Water-Mediated Mars–Van Krevelen Mechanism for Single-Atom Pt₁ Catalyst

ACS Catalysis 7, 887-891 DOI: 10.1021/acscatal.6b02685

Citation Report

#	Article	IF	CITATIONS
1	Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Industrial & Engineering Chemistry Research, 2017, 56, 3578-3587.	1.8	75
2	Evaluating Solvent Effects at the Aqueous/Pt(111) Interface. ChemPhysChem, 2017, 18, 2171-2190.	1.0	53
3	Theoretical Investigations of Pt ₁ @CeO ₂ Single-Atom Catalyst for CO Oxidation. Journal of Physical Chemistry C, 2017, 121, 11281-11289.	1.5	138
4	First-principles study of single transition metal atoms on ZnO for the water gas shift reaction. Catalysis Science and Technology, 2017, 7, 4294-4301.	2.1	27
5	CO Oxidation on Metal Oxide Supported Single Pt atoms: The Role of the Support. Industrial & Engineering Chemistry Research, 2017, 56, 6916-6925.	1.8	94
6	K _{1–<i>x</i>} Mo ₃ P ₂ O ₁₄ as Support for Single-Atom Catalysts. Journal of Physical Chemistry C, 2017, 121, 22895-22900.	1.5	12
7	Single atom catalyst by atomic layer deposition technique. Chinese Journal of Catalysis, 2017, 38, 1508-1514.	6.9	59
8	Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO ₂ Catalysts for CO Oxidation. ACS Catalysis, 2017, 7, 7097-7105.	5.5	151
9	CO ₂ electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study. Physical Chemistry Chemical Physics, 2017, 19, 23113-23121.	1.3	117
10	Activation of surface lattice oxygen in single-atom Pt/CeO ₂ for low-temperature CO oxidation. Science, 2017, 358, 1419-1423.	6.0	1,114
11	Portable device for generation of ultra-pure water vapor feeds. Review of Scientific Instruments, 2017, 88, 115102.	0.6	4
12	Pt-embedded-CeO ₂ hollow spheres for enhancing CO oxidation performance. Materials Chemistry Frontiers, 2017, 1, 1754-1763.	3.2	36
13	Designed Precursor for the Controlled Synthesis of Highly Active Atomic and Subâ€nanometric Platinum Catalysts on Mesoporous Silica. Chemistry - an Asian Journal, 2018, 13, 1053-1059.	1.7	15
14	Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118, 4981-5079.	23.0	3,103
15	Single-atom catalysts and their applications in organic chemistry. Journal of Materials Chemistry A, 2018, 6, 8793-8814.	5.2	174
16	Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 2018, 9, 574.	5.8	140
17	Intercalation of nanostructured CeO ₂ in MgAl ₂ O ₄ spinel illustrates the critical interaction between metal oxides and oxides. Nanoscale, 2018, 10, 3331-3341.	2.8	23
18	Strategies for Stabilizing Atomically Dispersed Metal Catalysts. Small Methods, 2018, 2, 1700286.	4.6	276

#	Article	IF	CITATIONS
19	Tunable Catalytic Performance of Single Pt Atom on Doped Graphene in Direct Dehydrogenation of Propane by Rational Doping: A Density Functional Theory Study. Journal of Physical Chemistry C, 2018, 122, 1570-1576.	1.5	52
20	Surface Immobilization of Transition Metal Ions on Nitrogenâ€Doped Graphene Realizing Highâ€Efficient and Selective CO ₂ Reduction. Advanced Materials, 2018, 30, e1706617.	11.1	276
21	Aerobic Oxygenation of Alkylarenes over Ultrafine Transitionâ€Metalâ€Containing Manganeseâ€Based Oxides. ChemCatChem, 2018, 10, 1096-1106.	1.8	27
22	A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Research, 2018, 11, 1599-1611.	5.8	75
23	Singleâ€Atom Catalysts of Precious Metals for Electrochemical Reactions. ChemSusChem, 2018, 11, 104-113.	3.6	218
24	Supported Single Atom and Pseudo‣ingle Atom of Metals as Sustainable Heterogeneous Nanocatalysts. ChemCatChem, 2018, 10, 881-906.	1.8	37
25	Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 2018, 16, 477-505.	8.3	96
26	Die facettenreiche Reaktivitäheterogener Einzelatomâ€Katalysatoren. Angewandte Chemie, 2018, 130, 15538-15552.	1.6	36
27	The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329.	7.2	261
28	Correlating DFT Calculations with CO Oxidation Reactivity on Ga-Doped Pt/CeO ₂ Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 22460-22468.	1.5	91
29	Single-atom catalysts by the atomic layer deposition technique. National Science Review, 2018, 5, 628-630.	4.6	75
30	TiC supported single-atom platinum catalyst for CO oxidation: A density functional theory study. Applied Surface Science, 2018, 453, 159-165.	3.1	15
31	Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2018, 2, 65-81.	13.8	2,728
32	Carbonate-mediated Mars–van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence. Physical Chemistry Chemical Physics, 2018, 20, 16045-16059.	1.3	54
33	Thermal O–H Bond Activation of Water As Mediated by Heteronuclear [Al ₂ Mg ₂ O ₅] ^{â€⊄+} : Evidence for Oxygen-Atom Scrambling. Journal of the American Chemical Society, 2018, 140, 9275-9281.	6.6	13
34	Phosphomolybdic acid supported single-metal-atom catalysis in CO oxidation: first-principles calculations. Physical Chemistry Chemical Physics, 2018, 20, 20661-20668.	1.3	34
35	Theoretical study of the single noble metal stabilized on metal oxide clusters catalyze the waterâ€gas shift reaction. International Journal of Quantum Chemistry, 2018, 118, e25767.	1.0	6
36	Harnessing the Wisdom in Colloidal Chemistry to Make Stable Singleâ€Atom Catalysts. Advanced Materials, 2018, 30, e1802304.	11.1	82

