020, 583, 631-637.	13.7	409
736	A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Frontiers in Cellular Neuroscience, 2020, 14, 183.	1.8	18
737	Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics, 2020, 12, 616.	2.0	20
738	High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biology, 2020, 18, e3000747.	2.6	38
739	How Crisp is CRISPR? CRISPR-Cas-mediated crop improvement with special focus on nutritional traits. , 2020, , 159-197.		5
740	A Handbook of Gene and Cell Therapy. , 2020, , .		9
741	Current trends in gene recovery mediated by the CRISPR-Cas system. Experimental and Molecular Medicine, 2020, 52, 1016-1027.	3.2	30
742	CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nature Protocols, 2020, 15, 2470-2502.	5.5	50
743	The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717.	3.6	7
744	Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 532-557.	1.8	67
745	Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing <i>via</i> Deamination. ACS Synthetic Biology, 2020, 9, 2162-2171.	1.9	30
746	Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 692.	2.0	21
747	A review of application of base editing for the treatment of inner ear disorders. Journal of Bio-X Research, 2020, 3, 66-71.	0.3	1

#	Article	IF	CITATIONS
748	Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nature Biotechnology, 2020, 38, 1037-1043.	9.4	73
749	Genetic Engineering and Editing of Plants: An Analysis of New and Persisting Questions. Annual Review of Plant Biology, 2020, 71, 659-687.	8.6	40
750	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	2.1	23
751	Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Frontiers in Plant Science, 2020, 11, 56.	1.7	133
752	Engineering herbicideâ€resistant oilseed rape by CRISPR/Cas9â€mediated cytosine baseâ€editing. Plant Biotechnology Journal, 2020, 18, 1857-1859.	4.1	80
753	CRISPR/Cas9â€mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 2020, 24, 3766-3778.	1.6	61
754	Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms, 2020, 8, 297.	1.6	63
755	Genome editing methods in animal models. Animal Cells and Systems, 2020, 24, 8-16.	0.8	33
756	GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Research, 2020, 48, 2841-2852.	6.5	27
757	Recent advances in genome editing of stem cells for drug discovery and therapeutic application. , 2020, 209, 107501.		36
758	Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nature Cell Biology, 2020, 22, 282-288.	4.6	96
759	Improving Cancer Immunotherapy with CRISPRâ€Based Technology. Advanced Biology, 2020, 4, e1900253.	3.0	6
760	Impact of CRISPR interference on strain development in biotechnology. Biotechnology and Applied Biochemistry, 2020, 67, 7-21.	1.4	31
761	CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank. Cell Stem Cell, 2020, 26, 503-510.e7.	5.2	136
762	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	1.7	37
763	Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos. Communications Biology, 2020, 3, 19.	2.0	41
764	Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nature Biotechnology, 2020, 38, 471-481.	9.4	234
765	Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nature Biotechnology, 2020, 38, 620-628.	9.4	272

#	Article	IF	CITATIONS
766	The rapidly advancing Class 2 CRISPR as technologies: A customizable toolbox for molecular manipulations. Journal of Cellular and Molecular Medicine, 2020, 24, 3256-3270.	1.6	39
767	Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide. Crop Journal, 2020, 8, 408-417.	2.3	8
768	Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hearing Research, 2020, 397, 107906.	0.9	20
769	Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 3037-3047.	1.7	14
770	The promise and challenge of therapeutic genome editing. Nature, 2020, 578, 229-236.	13.7	599
771	Establishment of MDR1-knockout human induced pluripotent stem cell line. Drug Metabolism and Pharmacokinetics, 2020, 35, 288-296.	1.1	7
772	Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials, 2020, 234, 119711.	5.7	58
773	Treatment of a Mouse Model of ALS by InÂVivo Base Editing. Molecular Therapy, 2020, 28, 1177-1189.	3.7	133
774	High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nature Biomedical Engineering, 2020, 4, 111-124.	11.6	98
775	Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 2020, 38, 875-882.	9.4	259
776	<i>In situ</i> CRISPR as9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO Journal, 2020, 39, e102169.	3.5	40
777	Correcting tyrosinaemia via a point mutation. Nature Biomedical Engineering, 2020, 4, 14-15.	11.6	0
778	Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering, 2020, 4, 97-110.	11.6	293
779	Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes, 2020, 11, 88.	1.0	9
780	Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 62.	2.0	67
781	i-Silence, Please! An Alternative for Gene Disruption via Adenine Base Editors. Molecular Therapy, 2020, 28, 348-349.	3.7	3
782	Versatile 3′ Functionalization of CRISPR Single Guide RNA. ChemBioChem, 2020, 21, 1633-1640.	1.3	10
783	The CRISPR toolbox in medical mycology: State of the art and perspectives. PLoS Pathogens, 2020, 16, e1008201.	2.1	49

#	Article	IF	CITATIONS
784	Forward genetic approach for behavioral neuroscience using animal models. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 10-31.	1.6	6
785	Genome Editing for Mucopolysaccharidoses. International Journal of Molecular Sciences, 2020, 21, 500.	1.8	31
786	Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. Science China Life Sciences, 2020, 63, 996-1005.	2.3	3
787	Prime Editing: A New Way for Genome Editing. Trends in Cell Biology, 2020, 30, 257-259.	3.6	45
788	Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53. Cell Reports, 2020, 30, 1195-1207.e7.	2.9	29
789	BIG-TREE: Base-Edited Isogenic hPSC Line Generation Using a Transient Reporter for Editing Enrichment. Stem Cell Reports, 2020, 14, 184-191.	2.3	18
790	Genome editing technologies to treat rare liver diseases. Translational Gastroenterology and Hepatology, 2020, 5, 23-23.	1.5	10
791	EMT signaling: potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences, 2020, 77, 2701-2722.	2.4	22
792	How are genes modified? Crossbreeding, mutagenesis, and CRISPR-Cas9. , 2020, , 39-54.		4
793	Expanding the genome-targeting scope and the site selectivity of high-precision base editors. Nature Communications, 2020, 11, 629.	5.8	52
794	The Future of In Utero Gene Therapy. Molecular Diagnosis and Therapy, 2020, 24, 135-142.	1.6	27
795	CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Offâ€Target Evaluation, and Strategies to Mitigate Offâ€Target Effects. Advanced Science, 2020, 7, 1902312.	5.6	162
796	CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. International Journal of Molecular Sciences, 2020, 21, 3038.	1.8	27
797	Efficient generation of mouse models with the prime editing system. Cell Discovery, 2020, 6, 27.	3.1	146
798	Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nature Communications, 2020, 11, 2052.	5.8	124
799	Grand Challenges in Gene and Epigenetic Editing for Neurologic Disease. Frontiers in Genome Editing, 2020, 1, 1.	2.7	2
800	Editorial: Precise Genome Editing Techniques and Applications. Frontiers in Genetics, 2020, 11, 412.	1.1	5
801	Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants. Genes, 2020, 11, 466.	1.0	37

#	Article	IF	CITATIONS
802	BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Molecular Therapy, 2020, 28, 1696-1705.	3.7	16
803	Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species. Nucleic Acids Research, 2020, 48, e57-e57.	6.5	2
804	CRISPR-Based Therapeutic Genome Editing: Strategies and InÂVivo Delivery by AAV Vectors. Cell, 2020, 181, 136-150.	13.5	289
805	Development of Plant Prime-Editing Systems for Precise Genome Editing. Plant Communications, 2020, 1, 100043.	3.6	146
806	Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Research, 2020, 30, 548-550.	5.7	33
807	Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 2020, 38, 813-823.	9.4	127
808	Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology, 2020, 38, 892-900.	9.4	299
809	A CRISPR way for accelerating improvement of food crops. Nature Food, 2020, 1, 200-205.	6.2	125
810	Quantification of the affinities of CRISPR–Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. Journal of Biological Chemistry, 2020, 295, 6509-6517.	1.6	17
811	Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing. Nucleic Acids Research, 2020, 48, W340-W347.	6.5	13
812	Current and future gene therapies for hemoglobinopathies. Current Opinion in Hematology, 2020, 27, 149-154.	1.2	9
813	Genome editing with the CRISPRâ€Cas system: an art, ethics and global regulatory perspective. Plant Biotechnology Journal, 2020, 18, 1651-1669.	4.1	97
814	Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells, 2020, 9, 953.	1.8	19
815	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	5.6	9
816	Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nature Communications, 2020, 11, 1979.	5.8	66
817	Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells. Communications Biology, 2020, 3, 154.	2.0	25
818	CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1. Microbial Cell Factories, 2020, 19, 93.	1.9	19
819	Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors. Science Advances, 2020, 6, eaaz2309.	4.7	18

#	ARTICLE	IF	CITATIONS
821	Decreased Protein Abundance of Lycopene <i>β</i> -Cyclase Contributes to Red Flesh in Domesticated Watermelon. Plant Physiology, 2020, 183, 1171-1183.	2.3	37
822	Perturbing proteomes at single residue resolution using base editing. Nature Communications, 2020, 11, 1871.	5.8	49
823	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
824	Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Research, 2020, 48, 5183-5195.	6.5	41
825	Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. ABIOTECH, 2020, 1, 106-118.	1.8	37
826	Genome and base editing for genetic hearing loss. Hearing Research, 2020, 394, 107958.	0.9	18
827	A modular cloning toolkit for genome editing in plants. BMC Plant Biology, 2020, 20, 179.	1.6	42
828	Inference of single-cell phylogenies from lineage tracing data using Cassiopeia. Genome Biology, 2020, 21, 92.	3.8	61
829	The CRISPR/Cas system in zebrafish. , 2020, , 293-307.		2
830	Advances in genome editing for genetic hearing loss. Advanced Drug Delivery Reviews, 2021, 168, 118-133.	6.6	24
831	A primer to gene therapy: Progress, prospects, and problems. Journal of Inherited Metabolic Disease, 2021, 44, 54-71.	1.7	9
832	CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. British Journal of Haematology, 2021, 192, 33-49.	1.2	4
833	Base editing with high efficiency in allotetraploid oilseed rape by A3Aâ€PBE system. Plant Biotechnology Journal, 2021, 19, 87-97.	4.1	59
834	Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends in Biotechnology, 2021, 39, 194-210.	4.9	31
835	Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Advanced Drug Delivery Reviews, 2021, 168, 181-195.	6.6	17
836	Improving the Cpf1-mediated base editing system by combining dCas9/dead sgRNA with human APOBEC3A variants. Journal of Genetics and Genomics, 2021, 48, 92-95.	1.7	4
837	Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 2021, 39, 35-40.	9.4	277
838	CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 2021, 39, 41-46.	9.4	328

#	Article	IF	CITATIONS
839	Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Communications, 2021, 2, 100101.	3.6	31
840	Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends in Biotechnology, 2021, 39, 165-180.	4.9	42
841	Directed Evolution of CRISPR/Cas Systems for Precise Gene Editing. Trends in Biotechnology, 2021, 39, 262-273.	4.9	32
842	Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nature Biomedical Engineering, 2021, 5, 169-178.	11.6	90
843	An overview of currently available molecular Cas-tools for precise genome modification. Gene, 2021, 769, 145225.	1.0	5
844	One-step genotyping method in CRISPR based on short inner primer-assisted, tetra primer-paired amplifications. Molecular and Cellular Probes, 2021, 55, 101675.	0.9	Ο
845	Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends in Biotechnology, 2021, 39, 692-705.	4.9	52
846	CRISPR-derived genome editing technologies for metabolic engineering. Metabolic Engineering, 2021, 63, 141-147.	3.6	23
847	Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nature Protocols, 2021, 16, 182-217.	5.5	73
848	CRISPR technology: The engine that drives cancer therapy. Biomedicine and Pharmacotherapy, 2021, 133, 111007.	2.5	30
849	Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nature Protocols, 2021, 16, 10-26.	5.5	52
850	Sophisticated CRISPR/Cas tools for fine-tuning plant performance. Journal of Plant Physiology, 2021, 257, 153332.	1.6	10
851	Optogenetic control of <i>Neisseria meningitidis</i> Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Research, 2021, 49, e29-e29.	6.5	25
852	Re-structuring lentiviral vectors to express genomic RNA via cap-dependent translation. Molecular Therapy - Methods and Clinical Development, 2021, 20, 357-365.	1.8	2
853	An unbiased method for evaluating the genome-wide specificity of base editors in rice. Nature Protocols, 2021, 16, 431-457.	5.5	11
854	Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. Journal of Hazardous Materials, 2021, 408, 124910.	6.5	22
855	Systematic analysis, identification, and use of CRISPR/Cas13a–associated crRNAs for sensitive and specific detection of the lcrV gene of Yersinia pestis. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115275.	0.8	15
856	Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food and Energy Security, 2021, 10, e258.	2.0	21

# 857	ARTICLE Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Advanced Drug Delivery Reviews, 2021, 168, 246-258.	IF 6.6	CITATIONS
858	Programmed sequential cutting endows Cas9 versatile base substitution capability in plants. Science China Life Sciences, 2021, 64, 1025-1028.	2.3	5
859	CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. Molecular Plant, 2021, 14, 127-150.	3.9	71
860	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-159.	3.6	24
861	Novel therapies for mucopolysaccharidosis type <scp>III</scp> . Journal of Inherited Metabolic Disease, 2021, 44, 129-147.	1.7	31
862	Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opinion on Biological Therapy, 2021, 21, 229-240.	1.4	11
863	Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of Neurochemistry, 2021, 157, 229-262.	2.1	36
864	CRISPR/Cas gene therapy. Journal of Cellular Physiology, 2021, 236, 2459-2481.	2.0	87
865	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 3-29.	6.6	125
866	Genetic engineering in plants using CRISPRs. , 2021, , 223-233.		0
867	CRISPR and RNAi technology for crop improvements in the developing countries. , 2021, , 129-161.		0
868	Analysis of Wild Type LbCpf1 Protein, and PAM Recognition Variants, in a Cellular Context. Frontiers in Genetics, 2020, 11, 571591.	1.1	2
869	Single Base Editing Using Cytidine Deaminase to Change Grain Size and Seed Coat Color in Rice. Methods in Molecular Biology, 2021, 2238, 135-143.	0.4	2
870	Full-Spectrum Targeted Mutagenesis in Plant and Animal Cells. International Journal of Molecular Sciences, 2021, 22, 857.	1.8	0
871	Plant Viruses: From Targets to Tools for CRISPR. Viruses, 2021, 13, 141.	1.5	36
872	Induced pluripotent stem cell derivation from myoblasts. , 2021, , 37-55.		3
873	The CRISPR-Cas Mechanism for Adaptive Immunity and AlternateÂBacterialÂFunctions Fuels Diverse Biotechnologies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 619763.	1.8	35
874	History, evolution and classification of CRISPR-Cas associated systems. Progress in Molecular Biology and Translational Science, 2021, 179, 11-76.	0.9	18

		CEPORT	
#	Article	IF	Citations
875	Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life, 2021, 11, 76.	1.1	4
876	Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 618406.	2.7	36
877	Prime Editing Guide RNA Design Automation Using PINE-CONE. ACS Synthetic Biology, 2021, 10, 422-427.	1.9	30
878	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	11.6	62
879	Globally Important Wheat Diseases: Status, Challenges, Breeding and Genomic Tools to Enhance Resistance Durability. , 2021, , 59-128.		12
880	CRISPR-Cas systems for genome editing of mammalian cells. Progress in Molecular Biology and Translational Science, 2021, 181, 15-30.	0.9	2
881	Functional genomics of psychiatric disease risk using genome engineering. , 2021, , 711-734.		0
882	CRISPR base editing applications for identifying cancer-driving mutations. Biochemical Society Transactions, 2021, 49, 269-280.	1.6	8
883	Genome editing and RNA interference technologies in plants. , 2021, , 195-212.		0
884	Zebrafish as a model system to evaluate the safety and toxicity of nutraceuticals. , 2021, , 395-409.		0
885	CRISPR-based pathogenic fungal genome editing for control of infection and disease. Progress in Molecular Biology and Translational Science, 2021, 179, 161-196.	0.9	2
886	CRISPR-Cas epigenome editing: improving crop resistance to pathogens. , 2021, , 65-106.		0
887	Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. Journal of Zhejiang University: Science B, 2021, 22, 73-86.	1.3	16
888	Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 2021, 16, 1089-1128.	5.5	90
889	In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nature Communications, 2021, 12, 678.	5.8	44
890	CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 2021, 182, 29-79.	0.9	13
891	Base editing. , 2021, , 101-121.		0
892	Utilizing RNA-Based Approaches to Understand Plant-Insect Interactions. Concepts and Strategies in Plant Sciences, 2021, , 393-428.	0.6	4

#	Article	IF	Citations
893	Delivery Methods, Resources and Design Tools in CRISPR/Cas. , 2021, , 63-116.		5
896	Empowering of reproductive health of farm animals through genome editing technology. , 0, 2, 4.		2
897	Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Experimental Biology and Medicine, 2021, 246, 861-875.	1.1	5
898	CRISPR-based transcriptional activation tool for silent genes in filamentous fungi. Scientific Reports, 2021, 11, 1118.	1.6	23
899	Induced Mutagenesis in Date Palm (Phoenix dactylifera L.) Breeding. Compendium of Plant Genomes, 2021, , 121-154.	0.3	1
900	CRISPR-Cas9 in cancer therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 129-163.	0.9	2
901	Rewriting CFTR to cure cystic fibrosis. Progress in Molecular Biology and Translational Science, 2021, 182, 185-224.	0.9	8
902	Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cellular and Molecular Life Sciences, 2021, 78, 2683-2708.	2.4	29
903	Current status of the application of gene editing in pigs. Journal of Reproduction and Development, 2021, 67, 177-187.	0.5	17
904	Chemical synthesis of stimuli-responsive guide RNA for conditional control of CRISPR-Cas9 gene editing. Chemical Science, 2021, 12, 9934-9945.	3.7	13
905	Precise and broad scope genome editing based on high-specificity Cas9 nickases. Nucleic Acids Research, 2021, 49, 1173-1198.	6.5	29
906	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70
907	In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 2021, 589, 608-614.	13.7	275
908	Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in Molecular Biology and Translational Science, 2021, 181, 31-43.	0.9	11
910	Genome engineering technologies in rabbits. Journal of Biomedical Research, 2021, 35, 135.	0.7	7
911	Genome editing approaches to \hat{l}^2 -hemoglobinopathies. Progress in Molecular Biology and Translational Science, 2021, 182, 153-183.	0.9	13
912	Reprogramming translation for gene therapy. Progress in Molecular Biology and Translational Science, 2021, 182, 439-476.	0.9	5
913	Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. Journal of Biomedical Research, 2021, 35, 148.	0.7	6

#	Article	IF	CITATIONS
914	Efficient Genome Editing in Rice Protoplasts Using CRISPR/CAS9 Construct. Methods in Molecular Biology, 2021, 2238, 173-191.	0.4	2
915	Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement. Methods in Molecular Biology, 2021, 2238, 115-134.	0.4	3
916	Identifying genome-wide off-target sites of CRISPR RNA–guided nucleases and deaminases with Digenome-seq. Nature Protocols, 2021, 16, 1170-1192.	5.5	16
917	Base editing in rice: current progress, advances, limitations, and future perspectives. Plant Cell Reports, 2021, 40, 595-604.	2.8	13
918	Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells. Methods in Molecular Biology, 2021, 2312, 193-223.	0.4	1
919	Novel Approaches for Genome Editing to Develop Climate Smart Crops. , 2021, , 267-291.		5
920	Precise Genome Editing in miRNA Target Site via Gene Targeting and Subsequent Single-Strand-Annealing-Mediated Excision of the Marker Gene in Plants. Frontiers in Genome Editing, 2020, 2, 617713.	2.7	6
921	Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Science China Life Sciences, 2021, 64, 1355-1367.	2.3	26
922	Harnessing lipid nanoparticles for efficient CRISPR delivery. Biomaterials Science, 2021, 9, 6001-6011.	2.6	36
923	Universal toxin-based selection for precise genome engineering in human cells. Nature Communications, 2021, 12, 497.	5.8	29
924	CRISPR applications in plant bacteriology: today and future perspectives. , 2021, , 551-577.		0
925	Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. Journal of Biomedical Research, 2021, 35, 115.	0.7	6
926	Genome Editing: Prospects and Challenges. Compendium of Plant Genomes, 2021, , 191-203.	0.3	1
927	ADAR-Mediated RNA Editing and Its Therapeutic Potentials. RNA Technologies, 2021, , 471-503.	0.2	3
928	Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. Springer Protocols, 2021, , 83-101.	0.1	0
929	Guide-target mismatch effects on dCas9–sgRNA binding activity in living bacterial cells. Nucleic Acids Research, 2021, 49, 1263-1277.	6.5	16
930	Challenges and Future Perspective of CRISPR/Cas Technology for Crop Improvement. , 2021, , 289-306.		1
931	A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Frontiers in Genome Editing, 2020, 2, 617780.	2.7	7

