Nanomaterials for In Vivo Imaging

Chemical Reviews 117, 901-986

DOI: 10.1021/acs.chemrev.6b00073

Citation Report

#	Article	IF	CITATIONS
1	Degradation of magnetite nanoparticles in biomimetic media. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	17
2	Towards clinically translatable in vivo nanodiagnostics. Nature Reviews Materials, 2017, 2, .	23.3	255
3	Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Chemistry of Materials, 2017, 29, 4511-4522.	3.2	102
4	Advancements in infrared imaging platforms: complementary imaging systems and contrast agents. Journal of Materials Chemistry B, 2017, 5, 4266-4275.	2.9	7
5	Activated Surface Chargeâ€Reversal Manganese Oxide Nanocubes with High Surfaceâ€ŧoâ€Volume Ratio for Accurate Magnetic Resonance Tumor Imaging. Advanced Functional Materials, 2017, 27, 1700978.	7.8	53
6	Hydrophilic Metal Nanoparticles Functionalized by 2-Diethylaminoethanethiol: A Close Look at the Metal–Ligand Interaction and Interface Chemical Structure. Journal of Physical Chemistry C, 2017, 121, 8002-8013.	1.5	44
7	High-Density Lipoprotein NanoparticleÂlmaging in AtheroscleroticÂVascularÂDisease. JACC Basic To Translational Science, 2017, 2, 98-100.	1.9	7
8	Water-Solubilizing Hydrophobic ZnAgInSe/ZnS QDs with Tumor-Targeted cRGD-Sulfobetaine-PIMA-Histamine Ligands via a Self-Assembly Strategy for Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 11405-11414.	4.0	43
9	Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chemical Society Reviews, 2017, 46, 7438-7468.	18.7	358
10	A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable ¹²⁵ I-radiolabeled NaYF ₄ :Yb ³⁺ /Er ³⁺ @PEG nanoparticles for multimodal <i>in vivo</i>	2.8	63
11	Biodistribution of upconversion/magnetic silica-coated NaGdF ₄ :Yb ³⁺ /Er ³⁺ nanoparticles in mouse models. RSC Advances, 2017, 7, 45997-46006.	1.7	21
12	Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement. Journal of Materials Chemistry B, 2017, 5, 8554-8562.	2.9	16
13	Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance. Drug Resistance Updates, 2017, 33-35, 23-35.	6.5	16
14	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
15	An efficient strategy to synthesize a multifunctional ferroferric oxide core@dye/SiO ₂ @Au shell nanocomposite and its targeted tumor theranostics. Journal of Materials Chemistry B, 2017, 5, 8209-8218.	2.9	21
16	One-Step in Situ Synthesis of Polypeptide–Cold Nanoparticles Hybrid Nanogels and Their Application in Targeted Photoacoustic Imaging. ACS Sustainable Chemistry and Engineering, 2017, 5, 9841-9847.	3.2	25
17	Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Materials Horizons, 2017, 4, 1151-1156.	6.4	129
18	Multifunctional UCNPs@MnSiO ₃ @g-C ₃ N ₄ nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy. Biomaterials Science, 2017, 5, 2456-2467.	2.6	58