	CITATION R	EPORT	
# 37	ARTICLE Insight Observation of Simultaneously Enhanced CO Tolerance and Stability of Pt Electrocatalysts	IF 1.7	CITATIONS 3
38	Decorated with Oxygen Vacancy Rich Cerium Oxide. ChemElectroChem, 2018, 5, 3236-3242. Carbonâ€Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Advanced Materials, 2018, 30, e1801995.	11.1	479
39	Isolated Platinum Atoms Stabilized by Amorphous Tungstenic Acid: Metal–Support Interaction for Synergistic Oxygen Activation. Angewandte Chemie - International Edition, 2018, 57, 9351-9356.	7.2	80
40	Isolated Platinum Atoms Stabilized by Amorphous Tungstenic Acid: Metal–Support Interaction for Synergistic Oxygen Activation. Angewandte Chemie, 2018, 130, 9495-9500.	1.6	7
41	Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1, 385-397.	16.1	725
42	On the role of water in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on PtFe catalysts. Journal of Catalysis, 2018, 364, 192-203.	3.1	87
43	Low content of CoOx supported on nanocrystalline CeO2 for toluene combustion: The importance of interfaces between active sites and supports. Applied Catalysis B: Environmental, 2019, 240, 329-336.	10.8	124
44	Largeâ€Pore Mesoporous CeO ₂ –ZrO ₂ Solid Solutions with Inâ€Pore Confined Pt Nanoparticles for Enhanced CO Oxidation. Small, 2019, 15, e1903058.	5.2	43
45	Tailoring of the Proximity of Platinum Single Atoms on CeO ₂ Using Phosphorus Boosts the Hydrogenation Activity. ACS Catalysis, 2019, 9, 8404-8412.	5.5	95
46	Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 2019, 10, 3808.	5.8	225
47	Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2019, 2, 590-602.	16.1	300
48	Formation of Pt3O4 particles on PtO2–CeO2 solid solution. Journal of Physics and Chemistry of Solids, 2019, 135, 109097.	1.9	9
49	The effect of the oxidation states of supported oxides on catalytic activity: CO oxidation studies on Pt/cobalt oxide. Chemical Communications, 2019, 55, 9503-9506.	2.2	28
50	Introduction to Single-Atom Catalysis. , 2019, , 1-20.		7
51	Supported Nobleâ€Metal Single Atoms for Heterogeneous Catalysis. Advanced Materials, 2019, 31, e1902031.	11.1	207
52	Atomic layer deposition: Catalytic preparation and modification technique for the next generation. Chinese Journal of Catalysis, 2019, 40, 1311-1323.	6.9	22
53	Directed Selfâ€Assembly of MOFâ€Đerived Nanoparticles toward Hierarchical Structures for Enhanced Catalytic Activity in CO Oxidation. Advanced Energy Materials, 2019, 9, 1901754.	10.2	30
54	Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation. Chinese Journal of Catalysis, 2019, 40, 1847-1853.	6.9	47

#	Article	IF	CITATIONS
55	A versatile approach for quantification of surface site fractions using reaction kinetics: The case of CO oxidation on supported Ir single atoms and nanoparticles. Journal of Catalysis, 2019, 378, 121-130.	3.1	49
56	Versatile Applications of Metal Singleâ€Atom @ 2D Material Nanoplatforms. Advanced Science, 2019, 6, 1901787.	5.6	128
57	Remarkable active-site dependent H2O promoting effect in CO oxidation. Nature Communications, 2019, 10, 3824.	5.8	96
58	Single-Atom Catalysts: From Design to Application. Electrochemical Energy Reviews, 2019, 2, 539-573.	13.1	320
59	Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal–Support Interactions. Journal of the American Chemical Society, 2019, 141, 14515-14519.	6.6	455
60	Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS Nano, 2019, 13, 11552-11560.	7.3	193
61	Promoting effect of H2O over macroporous Ce-Zr catalysts in soot oxidation. Molecular Catalysis, 2019, 474, 110416.	1.0	9
62	Complete cleavage of the N≡N triple bond by Ta ₂ N ⁺ via degenerate ligand exchange at ambient temperature: A perfect catalytic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21416-21420.	3.3	60
63	Single Metal Atom Photocatalysis. Small Methods, 2019, 3, 1800447.	4.6	140
64	Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. Journal of Materials Chemistry A, 2019, 7, 3492-3515.	5.2	252
65	Highlights of Major Progress on Single-Atom Catalysis in 2017. Catalysts, 2019, 9, 135.	1.6	23
66	Two-dimensional π-conjugated metal bis(dithiolene) nanosheets as promising electrocatalysts for carbon dioxide reduction: a computational study. Journal of Materials Chemistry A, 2019, 7, 15341-15346.	5.2	40
67	Unravelling Platinum–Zirconia Interfacial Sites Using CO Adsorption. Inorganic Chemistry, 2019, 58, 8021-8029.	1.9	25
68	A review of heterogeneous catalysts for syngas production via dry reforming. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 139-158.	2.7	87
69	In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10, 1330.	5.8	177
70	Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 2019, 10, 1358.	5.8	302
71	Understanding the Impact of Defects on Catalytic CO Oxidation of LaFeO ₃ -Supported Rh, Pd, and Pt Single-Atom Catalysts. Journal of Physical Chemistry C, 2019, 123, 7290-7298.	1.5	36
72	Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 2019, 9, 3289-3297.	5.5	101

#	Article	IF	CITATIONS
73	Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catalysis Letters, 2019, 149, 1137-1146.	1.4	85
74	Insight of the stability and activity of platinum single atoms on ceria. Nano Research, 2019, 12, 1401-1409.	5.8	121
75	Improved NO–CO reactivity of highly dispersed Pt particles on CeO ₂ nanorod catalysts prepared by atomic layer deposition. Catalysis Science and Technology, 2019, 9, 2664-2672.	2.1	34
76	Ultimate dispersion of metallic and ionic platinum on ceria. Journal of Materials Chemistry A, 2019, 7, 13019-13028.	5.2	21
77	A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl ₂ O ₄ with goodÂcatalytic activity and stability for NO reduction by CO. Journal of Materials Chemistry A, 2019, 7, 7202-7212.	5.2	27
78	Linear Activation Energy-Reaction Energy Relations for LaBO3 (B = Mn, Fe, Co, Ni) Supported Single-Atom Platinum Group Metal Catalysts for CO Oxidation. Journal of Physical Chemistry C, 2019, 123, 31130-31141.	1.5	12
79	The effect of oxygen vacancies and water on HCHO catalytic oxidation over Co3O4 catalyst: A combination of density functional theory and microkinetic study. Chemical Engineering Journal, 2019, 355, 540-550.	6.6	69
80	Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. Journal of Energy Chemistry, 2019, 33, 31-36.	7.1	20
81	Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Applied Catalysis B: Environmental, 2019, 244, 650-659.	10.8	159
82	CO oxidation over supported Pt/CrxFe2-xO3 catalysts and their good tolerance to CO2 and H2O. Applied Catalysis B: Environmental, 2019, 245, 314-324.	10.8	30
83	Termination Effects of Pt/v-Ti _{<i>n</i>+1} C _{<i>n</i>} T ₂ MXene Surfaces for Oxygen Reduction Reaction Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 1638-1644.	4.0	88
84	Toward Understanding of the Support Effect on Pd ₁ Single-Atom-Catalyzed Hydrogenation Reactions. Journal of Physical Chemistry C, 2019, 123, 7922-7930.	1.5	63
85	A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental, 2020, 261, 118178.	10.8	31
86	Promotive effect of H2O on low-temperature NO reduction by CO over Pd/La0.9Ba0.1AlO3 Catalysis Today, 2020, 352, 192-197.	2.2	10
87	Photocatalytic CO2 reduction over platinum modified hexagonal tungsten oxide: Effects of platinum on forward and back reactions. Applied Catalysis B: Environmental, 2020, 263, 118331.	10.8	38
88	Surface engineering of nano-ceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chemical Engineering Journal, 2020, 381, 122752.	6.6	88
89	High active platinum clusters on titanium dioxide supports toward carbon monoxide oxidation. Applied Catalysis B: Environmental, 2020, 266, 118629.	10.8	25
91	CO oxidation over Pt/Cr1.3Fe0.7O3 catalysts: Enhanced activity on single Pt atom by H2O promotion. Journal of Catalysis, 2020, 382, 192-203.	3.1	41