	C	ITATION REPORT	
#	ARTICLE	IF 4 5	Citations
932	Hematopoietic Stem Cell-Targeted Gene-Addition and Gene-Editing Strategies for Î ² -hemoglobinopat Cell Stem Cell, 2021, 28, 191-208.	hies. 5.2	17
934	Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Repc 2021, 54, 98-105.	rts, 1.1	10
935	PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nature Communications, 2021, 12, 1034.	5.8	105
937	Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. ELife, 2021, 10, .	2.8	26
938	Small-molecule inhibitors of histone deacetylase improve CRISPR-based adenine base editing. Nucleic Acids Research, 2021, 49, 2390-2399.	6.5	24
939	In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YA mice. Blood Advances, 2021, 5, 1122-1135.	C 2.5	50
940	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99 593-617.	' 1.7	41
941	Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina. Science Bulletin, 2021, 66, 374-385.	4.3	7
942	Prospects of genome editing using CRISPR/CAS or how to master genetic scissors. Nobel Prize in Chemistry 2020. Ukrainian Biochemical Journal, 2021, 93, 113-128.	0.1	Ο
943	Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer. Cancer Discovery, 2021, 11, 560-574.	or 7.7	12
944	Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nature Communications, 202 12, 1190.	1, 5.8	86
945	Massively parallel assessment of human variants with base editor screens. Cell, 2021, 184, 1064-1080.e20.	13.5	175
946	Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy Gene Therapy, 2021, 28, 549-559.	?. 2.3	28
947	Recording of elapsed time and temporal information about biological events using Cas9. Cell, 2021, 184, 1047-1063.e23.	13.5	29
948	A blueprint for gene function analysis through Base Editing in the model plant <i>Physcomitrium (Physcomitrella) patens</i> . New Phytologist, 2021, 230, 1258-1272.	3.5	18
949	Gene-based therapies for neurodegenerative diseases. Nature Neuroscience, 2021, 24, 297-311.	7.1	83
950	Adenine Base Editor Ribonucleoproteins Delivered by Lentivirus-Like Particles Show High On-Target Base Editing and Undetectable RNA Off-Target Activities. CRISPR Journal, 2021, 4, 69-81.	1.4	24

#	Article	IF	CITATIONS
951	Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells. Journal of Clinical Medicine, 2021, 10, 513.	1.0	11
952	Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics, 2021, 13, 278.	2.0	17
953	A comprehensive review on genetically modified fish: key techniques, applications and future prospects. Reviews in Aquaculture, 2021, 13, 1635-1660.	4.6	12
954	In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline?. Frontiers in Neuroscience, 2021, 15, 632522.	1.4	11
955	Applications of genome editing on laboratory animals. Laboratory Animals, 2022, 56, 13-25.	0.5	4
956	Development and Characterization of a Modular CRISPR and RNA Aptamer Mediated Base Editing System. CRISPR Journal, 2021, 4, 58-68.	1.4	9
957	The bridge helix of Cas12a imparts selectivity in cis â€ÐNA cleavage and regulates trans â€ÐNA cleavage. FEBS Letters, 2021, 595, 892-912.	1.3	9
958	Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microbial Cell Factories, 2021, 20, 38.	1.9	11
959	Base editing and prime editing in laboratory animals. Laboratory Animals, 2022, 56, 35-49.	0.5	14
960	CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opinion on Biological Therapy, 2021, 21, 1-14.	1.4	9
961	The CRISPR revolution and its potential impact on global health security. Pathogens and Global Health, 2021, 115, 80-92.	1.0	8
962	Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nature Protocols, 2021, 16, 1511-1547.	5.5	23
963	Functional interrogation of DNA damage response variants with base editing screens. Cell, 2021, 184, 1081-1097.e19.	13.5	145
964	A <i>piggyBac</i> â€mediated transgenesis system for the temporary expression of CRISPR/Cas9 in rice. Plant Biotechnology Journal, 2021, 19, 1386-1395.	4.1	20
965	Advanced domestication: harnessing the precision of gene editing in crop breeding. Plant Biotechnology Journal, 2021, 19, 660-670.	4.1	39
966	State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. Plant Cell Reports, 2022, 41, 815-831.	2.8	29
967	Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nature Communications, 2021, 12, 1579.	5.8	43
968	Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature Communications, 2021, 12, 1384.	5.8	117

#	Article	IF	CITATIONS
969	CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Frontiers in Medicine, 2021, 8, 649896.	1.2	48
970	Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
971	Jumping on base editing to repair the diseased cardiovascular system <i>in vivo</i> . Cardiovascular Research, 2021, 117, e46-e48.	1.8	0
972	CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops. Journal of Agricultural and Food Chemistry, 2021, 69, 13260-13269.	2.4	21
973	CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regulation, 2021, 94, 115-129.	1.8	8
975	PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics, 2021, 22, 101.	1.2	254
977	Genome engineering for crop improvement and future agriculture. Cell, 2021, 184, 1621-1635.	13.5	405
978	Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration. JAMA Ophthalmology, 2021, 139, 319.	1.4	26
979	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	2.7	11
980	Generation and characterization of a novel rat model of primary hyperoxaluria type 1 with a nonsense mutation in alanine-glyoxylate aminotransferase gene. American Journal of Physiology - Renal Physiology, 2021, 320, F475-F484.	1.3	4
981	Precision Chemistry on the Genome: Interview with David R. Liu. Human Gene Therapy, 2021, 32, 237-242.	1.4	2
982	The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiology, 2021, 16, 341-368.	1.0	5
983	Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. Journal of Biotechnology, 2021, 329, 170-179.	1.9	16
984	InÂvivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity, 2021, 54, 571-585.e6.	6.6	50
985	Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Molecular Therapy, 2021, 29, 937-948.	3.7	12
986	Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. Journal of Extracellular Vesicles, 2021, 10, e12076.	5.5	102
987	<i>Ex vivo</i> gene modification therapy for genetic skin diseases—recent advances in gene modification technologies and delivery. Experimental Dermatology, 2021, 30, 887-896.	1.4	11
988	PTENε suppresses tumor metastasis through regulation of filopodia formation. EMBO Journal, 2021, 40, e105806.	3.5	16

		CITATION RE	PORT	
#	Article		IF	CITATIONS
989	The Promise and the Hope of Gene Therapy. Frontiers in Genome Editing, 2021, 3, 618	346.	2.7	38
990	Identification of pathogenic variants in cancer genes using base editing screens with e correction. Genome Biology, 2021, 22, 80.	diting efficiency	3.8	23
993	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therap Frontiers in Genome Editing, 2021, 3, 630600.	eutic Strategies.	2.7	22
994	Discovery and engineering of small SlugCas9 with broad targeting range and high spec activity. Nucleic Acids Research, 2021, 49, 4008-4019.	ificity and	6.5	33
995	Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Efficiency in <i>Streptomyces lividans</i> 66. ACS Synthetic Biology, 2021, 10, 1053-	g Base Editing 1063.	1.9	15
996	Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmose 2020, 61, 286-303.	t. ILAR Journal,	1.8	12
997	Challenges and Solutions to Bringing Chimeric Antigen Receptor T-Cell Therapy to Mye Malignancies. Cancer Journal (Sudbury, Mass), 2021, 27, 143-150.	loid	1.0	0
998	Editing GWAS: experimental approaches to dissect and exploit disease-associated gen Genome Medicine, 2021, 13, 41.	etic variation.	3.6	32
999	Genome Editing in Bacteria: CRISPR-Cas and Beyond. Microorganisms, 2021, 9, 844.		1.6	57
1000	Improved prime editors enable pathogenic allele correction and cancer modelling in ad Nature Communications, 2021, 12, 2121.	ult mice.	5.8	155
1001	Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutatior Journal, 2021, 4, 169-177.	I. CRISPR	1.4	55
1002	Plant genome editing: ever more precise and wide reaching. Plant Journal, 2021, 106, 2	.208-1218.	2.8	30
1003	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Natu 53, 895-905.	re Genetics, 2021,	9.4	305
1004	Structure-guided engineering of adenine base editor with minimized RNA off-targeting Communications, 2021, 12, 2287.	activity. Nature	5.8	38
1005	Novel genome-editing-based approaches to treat motor neuron diseases: Promises and Molecular Therapy, 2022, 30, 47-53.	l challenges.	3.7	13
1006	Dead Cas9–sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cloning Applications. CRISPR Journal, 2021, 4, 275-289.	Cleavage for	1.4	7
1008	Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. MBio, 202	:1, 12, .	1.8	14
1009	Using CRISPR to understand and manipulate gene regulation. Development (Cambridg	e), 2021, 148, .	1.2	9

#	Article	IF	CITATIONS
1010	Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules, 2021, 11, 611.	1.8	27
1011	Catalytically Enhanced Cas9 Through Directed Protein Evolution. CRISPR Journal, 2021, 4, 223-232.	1.4	11
1012	Co-opting regulation bypass repair as a gene-correction strategy for monogenic diseases. Molecular Therapy, 2021, 29, 3274-3292.	3.7	2
1014	Inosine in Biology and Disease. Genes, 2021, 12, 600.	1.0	45
1015	Highly efficient Câ€ŧoâ€T and Aâ€ŧoâ€G base editing in a <i>Populus</i> hybrid. Plant Biotechnology Journal, 2021, 19, 1086-1088.	4.1	32
1017	Immunotherapy to get on point with base editing. Drug Discovery Today, 2021, 26, 2350-2357.	3.2	4
1019	Genome-wide specificity of prime editors in plants. Nature Biotechnology, 2021, 39, 1292-1299.	9.4	80
1020	Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Frontiers in Genetics, 2021, 12, 615491.	1.1	24
1021	CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3179-3191.	3.7	31
1022	Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. ABIOTECH, 2021, 2, 375-385.	1.8	27
1023	Rescue of STAT3 Function in Hyper-IgE Syndrome Using Adenine Base Editing. CRISPR Journal, 2021, 4, 178-190.	1.4	10
1024	Attaining the promise of plant gene editing at scale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
1025	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
1026	Addressing the dark matter of gene therapy: technical and ethical barriers to clinical application. Human Genetics, 2021, , 1.	1.8	4
1027	Guiding-Strand-Controlled DNA Nucleases with Enhanced Specificity and Tunable Kinetics for DNA Mutation Detection. Analytical Chemistry, 2021, 93, 7054-7062.	3.2	4
1028	Prospects of nano- and peptide-carriers to deliver CRISPR cargos in plants to edit across and beyond central dogma. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	8
1029	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	1.3	97
1030	Directed evolution in mammalian cells. Nature Methods, 2021, 18, 346-357.	9.0	43

#	Article	IF	CITATIONS
1031	CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nature Communications, 2021, 12, 2437.	5.8	50
1032	Agrobacterium-Mediated Capsicum annuum Gene Editing in Two Cultivars, Hot Pepper CM334 and Bell Pepper Dempsey. International Journal of Molecular Sciences, 2021, 22, 3921.	1.8	14
1033	CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell, 2021, 33, 794-813.	3.1	54
1034	On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Frontiers in Pharmacology, 2021, 12, 662110.	1.6	16
1035	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	5.7	4
1036	Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. GM Crops and Food, 2021, 12, 627-646.	2.0	16
1037	Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nature Genetics, 2021, 53, 869-880.	9.4	37
1038	In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature, 2021, 593, 429-434.	13.7	408
1039	Early and late stage gene therapy interventions for inherited retinal degenerations. Progress in Retinal and Eye Research, 2022, 86, 100975.	7.3	85
1040	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	9.4	196
1042	DNA and the Administrative State. , 2021, , 287-329.		0
1043	Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Scientific Reports, 2021, 11, 11163.	1.6	11
1044	The application of genome editing technology in fish. Marine Life Science and Technology, 2021, 3, 326-346.	1.8	9
1045	Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. International Journal of Molecular Sciences, 2021, 22, 5585.	1.8	27
1046	Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos. Molecular Therapy, 2021, , .	3.7	5
1047	Single AAV-mediated CRISPR-Nme2Cas9 efficiently reduces mutant hTTR expression in a transgenic mouse model of transthyretin amyloidosis. Molecular Therapy, 2022, 30, 164-174.	3.7	12
1048	Encounters between Cas9/dCas9 and C-Quadruplexes: Implications for Transcription Regulation and	1.0	5
	Cas9-Mediated DNA Cleavage. ACS Synthetic Biology, 2021, 10, 972-978.	1,7	-

#	Article	IF	CITATIONS
1051	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
1052	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	4.6	50
1053	PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Research, 2021, 49, W499-W504.	6.5	57
1055	GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1328-1337.	1.9	10
1056	High-efficiency and multiplex adenine base editing in plants using new TadA variants. Molecular Plant, 2021, 14, 722-731.	3.9	69
1057	STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. Npj Genomic Medicine, 2021, 6, 34.	1.7	13
1058	Cell-Based Delivery Approaches for DNA-Binding Domains into the Central Nervous System. Current Neuropharmacology, 2021, 19, .	1.4	1
1060	Interrogating immune cells and cancer with CRISPR-Cas9. Trends in Immunology, 2021, 42, 432-446.	2.9	13
1061	Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein and Cell, 2022, 13, 316-335.	4.8	17
1062	What Is Genome Editing?. , 2021, , 69-110.		Ο
1063	CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes, 2021, 12, 797.	1.0	22
1064	Novel therapies in βâ€thalassaemia. British Journal of Clinical Pharmacology, 2022, 88, 2509-2524.	1.1	7
1065	CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Reports, 2021, 40, 979-998.	2.8	32
1066	InÂvivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Molecular Therapy, 2022, 30, 119-129.	3.7	9
1067	A Review: Computational Approaches to Design sgRNA of CRISPR-Cas9. Current Bioinformatics, 2022, 17, 2-18.	0.7	3
1068	Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nature Methods, 2021, 18, 643-651.	9.0	36
1069	Recent advances in CRISPR technologies for genome editing. Archives of Pharmacal Research, 2021, 44, 537-552.	2.7	5
1070	Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A.Âniger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs. Journal of Bioscience and Bioengineering, 2021, 131, 579-588.	1.1	5

#	Article	IF	Citations
1071	Mechanisms of angiogenic incompetence in Hutchinson–Gilford progeria via downregulation of endothelial NOS. Aging Cell, 2021, 20, e13388.	3.0	11
1072	Nonviral genome engineering of natural killer cells. Stem Cell Research and Therapy, 2021, 12, 350.	2.4	18
1074	Base editor treats progeria in mice. Nature, 2021, , .	13.7	4
1075	CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 6072.	1.8	56
1076	Genome Editing for Plasmodesmal Biology. Frontiers in Plant Science, 2021, 12, 679140.	1.7	4
1077	Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review. Frontiers in Plant Science, 2021, 12, 688980.	1.7	18
1078	Engineered prime editors with PAM flexibility. Molecular Therapy, 2021, 29, 2001-2007.	3.7	56
1079	Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Research, 2021, 30, 353-379.	1.3	7
1080	In-planta Gene Targeting in Barley Using Cas9 With and Without Geminiviral Replicons. Frontiers in Genome Editing, 2021, 3, 663380.	2.7	9
1081	Identification and Evolution of Cas9 tracrRNAs. CRISPR Journal, 2021, 4, 438-447.	1.4	6
1082	CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. Molecular Therapy - Nucleic Acids, 2021, 24, 986-999.	2.3	10
1083	Recent Advances in Targeted Genetic Medicines for Cystic Fibrosis. , 0, , .		0
1084	CRISPR/Cas systems: The link between functional genes and genetic improvement. Crop Journal, 2021, 9, 678-687.	2.3	7
1085	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	13.7	175
1086	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	1.6	23
1087	Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants, 2021, 10, 1146.	1.6	14
1088	Genome editing to define the function of risk loci and variants in rheumatic disease. Nature Reviews Rheumatology, 2021, 17, 462-474.	3.5	9
1089	Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 2021, 39, 1414-1425.	9.4	118

#	Article	IF	CITATIONS
1090	New and novel genetic tools for improving crops. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	4
1092	Evotuning protocols for Transformer-based variant effect prediction on multi-domain proteins. Briefings in Bioinformatics, 2021, 22, .	3.2	7
1093	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	1.3	7
1094	Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus, 2021, 9, eESP00062020.	2.1	2
1095	Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing. CRISPR Journal, 2021, 4, 400-415.	1.4	5
1096	An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach. Cancers, 2021, 13, 2893.	1.7	6
1097	CRISPR/Cas based gene editing: marking a new era in medical science. Molecular Biology Reports, 2021, 48, 4879-4895.	1.0	9
1098	Base editors: Expanding the types of DNA damage products harnessed for genome editing. Gene and Genome Editing, 2021, 1, 100005.	1.3	19
1099	The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes, 2021, 12, 912.	1.0	45
1100	Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biology, 2021, 22, 170.	3.8	66
1102	A Decade of CRISPR Gene Editing in China and Beyond: A Scientometric Landscape. CRISPR Journal, 2021, 4, 313-320.	1.4	5
1103	Highly Efficient CRISPR-Mediated Base Editing in Sinorhizobium meliloti. Frontiers in Microbiology, 2021, 12, 686008.	1.5	5
1104	Efficient precise in vivo base editing in adult dystrophic mice. Nature Communications, 2021, 12, 3719.	5.8	61
1105	Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP. Pharmaceutics, 2021, 13, 878.	2.0	24
1106	Mismatch Intolerance of 5′-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing. International Journal of Molecular Sciences, 2021, 22, 6457.	1.8	10
1107	Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene and Genome Editing, 2021, 1, 100004.	1.3	6
1108	Versatile and efficient inÂvivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy, 2022, 30, 256-267.	3.7	16
1109	Plasmid hypermutation using a targeted artificial DNA replisome. Science Advances, 2021, 7, .	4.7	10

#	Article	IF	CITATIONS
1110	Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation. BMC Biotechnology, 2021, 21, 45.	1.7	2
1111	Advances in CRISPR/Cas9-mediated genome editing on vegetable crops. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 672-682.	0.9	6
1112	CRISPR-mediated base editing in mice using cytosine deaminase base editor 4. Electronic Journal of Biotechnology, 2021, 52, 59-66.	1.2	2
1113	Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nature Communications, 2021, 12, 4219.	5.8	29
1115	Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Nucleic Acids Research, 2021, 49, 8974-8986.	6.5	10
1116	dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges. BioEssays, 2021, 43, 2100086.	1.2	3
1117	Base editingâ€mediated perturbation of endogenous PKM1/2 splicing facilitates isoformâ€specific functional analysis in vitro and in vivo. Cell Proliferation, 2021, 54, e13096.	2.4	10
1118	Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules, 2021, 11, 1122.	1.8	14
1120	CRISPR-based genome editing technology and its applications in oil crops. Oil Crop Science, 2021, 6, 105-113.	0.9	9
1121	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	6.0	33
1122	Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biological Procedures Online, 2021, 23, 14.	1.4	18
1123	Application of genome editing tools in plants. Tap Chi Cong Nghe Sinh Hoc, 2021, 19, 15-40.	0.0	0
1124	Effects of the Addition of Titanium Dioxide; Sodium Silicate and Silica Nanoparticles on the Elimination of Bacteria and Viruses in a Physical Field. American Journal of Biomedical Research, 2021, 9, 24-29.	0.2	1
1125	Base editing-coupled survival screening enabled high-sensitive analysis of PAM compatibility and finding of the new possible off-target. IScience, 2021, 24, 102769.	1.9	2
1126	Adenine base editor engineering reduces editing of bystander cytosines. Nature Biotechnology, 2021, 39, 1426-1433.	9.4	50
1127	Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30, 461-498.	1.3	46
1128	The Role of Metabolic Engineering Technologies for the Production of Fatty Acids in Yeast. Biology, 2021, 10, 632.	1.3	7
1129	Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems. Viruses, 2021, 13, 1373.	1.5	9