#	Article	IF	CITATIONS
19	Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews, 2017, 117, 13566-13638.	23.0	1,392
20	Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9, 17859-17864.	2.8	299
21	A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles. Journal of Materials Chemistry C, 2017, 5, 9666-9672.	2.7	10
22	Triple-BODIPY organic nanoparticles with particular fluorescence emission. Dyes and Pigments, 2017, 147, 241-245.	2.0	10
23	Multifunctional Yolk–Shell Nanostructure as a Superquencher for Fluorescent Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides. ACS Applied Materials & Interfaces, 2017, 9, 30406-30413.	4.0	16
24	Yolk-Structured Upconversion Nanoparticles with Biodegradable Silica Shell for FRET Sensing of Drug Release and Imaging-Guided Chemotherapy. Chemistry of Materials, 2017, 29, 7615-7628.	3.2	92
25	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
26	Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies. Chemistry of Materials, 2017, 29, 8269-8281.	3.2	59
27	Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano, 2017, 11, 10124-10134.	7.3	182
28	Integration of IRâ€808 Sensitized Upconversion Nanostructure and MoS ₂ Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. Small, 2017, 13, 1701841.	5.2	117
29	A Pyridoindoleâ€Based Multifunctional Bioprobe: pHâ€Induced Fluorescence Switching and Specific Targeting of Lipid Droplets. Chemistry - an Asian Journal, 2017, 12, 2501-2509.	1.7	35
30	Recent Advances in Nanotechnology for Autophagy Detection. Small, 2017, 13, 1700996.	5.2	22
31	Building a Better Magnetic Resonance Imaging Contrast Agent Using Macromolecular Architecture. ACS Central Science, 2017, 3, 820-822.	5.3	9
32	Core@shell Fe ₃ O ₄ @Mn ²⁺ -doped NaYF ₄ :Yb/Tm nanoparticles for triple-modality T ₁ /T ₂ -weighted MRI and NIR-to-NIR upconversion luminescence imaging agents. RSC Advances, 2017, 7, 37929-37937.	1.7	21
33	Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration. ACS Biomaterials Science and Engineering, 2017, 3, 2176-2184.	2.6	11
34	Controllable Synthesis of Manganese Oxide Nanostructures from 0-D to 3-D and Mechanistic Investigation of Internal Relation between Structure and <i>T</i> ₁ Relaxivity. Chemistry of Materials, 2017, 29, 10455-10468.	3.2	16
35	Biphasic liquid interface derived magnetite nanocrystals: synthesis, properties and growth mechanism. Materials Research Express, 2017, 4, 125028.	0.8	7
37	In Vivo Computed Tomography/Photoacoustic Imaging and NIR-Triggered Chemo–Photothermal Combined Therapy Based on a Gold Nanostar-, Mesoporous Silica-, and Thermosensitive Liposome-Composited Nanoprobe. ACS Applied Materials & Interfaces, 2017, 9, 41748-41759.	4.0	52

#	ARTICLE	IF	CITATIONS
38	Antiovidant papomaterials in advanced diagnoses and treatments of ischemia reportusion injuries	2.5	19
39	Journal of Materials Chemistry B, 2017, 5, 9452-9476.	2.9	169
40	Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS Central Science, 2017, 3, 800-811.	5.3	126
41	Selective synthesis of Fe3O4Au x Ag y nanomaterials and their potential applications in catalysis and nanomedicine. Chemistry Central Journal, 2017, 11, 58.	2.6	15
42	Simultaneous Enhancement of Photoluminescence, MRI Relaxivity, and CT Contrast by Tuning the Interfacial Layer of Lanthanide Heteroepitaxial Nanoparticles. Nano Letters, 2017, 17, 4873-4880.	4.5	61
43	Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window. Nano Letters, 2017, 17, 4964-4969.	4.5	356
44	"One-Pot―Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Theranostics, 2017, 7, 3901-3914.	4.6	29
45	Mn2+-ZnSe/ZnS@SiO2 Nanoparticles for Turn-on Luminescence Thiol Detection. Journal of Functional Biomaterials, 2017, 8, 36.	1.8	4
46	Synthesis and In Vitro Characterization of Fe3+-Doped Layered Double Hydroxide Nanorings as a Potential Imageable Drug Delivery System. Materials, 2017, 10, 1140.	1.3	11
47	Small Gold Nanorods: Recent Advances in Synthesis, Biological Imaging, and Cancer Therapy. Materials, 2017, 10, 1372.	1.3	74
48	Near-Infrared to Visible Upconversion Emission Induced Photopolymerization: Polystyrene Shell Coated NaYF ₄ Nanoparticles for Fluorescence Bioimaging and Nanothermometry. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017–30, 265-270	0.1	11
49	Facile synthesis of superparamagnetic iron oxide nanoparticles with tunable size: from individual nanoparticles to nanoclusters. Micro and Nano Letters, 2017, 12, 749-753.	0.6	6
50	Ultra-small pH-responsive Nd-doped NaDyF ₄ Nanoagents for Enhanced Cancer Theranostic by <i>in situ</i> Aggregation. Theranostics, 2017, 7, 4217-4228.	4.6	38
51	Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. Advanced Materials, 2018, 30, e1706356.	11.1	227
52	Noninvasive Multimodal Imaging of Osteosarcoma and Lymph Nodes Using a ^{99m} Tc-Labeled Biomineralization Nanoprobe. Analytical Chemistry, 2018, 90, 4529-4534.	3.2	20
53	Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties. Advanced Materials Technologies, 2018, 3, 1700298.	3.0	34
54	Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy. Chemical Engineering Journal, 2018, 342, 446-457.	6.6	20
55	The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. ACS Nano, 2018, 12, 4605-4614.	7.3	62