#	Article	IF	CITATIONS
92	Effect of Hydrotalcites Interlayer Water on Pt-Catalyzed Aqueous-Phase Selective Hydrogenation of Cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12, 2516-2524.	4.0	28
93	Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. Nanoscale, 2020, 12, 364-371.	2.8	59
94	On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WO in the hydrogenolysis reaction. Chinese Journal of Catalysis, 2020, 41, 524-532.	6.9	50
95	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
96	Cerium(III) Nitrate Derived CeO ₂ Support Stabilising PtO _x Active Species for Room Temperature CO Oxidation. ChemCatChem, 2020, 12, 1413-1428.	1.8	15
97	Uniformity Is Key in Defining Structure–Function Relationships for Atomically Dispersed Metal Catalysts: The Case of Pt/CeO ₂ . Journal of the American Chemical Society, 2020, 142, 169-184.	6.6	170
98	Facile CO Oxidation on Oxygenâ€functionalized MXenes via the Marsâ€van Krevelen Mechanism. ChemCatChem, 2020, 12, 1007-1012.	1.8	7
99	Photothermal conversion of graphene/layered manganese oxide 2D/2D composites for room-temperature catalytic purification of gaseous formaldehyde. Journal of the Taiwan Institute of Chemical Engineers, 2020, 107, 119-128.	2.7	25
100	Single-atom nanozymes for biological applications. Biomaterials Science, 2020, 8, 6428-6441.	2.6	62
101	Hydrogen Evolution Reaction over Single-Atom Catalysts Based on Metal Adatoms at Defected Graphene and h-BN. Journal of Physical Chemistry C, 2020, 124, 16860-16867.	1.5	32
102	Ligand Stabilized Ni 1 Catalyst for Efficient CO Oxidation. ChemPhysChem, 2020, 21, 2417-2425.	1.0	4
103	Single-Site Heterogeneous Catalysts and Photocatalysts for Emerging Applications. ACS Symposium Series, 2020, , 151-188.	0.5	3
104	Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO ₂ . Catalysis Science and Technology, 2020, 10, 5772-5791.	2.1	32
105	Single-atom electron microscopy for energy-related nanomaterials. Journal of Materials Chemistry A, 2020, 8, 16142-16165.	5.2	20
106	Porous carbon as catalyst support for CO oxidation: Impact of nitrogen doping. Carbon, 2020, 169, 297-306.	5.4	19
107	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	5.8	252
108	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
109	Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews, 2020, 120, 11986-12043.	23.0	486

		CITATION REPORT	
#	Article	IF	CITATIONS
110	Singleâ€atom Automobile Exhaust Catalysts. ChemNanoMat, 2020, 6, 1659-1682.	1.5	27
111	Recent advances in single-atom catalysts for CO oxidation. Catalysis Reviews - Science and Engineering, 2022, 64, 491-532.	5.7	35
112	Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nature Communications, 2020, 11, 4240.	5.8	101
113	Recent advances and strategies in the stabilization of singleâ€∎tom catalysts for electrochemical applications. , 2020, 2, 488-520.		37
114	Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition-Metal-Doped CeO ₂ Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis. ACS Catalysis, 2020, 10, 11739-11750.	5.5	140
115	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	7.8	38
116	X-ray Absorption Spectroscopy: An Indispensable Tool to Study Single-Atom Catalysts. Synchrotron Radiation News, 2020, 33, 18-26.	0.2	7
117	Palladium Nanoparticles Supported on Surface-Modified Metal Oxides for Catalytic Oxidation of Lean Methane. ACS Applied Nano Materials, 2020, 3, 12130-12138.	2.4	27
118	Influence of gold on the reactivity behaviour of ceria nanorods in CO oxidation: combining <i>operando</i> spectroscopies and DFT calculations. Catalysis Science and Technology, 2020, 10, 3720-3730.	2.1	19
119	Excellent Catalytic Activity of a Pdâ€Promoted MnO x Catalyst for Purifying Automotive Exhaust Gases. ChemCatChem, 2020, 12, 4276-4280.	1.8	11
120	Recent Progress in Singleâ€Atom Catalysts for Photocatalytic Water Splitting. Solar Rrl, 2020, 4, 2000283.	3.1	59
121	High-loading single Pt atom sites [Pt-O(OH) <i> _x </i>] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Science Advances, 2020, 6, eaba3809.	4.7	78
122	First-principles insight into CO hindered agglomeration of Rh and Pt single atoms on <i>m</i> -ZrO ₂ . Catalysis Science and Technology, 2020, 10, 5847-5855.	2.1	8
123	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
124	Clarifying the impacts of surface hydroxyls on CO oxidation on CeO ₂ (100) surfaces: a DFT+ <i>U</i> study. Physical Chemistry Chemical Physics, 2020, 22, 7738-7746.	1.3	13
125	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	23.0	806
126	Zn2+ stabilized Pd clusters with enhanced covalent metal–support interaction via the formation of Pd–Zn bonds to promote catalytic thermal stability. Nanoscale, 2020, 12, 14825-14830.	2.8	17
127	Metal–organic framework templated Pd/CeO ₂ @N-doped carbon for low-temperature CO oxidation. Nanoscale Advances, 2020, 2, 755-762.	2.2	3