#	Article	IF	CITATIONS
1130	Base Editing in Plants: Applications, Challenges, and Future Prospects. Frontiers in Plant Science, 2021, 12, 664997.	1.7	31
1131	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3
1132	CRISPR-Cas9 and beyond: what's next in plant genome engineering. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 584.	0.9	13
1133	In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nature Communications, 2021, 12, 4291.	5.8	32
1134	Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Molecular Genetics and Metabolism, 2021, 134, 117-131.	0.5	13
1135	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	4.3	76
1136	Stress tolerance enhancement via SPT15 base editing in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14, 155.	6.2	11
1137	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288.	1.5	44
1138	Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523.	2.1	7
1139	Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 2021, 49, 107737.	6.0	19
1140	Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nature Reviews Immunology, 2021, 21, 669-679.	10.6	16
1141	Dual-AAV delivering split prime editor system for inÂvivo genome editing. Molecular Therapy, 2022, 30, 283-294.	3.7	87
1142	CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction, Detection, and Overcoming Strategies. Current Bioinformatics, 2022, 17, 119-132.	0.7	3
1143	Rodent genetic models of Ah receptor signaling. Drug Metabolism Reviews, 2021, 53, 350-374.	1.5	7
1144	Cytosine and adenine deaminase base-editors induce broad and nonspecific changes in gene expression and splicing. Communications Biology, 2021, 4, 882.	2.0	5
1145	Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Molecular Therapy, 2021, 29, 3219-3229.	3.7	14
1146	Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Communications, 2021, 2, 100211.	3.6	46
1147	Therapeutics Development for Alagille Syndrome. Frontiers in Pharmacology, 2021, 12, 704586.	1.6	7

	Сітя	CITATION REPORT	
#	Article	IF	CITATIONS
1148	Tissue specificity of DNA repair: the CRISPR compass. Trends in Genetics, 2021, 37, 958-962.	2.9	14
1149	CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Scientif Reports, 2021, 11, 16186.	ic 1.6	20
1150	Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. International Journal of Molecular Sciences, 2021, 22, 8422.	1.8	7
1151	Transversion Expansion of Base Editing. CRISPR Journal, 2021, 4, 462-463.	1.4	2
1152	Gene editing in Brassica napus for basic research and trait development. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 731-748.	0.9	7
1153	Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nature Communications, 2021, 12, 4902.	5.8	28
1154	Strategies to Identify Genetic Variants Causing Infertility. Trends in Molecular Medicine, 2021, 27, 792-806.	3.5	9
1155	Effects of Condensed Tannins Supplementation on Animal Performance, Phylogenetic Microbial Changes, and In Vitro Methane Emissions in Steers Grazing Winter Wheat. Animals, 2021, 11, 2391.	1.0	2
1157	Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Frontiers in Genome Editing, 2021, 3, 618111.	2.7	12
1158	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	1.8	9
1160	Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Molecular Genetics and Metabolism, 2021, 134, 77-86.	0.5	15
1161	High-purity production and precise editing of DNA base editing ribonucleoproteins. Science Advances, 2021, 7, .	4.7	43
1162	Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Current Opinion in Neurobiology, 2021, 69, 193-201.	2.0	13
1163	Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Science Alliance, 2021, 4, e202000940.	1.3	67
1164	What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. International Journal of Molecular Sciences, 2021, 22, 8494.	1.8	6
1166	A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression. Molecular Therapy - Nucleic Acids, 2021, 26, 1446-1465.	2.3	11
1167	Easy-Prime: a machine learning–based prime editor design tool. Genome Biology, 2021, 22, 235.	3.8	32
1168	Development of an efficient plant dual cytosine and adenine editor. Journal of Integrative Plant Biology, 2021, 63, 1600-1605.	4.1	30

# 1169	ARTICLE Genome editor-directed inÂvivo library diversification. Cell Chemical Biology, 2021, 28, 1109-1118.	IF 2.5	Citations
1170	Engineering Cas9 for human genome editing. Current Opinion in Structural Biology, 2021, 69, 86-98.	2.6	19
1171	Understanding the Potential of Genome Editing in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 9241.	1.8	3
1172	Activation of Î ³ -globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nature Genetics, 2021, 53, 1177-1186.	9.4	21
1173	Development of a base editor for protein evolution via <i>in situ</i> mutation <i>in vivo</i> . Nucleic Acids Research, 2021, 49, 9594-9605.	6.5	18
1174	Fast and Efficient Generation of Isogenic Induced Pluripotent Stem Cell Lines Using Adenine Base Editing. CRISPR Journal, 2021, 4, 502-518.	1.4	6
1175	Stargardt disease and progress in therapeutic strategies. Ophthalmic Genetics, 2022, 43, 1-26.	0.5	18
1176	Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nature Communications, 2021, 12, 5114.	5.8	36
1177	Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Human Molecular Genetics, 2021, 30, R187-R197.	1.4	27
1178	The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science. Journal of Genetics and Genomics, 2021, 48, 661-670.	1.7	31
1179	Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine. Research, 2021, 2021, 9898769.	2.8	3
1180	Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals, 2021, 14, 765.	1.7	3
1183	Improved Eating and Cooking Quality of indica Rice Cultivar YK17 via Adenine Base Editing of Wx Allele of Granule-Bound Starch Synthase I (GBSS I). Rice Science, 2021, 28, 427-430.	1.7	5
1184	Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Animal Genetics, 2021, 52, 799-812.	0.6	23
1185	Mutation-induced DNMT1 cleavage drives neurodegenerative disease. Science Advances, 2021, 7, eabe8511.	4.7	8
1186	Carotenoid Biofortification of Crops in the CRISPR Era. Trends in Biotechnology, 2021, 39, 857-860.	4.9	22
1187	FnCas12a/crRNA-Mediated Genome Editing in Eimeria tenella. Frontiers in Genetics, 2021, 12, 738746.	1.1	6
1188	Perfecting Targeting in CRISPR. Annual Review of Genetics, 2021, 55, 453-477.	3.2	10

#	Article	IF	CITATIONS
1189	Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Molecular Therapy - Nucleic Acids, 2021, 25, 342-354.	2.3	12
1191	In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation. Stem Cell Research and Therapy, 2021, 12, 508.	2.4	16
1192	Hearing impairment: new frontiers of regenerative medicine. Otorhinolaryngology(Italy), 2021, 71, .	0.1	0
1193	Therapeutic Effects of Natural Compounds and Small Molecule Inhibitors Targeting Endoplasmic Reticulum Stress in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 745011.	1.8	10
1194	Innovations in CRISPR-Based Therapies. Molecular Biotechnology, 2021, , 1.	1.3	5
1195	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	2.7	32
1196	Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Frontiers in Genetics, 2021, 12, 728520.	1.1	11
1197	Efficient Correction of a Hypertrophic Cardiomyopathy Mutation by ABEmax-NG. Circulation Research, 2021, 129, 895-908.	2.0	20
1198	Off-target effects of base editors: what we know and how we can reduce it. Current Genetics, 2022, 68, 39-48.	0.8	9
1199	Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. International Journal of Molecular Sciences, 2021, 22, 10355.	1.8	24
1200	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	3.7	87
1202	Random Base Editing for Genome Evolution in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 2440-2446.	1.9	12
1203	Nuclear dynamics and stress responses in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 65.	4.4	11
1204	Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.	4.7	172
1205	Modeling a cataract disorder in mice with prime editing. Molecular Therapy - Nucleic Acids, 2021, 25, 494-501.	2.3	15
1206	Current Status of Precision Breeding Technology and Plant Transformation for Development of Wheat Breeding Material. Han'guk Yukchong Hakhoe Chi, 2021, 53, 250-265.	0.2	2
1208	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40, 94-102.	9.4	119
1209	Points of View on the Tools for Genome/Gene Editing. International Journal of Molecular Sciences, 2021, 22, 9872.	1.8	10

#	Article	IF	CITATIONS
1210	Functional correction of <i>CFTR</i> mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	6.5	25
1211	Roadmap for the use of base editors to decipher drug mechanism of action. PLoS ONE, 2021, 16, e0257537.	1.1	1
1212	Efficient retroelement-mediated DNA writing in bacteria. Cell Systems, 2021, 12, 860-872.e5.	2.9	17
1213	A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature Communications, 2021, 12, 5206.	5.8	49
1214	Generating novel plant genetic variation via genome editing to escape the breeding lottery. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 627.	0.9	3
1215	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	1.8	2
1217	Directed Evolution Methods for Enzyme Engineering. Molecules, 2021, 26, 5599.	1.7	17
1218	Breeding customâ€designed crops for improved drought adaptation. Genetics & Genomics Next, 2021, 2, e202100017.	0.8	48
1219	Approaches for the sensitive detection of rare base and prime editing events. Methods, 2021, 194, 75-82.	1.9	1
1220	Advances in base editing with an emphasis on an AAV-based strategy. Methods, 2021, 194, 56-64.	1.9	1
1221	Harnessing the power of directed evolution to improve genome editing systems. Current Opinion in Chemical Biology, 2021, 64, 10-19.	2.8	3
1222	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	7.9	86
1223	Progression and application of CRISPR-Cas genomic editors. Methods, 2021, 194, 65-74.	1.9	9
1224	CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Molecular Therapy - Methods and Clinical Development, 2021, 23, 276-285.	1.8	13
1225	Engineered DNase-inactive Cpf1 variants to improve targeting scope for base editing in E. coli. Synthetic and Systems Biotechnology, 2021, 6, 326-334.	1.8	3
1226	TALE and TALEN genome editing technologies. Gene and Genome Editing, 2021, 2, 100007.	1.3	54
1227	Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Current Opinion in Genetics and Development, 2021, 71, 171-181.	1.5	6
1228	Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Molecular Therapy - Nucleic Acids, 2021, 26, 502-510.	2.3	7

#	Article	IF	CITATIONS
1229	Engineering Lactococci for Increased Functionality. , 2022, , 113-122.		0
1230	Base editing: a brief review and a practical example. Journal of Biomedical Research, 2021, 35, 107.	0.7	0
1231	Targeted genome editing for the correction or alleviation of primary Immunodeficiencies. Progress in Molecular Biology and Translational Science, 2021, 182, 111-151.	0.9	3
1232	CRISPR/Cas-Based Techniques in Plants. , 2021, , 37-61.		3
1233	Genome Editing for β-Hemoglobinopathies: Advances and Challenges. Journal of Clinical Medicine, 2021, 10, 482.	1.0	17
1234	Improvements in Gene Editing Technology Boost Its Applications in Livestock. Frontiers in Genetics, 2020, 11, 614688.	1.1	34
1235	enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Molecular Therapy, 2021, 29, 208-224.	3.7	8
1236	Recombineering and MAGE. Nature Reviews Methods Primers, 2021, 1, .	11.8	47
1237	Principles and Applications of RNA-Based Genome Editing for Crop Improvement. Concepts and Strategies in Plant Sciences, 2021, , 247-278.	0.6	1
1238	Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms. Progress in Molecular Biology and Translational Science, 2021, 181, 271-287.	0.9	1
1239	Gene and epigenetic editing in the treatment of primary ciliopathies. Progress in Molecular Biology and Translational Science, 2021, 182, 353-401.	0.9	3
1240	Advances in Breeding for Abiotic Stress Tolerance in Wheat. , 2021, , 71-103.		16
1241	Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors, 2021, 11, 17.	2.3	8
1242	CRISPR based development of RNA editing and the diagnostic platform. Progress in Molecular Biology and Translational Science, 2021, 179, 117-159.	0.9	0
1243	In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Computational and Structural Biotechnology Journal, 2021, 19, 2477-2485.	1.9	1
1244	Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. Methods in Molecular Biology, 2021, 2238, 95-113.	0.4	5
1245	Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biology, 2021, 18, 1048-1062.	1.5	24
1246	Advances in gene editing strategies for epidermolysis bullosa. Progress in Molecular Biology and Translational Science, 2021, 182, 81-109.	0.9	10

#	Article	IF	CITATIONS
1247	Advances in Genome Editing With CRISPR Systems and Transformation Technologies for Plant DNA Manipulation. Frontiers in Plant Science, 2020, 11, 637159.	1.7	61
1248	Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. Springer Protocols, 2020, , 1-23.	0.1	15
1250	Light-Inducible CRISPR Labeling. Methods in Molecular Biology, 2020, 2173, 137-150.	0.4	1
1251	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2
1252	Application of CRISPR-Cas9 Screening Technologies to Study Mitochondrial Biology in Healthy and Disease States. Advances in Experimental Medicine and Biology, 2019, 1158, 269-277.	0.8	2
1253	Animal Model Contributions to Congenital Metabolic Disease. Advances in Experimental Medicine and Biology, 2020, 1236, 225-244.	0.8	13
1254	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	1.9	100
1255	CRISPR screens in the era of microbiomes. Current Opinion in Microbiology, 2020, 57, 70-77.	2.3	15
1256	Celebrating Rosalind Franklin's Centennial with a Nobel Win for Doudna and Charpentier. Molecular Therapy, 2020, 28, 2519-2520.	3.7	2
1257	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440.	13.7	5
1257 1258	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560.	13.7 5.8	5 43
1257 1258 1259	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869.	13.7 5.8 9.4	5 43 137
1257 1258 1259 1260	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869. Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Bioscience Reports, 2020, 40, .	13.7 5.8 9.4 1.1	5 43 137 7
1257 1258 1259 1260 1261	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869. Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Bioscience Reports, 2020, 40, . Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, .	13.7 5.8 9.4 1.1 1.1	5 43 137 7 122
1257 1258 1259 1260 1261 1262	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869. Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Bioscience Reports, 2020, 40, . Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, . Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochemical Society Transactions, 2020, 48, 207-219.	 13.7 5.8 9.4 1.1 1.1 1.6 	5 43 137 7 122 14
1257 1258 1259 1260 1261 1262 1263	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869. Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Bioscience Reports, 2020, 40, . Cene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, . Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochemical Society Transactions, 2020, 48, 207-219. CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 2020, 48, 1979-1993.	 13.7 5.8 9.4 1.1 1.1 1.6 1.6 	5 43 137 7 122 14 30
1257 1258 1259 1260 1261 1262 1263	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869. Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Bioscience Reports, 2020, 40, . Gene editing and CRISPR In the clinic: current and future perspectives. Bioscience Reports, 2020, 40, . Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochemical Society Transactions, 2020, 48, 207-219. CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 2020, 48, 1979-1993. Base editors: modular tools for the introduction of point mutations in living cells. Emerging Topics in Life Sciences, 2019, 3, 483-491.	 13.7 5.8 9.4 1.1 1.6 1.6 1.1 	5 43 137 7 122 14 30 15

#	Article	IF	CITATIONS
1266	Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. Journal of Molecular Cell Biology, 2021, 12, 828-856.	1.5	9
1267	Advances in actinomycete research: an ActinoBase review of 2019. Microbiology (United Kingdom), 2020, 166, 683-694.	0.7	20
1312	A most formidable arsenal: genetic technologies for building a better mouse. Genes and Development, 2020, 34, 1256-1286.	2.7	24
1313	When genome editing goes off-target. Science, 2019, 364, 234-236.	6.0	18
1314	A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight, 2019, 4, .	2.3	33
1315	Correction of muscular dystrophies by CRISPR gene editing. Journal of Clinical Investigation, 2020, 130, 2766-2776.	3.9	60
1316	Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine, 2020, 7, 184954352098319.	4.4	14
1317	Advances in Nutritional Epigenetics—A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenetics Insights, 2020, 13, 251686572098192.	0.6	16
1318	CRISPR/Cas: a potential gene-editing tool in the nervous system. Cell Regeneration, 2020, 9, 12.	1.1	8
1319	The genome editing revolution: review. Journal of Genetic Engineering and Biotechnology, 2020, 18, 68.	1.5	119
1320	Recent advances in primary immunodeficiency: from molecular diagnosis to treatment. F1000Research, 2020, 9, 194.	0.8	21
1321	CRISPR-based strategies for targeted transgene knock-in and gene correction. Faculty Reviews, 2020, 9, 20.	1.7	8
1322	Base Editing. Materials and Methods, 0, 9, .	0.0	2
1324	Brain Somatic Mutations in Epileptic Disorders. Molecules and Cells, 2018, 41, 881-888.	1.0	18
1325	CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes. Molecules and Cells, 2018, 41, 943-952.	1.0	22
1326	Base editing in pigs for precision breeding. Frontiers of Agricultural Science and Engineering, 2020, 7, 161.	0.9	6
1327	Base editors: a powerful tool for generating animal models of human diseases. Cell Stress, 2018, 2, 242-245.	1.4	2
1328	Regulatory Assessment of Off-Target Changes and Spurious DNA Insertions in Gene-Edited Organisms for Agri-Food Use. , 2021, 9, 1-15.		8

#	Article	IF	CITATIONS
1329	The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Animal Reproduction, 2018, 15, 171-179.	0.4	1
1330	Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review. Current Pharmaceutical Biotechnology, 2022, 23, 72-97.	0.9	3
1331	CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges. Malaysian Journal of Halal Research, 2020, 3, 6-16.	0.3	13
1332	MagnEdit—interacting factors that recruit DNA-editing enzymes to single base targets. Life Science Alliance, 2020, 3, e201900606.	1.3	7
1333	RABBIT BIOMODELS OF HUMAN DISEASES DEVELOPED USING NEW GENOMIC TECHNOLOGIES. CRISPR/CAS9 (REVIEW). Journal Biomed, 2019, , 12-33.	0.1	2
1334	Precision Genome Engineering for the Breeding of Tomatoes: Recent Progress and Future Perspectives. Frontiers in Genome Editing, 2020, 2, 612137.	2.7	17
1335	Computational Tools and Resources Supporting CRISPR-Cas Experiments. Cells, 2020, 9, 1288.	1.8	38
1336	Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. International Journal of Molecular Sciences, 2021, 22, 148.	1.8	13
1337	New Strategies to Overcome Present CRISPR/Cas9 Limitations in Apple and Pear: Efficient Dechimerization and Base Editing. International Journal of Molecular Sciences, 2021, 22, 319.	1.8	53
1338	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	0.8	16
1339	Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. Biodesign Research, 2020, 2020, .	0.8	34
1340	An Overview Of The Crispr-Based Genomic- And Epigenome-Editing System: Function, Applications, And Challenges. Advanced Biomedical Research, 2019, 8, 49.	0.2	5
1341	Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Current Genomics, 2021, 22, 450-467.	0.7	7
1342	Human cell based directed evolution of adenine base editors with improved efficiency. Nature Communications, 2021, 12, 5897.	5.8	15
1343	Controllable genome editing with split-engineered base editors. Nature Chemical Biology, 2021, 17, 1262-1270.	3.9	31
1344	Efficient A·T to G·C base conversions in dicots using adenine base editors expressed under the tomato <i>EF1α</i> promoter. Plant Biotechnology Journal, 2023, 21, 5-7.	4.1	18
1345	Interrogating Mitochondrial Biology and Disease Using CRISPR/Cas9 Gene Editing. Genes, 2021, 12, 1604.	1.0	10
1346	Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. CRISPR Journal, 2021, 4, 710-727.	1.4	1