ARTICLE IF CITATIONS # Self-assembled Nanomaterials for Autophagy Detection and Enhanced Cancer Therapy Through 0.1 0 56 Modulating Autophagy. Nanomedicine and Nanotoxicology, 2018, , 185-201. A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels 2.8 beyond 1500 nm. Nanoscale, 2018, 10, 9393-9400. Theoretical Studies of Cycloaddition to Metal-Activated Substrates with Isocyanide Ligands. Russian 58 0.3 0 Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 252-257. Significant Enhancement of Photothermal and Photoacoustic Efficiencies for Semiconducting Polymer Nanoparticles through Simply Molecular Engineering. Advanced Functional Materials, 2018, 59 28, 1800135. In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and 60 0.1 1 Nanotoxicology, 2018, , . Design and Control of the Luminescence of Cr³⁺-Doped Phosphors in the Near-Infrared I Region by Fitting the Crystal Field. Crystal Growth and Design, 2018, 18, 3178-3186. 1.4 DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 62 18.7 156 47, 4017-4072. Largeâ€Scale Synthesis and Medical Applications of Uniformâ€Sized Metal Oxide Nanoparticles. Advanced 11.1 Materials, 2018, 30, e1704290. Molecular Fluorescence and Photoacoustic Imaging in the Second Nearâ€Infrared Optical Window 64 3.0 136 Using Organic Contrast Agents. Advanced Biology, 2018, 2, e1700262. Epitaxial growth of ultrathin layers on the surface of sub-10Ânm nanoparticles: the case of 1.7 ¹²-NaGdF₄:Yb/Er@NaDyF₄ nanoparticles. RSC Advances, 2018, 8, 12944-12950. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and 66 2.8 68 tumor mice. Nanoscale, 2018, 10, 9880-9891. Near-Infrared-Light-Induced Morphology Transition of Poly(ether amine) Nanoparticles for Supersensitive Drug Release. ACS Applied Materials & amp; Interfaces, 2018, 10, 7413-7421. 28 Nitroxide radical polymers â€" a versatile material class for high-tech applications. Polymer Chemistry, 68 1.9 123 2018, 9, 1479-1516. Probing and Quantifying the Food-Borne Pathogens and Toxins: From <i>In Vitro</i> to <i>In Vivo</i>. 2.4 Journal of Agricultural and Food Chemistry, 2018, 66, 1061-1066. A novel nearâ€infrared fluorescent probe for monitoring cyclooxygenaseâ€2 in inflammation and tumor. 70 1.1 13 Journal of Biophotonics, 2018, 11, e201700339. Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Accounts of 232 Chemical Research, 2018, 51, 404-413. Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion 72 3.7 75 nanocapsules. Chemical Science, 2018, 9, 3233-3247. Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications. Chinese Journal of Polymer Science (English Edition), 2018, 36, 273-287.