#	Article	IF	CITATIONS
128	N-Coordinated Dual-Metal Single-Site Catalyst for Low-Temperature CO Oxidation. ACS Catalysis, 2020, 10, 2754-2761.	5.5	112
129	Inherently Selective Atomic Layer Deposition and Applications. Chemistry of Materials, 2020, 32, 2195-2207.	3.2	66
130	Identification of single-atom active sites in CO oxidation over oxide-supported Au catalysts. Journal of Catalysis, 2020, 383, 264-272.	3.1	36
131	On the Real Nature of Rh Singleâ€Atom Catalysts Dispersed on the ZrO ₂ Surface. ChemCatChem, 2020, 12, 2595-2604.	1.8	23
132	Preparation and catalytic performance of ZrO ₂ â€supported Pt singleâ€atom and cluster catalyst for hydrogenation of 2,4â€dinitrotoluene to 2,4â€toluenediamine. Journal of Chemical Technology and Biotechnology, 2020, 95, 1675-1682.	1.6	15
133	Versatile application of wet-oxidation for ambient CO abatement over Fe(OH) supported subnanometer platinum group metal catalysts. Chinese Journal of Catalysis, 2020, 41, 613-621.	6.9	6
134	Superior Catalytic Performance of Atomically Dispersed Palladium on Graphene in CO Oxidation. ACS Catalysis, 2020, 10, 3084-3093.	5.5	44
135	Free-standing composite films of multiple 2D nanosheets: Synergetic photothermocatalysis/photocatalysis for efficient removal of formaldehyde under ambient condition. Chemical Engineering Journal, 2020, 394, 125014.	6.6	58
136	Highâ€Loading Singleâ€Atom Copper Catalyst Supported on Coordinatively Unsaturated Al ₂ O ₃ for Selective Synthesis of Homoallylboronates. ChemSusChem, 2020, 13, 3115-3121.	3.6	20
137	Atomic-scale engineering of metal–oxide interfaces for advanced catalysis using atomic layer deposition. Catalysis Science and Technology, 2020, 10, 2695-2710.	2.1	25
138	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie, 2020, 132, 11922-11927.	1.6	46
139	Dual Metal Active Sites in an Ir ₁ /FeO _{<i>x</i>} Singleâ€Atom Catalyst: A Redox Mechanism for the Waterâ€Gas Shift Reaction. Angewandte Chemie, 2020, 132, 12968-12975.	1.6	19
140	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie - International Edition, 2020, 59, 11824-11829.	7.2	309
141	Dual Metal Active Sites in an Ir ₁ /FeO _{<i>x</i>} Singleâ€Atom Catalyst: A Redox Mechanism for the Waterâ€Gas Shift Reaction. Angewandte Chemie - International Edition, 2020, 59, 12868-12875.	7.2	102
142	Local structure of Pt species dictates remarkable performance on Pt/Al2O3 for preferential oxidation of CO in H2. Applied Catalysis B: Environmental, 2021, 282, 119588.	10.8	41
143	Prediction and Tuning of the Defects in the Redox Catalysts: Ethylene Oxychlorination. ChemCatChem, 2021, 13, 221-226.	1.8	4
144	Prototype Atomically Dispersed Supported Metal Catalysts: Iridium and Platinum. Small, 2021, 17, e2004665.	5.2	27
145	Phosphorene Supported Singleâ€Atom Catalysts for CO Oxidation: A Computational Study. ChemPhysChem, 2021, 22, 378-385.	1.0	12

#	Article	IF	CITATIONS
146	Use of rare earth elements in single-atom site catalysis: A critical review — CommemoratingÂtheÂ100thÂanniversaryÂofÂtheÂbirthÂofÂAcademicianÂGuangxianÂXu. Journal of Rare Earths, 2021, 39, 233-242.	2.5	28
147	Ultraâ€Small Noble Metal Ceriaâ€Based Catalytic Materials: From Synthesis to Application. European Journal of Inorganic Chemistry, 2021, 2021, 689-701.	1.0	6
148	Anti-sintering Au nanoparticles stabilized by a Fe-incorporated MgAl ₂ O ₄ spinel for CO oxidation. Catalysis Science and Technology, 2021, 11, 1854-1861.	2.1	7
149	Mn(III) active site in hydrotalcite efficiently catalyzes the oxidation of alkylarenes with molecular oxygen. Molecular Catalysis, 2021, 499, 111276.	1.0	8
150	Synthesis of High Metal Loading Single Atom Catalysts and Exploration of the Active Center Structure. ChemCatChem, 2021, 13, 28-58.	1.8	35
151	Katalyse der Oxidation von CO an Pt/CeO ₂ bei Raumtemperatur: Synergie zwischen metallischen und oxidierten Ptâ€Zentren. Angewandte Chemie, 2021, 133, 3843-3849.	1.6	4
152	Relationships between the activities and Ce3+ concentrations of CeO2(111) for CO oxidation: A first-principle investigation. Chinese Chemical Letters, 2021, 32, 1127-1130.	4.8	6
153	Synergy between Metallic and Oxidized Pt Sites Unravelled during Room Temperature COâ€Oxidation on Pt/Ceria. Angewandte Chemie - International Edition, 2021, 60, 3799-3805.	7.2	74
154	A Perspective on New Opportunities in Atom-by-Atom Synthesis of Heterogeneous Catalysts Using Atomic Layer Deposition. Catalysis Letters, 2021, 151, 1535-1545.	1.4	30
155	DFT calculations for single-atom confinement effects of noble metals on monolayer g-C ₃ N ₄ for photocatalytic applications. RSC Advances, 2021, 11, 4276-4285.	1.7	29
156	A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. New Journal of Chemistry, 2021, 45, 4253-4269.	1.4	5
157	Effects of the morphology and heteroatom doping of CeO ₂ support on the hydrogenation activity of Pt single-atoms. Catalysis Science and Technology, 2021, 11, 2844-2851.	2.1	23
158	Recent advance in single-atom catalysis. Rare Metals, 2021, 40, 767-789.	3.6	116
159	Phase junction-confined single-atom TiO ₂ –Pt ₁ –CeO ₂ for multiplying catalytic oxidation efficiency. Catalysis Science and Technology, 2021, 11, 4650-4657.	2.1	3
160	Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004.	2.8	29
161	Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application. Journal of Materials Chemistry A, 2021, 9, 3855-3879.	5.2	54
162	Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy and Environmental Science, 2021, 14, 2620-2638.	15.6	68
163	Rational design and controllable synthesis of polymer aerogel-based single-atom catalysts with high loading. Materials Advances, 2021, 2, 6885-6900.	2.6	3