#	Article	IF	CITATIONS
1347	Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022, 40, 402-410.	9.4	293
1348	PRIMA: a rapid and cost-effective genotyping method to detect single-nucleotide differences using probe-induced heteroduplexes. Scientific Reports, 2021, 11, 20741.	1.6	7
1349	CRISPR-derived genome editing therapies: Progress from bench to bedside. Molecular Therapy, 2021, 29, 3125-3139.	3.7	14
1350	C-to-G Base Editing Enhances Oleic Acid Production by Generating Novel Alleles of FATTY ACID DESATURASE 2 in Plants. Frontiers in Plant Science, 2021, 12, 748529.	1.7	4
1352	Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. Sugar Tech, 2022, 24, 369-385.	0.9	9
1353	Cash Crops: An Introduction. , 2022, , 1-19.		3
1354	No apparent p53 activation in CRISPRâ€engineered geneâ€edited rabbits. Journal of Cellular and Molecular Medicine, 2021, 25, 10313-10317.	1.6	2
1355	CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications. Pharmaceutics, 2021, 13, 1649.	2.0	35
1356	Recent Advances in CRISPR/Cas9-Based Genome Editing Tools for Cardiac Diseases. International Journal of Molecular Sciences, 2021, 22, 10985.	1.8	5
1357	Efficient Multi-Sites Genome Editing and Plant Regeneration via Somatic Embryogenesis in Picea glauca. Frontiers in Plant Science, 2021, 12, 751891.	1.7	15
1358	Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD. Biotechnology Letters, 2021, 43, 2273-2281.	1.1	3
1359	Prenatal Gene Therapy for Metabolic Disorders. Clinical Obstetrics and Gynecology, 2021, 64, 904-916.	0.6	1
1360	Reconstruction of evolving gene variants and fitness from short sequencing reads. Nature Chemical Biology, 2021, 17, 1188-1198.	3.9	8
1361	The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. Plants, 2021, 10, 2259.	1.6	10
1362	The Functional Association of ACQOS/VICTR with Salt Stress Resistance in Arabidopsis thaliana Was Confirmed by CRISPR-Mediated Mutagenesis. International Journal of Molecular Sciences, 2021, 22, 11389.	1.8	17
1367	Genetic profiling of the 5-top cancers among Arabian populations in relation to their genealogical landscape: towards establishment of gene therapy platform in the region. International Journal of Molecular Biology Open Access, 2018, 3, .	0.2	2
1374	The Biomedical Industry. , 2018, , 1-23.		1
1376	Clinical Genetics of Vitelliform Macular Dystrophy: An Asian Perspective. Essentials in Ophthalmology, 2019, , 255-271.	0.0	0
#	Article	IF	CITATIONS
------	--	-----	-----------
1377	Human mitochondrial genome surgery. Genes and Cells, 2018, 13, 32-37.	0.2	0
1379	From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. Journal of Psychiatry and Brain Science, 2019, 4, .	0.3	3
1380	Collapse of Antibiotic Resistance with the Help of Genetic Approaches. , 2019, , 127-134.		0
1381	CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine. RSC Drug Discovery Series, 2019, , 400-433.	0.2	1
1382	Single-Cell Technologies for Cancer Therapy. , 2019, , 1-84.		0
1383	Pin-point base editing for next generation breeding. Japanese Journal of Pesticide Science, 2019, 44, 59-64.	0.0	0
1391	The CRISPR System and Cancer Immunotherapy Biomarkers. Methods in Molecular Biology, 2020, 2055, 301-322.	0.4	2
1392	Current Status of New Plant Breeding Technologies and Crop Development. Han'guk Yukchong Hakhoe Chi, 2019, 51, 161-174.	0.2	3
1400	Mitochondrial DNA as a Factor of Glaucomous Optic Neuropathy's Development Mechanism. Oftalmologiya, 2019, 16, 479-486.	0.2	0
1401	Biopharmaceutical molecules. , 2020, , 31-68.		1
1402	Science and Ethics in the Human-Enhanced Exploration of Mars. Space and Society, 2020, , 113-124.	1.6	1
1408	Increasing the efficiency and precision of prime editing with guide RNA pairs. Nature Chemical Biology, 2022, 18, 29-37.	3.9	60
1409	Gene therapy for cystic fibrosis: new tools for precision medicine. Journal of Translational Medicine, 2021, 19, 452.	1.8	23
1410	Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Frontiers in Genome Editing, 2021, 3, 737632.	2.7	13
1413	Single-Cell Technologies for Cancer Therapy. , 2022, , 767-850.		0
1414	The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. International Journal of Molecular Sciences, 2021, 22, 11542.	1.8	7
1415	Genome editing from Cas9 to IscB: Backwards and forwards towards new breakthroughs. Engineering Microbiology, 2021, 1, 100004.	2.2	1
1416	Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human TÂcells and hematopoietic stem and progenitor cells using base editing. Molecular Therapy, 2022, 30, 130-144.	3.7	23

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1418	Base editing technology. Frontiers of Agricultural Science and Engineering, 2020, 7, 227.	0.9	0
1419	Gene Editing for CF. Respiratory Medicine, 2020, , 503-514.	0.1	0
1420	TRPC3-Based Protein Signaling Complex as a Therapeutic Target of Myocardial Atrophy. Current Molecular Pharmacology, 2020, 14, 123-131.	0.7	7
1421	PROSPECTS FOR GENE EDITING USING CRISPR/CAS, OR HOW TO MASTER THE GENETIC SCISSORS Nobel Prize in Chemistry for 2020. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2020, , 31-49.	0.0	0
1422	DENT-seq for genome-wide strand-specific identification of DNA single-strand break sites with single-nucleotide resolution. Genome Research, 2021, 31, 75-87.	2.4	6
1425	CRISPR-Cas orthologs and variants. , 2022, , 7-38.		0
1427	Search-and-replace editing of genetic information. Frontiers of Agricultural Science and Engineering, 2020, 7, 231.	0.9	0
1429	Gene Editing. , 2020, , 147-164.		Ο
1430	Gene and cell based therapies for the prevention and treatment of supraventricular arrhythmias. , 2020, , 761-780.		0
1431	A brief review of genome editing technology for generating animal models. Frontiers of Agricultural Science and Engineering, 2020, 7, 123.	0.9	5
1433	Enhancing Abiotic Stress Tolerance in Plants Through Genome Editing. Concepts and Strategies in Plant Sciences, 2020, , 91-117.	0.6	0
1439	BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Nature Communications, 2021, 12, 6353.	5.8	10
1441	Targeted RNA editing: novel tools to study post-transcriptional regulation. Molecular Cell, 2022, 82, 389-403.	4.5	18
1442	Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Frontiers in Cardiovascular Medicine, 2021, 8, 760140.	1.1	14
1443	CRISPR/Cas9-Based Genome Editing Platform for <i>Companilactobacillus crustorum</i> to Reveal the Molecular Mechanism of Its Probiotic Properties. Journal of Agricultural and Food Chemistry, 2021, 69, 15279-15289.	2.4	6
1444	Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Medicine, 2021, 13, 174.	3.6	2
1445	Gene therapy and editing in the treatment of hereditary blood disorders: Medical and ethical aspects. Clinical Ethics, 0, , 147775092110572.	0.5	0
1446	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	4.1	21

#	Article		CITATIONS
1459	Heritable Human Genome Editing: A Basic Biology Perspective. Trends in the Sciences, 2020, 25, 10_12-10_18.		0
1460	Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Molecular Vision, 2019, 25, 174-182.	1.1	5
1461	THE GORDON WILSON LECTURE: THE ETHICS OF HUMAN GENOME EDITING. Transactions of the American Clinical and Climatological Association, 2020, 131, 99-118.	0.9	1
1462	Recent highlights and advances in cardiac gene therapy. Discovery Medicine, 2019, 28, 229-235.	0.5	3
1464	Expansion of methods of gene editing therapy and analysis of safety and efficacy. , 2022, , 155-179.		0
1465	Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Current Opinion in Immunology, 2022, 74, 76-84.	2.4	12
1466	A general theoretical framework to design base editors with reduced bystander effects. Nature Communications, 2021, 12, 6529.	5.8	10
1467	In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes, 2021, 12, 1908.	1.0	4
1468	Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Nature Communications, 2021, 12, 6916.	5.8	17
1469	Applications of CRISPR-Cas Technologies to Proteomics. Genes, 2021, 12, 1790.	1.0	5
1470	Discovering new biology with drug-resistance alleles. Nature Chemical Biology, 2021, 17, 1219-1229.	3.9	11
1471	High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. Molecular Therapy - Nucleic Acids, 2022, 27, 175-183.	2.3	12
1472	Prime Editing for Inherited Retinal Diseases. Frontiers in Genome Editing, 2021, 3, 775330.	2.7	17
1473	A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines. Scientific Reports, 2021, 11, 22154.	1.6	19
1474	Base Editing of Somatic Cells Using CRISPR–Cas9 in <i>Drosophila</i> . CRISPR Journal, 2021, , .	1.4	6
1475	Genetic therapies for neurological disorders. Human Genetics, 2022, 141, 1085-1091.	1.8	2
1476	Current technological interventions and applications of CRISPR/Cas for crop improvement. Molecular Biology Reports, 2022, 49, 5751-5770.	1.0	6
1479	Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia—A Focus on Tyrosine Hydroxylase Deficiency. Journal of Personalized Medicine, 2021, 11, 1186.	1.1	6

#	Article	IF	Citations
1480	A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Current Issues in Molecular Biology, 2021, 43, 1950-1976.	1.0	48
1481	CRISPR/Cas Technologies and Their Applications in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 762676.	2.0	9
1482	A split cytosine deaminase architecture enables robust inducible base editing. FASEB Journal, 2021, 35, e22045.	0.2	7
1483	Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports, 2021, 16, 3064-3075.	2.3	8
1484	CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA and Cell Biology, 2021, 40, 1462-1475.	0.9	6
1485	Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Frontiers in Aging Neuroscience, 2021, 13, 755392.	1.7	5
1486	Modulating CRISPR/Cas9 genome-editing activity by small molecules. Drug Discovery Today, 2022, 27, 951-966.	3.2	12
1487	Molecular Mechanism of the Cytosine CRISPR Base Editing Process and the Roles of Translesion DNA Polymerases. ACS Synthetic Biology, 2021, 10, 3353-3358.	1.9	10
1488	The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. Journal of Advanced Research, 2022, 40, 135-152.	4.4	16
1489	Sequence motifs and prediction model of GBE editing outcomes based on target library analysis and machine learning. Journal of Genetics and Genomics, 2022, 49, 254-257.	1.7	6
1490	One-shot dual gene editing for drug-resistant pancreatic cancer therapy. Biomaterials, 2021, 279, 121252.	5.7	7
1491	The potential of gene therapy for recessive dystrophic epidermolysis bullosa*. British Journal of Dermatology, 2022, 186, 609-619.	1.4	9
1492	Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Advanced Healthcare Materials, 2022, 11, e2102253.	3.9	30
1493	Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chemical Society Reviews, 2021, 50, 13481-13497.	18.7	15
1494	The application of new breeding technology based on gene editing in pig industry — A review. Animal Bioscience, 2022, 35, 791-803.	0.8	8
1495	Base Editing of Human Pluripotent Stem Cells for Modeling Long QT Syndrome. Stem Cell Reviews and Reports, 2022, 18, 1434-1443.	1.7	4
1496	Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells. Biotechnology Letters, 2022, 44, 59-76.	1.1	4
1497	Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biology, 2022, 23, 16.	3.8	16

#	Article	IF	CITATIONS
1498	Moving toward genome-editing therapies for cardiovascular diseases. Journal of Clinical Investigation, 2022, 132, .	3.9	22
1499	A New Era in Herbicide-Tolerant Crops Development by Targeted Genome Editing. ACS Agricultural Science and Technology, 2022, 2, 184-191.	1.0	4
1500	Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361.	4.8	82
1501	Review of gene therapies for age-related macular degeneration. Eye, 2022, 36, 303-311.	1.1	38
1502	CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Advanced Drug Delivery Reviews, 2022, 181, 114087.	6.6	18
1504	Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Translational Cancer Research, 2020, 9, 6811-6819.	0.4	5
1505	Update of Regulatory Options of New Breeding Techniques and Biosafety Approaches among Selected Countries: A Review. Asian Journal of Biotechnology and Bioresource Technology, 0, , 18-35.	0.1	1
1507	Using Genome Editing for Alzheimer's Disease Therapy: from Experiment to Clinic. Neurochemical Journal, 2021, 15, 367-375.	0.2	1
1508	Genome editing in cultured fishes. CABI Agriculture and Bioscience, 2021, 2, .	1.1	7
1509	Green Fluorescent Protein Tagged Polycistronic Reporter System Reveals Functional Editing Characteristics of CRISPR-Cas. CRISPR Journal, 2022, 5, 254-263.	1.4	1
1511	Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiology, 2022, 188, 1825-1837.	2.3	39
1512	Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virologica Sinica, 2022, 37, 1-10.	1.2	8
1513	Advances in protein engineering and its application in synthetic biology. , 2022, , 147-158.		1
1514	Efficient Genome Editing in Setaria italica Using CRISPR/Cas9 and Base Editors. Frontiers in Plant Science, 2021, 12, 815946.	1.7	13
1516	The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022, 82, 333-347.	4.5	151
1517	In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments. PLoS ONE, 2022, 17, e0262299.	1.1	3
1518	Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens. Nature Communications, 2022, 13, 478.	5.8	8
1519	The Impact of Fasciation on Maize Inflorescence Architecture. Journal of Plant Biology, 2022, 65, 87-98.	0.9	6

#	Article	IF	CITATIONS
1520	Gene Therapy Using Nanocarriers for Pancreatic Ductal Adenocarcinoma: Applications and Challenges in Cancer Therapeutics. Pharmaceutics, 2022, 14, 137.	2.0	4
1521	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	1.8	16
1522	Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases. Frontiers in Genome Editing, 2022, 4, 780238.	2.7	21
1523	An update on precision genome editing by homology-directed repair in plants. Plant Physiology, 2022, 188, 1780-1794.	2.3	18
1524	Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Experimental Biology and Medicine, 2022, 247, 598-613.	1.1	0
1525	High-throughput methods for genome editing: the more the better. Plant Physiology, 2022, 188, 1731-1745.	2.3	10
1526	Targeting Cancer with CRISPR/Cas9-Based Therapy. International Journal of Molecular Sciences, 2022, 23, 573.	1.8	18
1527	Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure 2022 24, 406-420	2.9	22
1528	The Role of Recombinant AAV in Precise Genome Editing. Frontiers in Genome Editing, 2021, 3, 799722.	2.7	24
1529	Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nature Communications, 2022, 13, 180.	5.8	6
1530	Engineered virus-like particles for efficient inÂvivo delivery of therapeutic proteins. Cell, 2022, 185, 250-265.e16.	13.5	251
1531	High-throughput navigation of the sequence space. , 2022, , 123-146.		0
1532	CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82, 348-388.	4.5	90
1533	Gene Therapy Developments for Pompe Disease. Biomedicines, 2022, 10, 302.	1.4	19
1534	Crop Quality Improvement Through Genome Editing Strategy. Frontiers in Genome Editing, 2021, 3, 819687.	2.7	3
1535	Applications of CRISPR/Cas9 technology for modification of the plant genome. Genetica, 2022, 150, 1-12.	0.5	8
1536	Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nature Communications, 2022, 13, 366.	5.8	43
1537	Strategies for Enhancing the Homology-Directed Repair Efficiency of CRISPR-Cas Systems. CRISPR Journal, 2022, 5, 7-18.	1.4	8

#	Article	IF	CITATIONS
1538	The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems—A Systematic Review. Frontiers in Genetics, 2021, 12, 814131.	1.1	4
1539	Toward Gene Transfer Nanoparticles as Therapeutics. Advanced Healthcare Materials, 2022, 11, e2102145.	3.9	17
1540	Advances and application of CRISPR-Cas systems. , 2022, , 331-348.		0
1541	Application of CRISPR/Cas system in iPSC-based disease model of hereditary deafness. , 2022, , 225-245.		Ο
1542	Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nature Biotechnology, 2022, 40, 896-905.	9.4	44
1543	Modification of tomato breeding traits and plant hormone signaling by Target-AID, the genome-editing system inducing efficient nucleotide substitution. Horticulture Research, 2022, 9, .	2.9	11
1544	Plant non-specific lipid transfer proteins: An overview. Plant Physiology and Biochemistry, 2022, 171, 115-127.	2.8	43
1545	In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. International Journal of Molecular Sciences, 2022, 23, 1145.	1.8	17
1546	New Frontiers: Precise Editing of Allergen Genes Using CRISPR. Frontiers in Allergy, 2021, 2, 821107.	1.2	7
1547	Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Medical Journal, 2022, 63, 105.	0.9	11
1548	Bacterial Retrons Enable Precise Gene Editing in Human Cells. CRISPR Journal, 2022, 5, 31-39.	1.4	22
1549	Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nature Communications, 2022, 13, 474.	5.8	23
1550	Highly efficient A-to-G base editing by ABE8.17 in rabbits. Molecular Therapy - Nucleic Acids, 2022, 27, 1156-1163.	2.3	4
1551	CRISPR/Cas Genome Editing in Potato: Current Status and Future Perspectives. Frontiers in Genetics, 2022, 13, 827808.	1.1	13
1552	CRISPR-based therapeutics: current challenges and future applications. Trends in Pharmacological Sciences, 2022, 43, 151-161.	4.0	32
1553	Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency. Molecular Therapy, 2022, 30, 1396-1406.	3.7	13
1554	A universal strategy for AAV delivery of base editors to correct genetic point mutations in neonatal PKU mice. Molecular Therapy - Methods and Clinical Development, 2022, 24, 230-240.	1.8	13
1557	Plant Molecular Farming, a Tool for Functional Food Production. Journal of Agricultural and Food Chemistry, 2022, 70, 2108-2116.	2.4	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1558	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .		11.8	155
1559	A large-scale genome and transcriptome sequencing analysis reveals the mutation lands by high-activity adenine base editors in plants. Genome Biology, 2022, 23, 51.	scapes induced	3.8	12
1560	Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Na Communications, 2022, 13, 760.	lture	5.8	74
1561	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .		11.8	24
1562	Identification of novel HPFH-like mutations by CRISPR base editing that elevate the exp hemoglobin. ELife, 2022, 11, .	ression of fetal	2.8	29
1563	dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene Nature Protocols, 2022, 17, 781-818.	e therapy.	5.5	11
1564	Genome editing techniques in plants: a comprehensive review and future prospects tov hunger. GM Crops and Food, 2021, 12, 601-615.	vard zero	2.0	17
1565	CRISPR Therapeutics for Duchenne Muscular Dystrophy. International Journal of Molecu 2022, 23, 1832.	ılar Sciences,	1.8	14
1566	Delivery strategies for CRISPR/Cas genome editing tool for retinal dystrophies: challeng opportunities. Asian Journal of Pharmaceutical Sciences, 2022, 17, 153-176.	es and	4.3	12
1567	Reactivation of \hat{I}^3 -globin expression using a minicircle DNA system to treat \hat{I}^2 -thalassem 146289.	ia. Gene, 2022, 820,	1.0	3
1568	The potential of mitochondrial genome engineering. Nature Reviews Genetics, 2022, 23	3, 199-214.	7.7	59
1569	Programmable deletion, replacement, integration and inversion of large DNA sequences prime editing. Nature Biotechnology, 2022, 40, 731-740.	s with twin	9.4	230
1570	Feel That Base: An Interview with Base Editing Pioneer David Liu. , 2021, 3, 187-196.			0
1571	Reinventing positive-strand RNA virus reverse genetics. Advances in Virus Research, 202	22, , 1-29.	0.9	4
1575	Genome Editing and Designer Crops for the Future. Methods in Molecular Biology, 202	2, 2408, 37-69.	0.4	3
1576	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR): A critical overview promising applications of molecular scissors in oral medicine. Biocell, 2022, 46, 1-6.	on the most	0.4	2
1577	Efficient targeted insertion of large DNA fragments without DNA donors. Nature Metho 331-340.	ds, 2022, 19,	9.0	65
1578	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol 2022, 21, 57.	ecular Cancer,	7.9	85