\sim			<u> </u>
(CT	TAT	ION	REDUBI
\sim	IAL		KLPO R

#	Article	IF	CITATIONS
74	Photoacousticâ€Enabled Selfâ€Guidance in Magneticâ€Hyperthermia Fe@Fe ₃ O ₄ Nanoparticles for Theranostics In Vivo. Advanced Healthcare Materials, 2018, 7, e1701201.	3.9	52
75	Cuttingâ€Edge Nanomaterials for Advanced Multimodal Bioimaging Applications. Small Methods, 2018, 2, 1700265.	4.6	32
76	Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomaterials Science, 2018, 6, 726-745.	2.6	121
77	Functional nanoscale metal–organic particles synthesized from a new vinylimidazole-based polymeric ligand and dysprosium ions. Journal of Materials Chemistry C, 2018, 6, 280-289.	2.7	7
78	Stable gadolinium based nanoscale lyophilized injection for enhanced MR angiography with efficient renal clearance. Biomaterials, 2018, 158, 74-85.	5.7	37
79	Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics, 2018, 103, 113-129.	5.3	650
80	Magneto-Fluorescent Yolk–Shell Nanoparticles. Chemistry of Materials, 2018, 30, 775-780.	3.2	42
81	The emerging role of nanomaterials in immunological sensing $\hat{a} \in$ " a brief review. Molecular Immunology, 2018, 98, 28-35.	1.0	10
82	Nanomedicine development guided by FRET imaging. Nano Today, 2018, 18, 124-136.	6.2	59
83	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bulletin of the Chemical Society of Japan, 2018, 91, 1075-1111.	2.0	215
84	Biocompatible and pH-sensitive MnO-loaded carbonaceous nanospheres (MnO@CNSs): A theranostic agent for magnetic resonance imaging-guided photothermal therapy. Carbon, 2018, 136, 113-124.	5.4	23
85	Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting. Journal of Materials Science, 2018, 53, 10679-10691.	1.7	55
86	Fabrication and characterization of glycine-loaded PEG nanoparticles for drug delivering: A comprehensive SERS study. Applied Surface Science, 2018, 450, 396-403.	3.1	9
87	Synthesis, characterization and fluorescence imaging property of BODIPY-DPP-based dyad/triad. Dyes and Pigments, 2018, 157, 396-404.	2.0	6
88	Iron(III)-Tannic Molecular Nanoparticles Enhance Autophagy effect and T1 MRI Contrast in Liver Cell Lines. Scientific Reports, 2018, 8, 6647.	1.6	41
89	DNA-encoded morphological evolution of bimetallic Pd@Au core-shell nanoparticles from a high-indexed core. Nano Research, 2018, 11, 4549-4561.	5.8	20
90	FeOOH-loaded mesoporous silica nanoparticles as a theranostic platform with pH-responsive MRI contrast enhancement and drug release. Science China Chemistry, 2018, 61, 806-811.	4.2	19
91	Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chemical Society Reviews, 2018, 47, 2873-2920.	18.7	579