#	Article	IF	CITATIONS
164	Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review. Small, 2021, 17, e2006482.	5.2	49
165	Single O Atom Doped Ag Cluster Cations for CO Oxidation: An O-Doped Superatom Ag ₁₅ O ⁺ with Remarkable Stability. Journal of Physical Chemistry C, 2021, 125, 7067-7076.	1.5	9
166	Organic Modifiers Promote Furfuryl Alcohol Ring Hydrogenation via Surface Hydrogen-Bonding Interactions. ACS Catalysis, 2021, 11, 3730-3739.	5.5	14
167	Catalytic oxidation of CO on noble metal-based catalysts. Environmental Science and Pollution Research, 2021, 28, 24847-24871.	2.7	46
168	Single Atomâ€Based Nanoarchitectured Electrodes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2002159.	1.9	22
169	Thermally Stable Singleâ€Atom Heterogeneous Catalysts. Advanced Materials, 2021, 33, e2004319.	11.1	127
170	All at once arrangement of both oxygen atoms of dioxygen into aliphatic C(sp3)-C(sp3) bonds for hydroxyketone difunctionalization. Science China Chemistry, 2021, 64, 770-777.	4.2	4
171	Recognition of Water-Induced Effects toward Enhanced Interaction between Catalyst and Reactant in Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 6071-6078.	6.6	55
172	Single atom catalysts by atomic diffusion strategy. Nano Research, 2021, 14, 4398-4416.	5.8	51
173	Improved Pd/CeO ₂ Catalysts for Low-Temperature NO Reduction: Activation of CeO ₂ Lattice Oxygen by Fe Doping. ACS Catalysis, 2021, 11, 5614-5627.	5.5	44
174	Mechanochemical Redox: Calcinationâ€free Synthesis of Ceriaâ€hybrid Catalyst with Ultraâ€High Surface Area. ChemCatChem, 2021, 13, 2434-2443.	1.8	4
175	Using the Interaction between Copper and Manganese to Stabilize Copper Singleâ€atom for CO Oxidation Chemistry - A European Journal, 2021, 27, 9060-9070.	1.7	10
176	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	10.1	20
177	Rhodium Singleâ€Atom Catalysts on Titania for Reverse Water Gas Shift Reaction Explored by First Principles Mechanistic Analysis and Compared to Nanoclusters. ChemCatChem, 2021, 13, 3155-3164.	1.8	10
178	Water Vapor Reduces the Effect of Cl-Poisoning on CO Oxidation over Pt/CeO ₂ Heterogeneous Catalysts. Chemistry Letters, 2021, 50, 888-891.	0.7	1
179	Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Research, 2021, 14, 4841-4847.	5.8	26
180	Engineering Dual Active Sites at the Interface between Nanoporous Pt and Nanosized CeO ₂ to Enhance Photoâ€Thermocatalytic CO Oxidation. Advanced Materials Interfaces, 2021, 8, 2100581.	1.9	5
181	Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Accounts of Chemical Research, 2021, 54, 2884-2893.	7.6	40

#	Article	IF	CITATIONS
182	Highly active and water tolerant Pt/MFe2O4 (M = Co and Ni) catalysts for low temperature CO oxidation. Applied Catalysis A: General, 2021, 619, 118142.	2.2	5
183	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	1.8	11
184	Strong Metal–Support Interaction in Pd/Ca2AlMnO5+Î́: Catalytic NO Reduction over Mn-Doped CaO Shell. ACS Catalysis, 2021, 11, 7996-8003.	5.5	9
185	Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nature Communications, 2021, 12, 3342.	5.8	32
186	CO oxidation activity of Pt/CeO2 catalysts below 0 °C: platinum loading effects. Applied Catalysis B: Environmental, 2021, 286, 119931.	10.8	83
187	Effect of Preparation Methods on the Performance of Pt/TiO2 Catalysts for the Catalytic Oxidation of Carbon Monoxide in Simulated Sintering Flue Gas. Catalysts, 2021, 11, 804.	1.6	5
188	A DFT Study on Heterogeneous Pt/CeO ₂ (110) Single Atom Catalysts for CO Oxidation. ChemCatChem, 2021, 13, 3857-3863.	1.8	21
189	Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis, 2021, 11, 7018-7059.	5.5	106
190	Catalytic oxidation of CO over Pt/TiO2 with low Pt loading: The effect of H2O and SO2. Applied Catalysis A: General, 2021, 622, 118218.	2.2	34
191	Mars–van Krevelen mechanism for CO oxidation on the polyoxometalates-supported Rh single-atom catalysts: An insight from density functional theory calculations. Molecular Catalysis, 2021, 512, 111761.	1.0	1
192	In Situ Raman Observation of Oxygen Activation and Reaction at Platinum–Ceria Interfaces during CO Oxidation. Journal of the American Chemical Society, 2021, 143, 15635-15643.	6.6	64
193	Engineering Co3+-rich crystal planes on Co3O4 hexagonal nanosheets for CO and hydrocarbons oxidation with enhanced catalytic activity and water resistance. Chemical Engineering Journal, 2021, 420, 130448.	6.6	34
194	Complete CO Oxidation by O ₂ and H ₂ O over Pt–CeO _{2â~'δ} /MgO Following Langmuir–Hinshelwood and Mars–van Krevelen Mechanisms, Respectively. ACS Catalysis, 2021, 11, 11820-11830.	5.5	40
195	Heterogeneous Catalysis in Water. Jacs Au, 2021, 1, 1834-1848.	3.6	31
196	Catalytic oxidation of lignin and model compounds over nano europium oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126846.	2.3	5
197	Pt–CeO2-based composites in environmental catalysis: A review. Applied Catalysis B: Environmental, 2021, 295, 120286.	10.8	85
198	Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chemical Engineering Journal, 2021, 426, 131855.	6.6	30
199	Unveiling the water-resistant mechanism of Cu(I)-O-Co interfaces for catalytic oxidation. Chemical Engineering Journal, 2022, 429, 132219.	6.6	15