#	Article	IF	CITATIONS
1579	Design of Acetohydroxyacid Synthase Herbicide-Resistant Germplasm through MB-QSAR and CRISPR/Cas9-Mediated Base-Editing Approaches. Journal of Agricultural and Food Chemistry, 2022, 70, 2817-2824.	2.4	4
1580	Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nature Biotechnology, 2022, 40, 862-873.	9.4	44
1581	PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells. ELife, 2022, 11, .	2.8	22
1582	Recent Advances in the Production of Genome-Edited Rats. International Journal of Molecular Sciences, 2022, 23, 2548.	1.8	10
1583	Treating Cardiovascular Disease with Liver Genome Engineering. Current Atherosclerosis Reports, 2022, 24, 75-84.	2.0	0
1584	Base Editors for Citrus Gene Editing. Frontiers in Genome Editing, 2022, 4, 852867.	2.7	22
1586	Genome Editing of Pluripotent Stem Cells for Adoptive and Regenerative Cell Therapies. , 2022, 1, 77-90.		0
1587	Efficient silencing of the multicopy DUX4 gene by ABE-mediated start codon mutation in human embryos. Journal of Genetics and Genomics, 2022, 49, 982-985.	1.7	2
1588	CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics, 2022, 19, 931-941.	2.1	17
1589	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
1589 1591	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52.	12.8 1.4	157
1589 1591 1592	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52. Efficient gene targeting in soybean using <i>Ochrobactrum haywardense</i> -mediated delivery of a marker-free donor template. Plant Physiology, 2022, 189, 585-594.	12.8 1.4 2.3	157 1 9
1589 1591 1592 1593	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52. Efficient gene targeting in soybean using <i> Ochrobactrum haywardense</i> marker-free donor template. Plant Physiology, 2022, 189, 585-594. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170.	12.8 1.4 2.3 6.5	157 1 9 13
1589 1591 1592 1593 1598	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52. Efficient gene targeting in soybean using <i>Ochrobactrum haywardense</i> -mediated delivery of a marker free donor template. Plant Physiology, 2022, 189, 585-594. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170. Phage peptides mediate precision base editing with focused targeting window. Nature Communications, 2022, 13, 1662.	12.8 1.4 2.3 6.5 5.8	157 1 9 13 4
1589 1591 1592 1593 1598	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>>In Vitro</i> > and <i>>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52. Efficient gene targeting in soybean using <i>>Ochrobactrum haywardense</i> -mediated delivery of a marker-free donor template. Plant Physiology, 2022, 189, 585-594. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170. Phage peptides mediate precision base editing with focused targeting window. Nature Communications, 2022, 13, 1662. CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	12.8 1.4 2.3 6.5 5.8	157 1 9 13 4
1589 1591 1592 1593 1598 1599	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52. Efficient gene targeting in soybean using <i> Ochrobactrum haywardense</i> -mediated delivery of a marker-free donor template. Plant Physiology, 2022, 189, 585-594. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170. Phage peptides mediate precision base editing with focused targeting window. Nature Communications, 2022, 13, 1662. CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33. Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Research, 2022, 50, 3944-3957.	12.8 1.4 2.3 6.5 5.8 1.6 6.5	157 1 9 13 4 19
1589 1591 1592 1593 1598 1599 1600	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279. Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>>In Vitro</i> > and <i>>In Vivo</i> >. Efficient gene targeting in soybean using <i>> Ochrobactrum haywardense</i> > mediated delivery of a marker-free donor template. Plant Physiology, 2022, 189, 585-594. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170. Phage peptides mediate precision base editing with focused targeting window. Nature Communications, 2022, 13, 1662. CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33. Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Research, 2022, 50, 3944-3957. Bioorthogonally Activatable Base Editing for On-Demand Pyroptosis. Journal of the American Chemical Society, 2022, 144, 5411-5417.	12.8 1.4 2.3 6.5 5.8 1.6 6.5 6.6	157 1 9 13 4 19 19 12 18

#	Article	IF	CITATIONS
1605	Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites. Cell Discovery, 2022, 8, 28.	3.1	6
1607	A Taxonomic and Phylogenetic Classification of Diverse Base Editors. CRISPR Journal, 2022, , .	1.4	1
1608	In vivo prime editing of a metabolic liver disease in mice. Science Translational Medicine, 2022, 14, eabl9238.	5.8	71
1609	Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity. Human Gene Therapy, 2022, 33, 358-370.	1.4	2
1610	Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nature Communications, 2022, 13, 1318.	5.8	25
1611	Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG. CRISPR Journal, 2022, 5, 187-202.	1.4	12
1612	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	7.9	88
1615	Development and Optimization of CRISPR Prime Editing System in Photoautotrophic Cells. Molecules, 2022, 27, 1758.	1.7	4
1617	CRISPR-Mediated Synergistic Epigenetic and Transcriptional Control. CRISPR Journal, 2022, 5, 264-275.	1.4	13
1618	Efficient silencing of hepatitis B virus S gene through CRISPRâ€mediated base editing. Hepatology Communications, 2022, 6, 1652-1663.	2.0	14
1619	CRISPR/Cas gene editing in the human germline. Seminars in Cell and Developmental Biology, 2022, 131, 93-107.	2.3	8
1620	Application of CRISPR/Cas9 in Rapeseed for Gene Function Research and Genetic Improvement. Agronomy, 2022, 12, 824.	1.3	7
1621	Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase–nCas9 Fusions. CRISPR Journal, 2022, 5, 389-396.	1.4	12
1622	Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials, 2022, 282, 121419.	5.7	11
1623	Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells, 2022, 11, 984.	1.8	10
1624	Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications In Vitro and In Vivo. Frontiers in Cell and Developmental Biology, 2022, 10, 809922.	1.8	2
1625	CRISPR–Cas9 gene editing induced complex on-target outcomes in human cells. Experimental Hematology, 2022, 110, 13-19.	0.2	6
1626	Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nature Plants, 2022, 8, 245-256.	4.7	25

#	Article	IF	CITATIONS
1627	Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. Frontiers in Plant Science, 2022, 13, 847169.	1.7	8
1628	Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Research, 2022, 50, 3551-3564.	6.5	15
1630	Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med, 2022, 3, 167-187.	2.2	7
1631	Combined Theoretical, Bioinformatic, and Biochemical Analyses of RNA Editing by Adenine Base Editors. CRISPR Journal, 2022, 5, 294-310.	1.4	4
1632	FrCas9 is a CRISPR/Cas9 system with high editing efficiency and fidelity. Nature Communications, 2022, 13, 1425.	5.8	17
1633	Target residence of Cas9: challenges and opportunities in genome editing. Genome Instability & Disease, 2022, 3, 57-69.	0.5	1
1634	Gene Editing for Inherited Red Blood Cell Diseases. Frontiers in Physiology, 2022, 13, 848261.	1.3	5
1635	Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics, 2022, 38, 920-943.	2.9	13
1636	Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. Frontiers in Plant Science, 2022, 13, 860281.	1.7	12
1637	A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Research, 2022, 50, 3565-3580.	6.5	21
1640	Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 2022, 13, 1204.	5.8	40
1641	Current developments in gene therapy for epidermolysis bullosa. Expert Opinion on Biological Therapy, 2022, 22, 1137-1150.	1.4	7
1642	KPT330 improves Cas9 precision genome- and base-editing by selectively regulating mRNA nuclear export. Communications Biology, 2022, 5, 237.	2.0	4
1643	Genetic Engineering Technologies for Improving Crop Yield and Quality. Agronomy, 2022, 12, 759.	1.3	5
1644	Base-edited cynomolgus monkeys mimic core symptoms of STXBP1 encephalopathy. Molecular Therapy, 2022, 30, 2163-2175.	3.7	8
1645	CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nature Biotechnology, 2022, 40, 1378-1387.	9.4	81
1646	Adenine Base Editing System for <i>Pseudomonas</i> and Prediction Workflow for Protein Dysfunction via ABE. ACS Synthetic Biology, 2022, 11, 1650-1657.	1.9	7
1647	Genome Editing Technology and Its Application to Metabolic Engineering in Rice. Rice, 2022, 15, 21.	1.7	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1649	Donor T cells for CAR T cell therapy. Biomarker Research, 2022, 10, 14.		2.8	9
1650	In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited re degeneration. Nature Communications, 2022, 13, 1830.	tinal	5.8	42
1651	Development and Application of CRISPR-Cas Based Tools. Frontiers in Cell and Developmenta 2022, 10, 834646.	Biology,	1.8	13
1652	CRISPR and cardiovascular diseases. Cardiovascular Research, 2023, 119, 79-93.		1.8	10
1653	Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 2022	2, 13, 1856.	5.8	51
1654	Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency a purity. Molecular Therapy, 2022, 30, 2452-2463.	and	3.7	17
1656	Controlling <scp>CRISPR as9</scp> by guide <scp>RNA</scp> engineering. Wiley Interdis Reviews RNA, 2023, 14, e1731.	ciplinary	3.2	6
1657	Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. ELife, 2022, 11, .		2.8	12
1658	CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immuno Letters, 2022, 245, 18-28.	logy	1.1	5
1659	mRNA-mediated delivery of gene editing tools to human primary muscle stem cells. Molecular Nucleic Acids, 2022, 28, 47-57.	Therapy -	2.3	14
1660	Challenges and recent progress in the governance of biosecurity risks in the era of synthetic b Journal of Biosafety and Biosecurity, 2022, 4, 59-67.	viology.	1.4	11
1661	SgRNA engineering for improved genome editing and expanded functional assays. Current Op Biotechnology, 2022, 75, 102697.	binion in	3.3	12
1662	Refactoring transcription factors for metabolic engineering. Biotechnology Advances, 2022, 5 107935.	7,	6.0	35
1663	Agronomic and genetic approaches for enhancing tolerance to heat stress in rice: a review. No Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12501.	otulae	O.5	11
1664	Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. Plants, 2022, 11, 52	1.	1.6	26
1665	Improvement of base editors and prime editors advances precision genome engineering in pla Physiology, 2022, 188, 1795-1810.	nts. Plant	2.3	24
1666	Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided B Editing. Life, 2021, 11, 1417.	ase	1,1	3
1668	Genetically modified large animal models for investigating neurodegenerative diseases. Cell a Bioscience, 2021, 11, 218.	nd	2.1	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1669	Compact SchCas9 Recognizes the Simple NNGR PAM. Advanced Science, 2022, 9, e21	04789.	5.6	13
1670	Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. Jo Dermatological Science, 2021, 104, 164-176.	burnal of	1.0	10
1671	Programmable Base Editing in Mycobacterium tuberculosis Using an Engineered CRISP Cytidine Deaminase. Frontiers in Genome Editing, 2021, 3, 734436.	R RNA-Guided	2.7	10
1672	State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Genet 437-453.	ics, 2022, 38,	2.9	26
1673	Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Unde Climate: An Overview. Frontiers in Plant Science, 2021, 12, 767150.	r a Changing	1.7	30
1675	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65	, 660-700.	2.3	20
1676	The use of base editing technology to characterize single nucleotide variants. Computa Structural Biotechnology Journal, 2022, 20, 1670-1680.	itional and	1.9	4
1677	Development of an efficient and precise adenine base editor (ABE) with expanded targe allotetraploid cotton (Gossypium hirsutum). BMC Biology, 2022, 20, 45.	et range in	1.7	33
1678	Health in All Laws: A better strategy for global health. Journal of Evidence-Based Medici 10-14.	ne, 2022, 15,	0.7	1
1679	Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome E 92.	Biology, 2022, 23,	3.8	13
1680	CRISPR/Cas9-Mediated Allele-Specific Disruption of a Dominant COL6A1 Pathogenic Va Collagen VI Network in Patient Fibroblasts. International Journal of Molecular Sciences, 4410.	ariant Improves 2022, 23,	1.8	5
1681	Efficient multi-nucleotide deletions using deaminase-Cas9 fusions in human cells. Journ and Genomics, 2022, , .	al of Genetics	1.7	0
1682	Eliminating predictable DNA off-target effects of cytosine base editor by using dual gui sgRNA and TALE. Molecular Therapy, 2022, 30, 2443-2451.	ders including	3.7	7
1683	Comparison of the efficiency and precision of Base editor and CRISPR/Cas9 for inducing mutation (S395F) in ovine embryos. Reproduction in Domestic Animals, 2022, 57, 829	g defined point -838.	0.6	0
1684	WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome Transduction and Targeted Therapy, 2022, 7, 108.	e editing. Signal	7.1	25
1686	Therapeutic homology-independent targeted integration in retina and liver. Nature Cor 2022, 13, 1963.	nmunications,	5.8	14
1687	Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. Pla 1052.	nts, 2022, 11,	1.6	14
1688	Progerin and Its Role in Accelerated and Natural Aging. Molecular Biology, 2022, 56, 12	25-146.	0.4	3

#	Article	IF	CITATIONS
1689	Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors. Biochemistry, 2023, 62, 3512-3520.	1.2	2
1690	High-throughput functional evaluation of human cancer-associated mutations using base editors. Nature Biotechnology, 2022, 40, 874-884.	9.4	32
1691	CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. International Journal of Molecular Sciences, 2022, 23, 4454.	1.8	14
1717	Recent advancements in CRISPR/Cas technology for accelerated crop improvement. Planta, 2022, 255, 109.	1.6	9
1718	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduction and Targeted Therapy, 2022, 7, 134.	7.1	18
1719	Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nature Cell Biology, 2022, 24, 793-804.	4.6	29
1720	Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nature Reviews Molecular Cell Biology, 2022, 23, 521-540.	16.1	108
1721	CRISPR/Cas genome editing in grapevine: recent advances, challenges and future prospects. Fruit Research, 2022, 2, 1-9.	0.9	10
1722	CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics, 2022, 12, 3329-3344.	4.6	16
1723	Natural and Experimental Rewiring of Gene Regulatory Regions. Annual Review of Genomics and Human Genetics, 2022, 23, .	2.5	1
1724	Expanding the Editing Window of Cytidine Base Editors With the Rad51 DNA-Binding Domain in Rice. Frontiers in Plant Science, 2022, 13, 865848.	1.7	6
1725	Cytokinins: A Genetic Target for Increasing Yield Potential in the CRISPR Era. Frontiers in Genetics, 2022, 13, 883930.	1.1	21
1726	Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature, 2022, 606, 930-936.	13.7	41
1727	Base edit your way to better crops. Nature, 2022, 604, 790-792.	13.7	5
1728	Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. Journal of Experimental Medicine, 2022, 219, .	4.2	18
1729	PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria. Engineering, 2022, 15, 67-77.	3.2	3
1731	Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Molecular Therapy - Nucleic Acids, 2022, 28, 732-742.	2.3	8
1732	Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast <i>Xanthophyllomyces dendrorhous</i> . CRISPR Journal, 2022, 5, 558-570.	1.4	2

#	Article	IF	CITATIONS
1733	AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Research, 2022, 50, 5384-5399.	6.5	29
1734	Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Progress in Retinal and Eye Research, 2022, 90, 101065.	7.3	4
1735	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .	3.9	8
1736	Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell, 2022, 185, 1764-1776.e12.	13.5	102
1737	Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Frontiers in Plant Science, 2022, 13, .	1.7	11
1738	Enhancing cereal productivity by genetic modification of root architecture. Biotechnology Journal, 2022, 17, e2100505.	1.8	4
1739	Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics, 2022, 23, 348.	1.2	6
1740	Reverting TP53 Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations. Cells, 2022, 11, 1612.	1.8	7
1741	Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic <i>CRB1</i> single nucleotide variant. Ophthalmic Genetics, 2022, 43, 661-670.	0.5	1
1742	Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood, 2022, 140, 619-629.	0.6	45
1743	New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies. CRISPR Journal, 2022, 5, 377-388.	1.4	9
1744	Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nature Communications, 2022, 13, 2351.	5.8	11
1745	A <scp>CRISPR</scp> View of Hematopoietic Stem Cells: Moving Innovative Bioengineering into the Clinic. American Journal of Hematology, 2022, , .	2.0	3
1746	Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme and Microbial Technology, 2022, 159, 110056.	1.6	4
1747	Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome. International Journal of Molecular Sciences, 2022, 23, 5499.	1.8	1
1748	From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
1749	Pathogenic or benign?. Nature Biotechnology, 2022, , .	9.4	0
1750	Application of CRISPR/Cas9 System in Establishing Large Animal Models. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	8

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1751	Modern therapeutic approaches to liver-related disorders. Journal of Hepatology, 2022, 76	, 1392-1409.	1.8	22
1752	Genome editing and beyond: what does it mean for the future of plant breeding?. Planta, 2	2022, 255, 130.	1.6	17
1753	CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Mole Biology Reports, 2022, 49, 5595-5609.	ecular	1.0	12
1754	Exciting Times for Lipid Nanoparticles: How Canadian Discoveries Are Enabling Gene Thera Molecular Pharmaceutics, 2022, 19, 1663-1668.	pies.	2.3	11
1755	Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communic 13, 2771.	ations, 2022,	5.8	30
1756	Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Tra Factor Precise Engineering in Thermophilic Fungus <i>Myceliophthora thermophila</i> . Mi Spectrum, 2022, 10, .	anscription icrobiology	1.2	12
1757	The origin of unwanted editing byproducts in gene editing. Acta Biochimica Et Biophysica 54, 767-781.	Sinica, 2022,	0.9	6
1758	Structural basis for RNA-guided DNA cleavage by IscB-ï‰RNA and mechanistic comparisor Science, 2022, 376, 1476-1481.	n with Cas9.	6.0	37
1761	Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Co International Journal of Molecular Sciences, 2022, 23, 5992.	ell Cycle.	1.8	9
1762	Targeted Therapeutics for Rare Disorders. , 2024, , 249-271.			1
1764	Application of CRISPR-Cas-Based Genome Editing for Precision Breeding in Wheat. , 2022,	, 539-556.		0
1765	Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas. , 2022, , 61-83.			1
1766	CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy. Bulletin, 2022, 38, 1397-1408.	Neuroscience	1.5	2
1767	PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies CRISPRa potency. Molecular Therapy - Methods and Clinical Development, 2022, 26, 26-3	to improve 7.	1.8	1
1768	<scp>Siteâ€directed</scp> integration of exogenous <scp>DNA</scp> into the soybean § <scp>LbCas12a</scp> fused to a plant viral <scp>HUH</scp> endonuclease. Plant Journal 905-916.	zenome by I, 2022, 111,	2.8	2
1769	Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, mu cytidine base-editing. Nature Communications, 2022, 13, .	ltiplex	5.8	39
1770	Scalable biological signal recording in mammalian cells using Cas12a base editors. Nature Biology, 2022, 18, 742-750.	Chemical	3.9	12
1771	Advances in CRISPR-Based Functional Genomics and Nucleic Acid Detection in Pigs. Fronti Genetics, 0, 13, .	ers in	1.1	1

#	Article	IF	CITATIONS
1772	Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 6160.	1.8	16
1773	Speciation and adaptation research meets genome editing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	7
1774	Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. Frontiers in Plant Science, 2022, 13, .	1.7	4
1777	In vivo hypermutation and continuous evolution. Nature Reviews Methods Primers, 2022, 2, .	11.8	39
1779	Advances in microbial engineering for the production of value-added products in a biorefinery. Systems Microbiology and Biomanufacturing, 2023, 3, 246-261.	1.5	3
1782	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
1783	Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	9
1784	HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. Molecular Therapy - Nucleic Acids, 2022, 29, 36-46.	2.3	27
1785	Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nature Communications, 2022, 13, .	5.8	7
1787	If Mendel Was Using CRISPR: Genome Editing Meets Nonâ€Mendelian Inheritance. Advanced Functional Materials, 0, , 2202585.	7.8	2
1788	Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. Journal of Clinical Investigation, 2022, 132, .	3.9	7
1789	Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing. Journal of Biological Chemistry, 2022, 298, 102103.	1.6	2
1790	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	1.8	12
1791	Genetic therapeutic advancements for Dravet Syndrome. Epilepsy and Behavior, 2022, 132, 108741.	0.9	10
1793	Generation of Double-Muscled Sheep and Goats by CRISPR/Cas9-Mediated Knockout of the Myostatin Gene. Methods in Molecular Biology, 2022, , 295-323.	0.4	4
1794	Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. Methods in Molecular Biology, 2022, , 29-46.	0.4	16
1796	Internally inlaid SaCas9 base editors enable window specific base editing. Theranostics, 2022, 12, 4767-4778.	4.6	6
1797	Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Molecular Pharmaceutics, 2022, 19, 1669-1686.	2.3	58