ARTICLE IF CITATIONS # Polymer-based gadolinium oxide nanocomposites for FL/MR/PA imaging guided and photothermal/photodynamic combined anti-tumor therapy. Journal of Controlled Release, 2018, 277, 55 92 4.8 77-88. Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications. Journal of Materials Chemistry B, 2018, 6, 9-24. NIR-fluorescent dye doped silica nanoparticles for<i>in vivo</i>imaging, sensing and theranostic. 94 1.1 36 Methods and Applications in Fluorescence, 2018, 6, 022002. New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the 95 0.5 synthesis of gold and silver nanoparticles. Polar Science, 2018, 15, 49-54. Computational approaches to cellâ E nanomaterial interactions: keeping balance between therapeutic 96 4.1 44 efficiency and cytotoxicity. Nanoscale Horizons, 2018, 3, 6-27. Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors. Nano Research, 2018, 11, 2498-2511. 5.8 Simultaneous Activation of Shortâ€Wave Infrared (SWIR) Light and Paramagnetism by a Functionalized Shell for High Penetration and Spatial Resolution Theranostics. Advanced Functional Materials, 2018, 98 7.8 29 28, 1705057. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine: Nanotechnology, Biology, and 90 1.7 Medicine, 2018, 14, 493-506. <i>S</i>-Nitrosothiols (SNO) as light-responsive molecular activators for post-synthesis 100 fluorescence augmentation in fluorophore-loaded nanospheres. Journal of Materials Chemistry B, 2.9 7 2018, 6, 153-164. Hydroporphyrins in Fluorescence In Vivo Imaging. Reviews in Fluorescence, 2018, , 21-51. "Waxâ€Sealed―Theranostic Nanoplatform for Enhanced Afterglow Imaging–Guided Photothermally 102 7.8 97 Triggered Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1804317. Reviews in Fluorescence 2017. Reviews in Fluorescence, 2018, , . Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting 104 2.7 32 diodes. Journal of Materials Chemistry C, 2018, 6, 10958-10981. An acidic pH/reduction dual-stimuli responsive nanoprobe for enhanced CT imaging of tumours <i>in 2.8 vivo</i>. Nanoscale, 2018, 10, 20126-20130. Highly Erbium-Doped Nanoplatform with Enhanced Red Emission for Dual-Modal 106 23 1.9 Optical-Imaging-Guided Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 14594-14602. Bandgap Engineered Polypyrrole–Polydopamine Hybrid with Intrinsic Raman and Photoacoustic 44 Imaging Contrasts. Nanó Létters, 2018, 18, 7485-7493. A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer 108 2.0 24 Theranostics. Pharmaceutics, 2018, 10, 282. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. Nanomaterials, 109 2018, 8, 761.

#	Article	IF	CITATIONS
110	Gold nanoparticle layer: a versatile nanostructured platform for biomedical applications. Materials Chemistry Frontiers, 2018, 2, 2175-2190.	3.2	36
111	Biodegradable and Renal-Clearable Hollow Porous Iron Oxide Nanoboxes for in Vivo Imaging. Chemistry of Materials, 2018, 30, 7950-7961.	3.2	39
112	Biomedical Applications of Functional Micro-/Nanoimaging Probes. Engineering Materials, 2018, , 37-71.	0.3	0
113	Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale, 2018, 10, 19742-19748.	2.8	17
114	Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy. IScience, 2018, 9, 14-26.	1.9	46
115	Triply Loaded Nitroxide Brush-Arm Star Polymers Enable Metal-Free Millimetric Tumor Detection by Magnetic Resonance Imaging. ACS Nano, 2018, 12, 11343-11354.	7.3	56
116	Intracellular Interaction of Hydroxyapatite-Based Nanocrystals with Uniform Shape and Traceable Fluorescence. Inorganic Chemistry, 2018, 57, 13739-13748.	1.9	14
117	New Combination/Application of Polymer-Based Nanoparticles for Biomedical Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 271-290.	0.8	4
118	Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Applied Microbiology and Biotechnology, 2018, 102, 9449-9470.	1.7	54
119	Investigating the Intracellular Behaviors of Liposomal Nanohybrids <i>via</i> SERS: Insights into the Influence of Metal Nanoparticles. Theranostics, 2018, 8, 941-954.	4.6	19
120	Functional Micro-/Nanomaterials for Imaging Technology. Engineering Materials, 2018, , 1-25.	0.3	0
121	Extravasation of Brownian Spheroidal Nanoparticles through Vascular Pores. Biophysical Journal, 2018, 115, 1103-1115.	0.2	19
122	Iron-oxide-based twin nanoplates with strong <i>T</i> ₂ relaxation shortening for contrast-enhanced magnetic resonance imaging. Nanoscale, 2018, 10, 18398-18406.	2.8	27
123	An Asymmetrical Cyanine Dye Nanoparticles for Small Vessel Photoacoustic Imaging <i>In Vivo</i> . ChemNanoMat, 2018, 4, 626-630.	1.5	2
124	A bottom-up synthesis of rare-earth-hydrotalcite monolayer nanosheets toward multimode imaging and synergetic therapy. Chemical Science, 2018, 9, 5630-5639.	3.7	51
125	Rapid Induction and Microwave Heat-Up Syntheses of CdSe Quantum Dots. ACS Omega, 2018, 3, 5399-5405.	1.6	13
126	Recent review of the effect of nanomaterials on stem cells. RSC Advances, 2018, 8, 17656-17676.	1.7	37
127	Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging. ACS Nano, 2018, 12, 5761-5773.	7.3	35