#	Article	IF	CITATIONS
200	Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Journal of Energy Chemistry, 2022, 65, 254-279.	7.1	56
201	Study on Low-Temperature Catalysis of Toluene with Co ₃ O ₄ /CeO ₂ Catalyst Based on In-Situ DRIFT Technology. Hans Journal of Chemical Engineering and Technology, 2021, 11, 141-146.	0.0	0
202	Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. Journal of the Indian Chemical Society, 2021, 98, 100002.	1.3	62
203	Single-atom catalysis: A practically viable technology?. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100358.	3.2	5
204	A theoretical study of CO oxidation and O2 activation for transition metal overlayers on SrTiO3 perovskite. Journal of Catalysis, 2020, 391, 229-240.	3.1	5
205	From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. Journal of Rare Earths, 2020, 38, 850-862.	2.5	32
206	Influence of metal nuclearity and physicochemical properties of ceria on the oxidation of carbon monoxide. Chinese Journal of Catalysis, 2020, 41, 951-962.	6.9	19
207	Tunable Electronic Metal–Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. Inorganic Chemistry, 2021, 60, 4207-4217.	1.9	24
208	Low-temperature CO oxidation over CeO ₂ and CeO ₂ @Co ₃ O ₄ core–shell microspheres. New Journal of Chemistry, 2017, 41, 13418-13424.	1.4	49
209	Role of graphene as an additional fuel in Al/Fe2O3 nanothermite. AlP Conference Proceedings, 2020, , .	0.3	1
210	Review—Non-Noble Metal-Based Single-Atom Catalysts for Efficient Electrochemical CO2 Reduction Reaction. Journal of the Electrochemical Society, 2020, 167, 164503.	1.3	15
211	Water accelerates and directly participates soot oxidation: An isotopic study. Applied Catalysis B: Environmental, 2022, 302, 120837.	10.8	21
212	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
213	A Hydrothermally Stable Single-Atom Catalyst of Pt Supported on High-Entropy Oxide/Al ₂ O ₃ : Structural Optimization and Enhanced Catalytic Activity. ACS Applied Materials & Interfaces, 2021, 13, 48764-48773.	4.0	21
214	Spatial Location and Microenvironment Engineering of Pt-CeO ₂ Nanoreactors for Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol. Journal of Physical Chemistry C, 2021, 125, 22603-22610.	1.5	15
215	Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nature Catalysis, 2021, 4, 840-849.	16.1	102
216	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
218	Single atoms supported on metal oxides for energy catalysis. Journal of Materials Chemistry A, 2022, 10, 5717-5742.	5.2	29

ARTICLE IF CITATIONS Catalysts via Atomic Layer Deposition. Molecular Catalysis, 2020, , 69-105. 219 1.3 1 COâ€Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Singleâ€Atom Sites and 7.2 Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 26177-26183. COâ€Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Singleâ€Atom Sites and 221 9 1.6 Nanoparticles. Angewandte Chemie, 2021, 133, 26381. Boosting Activity and Stability of Metal Single-Atom Catalysts via Regulation of Coordination Number and Local Composition. Journal of the American Chemical Society, 2021, 143, 18854-18858. Rational construction of thermally stable single atom catalysts: From atomic structure to practical 223 6.9 15 applications. Chinese Journal of Catalysis, 2022, 43, 71-91. Race on Highâ€loading Metal Single Atoms and Successful Preparation Strategies. ChemCatChem, 2022, 224 1.8 14, . On the Mechanism of Catalytic Decarboxylation of Carboxylic Acids on Carbon-Supported Palladium 225 5.5 11 Hydride. ACS Catalysis, 2021, 11, 14625-14634. Economic Parity Analysis of Green Methanol Synthesis Using Water Electrolysis Based on Renewable 3.2 Energy. ACS Sustainable Chemistry and Engineering, 2021, 9, 15807-15818. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, 227 23.0 104 Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO2 nanorod in CO 6.5 oxidation. Journal of Hazardous Materials, 2022, 426, 127793. Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. 229 7.8 51 Advanced Functional Materials, 2022, 32, 2108381. Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. 3.4 Fuel, 2022, 311, 122584. Blickpunkt Anorganik: Was ein Einzelnes vermag $\hat{a} \in \hat{e} \in Single$ Atom Catalysts. Nachrichten Aus Der Chemie, 231 0.0 0 2021, 69, 58-61. New insights into the influence mechanism of H₂O and SO₂ on Ptâ€"W/Ti 2.1 16 catalysts for CO oxidation. Catalysis Science and Technology, 2022, 12, 1574-1585. Modulating the Local Coordination Environment of Singleâ€Atom Catalysts for Enhanced Catalytic 233 5.256 Performance in Hydrogen/Oxygen Evolution Reaction. Small, 2022, 18, e2105680. Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. 234 3.1 23 Journal of Catalysis, 2022, 405, 236-248. Experiment and Theory Clarify: Sc + Receives One Oxygen Atom from SO 2 to Form ScO + , which Proves 235 1.0 2 to be a Catalyst for the Hidden Oxygenâ€Exchange with SO 2. ChemPhysChem, 2021, , . Rare earth element based single-atom catalysts: synthesis, characterization and applications in 4.1 photo/electro-catalytic reactions. Nanoscale Horizons, 2021, 7, 31-40.

#	Article	IF	CITATIONS
237	Progress on metal-support interactions in Pd-based catalysts for automobile emission control. Journal of Environmental Sciences, 2023, 125, 401-426.	3.2	21
238	Single-atom catalysts for lithium sulfur batteries via atomic layer deposition process. Electrochemistry Communications, 2022, 135, 107215.	2.3	7
239	Aggregation of CeO ₂ particles with aligned grains drives sintering of Pt single atoms in Pt/CeO ₂ catalysts. Journal of Materials Chemistry A, 2022, 10, 7029-7035.	5.2	2
240	Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. Journal of Catalysis, 2022, 407, 104-114.	3.1	36
241	Mechanism of High- and Low-Valence Doping on Adsorbed Oxygen of SnO ₂ -Based Gas Sensors and a Strategy to Combine the Advantages of Both Dopants. SSRN Electronic Journal, 0, , .	0.4	0
242	Strategies for boosting the activity of single-atom catalysts for future energy applications. Journal of Materials Chemistry A, 2022, 10, 10297-10325.	5.2	14
243	Single metal atoms catalysts—Promising candidates for next generation energy storage and conversion devices. EcoMat, 2022, 4, .	6.8	28
246	Atomic Lego Catalysts Synthesized by Atomic Layer Deposition. Accounts of Materials Research, 2022, 3, 358-368.	5.9	28
247	Single Atom Catalysts: An Overview of the Coordination and Interactions with Metallic Supports. Chemical Record, 2022, 22, e202100328.	2.9	14
248	Effect of surface acidity modulation on Pt/Al2O3 single atom catalyst for carbon monoxide oxidation and methanol decomposition. Catalysis Today, 2022, 402, 149-160.	2.2	12
249	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
250	Tin-doped manganese octahedral molecular sieve catalysts with efficient water resistance for CO oxidation. Catalysis Today, 2022, 405-406, 337-347.	2.2	5
251	Recent advances in single-atom catalysts for thermally driven reactions. Chemical Engineering Science, 2022, 255, 117654.	1.9	2
252	Enhanced transformation capability towards benzo(a)pyrene by Fe(III)-modified manganese oxides. Journal of Hazardous Materials, 2022, 431, 128637.	6.5	6
253	Single Rh Adatoms Stabilized on α-Fe ₂ O ₃ (11Ì02) by Coadsorbed Water. ACS Energy Letters, 2022, 7, 375-380.	8.8	13
254	Single-Cation Catalyst: Ni Cation in Monolayered CuO for CO Oxidation. Journal of the American Chemical Society, 2022, 144, 8430-8433.	6.6	17
255	High Pt-mass activity of PtIV1/β-MnO ₂ surface for low-temperature oxidation of CO under O ₂ -rich conditions. Catalysis Science and Technology, 2022, 12, 2749-2754.	2.1	1
256	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	18.7	50