#	Article	IF	CITATIONS
1798	Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nature Genetics, 2022, 54, 754-760.	9.4	59
1799	Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Molecular Therapy, 2022, 30, 2664-2679.	3.7	20
1800	Gene Therapy: The Next-Generation Therapeutics and Their Delivery Approaches for Neurological Disorders. Frontiers in Genome Editing, 0, 4, .	2.7	6
1801	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
1802	Exploring the genetic space of the <scp>DNA</scp> damage response for cancer therapy through <scp>CRISPR</scp> â€based screens. Molecular Oncology, 2022, 16, 3778-3791.	2.1	5
1803	Improvements in pig agriculture through gene editing. CABI Agriculture and Bioscience, 2022, 3, .	1.1	8
1804	Adenine Base Editing <i>In Vivo</i> with a Single Adeno-Associated Virus Vector. , 2022, 1, 285-299.		27
1806	CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics, 2022, 14, 1252.	2.0	18
1807	Reprogramming Microbial CO2-Metabolizing Chassis With CRISPR-Cas Systems. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
1808	Generation of C-to-G transversion in mouse embryos via CG editors. Transgenic Research, 0, , .	1.3	3
1809	Challenges and opportunities when transitioning from <i>in vivo</i> gene replacement to <i>in vivo</i> CRISPR/Cas9 therapies – a spotlight on hemophilia. Expert Opinion on Biological Therapy, 2022, 22, 1091-1098.	1.4	1
1811	Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. Journal of Agricultural and Food Chemistry, 2022, 70, 7343-7359.	2.4	4
1812	Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 6565.	1.8	6
1814	Review: Precision Medicine Approaches for Genetic Cardiomyopathy: Targeting Phospholamban R14del. Current Heart Failure Reports, 2022, 19, 170-179.	1.3	6
1815	Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nature Communications, 2022, 13, .	5.8	20
1816	Compact Cje3Cas9 for Efficient <i>In Vivo</i> Genome Editing and Adenine Base Editing. CRISPR Journal, 2022, 5, 472-486.	1.4	15
1817	CRISPR screening in cancer stem cells. Essays in Biochemistry, 0, , .	2.1	1
1818	Myosin Heavy Chain Converter Domain Mutations Drive Early-Stage Changes in Extracellular Matrix Dynamics in Hypertrophic Cardiomyopathy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8

ARTICLE IF CITATIONS # Histone gene editing probes functions of H3K27 modifications in mammals. Nature Genetics, 2022, 54, 1819 9.4 1 746-747. Genomic Region Analysis and Genome Editing for Grain Quality Improvement in Cereals., 2022, , 315-345. The application of CRISPR/Cas technologies to Brassica crops: current progress and future 1821 9 1.8 perspectives. ABIOTECH, 2022, 3, 146-161. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.). Molecular Biology Reports, 0, , . Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation 1823 1.7 7 of Apple Malus × domestica Borkh. Frontiers in Plant Science, 0, 13, . Therapeutic applications of gene editing in chronic liver diseases: an update. BMB Reports, 2022, 55, 251-258. 1824 1.1 DNA base editing in nuclear and organellar genomes. Trends in Genetics, 2022, 38, 1147-1169. 1825 2.9 14 Template-independent genome editing in the Pcdh15 mouse, a model of human DFNB23 nonsyndromic 1826 2.9 deafness. Cell Reports, 2022, 40, 111061. A precise and efficient adenine base editor. Molecular Therapy, 2022, 30, 2933-2941. 1827 3.7 14 An Artificial Intelligence Approach for Gene Editing Off-Target Quantification: Convolutional Self-attention Neural Network Designs and Considerations. Statistics in Biosciences, 0, , . Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency. 1829 1.5 10 PLoS Genetics, 2022, 18, e1010307. Phenotypic Characterization of High Carotenoid Tomato Mutants Generated by the Target-AID 1.7 Base-Editing Technology. Frontiers in Plant Science, 0, 13, . Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Frontiers in Genome Editing, 0, 4, . 1831 2.7 0 Application of CRISPR/Cas9 Genome Editing System to Reduce the Pre- and Post-Harvest Yield Losses in 0.6 Cereals. Open Biotechnology Journal, 2022, 16, . A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Science, 2022, 1833 43 1.7 323, 111376. RNA-targeting strategies as a platform for ocular gene therapy. Progress in Retinal and Eye Research, 1834 2023, 92, 101110. Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. 1835 1.8 25 Cells, 2022, 11, 2186. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nature Communications, 5.8 2022, 13, .

#	Article	IF	CITATIONS
1837	Cytoplasmic Injection of Zygotes to Genome Edit Naturally Occurring Sequence Variants Into Bovine Embryos. Frontiers in Genetics, 0, 13, .	1.1	1
1838	Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnology Journal, 2022, 17, .	1.8	2
1839	Status of treatment strategies for Hutchinson–Gilford progeria syndrome with a focus on prelamin: A posttranslational modification. Basic and Clinical Pharmacology and Toxicology, 2022, 131, 217-223.	1.2	4
1840	Systematic exploration of optimized base editing gRNA design and pleiotropic effects with BExplorer. Genomics, Proteomics and Bioinformatics, 2022, , .	3.0	0
1841	Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Research, 2022, 50, 7783-7799.	6.5	15
1842	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	3.1	2
1844	Examination of the Cell Cycle Dependence of Cytosine and Adenine Base Editors. Frontiers in Genome Editing, 0, 4, .	2.7	6
1845	Therapeutic inÂvivo delivery of gene editing agents. Cell, 2022, 185, 2806-2827.	13.5	131
1846	Genes as Medicine. Hematology/Oncology Clinics of North America, 2022, 36, 829-851.	0.9	1
1847	A Curative DNA Code for Hematopoietic Defects. Hematology/Oncology Clinics of North America, 2022, 36, 647-665.	0.9	6
1848	CRISPR-Cas9 mediated genome tailoring to improve nutritional quality and shelf life in crops: A review. Plant Gene, 2022, 31, 100369.	1.4	1
1849	A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Frontiers in Pharmacology, 0, 13, .	1.6	10
1850	A straightforward plant prime editing system enabled highly efficient precise editing of rice Waxy gene. Plant Science, 2022, 323, 111400.	1.7	9
1851	Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing, 0, 4, .	2.7	5
1852	Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Reports, 2022, 40, 111090.	2.9	7
1853	Pioneer Factor Improves CRISPRâ€Based Câ€Toâ€G and Câ€Toâ€T Base Editing. Advanced Science, 0, , 2202957.	5.6	5
1854	Gene Editing and Rett Syndrome: Does It Make the Cut?. CRISPR Journal, 2022, 5, 490-499.	1.4	1
1855	CRISPR DNA Base Editing Strategies for Treating Retinitis Pigmentosa Caused by Mutations in Rhodopsin. Genes, 2022, 13, 1327.	1.0	5

#	Article	IF	Citations
1856	Cloning and base editing of GFP transgenic rhesus monkey and off-target analysis. Science Advances, 2022, 8, .	4.7	6
1857	Genome Editing and CRISPR Technology. , 2022, , .		0
1858	Limitations of mouse models for sickle cell disease conferred by their human globin transgene configurations. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	9
1859	Correction of Fanconi Anemia Mutations Using Digital Genome Engineering. International Journal of Molecular Sciences, 2022, 23, 8416.	1.8	2
1860	Perspectives on Genetic Medicine for Cystic Fibrosis. Current Gene Therapy, 2022, 22, .	0.9	0
1861	Systematicidentification of CRISPR off-target effects by CROss-seq. Protein and Cell, 0, , .	4.8	2
1862	Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics, 2022, 14, 1605.	2.0	12
1863	CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Frontiers in Genetics, 0, 13, .	1.1	29
1864	Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nature Biomedical Engineering, 2022, 6, 1272-1283.	11.6	70
1865	<scp>CRISPR</scp> applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mechanisms of Disease, 2023, 15, .	1.5	6
1867	Increasing disease resistance in host plants through genome editing. Proceedings of the Indian National Science Academy, 2022, 88, 417-429.	0.5	7
1868	Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System. Applied and Environmental Microbiology, 2022, 88, .	1.4	9
1870	Comprehending the evolution of gene editing platforms for crop trait improvement. Frontiers in Genetics, 0, 13, .	1.1	6
1871	From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. Plant and Cell Physiology, 2022, 63, 1607-1623.	1.5	7
1872	Development of a high-fidelity Cas9-dependent adenine base editor (ABE) system for genome editing with high-fidelity Cas9 variants. Genes and Diseases, 2023, 10, 705-707.	1.5	1
1873	Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR Journal, 2022, 5, 517-535.	1.4	3
1874	Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nature Chemical Biology, 2022, 18, 1005-1013.	3.9	21
1875	Programmable Genome-Editing Technologies as Single-Course Therapeutics for Atherosclerotic Cardiovascular Disease. Current Atherosclerosis Reports, 0, , .	2.0	0

#	Article	IF	CITATIONS
1876	Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 0, 13, .	2.2	22
1877	COL17A1 editing via homology-directed repair in junctional epidermolysis bullosa. Frontiers in Medicine, 0, 9, .	1.2	6
1878	Designing and executing prime editing experiments in mammalian cells. Nature Protocols, 2022, 17, 2431-2468.	5.5	35
1879	Multiplex base editing to convert TAG into TAA codons in the human genome. Nature Communications, 2022, 13, .	5.8	6
1880	Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 9521.	1.8	8
1881	CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes. Molecular Therapy, 2022, 30, 3619-3631.	3.7	10
1883	<i>In Vitro</i> Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology. Biodesign Research, 2022, 2022, .	0.8	1
1884	Closely related type II-C Cas9 orthologs recognize diverse PAMs. ELife, 0, 11, .	2.8	13
1887	Translational potential of base-editing tools for gene therapy of monogenic diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1889	Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening. International Journal of Molecular Sciences, 2022, 23, 8774.	1.8	4
1890	The Prominent Characteristics of the Effective sgRNA for a Precise CRISPR Genome Editing. , 0, , .		3
1891	Precise somatic genome editing for treatment of inborn errors of immunity. Frontiers in Immunology, 0, 13, .	2.2	1
1892	Effective therapies for sickle cell disease: are we there yet?. Trends in Genetics, 2022, , .	2.9	3
1893	Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research, 2022, 35, 113-126.	1.2	2
1894	Engineering an adenine base editor in human embryonic stem cells with minimal DNA and RNA off-target activities. Molecular Therapy - Nucleic Acids, 2022, 29, 502-510.	2.3	6
1895	An acid degradable, lactate oxidizing nanoparticle formulation for non-small cell lung cancer virotherapy. Nano Today, 2022, 46, 101582.	6.2	9
1896	Generation of corrected hiPSC clones from a Cornelia de Lange Syndrome (CdLS) patient through CRISPR-Cas-based technology. Stem Cell Research and Therapy, 2022, 13, .	2.4	0
1897	CRISPR/Cas9 Technology and Its Utility for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 10442.	1.8	12

# 1898	ARTICLE Delivery of Cas9-guided ABE8e into stem cells using poly(l-lysine) polypeptides for correction of the hemophilia-associated FIX missense mutation. Biochemical and Biophysical Research Communications, 2022, 628, 49-56.	IF 1.0	CITATIONS 2
1899	Genome editing in cancer: Challenges and potential opportunities. Bioactive Materials, 2023, 21, 394-402.	8.6	3
1900	Genome Editing Toward Rice Improvement. , 2022, , 211-240.		0
1901	CRISPR Genome Editing Brings Global Food Security into the First Lane: Enhancing Nutrition and Stress Resilience in Crops. , 2022, , 285-344.		2
1902	Genetic Engineering of Nonhuman Primate Models for Studying Neurodevelopmental Disorders. Neuromethods, 2022, , 235-262.	0.2	0
1903	Off-Target Effects of Crop Genome Editing and Its Minimization. , 2022, , 185-208.		0
1904	Genome Editing Is Revolutionizing Crop Improvement. , 2022, , 3-41.		0
1905	Genome Editing for the Improvement of Oilseed Crops. , 2022, , 367-392.		1
1906	Current status and trends in forest genomics. Forestry Research, 2022, 2, 0-0.	0.5	12
1907	Accelerating Cereal Breeding for Disease Resistance Through Genome Editing. , 2022, , 323-347.		1
1908	Genome Editing Toward Wheat Improvement. , 2022, , 241-269.		1
1909	The Use of CRISPR Technologies for Crop Improvement in Maize. , 2022, , 271-294.		2
1910	BEtarget: A versatile web-based tool to design guide RNAs for base editing in plants. Computational and Structural Biotechnology Journal, 2022, 20, 4009-4014.	1.9	5
1911	Medical Application of Molecular Robots. , 2022, , 247-281.		0
1912	Expanding the Scope of Base Editing in Crops Using Cas9 Variants. , 2022, , 161-175.		1
1913	Genome Editing for Stress Tolerance in Cereals: Methods, Opportunities, and Applications. , 2022, , 345-367.		0
1914	The application of genome-wide CRISPR-Cas9 screens to dissect the molecular mechanisms of toxins. Computational and Structural Biotechnology Journal, 2022, 20, 5076-5084.	1.9	7
1915	High-efficient CRISPR/Cas9-mediated gene targeting to establish cell models of ciliopathies. Methods in Cell Biology, 2023, , 85-95.	0.5	0

#	Article	IF	CITATIONS
1916	New Frontier in the Management of Corneal Dystrophies: Basics, Development, and Challenges in Corneal Gene Therapy and Gene Editing. Asia-Pacific Journal of Ophthalmology, 2022, 11, 346-359.	1.3	6
1917	Small-molecule activators specific to adenine base editors through blocking the canonical TGF-β pathway. Nucleic Acids Research, 2022, 50, 9632-9646.	6.5	0
1918	Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. Frontiers in Plant Science, 0, 13, .	1.7	6
1920	The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells, 2022, 11, 2682.	1.8	18
1921	Emerging CRISPR Technologies. , 0, , .		0
1923	Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. Plants, 2022, 11, 2273.	1.6	10
1924	MERTK missense variants in three patients with retinitis pigmentosa. Ophthalmic Genetics, 0, , 1-9.	0.5	1
1925	Prime Editing: An All-Rounder for Genome Editing. International Journal of Molecular Sciences, 2022, 23, 9862.	1.8	13
1928	Functional Phosphoproteomics in Cancer Chemoresistance Using CRISPRâ€Mediated Base Editors. Advanced Science, 2022, 9, .	5.6	6
1929	Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Molecular Biology, 2022, 56, 854-873.	0.4	17
1930	A Pan-RNase Inhibitor Enabling CRISPR-mRNA Platforms for Engineering of Primary Human Monocytes. International Journal of Molecular Sciences, 2022, 23, 9749.	1.8	0
1931	Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9
1932	High-throughput approaches to understand and engineer bacteriophages. Trends in Biochemical Sciences, 2023, 48, 187-197.	3.7	3
1933	An Updated Overview on Insights into Sugarcane Genome Editing via CRISPR/Cas9 for Sustainable Production. Sustainability, 2022, 14, 12285.	1.6	7
1934	Editing human hematopoietic stem cells: advances and challenges. Cytotherapy, 2023, 25, 261-269.	0.3	4
1935	Base editor enables rational genome-scale functional screening for enhanced industrial phenotypes in <i>Corynebacterium glutamicum</i> . Science Advances, 2022, 8, .	4.7	11
1936	Development of Base Editors for Simultaneously Editing Multiple Loci in <i>Lactococcus lactis</i> . ACS Synthetic Biology, 2022, 11, 3644-3656.	1.9	5
1937	Gene editing monkeys: Retrospect and outlook. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1

#	Article	IF	CITATIONS
1939	CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Molecular Biology Reports, 2022, 49, 11587-11600.	1.0	1
1941	Synthetic evolution of herbicide resistance using a T7 RNAP–based random DNA base editor. Life Science Alliance, 2022, 5, e202201538.	1.3	8
1944	Therapeutic Gene Editing in Inherited Retinal Disorders. Cold Spring Harbor Perspectives in Medicine, 0, , a041292.	2.9	2
1946	Robust genome editing via modRNA-based Cas9 or base editor in human pluripotent stem cells. Cell Reports Methods, 2022, 2, 100290.	1.4	4
1948	CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells, 2022, 11, 2964.	1.8	8
1949	Engineering plant immune circuit: walking to the bright future with a novel toolbox. Plant Biotechnology Journal, 2023, 21, 17-45.	4.1	7
1950	Towards next-generation cell factories by rational genome-scale engineering. Nature Catalysis, 2022, 5, 751-765.	16.1	15
1951	Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Advanced Drug Delivery Reviews, 2022, 191, 114562.	6.6	4
1952	Modelling metabolic diseases and drug response using stem cells and organoids. Nature Reviews Endocrinology, 2022, 18, 744-759.	4.3	30
1953	Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. Fundamental Research, 2022, 2, 918-928.	1.6	1
1954	CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discovery Today, 2023, 28, 103375.	3.2	2
1955	Precision genome editing in the eye. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
1957	Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune Diseases. International Journal of Molecular Sciences, 2022, 23, 11297.	1.8	3
1958	Recent Advances in Double-Strand Break-Free Kilobase-Scale Genome Editing Technologies. Biochemistry, 2023, 62, 3493-3499.	1.2	5
1959	Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic Acids Research, 2022, 50, 10756-10771.	6.5	2
1960	In vivo adenine base editing reverts C282Y and improves iron metabolism in hemochromatosis mice. Nature Communications, 2022, 13, .	5.8	5
1961	Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1962	Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics, 2022, 14, 1842.	2.0	15

#	Article	IF	CITATIONS
1963	Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Molecular Cell, 2022, 82, 3661-3676.e8.	4.5	9
1965	CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacological Research, 2022, 185, 106480.	3.1	3
1966	The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Natural Product Reports, 2023, 40, 158-173.	5.2	6
1967	Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25Âyears. Journal of Biomedical Science, 2022, 29, .	2.6	8
1968	Bisulfite-Free and Single-Base Resolution Detection of Epigenetic DNA Modification of 5-Methylcytosine by Methyltransferase-Directed Labeling with APOBEC3A Deamination Sequencing. Analytical Chemistry, 2022, 94, 15489-15498.	3.2	14
1969	Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology, 2023, 19, 101-110.	3.9	52
1970	Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	17
1971	Tuning neurodegeneration-linked gene expression, one (edited) base at a time. Molecular Therapy, 2022, , .	3.7	0
1972	Current advances of CRISPR-Cas technology in cell therapy. , 2022, 1, 100067.		10
1973	Base and Prime Editing in the Retina—From Preclinical Research toward Human Clinical Trials. International Journal of Molecular Sciences, 2022, 23, 12375.	1.8	4
1974	Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biological Research, 2022, 55, .	1.5	10
1975	Editing the genome of common cereals (Rice and Wheat): techniques, applications, and industrial aspects. Molecular Biology Reports, 2023, 50, 739-747.	1.0	6
1976	CRISPR-Cas9-based Strategies for Acute Lymphoblastic Leukemia Therapy. , 0, , .		0
1977	In vivo application of base and prime editing to treat inherited retinal diseases. Progress in Retinal and Eye Research, 2023, 94, 101132.	7.3	3
1978	Adding a Chemical Biology Twist to CRISPR Screening. Israel Journal of Chemistry, 0, , .	1.0	0
1979	Genome-edited allogeneic donor "universal―chimeric antigen receptor T cells. Blood, 2023, 141, 835-845.	0.6	11
1980	Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. International Journal of Molecular Sciences, 2022, 23, 12053.	1.8	20
1981	CRISPR Gene Editing of Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2023, , 39-62.	0.4	1