#	Article	IF	CITATIONS
128	Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. Nano Letters, 2018, 18, 3344-3351.	4.5	199
129	Single bismuth tungstate nanosheets for simultaneous chemo-, photothermal, and photodynamic therapies mediated by near-infrared light. Chemical Engineering Journal, 2018, 351, 1147-1158.	6.6	46
130	Nanoparticles for Detection and Treatment of Peripheral Arterial Disease. Small, 2018, 14, e1800644.	5.2	20
131	Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Advanced Healthcare Materials, 2018, 7, e1800347.	3.9	180
132	pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials, 2018, 179, 134-143.	5.7	38
133	Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. Langmuir, 2018, 34, 8701-8707.	1.6	23
134	Mechanochemical preparation of nanocrystalline metal halide phosphors. Journal of Materials Science, 2018, 53, 13643-13659.	1.7	7
135	Recent advances in colloidal indium phosphide quantum dot production. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 76-82.	3.2	12
136	3D Spatiotemporal Mechanical Microenvironment: A Hydrogelâ€Based Platform for Guiding Stem Cell Fate. Advanced Materials, 2018, 30, e1705911.	11.1	162
137	Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS Nano, 2018, 12, 8520-8530.	7.3	305
138	Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics, 2018, 8, 256-276.	4.6	40
139	Cellular Uptake Behaviors of Rigidity-Tunable Dendrimers. Pharmaceutics, 2018, 10, 99.	2.0	4
140	Microwave-assisted synthesis of Pd3Ag nanocomposite via nature polysaccharide applied to glucose detection. International Journal of Biological Macromolecules, 2018, 118, 2065-2070.	3.6	5
141	A novel, chelator-free method for 64Cu labeling of dendrimers. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	7
142	Multimodal Biophotonics of Semiconducting Polymer Nanoparticles. Accounts of Chemical Research, 2018, 51, 1840-1849.	7.6	394
143	Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small, 2018, 14, e1801882.	5.2	128
144	Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for <i>In Vivo</i> Contrast-Enhanced Magnetic Resonance Imaging. ACS Nano, 2018, 12, 6480-6491.	7.3	76
145	Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials, 2018, 8, 15.	1.9	134