# 257	ARTICLE Effect of ceria surface facet on stability and reactivity of isolated platinum atoms. Nano Research, 2022, 15, 5922-5932.	IF 5.8	CITATIONS
258	Isolating Single and Few Atoms for Enhanced Catalysis. Advanced Materials, 2022, 34, e2201796.	11.1	84
259	Future of SMNs catalysts for industry applications. , 2022, , 319-346.		0
260	Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catalysis, 2022, 2, 1594-1623.	2.9	39
261	Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano, 2022, 16, 8557-8618.	7.3	48
262	Coadsorption Interfered CO Oxidation over Atomically Dispersed Au on h-BN. Molecules, 2022, 27, 3627.	1.7	4
263	Mechanistic Study of Low-Temperature Co Oxidation Over Cuo/Cu2o Interfaces with Oxygen Vacancy Modification. SSRN Electronic Journal, 0, , .	0.4	0
264	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	2.2	1
265	A comparative DFT+U study of CO oxidation on Pd- and Zr-doped ceria. Journal of Rare Earths, 2023, 41, 1042-1048.	2.5	2
266	Effects of Subsurface Oxide on Cu ₁ /CeO ₂ Single-Atom Catalysts for CO Oxidation: A Theoretical Investigation. Inorganic Chemistry, 2022, 61, 10006-10014.	1.9	5
267	Distinct Role of Surface Hydroxyls in Single-Atom Pt ₁ /CeO ₂ Catalyst for Room-Temperature Formaldehyde Oxidation: Acid–Base Versus Redox. Jacs Au, 2022, 2, 1651-1660.	3.6	25
268	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
269	Introducing Co–O Moiety to Co–N–C Single-Atom Catalyst for Ethylbenzene Dehydrogenation. ACS Catalysis, 2022, 12, 7760-7772.	5.5	23
270	Promotional Effect of H ₂ Pretreatment on the CO PROX Performance of Pt ₁ /Co ₃ O ₄ : A First-Principles-Based Microkinetic Analysis. ACS Applied Materials & amp; Interfaces, 2022, 14, 27762-27774.	4.0	2
271	N-doped carbon-modified palladium catalysts with superior water resistant performance for the oxidative removal of toxic aromatics. Journal of Hazardous Materials, 2022, 437, 129358.	6.5	10
272	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	5.6	47
273	Stabilizing Oxide Nanolayer via Interface Confinement and Surface Hydroxylation. Journal of Physical Chemistry Letters, 2022, 13, 6566-6570.	2.1	5
274	Synergistic interactions between water and the metal/oxide interface in CO oxidation on Pt/CeO2 model catalysts. Catalysis Today, 2022, , .	2.2	3

#	Article	IF	CITATIONS
275	Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nature Communications, 2022, 13, .	5.8	36
276	A comprehensive study on heterogeneous single atom catalysis: Current progress, and challengesâ~†. Coordination Chemistry Reviews, 2022, 470, 214710.	9.5	27
277	Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis. Catalysis Today, 2023, 423, 113874.	2.2	11
278	Single-atom catalysts for thermochemical gas-phase reactions. Molecular Catalysis, 2022, 529, 112535.	1.0	1
279	Metal–Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO. Chemistry of Materials, 0, , .	3.2	6
280	Dual-template synthesis of defect-rich mesoporous Co3O4 for low temperature CO oxidation. Chinese Chemical Letters, 2023, 34, 107777.	4.8	1
281	Single-atom site catalysts for environmental remediation: Recent advances. Journal of Hazardous Materials, 2022, 440, 129772.	6.5	30
282	Mechanistic study of low-temperature CO oxidation over CuO/Cu2O interfaces with oxygen vacancy modification. Applied Surface Science, 2022, 603, 154469.	3.1	8
283	Mechanism of high- and low-valence doping on adsorbed oxygen of SnO2-based gas sensors and a strategy to combine the advantages of both dopants. Sensors and Actuators B: Chemical, 2022, 371, 132603.	4.0	5
284	Recognition of water-dissociation effect toward lattice oxygen activation on single-atom Co catalyst in toluene oxidation. Applied Catalysis B: Environmental, 2022, 319, 121962.	10.8	16
285	Systematic DFT studies of CO-Tolerance and CO oxidation on Cu-doped Ni surfaces. Journal of Molecular Graphics and Modelling, 2023, 118, 108343.	1.3	16
286	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
287	Water Enables Lattice Oxygen Activation of Transition Metal Oxides for Volatile Organic Compound Oxidation. ACS Catalysis, 2022, 12, 11272-11280.	5.5	32
288	Metal Oxide Catalysts in Relation to Environmental Protection and Energy Conversion. , 2022, , 301-323.		2
289	Surface Decomposition of Doped PrBaMn ₂ O _{5+Î′} Induced by <i>In Situ</i> Nanoparticle Exsolution: Quantitative Characterization and Catalytic Effect in Methane Dry Reforming Reaction. Chemistry of Materials, 2022, 34, 10484-10494.	3.2	7
290	Enhanced water-induced effects enabled by alkali-stabilized Pd-OHx species for oxidation of benzyl alcohol. Chinese Chemical Letters, 2023, 34, 107939.	4.8	0
291	Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts, 2022, 12, 1239.	1.6	9
292	Recent progresses on single-atom catalysts for the removal of air pollutants. Frontiers in Chemistry, 0, 10, .	1.8	Ο