#	Article	IF	Citations
1982	CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 2022, 3, .	1.7	5
1983	Gene therapy for cystic fibrosis: Challenges and prospects. Frontiers in Pharmacology, 0, 13, .	1.6	12
1984	Mechanistic Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to Heat and Drought Stress. Plants, 2022, 11, 2857.	1.6	22
1985	Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metabolic Engineering, 2023, 75, 68-77.	3.6	6
1986	Toward brain organoid-based precision medicine in neurodegenerative diseases. Organoid, 0, 2, e21.	0.0	1
1987	Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Plants, 2022, 11, 2625.	1.6	20
1988	Advances in CRISPR therapeutics. Nature Reviews Nephrology, 2023, 19, 9-22.	4.1	41
1990	Precise Aâ^™T to Gâ^™C base editing in the allotetraploid rapeseed (<i>Brassica napus</i> L.) genome. Journal of Cellular Physiology, 0, , .	2.0	0
1991	Enhancement of Gene Editing and Base Editing with Therapeutic Ribonucleoproteins through In Vivo Delivery Based on Absorptive Silica Nanoconstruct. Advanced Healthcare Materials, 2023, 12, .	3.9	6
1992	Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Communications Biology, 2022, 5, .	2.0	6
1993	A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nature Communications, 2022, 13, .	5.8	10
1994	DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Molecular Cell, 2022, 82, 4160-4175.e6.	4.5	13
1995	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	23.0	54
1996	Construction of a cytidine base editor based on Exopalaemon carinicauda cytidine deaminase and its application in crustacean genome editing. Aquaculture Reports, 2022, 27, 101366.	0.7	0
1997	Molecular and Cellular In Utero Therapy. Clinics in Perinatology, 2022, 49, 811-820.	0.8	1
1998	Gene editing hPSCs for modeling neurological disorders. , 2023, , 289-311.		0
1999	New Cas Endonuclease Variants Broadening the Scope of the CRISPR Toolbox. , 2022, , 133-141.		0
2000	Transgene-Free Genome Editing in Plants. , 2022, , 171-186.		Ο

~		<u> </u>
CITAT	ION	REPORT

#	Article	IF	CITATIONS
2001	Recent Advances and Application of CRISPR Base Editors for Improvement of Various Traits in Crops. , 2022, , 105-131.		0
2002	Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform for Modeling Arrhythmias. , 2022, , 875-893.		Ο
2003	Multiplexed Genome Editing in Plants Using CRISPR/Cas-Based Endonuclease Systems. , 2022, , 143-169.		1
2004	Genome Editing: A Review of the Challenges and Approaches. , 2022, , 71-101.		0
2005	Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology, 2023, 41, 663-672.	9.4	50
2006	Antibody-mediated delivery of CRISPR-Cas9 ribonucleoproteins in human cells. Protein Engineering, Design and Selection, 2022, 35, .	1.0	3
2007	Upgrading the genome of an elite japonica rice variety Kongyu 131 for lodging resistance improvement. Plant Biotechnology Journal, 2023, 21, 419-432.	4.1	2
2008	CRISPR-based engineering of phages for in situ bacterial base editing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
2009	CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Genes, 2022, 13, 2029.	1.0	2
2010	Bio-Orthogonal Chemistry Conjugation Strategy Facilitates Investigation of N-methyladenosine and Thiouridine Guide RNA Modifications on CRISPR Activity. CRISPR Journal, 2022, 5, 787-798.	1.4	4
2011	Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 2023, 24, 161-177.	7.7	134
2012	Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nature Biotechnology, 2023, 41, 673-685.	9.4	50
2013	Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, .	3.2	8
2014	Systematic discovery and functional dissection of enhancers needed for cancer cell fitness and proliferation. Cell Reports, 2022, 41, 111630.	2.9	10
2015	SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e. Nature Communications, 2022, 13, .	5.8	15
2016	Novel methods for the generation of genetically engineered animal models. Bone, 2023, 167, 116612.	1.4	1
2017	A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. Genetics & Genomics Next, 2022, 3, .	0.8	3
2019	Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review, 2022, 2, 471-500.	0.3	6

#	Article	IF	CITATIONS
2021	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
2022	Genome editing is induced in a binary manner in single human cells. IScience, 2022, 25, 105619.	1.9	1
2023	Immune Editing: Overcoming Immune Barriers in Stem Cell Transplantation. Current Stem Cell Reports, 2022, 8, 206-218.	0.7	9
2024	Hearing of Otof-deficient mice restored by trans-splicing of N- and C-terminal otoferlin. Human Genetics, 2023, 142, 289-304.	1.8	22
2025	Potential CRISPR Base Editing Therapeutic Options in a Sorsby Fundus Dystrophy Patient. Genes, 2022, 13, 2103.	1.0	2
2026	Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Advances, 2023, 7, 2252-2270.	2.5	2
2027	ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Scientific Reports, 2022, 12, .	1.6	10
2028	Leveraging a natural murine meiotic drive to suppress invasive populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
2029	From nuclease-based gene knock-in to prime editing – promising technologies of precision gene engineering. Gene and Genome Editing, 2022, 3-4, 100017.	1.3	1
2030	Genetics of Cystic Fibrosis. Clinics in Chest Medicine, 2022, 43, 591-602.	0.8	4
2031	Elucidation of the etiological mechanisms underlying rare hereditary cilia/centrosome disorders using genome editing technology. Gene and Genome Editing, 2022, 3-4, 100016.	1.3	0
2032	Genome editing and bioinformatics. Gene and Genome Editing, 2022, 3-4, 100018.	1.3	2
2033	EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Computational and Structural Biotechnology Journal, 2023, 21, 202-211.	1.9	5
2034	Current Strategies of Muscular Dystrophy Therapeutics: An Overview. Methods in Molecular Biology, 2023, , 3-30.	0.4	2
2035	Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metabolic Engineering, 2023, 75, 91-99.	3.6	9
2037	Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Medicine, 2022, 14, .	3.6	1
2038	Construction and application of an efficient dual-base editing platform for <i>Bacillus subtilis</i> evolution employing programmable base conversion. Chemical Science, 2022, 13, 14395-14409.	3.7	8
2039	Japanese Regulatory Framework and Approach for Genome-edited Foods Based on Latest Scientific Findings. Food Safety (Tokyo, Japan), 2022, 10, 113-128.	1.0	7

		CHATION RE	PORT	
#	Article		IF	CITATIONS
2040	Improvements in the genetic editing technologies: CRISPR-Cas and beyond. Gene, 2023, 852,	147064.	1.0	1
2041	Gene therapies for RyR1-related myopathies. Current Opinion in Pharmacology, 2023, 68, 102	330.	1.7	1
2042	A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced of effect. Molecular Therapy - Nucleic Acids, 2023, 31, 78-87.	f-target	2.3	1
2043	Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skippi Molecular Therapy - Methods and Clinical Development, 2023, 28, 40-50.	ng.	1.8	8
2044	Versatile and efficient genome editing with Neisseria cinerea Cas9. Communications Biology, 2	.022, 5, .	2.0	2
2045	In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes, 2022, 1	.3, 2222.	1.0	6
2046	Gene Editing Technologies to Target HBV cccDNA. Viruses, 2022, 14, 2654.		1.5	10
2047	Anthocyanin-assisted Agrobacterium infiltration for the rapid evaluation of genome editing efficiencies across multiple plant species. , 2022, , .			1
2048	Genome editing for vegetable crop improvement: Challenges and future prospects. Frontiers ir Genetics, 0, 13, .	۱	1.1	2
2049	Maize Lethal Necrosis disease: review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa. BMC Plant Biology, 2	022, 22, .	1.6	2
2050	Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology, 2023, 41, 500-512.	3	9.4	121
2051	Automated high-throughput genome editing platform with an AI learning in situ prediction mo Nature Communications, 2022, 13, .	del.	5.8	6
2053	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in Immunology, 0, 13, .		2.2	4
2054	Gene therapy for inborn errors of immunity: past, present and future. Nature Reviews Immunol 2023, 23, 397-408.	ogy,	10.6	12
2055	Precise genomic editing of pathogenic mutations in <i>RBM20</i> rescues dilated cardiomyop Science Translational Medicine, 2022, 14, .	athy.	5.8	37
2057	CRISPR-Based Tools for Fighting Rare Diseases. Life, 2022, 12, 1968.		1.1	2
2058	LMNA Co-Regulated Gene Expression as a Suitable Readout after Precise Gene Correction. Inte Journal of Molecular Sciences, 2022, 23, 15525.	rnational	1.8	1
2059	Genome Editing and Fatty Liver. Advances in Experimental Medicine and Biology, 2023, , 191-2	.06.	0.8	0

#	Article	IF	CITATIONS
2060	Genome Editing in Therapy of Genodermatoses. Molecular Biology, 2022, 56, 921-941.	0.4	0
2061	Genome editing in plants. Gene and Genome Editing, 2022, 3-4, 100020.	1.3	2
2063	Plant Genome Editing. , 2022, , 205-216.		0
2065	Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. Advances in Experimental Medicine and Biology, 2023, , 315-339.	0.8	0
2066	Massively Parallel CRISPRâ€Based Genetic Perturbation Screening at Single ell Resolution. Advanced Science, 2023, 10, .	5.6	6
2067	Circular Guide RNA for Improved Stability and CRISPR-Cas9 Editing Efficiency <i>in Vitro</i> and in Bacteria. ACS Synthetic Biology, 2023, 12, 350-359.	1.9	4
2068	Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharmaceutica Sinica B, 2023, 13, 2510-2543.	5.7	4
2069	Site-Directed Mutagenesis – A Chance to Meet Environmental Challenges and Provide Healthy Food for People or an Unacceptable Hazard to Humans, Animals, and the Environment. Consequences of the European Court of Justice Judgment in Case C-528/16. Journal of Horticultural Research, 2022, 30, 1-12.	0.4	0
2070	Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. International Journal of Molecular Sciences, 2022, 23, 15276.	1.8	1
2071	Biochemical characterization of the two novel mgCas12a proteins from the human gut metagenome. Scientific Reports, 2022, 12, .	1.6	0
2073	An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, 2023, , 3-16.	0.8	1
2074	A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing. Molecular Biotechnology, 2023, 65, 849-860.	1.3	12
2075	Mini-dCas13X–mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. Journal of Clinical Investigation, 2023, 133, .	3.9	9
2076	RNA in Therapeutics: CRISPR in the Clinic. Molecules and Cells, 2023, 46, 4-9.	1.0	1
2077	Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. Frontiers in Plant Science, 0, 13, .	1.7	8
2078	Cytosine base editing in cyanobacteria by repressing archaic Type <scp>Ⅳ uracilâ€DNA</scp> glycosylase. Plant Journal, 0, , .	2.8	5
2079	Plant base editing and prime editing: The current status and future perspectives. Journal of Integrative Plant Biology, 2023, 65, 444-467.	4.1	23
2080	Current advances in gene therapy of mitochondrial diseases. Journal of Translational Medicine, 2022, 20, .	1.8	7

#	Article	IF	CITATIONS
2081	Homology-based identification of candidate genes for male sterility editing in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 0, 13, .	1.7	2
2082	Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
2084	Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR Journal, 2022, 5, 746-768.	1.4	0
2085	CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing. MSystems, 0, , .	1.7	0
2086	Advances in off-target detection for CRISPR-based genome editing. Human Gene Therapy, 0, , .	1.4	0
2087	Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nature Communications, 2023, 14, .	5.8	36
2088	Clinical genome editing to treat sickle cell disease $\hat{a} \in$ "A brief update. Frontiers in Medicine, 0, 9, .	1.2	5
2089	Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Frontiers in Genome Editing, 0, 4, .	2.7	2
2090	Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nature Biotechnology, 2023, 41, 993-1003.	9.4	47
2091	Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli. MBio, 2023, 14, .	1.8	8
2092	Web-Based Computational Tools for Base Editors. Methods in Molecular Biology, 2023, , 13-22.	0.4	1
2093	Gene Editing Corrects <i>In Vitro</i> a G > A <i>GLB1</i> Transition from a GM1 Gangliosidosis Patient. CRISPR Journal, 2023, 6, 17-31.	1.4	1
2094	Therapeutic adenine base editing of human hematopoietic stem cells. Nature Communications, 2023, 14,	5.8	16
2095	Targeted Mutagenesis in Mice Using a Base Editor. Methods in Molecular Biology, 2023, , 99-119.	0.4	0
2096	Profiling Genome-Wide Specificity of dCpf1 Cytidine Base Editors Using Digenome-Seq. Methods in Molecular Biology, 2023, , 33-40.	0.4	0
2097	A/C Simultaneous Conversion Using the Dual Base Editor in Human Cells. Methods in Molecular Biology, 2023, , 63-72.	0.4	0
2098	Prediction of Base Editing Efficiencies and Outcomes Using DeepABE and DeepCBE. Methods in Molecular Biology, 2023, , 23-32.	0.4	4
2099	Gene editing for dyslipidemias: New tools to "cut―lipids. Atherosclerosis, 2023, 368, 14-24.	0.4	5

#	Article	IF	Citations
2100	Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Communications Biology, 2023, 6, .	2.0	5
2101	CRISPR-Cas9 base editors and their current role in human therapeutics. Cytotherapy, 2023, 25, 270-276.	0.3	4
2102	Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. Chinese Chemical Letters, 2023, 34, 108134.	4.8	2
2103	Applying multiâ€omics toward tumor microbiome research. , 2023, 2, .		11
2104	Application of Base Editor-Mediated Genome Editing in Mouse Retina. Methods in Molecular Biology, 2023, , 179-188.	0.4	0
2105	Delivering Base Editors In Vivo by Adeno-Associated Virus Vectors. Methods in Molecular Biology, 2023, , 135-158.	0.4	1
2106	Base Editing of Human Hematopoietic Stem Cells. Methods in Molecular Biology, 2023, , 43-62.	0.4	1
2107	A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Frontiers in Genetics, 0, 13, .	1.1	10
2108	CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy, 2023, 25, 277-285.	0.3	4
2109	The Delivery of ABE mRNA to the Adult Murine Liver by Lipid Nanoparticles (LNPs). Methods in Molecular Biology, 2023, , 159-170.	0.4	1
2110	Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor. Methods in Molecular Biology, 2023, , 123-133.	0.4	1
2111	Introduction and Perspectives of DNA Base Editors. Methods in Molecular Biology, 2023, , 3-11.	0.4	1
2112	Functional Analysis of Variants in BRCA1 Using CRISPR Base Editors. Methods in Molecular Biology, 2023, , 73-85.	0.4	0
2113	Improved cytosine base editors generated from TadA variants. Nature Biotechnology, 2023, 41, 686-697.	9.4	31
2114	Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science, 2023, 379, 179-185.	6.0	37
2115	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
2116	Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biology, 2023, 24, .	3.8	18
2117	Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nature Reviews Neurology, 2023, 19, 91-108.	4.9	8

#	Article	IF	CITATIONS
2118	Pigs with an INS point mutation derived from zygotes electroporated with CRISPR/Cas9 and ssODN. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
2119	Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors. Computational and Structural Biotechnology Journal, 2023, 21, 856-868.	1.9	3
2120	Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nature Biotechnology, 2023, 41, 1080-1084.	9.4	58
2121	Guide RNA library-based CRISPR screens in plants: opportunities and challenges. Current Opinion in Biotechnology, 2023, 79, 102883.	3.3	7
2122	Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: a perfect match for gene functional analysis and crop improvement. Current Opinion in Biotechnology, 2023, 79, 102876.	3.3	11
2123	Accelerating wood domestication in forest trees through genome editing: Advances and prospects. Current Opinion in Plant Biology, 2023, 71, 102329.	3.5	8
2124	Plant genome editing: CRISPR, base editing, prime editing, and beyond. , 0, , .		4
2125	Genome editing for vegetatively propagated crops improvement: a new horizon of possibilities. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 718-729.	0.9	2
2126	TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nature Communications, 2022, 13, .	5.8	9
2127	CRISPR engineering in organoids for gene repair and disease modelling. , 2023, 1, 32-45.		11
2129	TadA reprogramming to generate potent miniature base editors with high precision. Nature Communications, 2023, 14, .	5.8	11
2130	SNPD-CRISPR: Single Nucleotide Polymorphism-Distinguishable Repression or Enhancement of a Target Gene Expression by CRISPR System. Methods in Molecular Biology, 2023, , 49-62.	0.4	0
2131	Reproductive Biotechnologies Applied to the Female Sheep and Goat. Sustainable Agriculture Reviews, 2023, , 1-57.	0.6	1
2132	Simplified Construction of Engineered <i>Bacillus subtilis</i> Host for Improved Expression of Proteins Harboring Noncanonical Amino Acids. ACS Synthetic Biology, 0, , .	1.9	1
2133	Updates and Applications of CRISPR/Cas Technology in Plants. Journal of Plant Biology, 0, , .	0.9	3
2134	Principles of genome editing and its applications in fisheries. , 2023, , 147-154.		2
2135	Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases. Current Problems in Cardiology, 2023, 48, 101603.	1.1	1
2137	CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62,	7.2	24

#	Article	IF	Citations
2138	Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines, 2023, 11, 385.	1.4	3
2139	Clinical progress in genome-editing technology and in vivo delivery techniques. Trends in Genetics, 2023, 39, 208-216.	2.9	10
2140	Base editing screens map mutations affecting interferon-Î ³ signaling in cancer. Cancer Cell, 2023, 41, 288-303.e6.	7.7	14
2141	CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie, 0, , .	1.6	0
2142	Advances in CRISPR/Cas technologies and their application in plants. , 2023, 2, 1-10.		1
2143	Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases. Cells, 2023, 12, 440.	1.8	4
2144	Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding. Current Issues in Molecular Biology, 2023, 45, 918-935.	1.0	7
2145	Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Reviews and Reports, 0, , .	1.7	3
2146	Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Research, 2023, 51, e31-e31.	6.5	6
2147	Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of Microbiology, 2023, 61, 13-36.	1.3	4
2148	TadA orthologs enable both cytosine and adenine editing of base editors. Nature Communications, 2023, 14, .	5.8	7
2149	Roles of innovative genome editing technologies in stem cell engineering, rheumatic diseases and other joint/bone diseases. , 2023, , 53-77.		0
2150	Genome Editing Using CRISPR. , 2023, , 1-26.		0
2152	Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Molecular Cell, 2023, 83, 442-451.	4.5	5
2153	Precise genome editing with base editors. Medical Review, 2023, 3, 75-84.	0.3	1
2154	CRISPR-detector: fast and accurate detection, visualization, and annotation of genome-wide mutations induced by genome editing events. Journal of Genetics and Genomics, 2023, 50, 563-572.	1.7	0
2155	Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes and Diseases, 2024, 11, 268-282.	1.5	5
2157	Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Molecular Biomedicine, 2023, 4, .	1.7	3