#	Article	IF	Citations
" 293	Significant boosting effect of single atom Pt towards the ultrasonic generation of H2O2: A two-way	10.8	9
270	catalytic mechanism. Applied Catalysis B: Environmental, 2023, 323, 122143.	10.0	
294	Pt Atomic Single-Layer Catalyst Embedded in Defect-Enriched Ceria for Efficient CO Oxidation. Journal of the American Chemical Society, 2022, 144, 21255-21266.	6.6	32
295	Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. Journal of Catalysis, 2022, 415, 174-185.	3.1	24
296	CO oxidation over the Cu2O/CuO hollow sphere heterojunction catalysts with enhanced low-temperature activities. International Journal of Hydrogen Energy, 2023, 48, 24845-24859.	3.8	4
297	Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. Journal of Catalysis, 2022, 416, 364-374.	3.1	4
298	Effect of Pd precursors on the catalytic properties of Pd/CeO2 catalysts for CH4 and CO oxidation. Molecular Catalysis, 2022, 533, 112791.	1.0	7
299	Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nature Communications, 2022, 13, .	5.8	47
300	Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. Journal of Catalysis, 2023, 417, 60-73.	3.1	4
301	Experimental and theoretical studies of carbon monoxide oxidation over W/Cu/Ce trimetallic oxides: the effect of W addition. Materials Today Chemistry, 2023, 27, 101295.	1.7	1
302	Constructing efficient CuO -CeO2 catalyst for NO reduction by CO: New insights into the structure–activity relationship. Chemical Engineering Journal, 2023, 456, 140807.	6.6	12
303	The role of ionic and cluster active centers of Pt/CeO2 catalysts in CO oxidation. Experimental study and mathematical modeling. Chemical Engineering Science, 2023, 267, 118328.	1.9	2
304	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	23.0	50
305	Optimizing the Ptâ€FeO <i>_x</i> Interaction over Atomic Pt/FeO <i>_x</i> /CeO ₂ Catalysts for Improved CO Oxidation Activity. Chemie-Ingenieur-Technik, 2023, 95, 68-76.	0.4	2
306	Enhancing the low-temperature CO oxidation over Pt/Y2O3 catalyst: The effects of Pt dispersion and support basicity on the catalytic performance. Applied Surface Science, 2023, 614, 156210.	3.1	1
307	Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries. Materials Today, 2023, 63, 120-136.	8.3	9
308	Low-temperature hydrodeoxygenation of phenol using modified TiO2(B) nanosheets supported highly dispersed Pt catalyst. Fuel, 2023, 338, 127314.	3.4	3
309	Heterogeneous selective oxidation over supported metal catalysts: From nanoparticles to single atoms. Applied Catalysis B: Environmental, 2023, 325, 122384.	10.8	20
310	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50

#	ARTICLE Recent advancements on single-atom catalysts. Materials Today: Proceedings, 2022, , .	IF 0.9	Citations
312	In situ diffraction monitoring of nanocrystals structure evolving during catalytic reaction at their surface. Scientific Reports, 2023, 13, .	1.6	3
313	Local chemical environment effect in single-atom catalysis. Chem Catalysis, 2023, 3, 100492.	2.9	8
314	Tracking and Understanding Dynamics of Atoms and Clusters of Late Transition Metals with <i>In-Situ</i> DRIFT and XAS Spectroscopy Assisted by DFT. Journal of Physical Chemistry C, 2023, 127, 3032-3046.	1.5	6
315	Synergism of Ultrasmall Pt Clusters and Basic La ₂ O ₂ CO ₃ Supports Boosts the Reverse Water Gas Reaction Efficiency. Advanced Energy Materials, 2023, 13, .	10.2	10
316	Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation. Separation and Purification Technology, 2023, 311, 123247.	3.9	4
317	Single-atom catalysts for proton exchange membrane fuel cell: Anode anti-poisoning & characterization technology. Electrochimica Acta, 2023, 446, 142120.	2.6	5
318	A study of Pt, Rh, Ni and Ir dispersion on anatase TiO2(101) and the role of water. Electrochimica Acta, 2023, 449, 142190.	2.6	2
319	Fe3O4@MOF hybrid for supercilious recovery of Au(III) and Pd(II) from e-waste and spent as catalysts for cyclohexane oxidation. Journal of Cleaner Production, 2023, 404, 136966.	4.6	8
320	Oxygen vacancy promoted H2O activation over K+-doped ε-MnO2 for low-temperature HCHO oxidation. Applied Surface Science, 2023, 624, 157127.	3.1	2
321	Role of hydroxyl on metal surface in hydrogenation reactions. Journal of Catalysis, 2023, 418, 216-224.	3.1	0
322	Defect engineering by steam treatment over Pt/CeO2 catalyst promoting C–H activation in partial oxidation of methane. International Journal of Hydrogen Energy, 2023, , .	3.8	2
323	Carbon-supported non-noble metal single-atom catalysts for electro-catalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 17106-17136.	3.8	9
324	First-principles study of the effect of the local coordination environment on the electrochemical activity of Pd1-CxNy single atom catalysts. Chemical Engineering Science, 2023, 270, 118551.	1.9	2
325	Fabrication of supported Pt/CeO ₂ nanocatalysts doped with different elements for CO oxidation: theoretical and experimental studies. Dalton Transactions, 2023, 52, 3661-3670.	1.6	1
326	Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science. Progress in Energy and Combustion Science, 2023, 96, 101074.	15.8	13
327	Lanthanide modified Pt/CeO2-based catalysts for methane partial oxidation: Relationship between catalytic activity and structure. International Journal of Hydrogen Energy, 2023, 48, 19074-19086.	3.8	1
328	Promotion effect of CO oxidation via activation of surface lattice oxygen by single atom Cu/MnO2 catalyst. Molecular Catalysis, 2023, 540, 113057.	1.0	3

IF ARTICLE CITATIONS Structural evolution of single-atom catalysts. Chem Catalysis, 2023, 3, 100560. 329 2.9 2 Theoretical exploration of Rh1/CeO2 catalysts with high performance using CO oxidation as a probe reaction. Molecular Catalysis, 2023, 541, 113077. 1.0 Comprehensive treatment strategy for diesel truck exhaust. Environmental Science and Pollution 331 2.7 2 Research, 2023, 30, 54324-54332 Genesis of Active Pt/CeO₂ Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. Small, 2023, 19, . Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for 333 6.3 1 eco-friendly vehicles. International Journal of Extreme Manufacturing, 2023, 5, 022005. Comparison of the Reactivity of Platinum Cations and Clusters Supported on Ceria or Alumina in Carbon Monoxide Oxidation. ACS Catalysis, 2023, 13, 5358-5374. 334 5.5 Origin of Higher CO Oxidation Activity of Pt/Rutile than That of Pt/Anatase. Journal of Physical 335 2 1.5 Chemistry C, 2023, 127, 7142-7150. Atom-Precise Low-Nuclearity Cluster Catalysis: Opportunities and Challenges. ACS Catalysis, 2023, 13, 5.5 5609-5634. Carbon nitride based materials: more than just a support for single-atom catalysis. Chemical Society 345 18.7 31 Reviews, 2023, 52, 4878-4932. The role of ceria/precious metal interfaces in catalysis., 0, , . 378 Microscopic Mechanism of the Stability of Pt Supported on CeO₂ by Regulating the 382 0 Stoichiometry: First-Principles Insights., 2023, ,