#	Article	IF	Citations
2158	CRISPR/Cas9 system and its applications in nervous system diseases. Genes and Diseases, 2023, , .	1.5	0
2159	Resistance strategies for defense against Albugo candida causing white rust disease. Microbiological Research, 2023, 270, 127317.	2.5	2
2160	Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnology Advances, 2023, 64, 108115.	6.0	3
2161	Genome editing, a superior therapy for inherited retinal diseases. Vision Research, 2023, 206, 108192.	0.7	10
2162	The use of CRISPR-Cas-based systems in bacterial cell factories. Biochemical Engineering Journal, 2023, 194, 108880.	1.8	3
2163	Potential of the endogenous and artificially inserted CRISPR-Cas system for controlling virulence and antimicrobial resistance of food pathogens. , 2023, 2, 100229.		2
2164	The Current Status of Antisense Gene Therapies for Bacteria-caused Diseases Challenges and Opportunities. Current Pharmaceutical Design, 2023, 29, 272-282.	0.9	0
2165	CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379, .	6.0	233
2166	Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Reports, 2023, 42, 112019.	2.9	11
2167	Challenges of Gene Editing Therapies for Genodermatoses. International Journal of Molecular Sciences, 2023, 24, 2298.	1.8	6
2168	The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment. Cardiovascular & Hematological Disorders Drug Targets, 2022, 22, 226-236.	0.2	1
2169	Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Experimental and Molecular Medicine, 2023, 55, 377-384.	3.2	3
2170	Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening. Molecular Therapy, 2023, 31, 1167-1176.	3.7	2
2171	Chemical and Biological Approaches to Interrogate off-Target Effects of Genome Editing Tools. ACS Chemical Biology, 2023, 18, 205-217.	1.6	4
2172	Highâ€Precision Synthesis of RNA‣oaded Lipid Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	11
2173	Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy – A review. Journal of Environmental Management, 2023, 332, 117382.	3.8	5
2176	CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. Frontiers in Plant Science, 0, 14, .	1.7	10
2177	Advances in gene therapy hold promise for treating hereditary hearing loss. Molecular Therapy, 2023, 31, 934-950.	3.7	25
#	Article	IF	CITATIONS
------	--	------	-----------
2178	Prime Editing for Human Gene Therapy: Where Are We Now?. Cells, 2023, 12, 536.	1.8	11
2180	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	2.3	10
2181	Rare immune diseases paving the road for genome editing-based precision medicine. Frontiers in Genome Editing, 0, 5, .	2.7	5
2182	Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. Nature Communications, 2023, 14, .	5.8	7
2183	Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. Journal of Experimental Medicine, 2023, 220, .	4.2	24
2184	Molecular basis of RADAR anti-phage supramolecular assemblies. Cell, 2023, 186, 999-1012.e20.	13.5	21
2185	Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. Journal of Controlled Release, 2023, 355, 406-416.	4.8	5
2186	<scp>CRISPRi</scp> in <i>Xanthomonas</i> demonstrates functional convergence of transcription activatorâ€like effectors in two divergent pathogens. New Phytologist, 2023, 238, 1593-1604.	3.5	0
2187	Increasing the Editing Efficiency of the MS2-ADAR System for Site-Directed RNA Editing. Applied Sciences (Switzerland), 2023, 13, 2383.	1.3	0
2188	Intracellular Delivery of mRNA for Cellâ€Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles. ChemBioChem, 2023, 24, .	1.3	4
2189	Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 2023, 24, 477-494.	16.1	17
2190	CRISPR/Cas genome editing system and its application in potato. Frontiers in Genetics, 0, 14, .	1.1	6
2191	Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedicines, 2023, 11, 532.	1.4	6
2192	Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. Journal of Materials Chemistry B, 2023, 11, 5251-5271.	2.9	5
2193	Therapeutic gene correction for Lesch-Nyhan syndrome using CRISPR-mediated base and prime editing. Molecular Therapy - Nucleic Acids, 2023, 31, 586-595.	2.3	3
2194	A luciferase reporter mouse model to optimize inÂvivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Molecular Therapy, 2023, 31, 1159-1166.	3.7	4
2195	Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nature Medicine, 2023, 29, 401-411.	15.2	48
2196	Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nature Medicine, 2023, 29, 412-421.	15.2	52

#	Article	IF	CITATIONS
2197	DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nature Communications, 2023, 14, .	5.8	25
2198	Current advancement in the application of prime editing. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	12
2199	Cas9â€orthologueâ€mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences. Biotechnology Journal, 2023, 18, .	1.8	0
2201	CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. Plant Physiology and Biochemistry, 2023, 196, 724-730.	2.8	4
2202	Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. Frontiers in Plant Science, 0, 14, .	1.7	3
2203	Cytosine Deaminase Base Editing to Restore COL7A1 in Dystrophic Epidermolysis Bullosa Human: Murine Skin Model. JID Innovations, 2023, 3, 100191.	1.2	3
2204	Delivery challenges for CRISPR—Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	1.0	2
2205	Hacking hematopoiesis $\hat{a} \in$ " emerging tools for examining variant effects. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	0
2206	Transition Substitution of Desired Bases in Human Pluripotent Stem Cells with Base Editors: A Step-by-Step Guide. International Journal of Stem Cells, 2023, 16, 234-243.	0.8	1
2207	Gene Therapy and Gene Editing. , 2023, , 269-334.		0
2208	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6
2209	Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnology Advances, 2023, 64, 108125.	6.0	4
2210	Epigenetics in LMNA-Related Cardiomyopathy. Cells, 2023, 12, 783.	1.8	6
2211	Geneâ€ŧargeted therapies: Overview and implications. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2023, 193, 13-18.	0.7	1
2212	Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nature Communications, 2023, 14, .	5.8	6
2213	HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	5
2214	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Cardiovascular Disease: A Comprehensive Clinical Review on Dilated Cardiomyopathy. Cureus, 2023, , .	0.2	0
2215	The history, use, and challenges of therapeutic somatic cell and germline gene editing. Fertility and Sterility, 2023, 120, 528-538.	0.5	0

#	Article	IF	CITATIONS
2216	A chemically controlled Cas9 switch enables temporal modulation of diverse effectors. Nature Chemical Biology, 2023, 19, 981-991.	3.9	5
2217	Mechanisms regulating the CRISPR-Cas systems. Frontiers in Microbiology, 0, 14, .	1.5	2
2218	Genome editing in maize: Toward improving complex traits in a global crop. Genetics and Molecular Biology, 2023, 46, .	0.6	1
2220	Application of CRISPR-Based C-to-G Base editing in rice protoplasts. Applied Biological Chemistry, 2023, 66, .	0.7	4
2221	The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review. Frontiers in Microbiology, 0, 14, .	1.5	5
2222	High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Frontiers in Genome Editing, 0, 5, .	2.7	2
2223	Off-target effects in CRISPR/Cas9 gene editing. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	53
2224	Genome Editing Technology: A New Frontier for the Treatment and Prevention of Cardiovascular Diseases. Current Problems in Cardiology, 2023, 48, 101692.	1.1	8
2225	Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Molecular Therapy, 2023, 31, 1647-1660.	3.7	7
2226	Nucleases in gene-editing technologies: past and prologue. , 2023, , .		1
2227	Gene Therapy and Gene Editing for β-Thalassemia. Hematology/Oncology Clinics of North America, 2023, 37, 433-447.	0.9	8
2228	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	1.9	5
2229	The potential of gene editing for Huntington's disease. Trends in Neurosciences, 2023, 46, 365-376.	4.2	2
2230	Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Frontiers in Genome Editing, 0, 5, .	2.7	2
2231	Gene Therapy for Î ² -Hemoglobinopathies: From Discovery to Clinical Trials. Viruses, 2023, 15, 713.	1.5	2
2232	Nonspecific interactions between Cas12a and dsDNA located downstream of the PAM mediate target search and assist AsCas12a for DNA cleavage. Chemical Science, 2023, 14, 3839-3851.	3.7	4
2233	CRISPR-assisted transcription activation by phase-separation proteins. Protein and Cell, 2023, 14, 874-887.	4.8	4
2234	Genome-engineering technologies for modeling and treatment of cystic fibrosis. Advances in Medical Sciences, 2023, 68, 111-120.	0.9	О

#	Article	IF	Citations
2236	Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. Planta, 2023, 257, .	1.6	3
2237	Split-tracrRNA as an efficient tracrRNA system with an improved potential of scalability. Biomaterials Science, 0, , .	2.6	0
2238	Foetal genome editing. Current Opinion in Obstetrics and Gynecology, 2023, 35, 134-139.	0.9	0
2239	Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Research, 2023, 51, 3485-3496.	6.5	18
2240	Base Editing of EUI1 Improves the Elongation of the Uppermost Internode in Two-Line Male Sterile Rice Lines. Agriculture (Switzerland), 2023, 13, 693.	1.4	0
2242	Rethinking Biosynthesis of Aclacinomycin A. Molecules, 2023, 28, 2761.	1.7	1
2243	Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Frontiers in Endocrinology, 0, 14, .	1.5	4
2244	Current Approaches to and the Application of Intracytoplasmic Sperm Injection (ICSI) for Avian Genome Editing. Genes, 2023, 14, 757.	1.0	1
2246	Establishment, optimization, and application of genetic technology in Aspergillus spp Frontiers in Microbiology, 0, 14, .	1.5	0
2247	Tailoring crops with superior product quality through genome editing: an update. Planta, 2023, 257, .	1.6	4
2248	The Wildâ€Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequenceâ€Specific DNA Base Editing. ChemBioChem, 2023, 24, .	1.3	2
2250	The application of adenine deaminase in antibody affinity maturation. Applied Microbiology and Biotechnology, 2023, 107, 2661-2670.	1.7	1
2251	Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Frontiers in Immunology, 0, 14, .	2.2	5
2252	Functional characterization of human genomic variation linked to polygenic diseases. Trends in Genetics, 2023, 39, 462-490.	2.9	5
2253	Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, 2024, 42, 87-98.	9.4	27
2254	Recent Advances in Engineering of In Vivo Haploid Induction Systems. Methods in Molecular Biology, 2023, , 365-383.	0.4	4
2255	Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nature Communications, 2023, 14,	5.8	14
2256	Transgenesis and Genome Engineering: A Historical Review. Methods in Molecular Biology, 2023, , 1-32.	0.4	2

	CHARLON		
# 2257	ARTICLE Gene therapy for inborn errors of immunity: Base editing comes into play. Cell, 2023, 186, 1302-1304.	lF 13.5	Citations 4
2258	Base editing rescue of spinal muscular atrophy in cells and in mice. Science, 2023, 380, .	6.0	46
2259	Designing Guide-RNA for Generating Premature Stop Codons for Gene Knockout Using CRISPR-BETS. Methods in Molecular Biology, 2023, , 95-105.	0.4	0
2260	Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. Nature Communications, 2023, 14, .	5.8	10
2261	Base Editing in Poplar Through an Agrobacterium-Mediated Transformation Method. Methods in Molecular Biology, 2023, , 53-71.	0.4	1
2262	PAM-Less CRISPR-SpRY Genome Editing in Plants. Methods in Molecular Biology, 2023, , 3-19.	0.4	0
2263	Gene therapy and genome editing for type I glycogen storage diseases. Frontiers in Molecular Medicine, 0, 3, .	0.6	1
2264	Advances in research to restore vision. Journal of Animal Reproduciton and Biotechnology, 2014, 38, 2-9.	0.3	0
2265	Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond. , 2023, , 269-291.		0
2266	The Design and Application of DNA-Editing Enzymes as Base Editors. Annual Review of Biochemistry, 2023, 92, 43-79.	5.0	7
2267	Genome engineering in bacteria: Current and prospective applications. Methods in Microbiology, 2023, , 35-76.	0.4	1
2268	An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Functional and Integrative Genomics, 2023, 23, .	1.4	14
2269	CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells, 2023, 12, 1103.	1.8	7
2270	Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
2271	Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nature Communications, 2023, 14, .	5.8	17
2272	A Review of CRISPR-Based Advances in Dermatological Diseases. Molecular Diagnosis and Therapy, 2023, 27, 445-456.	1.6	1
2273	In the business of base editors: Evolution from bench to bedside. PLoS Biology, 2023, 21, e3002071.	2.6	10
2274	Highly Efficient A-to-G Editing in PFFs via Multiple ABEs. Genes, 2023, 14, 908.	1.0	1

		CITATION REPORT		
#	Article		IF	Citations
2275	CRISPR-Editing Therapy for Duchenne Muscular Dystrophy. Human Gene Therapy, 2023	3, 34, 379-387.	1.4	7
2276	Mutation of S461, in the GOLGA3 phosphorylation site, does not affect mouse sperma 11, e15133.	togenesis. PeerJ, O,	0.9	1
2279	Unclasping potentials of genomics and gene editing in chickpea to fight climate chang hunger threat. Frontiers in Genetics, 0, 14, .	e and global	1.1	4
2281	A dual gene-specific mutator system installs all transition mutations at similar frequence vivo. Nucleic Acids Research, 2023, 51, e59-e59.	ties <i>in</i>	6.5	5
2282	Strategies for precise gene edits in mammalian cells. Molecular Therapy - Nucleic Acids, 536-552.	, 2023, 32,	2.3	7
2283	Single-swap editing for the correction of common Duchenne muscular dystrophy muta Molecular Therapy - Nucleic Acids, 2023, 32, 522-535.	tions.	2.3	3
2284	PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripo Communications Medicine, 2023, 3, .	tent stem cells.	1.9	5
2286	A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, Delivery. International Journal of Molecular Sciences, 2023, 24, 7603.	, and In Vivo	1.8	2
2287	CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation breeding. Nature Protocols, 2023, 18, 1760-1794.	for plant	5.5	5
2289	Methodologies for the development of cereals and pseudocereals for improved quality nutritional value. , 2023, , 205-231.	and		0
2290	Gene and base editing tools to accelerate cereal improvement. , 2023, , 315-336.			0
2291	Curing "GFP-itis―in Bacteria with Base Editors: Development of a Genome Editing Implemented with High School Biology Students. CRISPR Journal, 0, , .	Science Program	1.4	0
2292	Application of new technologies in embryos: From gene editing to synthetic embryos. ,	2023, , 853-886.		0
2298	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering To Biochemistry, 2023, 62, 3465-3487.	polbox.	1.2	13
2317	A gentler yield of ex vivo-edited T cells. Nature Biomedical Engineering, 2023, 7, 607-60)8.	11.6	0
2326	Expanding the RNA and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 1-3	5.		0
2338	DNA-Nukleasen und ihre Verwendung in der Viehzucht. , 2023, , 139-168.			0
2346	Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common D BioDrugs, 2023, 37, 453-462.	iseases.	2.2	3

#	Article	IF	CITATIONS
2355	Emerging Lipoprotein-Related Therapeutics for Patients with Diabetes. Contemporary Diabetes, 2023, , 821-878.	0.0	0
2368	Cell-type-specific CRISPRization of mitochondrial DNA using bifunctional biodegradable silica nanoparticles. Chemical Communications, 0, , .	2.2	0
2372	Genetic and Epigenetic Strategies for Promoting Hair Cell Regeneration in the Mature Mammalian Inner Ear. Springer Handbook of Auditory Research, 2023, , 195-229.	0.3	0
2373	Nucleic Acid Editing. , 2023, , 365-416.		0
2399	A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Functional and Integrative Genomics, 2023, 23, .	1.4	10
2424	Recent advances in precise plant genome editing technology. , 2023, , 45-54.		0
2449	The CRISPR/Cas System in Human Cancer. Advances in Experimental Medicine and Biology, 2023, , 59-71.	0.8	0
2450	Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. Advances in Experimental Medicine and Biology, 2023, , 85-110.	0.8	0
2459	Genome Editing Using CRISPR. , 2023, , 2511-2536.		0
2460	Expanding the RNA- and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 2361-2395.		0
2465	On the path to evidence-based therapy in neuromuscular disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 315-358.	1.0	0
2471	Improvement of floricultural traits in ornamental crops using genome editing tools. Journal of Plant Biochemistry and Biotechnology, 0, , .	0.9	1
2477	Genomic editing: From human health to the $\hat{a} \in \infty$ perfect child $\hat{a} \in \mathbf{e}$, 2023, , 1-32.		0
2491	Drug delivery systems for CRISPR-based genome editors. Nature Reviews Drug Discovery, 2023, 22, 875-894.	21.5	9
2499	Genome editing in the treatment of ocular diseases. Experimental and Molecular Medicine, 2023, 55, 1678-1690.	3.2	3
2507	Canadian Regulatory Framework and Regulatory Requirements for Cell and Gene Therapy Products. Advances in Experimental Medicine and Biology, 2023, , 91-116.	0.8	0
2519	Base editing of organellar DNA with programmable deaminases. Nature Reviews Molecular Cell Biology, 2024, 25, 34-45.	16.1	3
2520	Genome Editing: Mechanism and Utilization in Plant Breeding. , 2023, , 457-488.		0

#	Article	IF	Citations
2532	Gene Editing and Gene Therapy in Oncology. , 2023, , 155-180.		4
2560	CRISPR/Cas9-based Genome Editing of Pseudomonas aeruginosa. Methods in Molecular Biology, 2024, , 3-12.	0.4	0
2574	CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Human Genetics, 0, , .	1.8	0
2580	Epigenome editing in cancer: Advances and challenges for potential therapeutic options. International Review of Cell and Molecular Biology, 2024, , 191-230.	1.6	0
2611	Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. Advances in Anatomy, Embryology and Cell Biology, 2023, , 21-55.	1.0	0
2617	Improving Plant Molecular Farming via Genome Editing. Concepts and Strategies in Plant Sciences, 2023, , 63-88.	0.6	0
2638	Genome Editing in Diatoms: Current Progress and Challenges. , 2023, , 54-60.		0
2639	Base Editing and Prime Editing. , 2024, , 17-39.		0
2640	Using Gene Editing Strategies for Wheat Improvement. , 2024, , 183-201.		0
2647	Approaches to Therapeutic Gene Editing in Alpha-1 Antitrypsin Deficiency. Methods in Molecular Biology, 2024, , 11-17.	0.4	0
2658	Cancer variant modeling in vivo. Nature Biotechnology, 0, , .	9.4	0
2661	Genome Editing in Medicinal Plants for Abiotic Stress Tolerance. , 2023, , 159-173.		0
2663	Genome-Editing – Gentherapie 2.0 oder nur eine Wunschvorstellung?. , 2023, , 103-120.		0
2669	Genetic Engineering: A Powerful Tool for Crop Improvement. , 2024, , 223-258.		0
2670	Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nature Reviews Rheumatology, 2024, 20, 81-100.	3.5	2
2673	CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Therapy, 0, , .	2.3	1
2687	CaMKIIδ editing through CRISPR-cas9 to treat heart disease. , 2024, , .		0
2694	Gene Editing in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 177-199	0.8	0

	Сітатіої	n Report	
#	Article	IF	CITATIONS
2696	Bacterial CRISPR systems and applications. , 2024, , 633-652.		0
2698	CRISPR/Cas systems and techniques. , 2024, , 21-41.		0
2700	Regulatory triggers of CRISPR-edited crops. , 2024, , 91-112.		0
2706	Genetic modification of mice using CRISPR-Cas9: Best practices and practical concepts explained. , 2024, , 425-452.		0
2707	Applications and associated challenges of CRISPR-Cas technology in agriculture. , 2024, , 265-280.		0
2708	CRISPR technology commercialization and biosafety. , 2024, , 461-514.		0
2709	CRISPR/Cas genome editing and applications in forest tree breeding. , 2024, , 343-366.		0
2721	Genomics and Genome Editing for Crop Improvement. , 2023, , 297-322.		0
2725	Mechanism and Regulation of Immunoglobulin Class Switch Recombination. , 2024, , 213-234.		0
2731	Base editing effectively prevents early-onset severe cardiomyopathy in Mybpc3 mutant mice. Cell Research, 2024, 34, 327-330.	5.7	0
2735	Genome Editing and Opportunities for Trait Improvement in Pearl Millet. , 2024, , 163-178.		0
2742	Gene editing for HD: Therapeutic prospects. , 2024, , 551-570.		0
2768	Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems. Methods in Molecular Biology, 2024, , 205-231.	0.4	0
2772	The CRISPR/Cas9-mediated base editing design of HBV specific gRNA: A computational approach. AIP Conference Proceedings, 2024, , .	0.3	0
2775	CRISPR-Cas and Its Applications in Food Production. , 2024, , 349-391.		0
2778	CRISPR-based precision breeding of fruits, vegetables, and ornamental plants. , 2024, , 191-216.		0
2779	Evolution of genome editing technologies. , 2024, , 21-36.		0
2786	Genome-Editing Advances for Disease Resistance in Plants. , 2024, , 293-316.		Ο

#	Article	IF	CITATIONS
2787	Detailed Insight into Various Classes of the CRISPR/Cas System to Develop Future Crops. , 2024, , 227-279.		0
2789	Deciphering the Role of CRISPR/Cas9 in the Amelioration of Abiotic and Biotic Stress Conditions. , 2024, , 193-226.		0
2793	Single-Base Editing in the Arabidopsis SUMO Conjugating Enzyme by Adenine Base Edition and Screening for a Rare Editing Event. , 2024, , 307-317.		0
2795	The Application of Genome Editing Technologies in Soybean (Glycine max L.) for Abiotic Stress Tolerance. , 2024, , 221-237.		0
2796	Plant Breeding Becomes Smarter with Genome Editing. , 2024, , 113-147.		0
2797	CRISPR-Cas9 systems for the improvement of solanaceous vegetable crops. , 2024, , 319-336.		0
2799	Bioinformatics tools and databases in genome editing for plants. , 2024, , 51-66.		0
2800	Base editing and prime editing in horticulture crops: Potential applications, challenges, and prospects. , 2024, , 105-126.		0
2802	Global patent landscape in CRISPR-Cas. , 2024, , 487-506.		0
2803	CRISPRized fruit, vegetable, and ornamental crops: A note from editors. , 2024, , 3-20.		0