		TION REPORT	
#	Article	IF	Citations
146	Through Scalp and Skull NIRâ€ I Photothermal Therapy of Deep Orthotopic Brain Tumors with Precise Photoacoustic Imaging Guidance. Advanced Materials, 2018, 30, e1802591.	11.1	330
147	Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant. Nanotechnology, 2018, 29, 375604.	1.3	28
148	High-Performance Identification of Human Bladder Cancer Using a Signal Self-Amplifiable Photoacoustic Nanoprobe. ACS Applied Materials & Interfaces, 2018, 10, 28331-28339.	4.0	18
149	Selfâ€Assembled Supramolecular Nanoparticles for Targeted Delivery and Combination Chemotherapy. ChemMedChem, 2018, 13, 2037-2044.	1.6	20
150	In Vivo Near-Infrared Fluorescence Imaging. , 2018, , 67-125.		1
151	Amplifying Apoptosis Homing Nanoplatform for Tumor Theranostics. Advanced Healthcare Materials, 2018, 7, e1800296.	3.9	9
152	A highly water-soluble triblock conjugated polymer for <i>in vivo</i> NIR-II imaging and photothermal therapy of cancer. Polymer Chemistry, 2018, 9, 3118-3126.	1.9	69
153	One-Step Loading of Gold and Gd ₂ O ₃ Nanoparticles within PEGylated Polyethylenimine for Dual Mode Computed Tomography/Magnetic Resonance Imaging of Tumors. ACS Applied Bio Materials, 2018, 1, 221-225.	2.3	10
154	Thermoluminescence and near-infrared persistent luminescence in LaAlO3:Mn4+,R (R= Na+, Ca2+, Sr2+	,) Tj ETQq0 0 0 rgB 2.3	T /Qverlock 1
155	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	11.1	216
156	Beyond Phototherapy: Recent Advances in Multifunctional Fluorescent Nanoparticles for Lightâ€īriggered Tumor Theranostics. Advanced Functional Materials, 2018, 28, 1803733.	7.8	54
157	Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. Applied Sciences (Switzerland), 2018, 8, 1098.	1.3	18
158	Gadolinium-labelled iron/iron oxide core/shell nanoparticles as <i>T</i> ₁ – <i>T</i> ₂ contrast agent for magnetic resonance imaging. RSC Advances, 2018, 8, 26764-26770.	1.7	23
159	Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. ACS Nano, 2018, 12, 8266-8276.	7.3	191
160	A pH-responsive nanoprobe for turn-on ¹⁹ F-magnetic resonance imaging. Chemical Communications, 2018, 54, 9853-9856.	2.2	45
161	Fabrication of an activatable hybrid persistent luminescence nanoprobe for background-free bioimaging-guided investigation of food-borne aflatoxin <i>in vivo</i> . RSC Advances, 2018, 8, 28414-28420.	1.7	7
162	Polymer Dots as Effective Phototheranostic Agents. Photochemistry and Photobiology, 2018, 94, 916-934.	1.3	40
163	Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives. Small, 2018, 14, e1800782.	5.2	81

#	Article	IF	CITATIONS
164	Optimizing the Synthesis of Core/shell Structure Au@Cu2S Nanocrystals as Contrast-enhanced for Bioimaging Detection. Scientific Reports, 2018, 8, 8866.	1.6	9
165	Anchoring Ligand-Effect on Bright Contrast-Enhancing Property of Hollow Mn ₃ O ₄ Nanoparticle in T ₁ -Weighted Magnetic Resonance Imaging. Chemistry of Materials, 2018, 30, 4056-4064.	3.2	15
166	Supramolecular Modular Approach toward Conveniently Constructing and Multifunctioning a pH/Redox Dual-Responsive Drug Delivery Nanoplatform for Improved Cancer Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 26473-26484.	4.0	34
167	Strategies to Overcome Autofluorescence in Nanoprobeâ€Driven In Vivo Fluorescence Imaging. Small Methods, 2018, 2, 1800075.	4.6	62
168	Design of a Novel Near-Infrared Phosphor by Controlling the Cationic Coordination Environment. Crystal Growth and Design, 2018, 18, 4691-4700.	1.4	34
169	Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology. Journal of Neurochemistry, 2019, 151, 488-506.	2.1	34
170	Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1542.	3.3	51
171	Near-infrared nanoparticles based on aza-BDP for photodynamic and photothermal therapy. Dyes and Pigments, 2019, 160, 71-78.	2.0	26
172	Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue. Nano Letters, 2019, 19, 5844-5852.	4.5	38
173	Construction of molecularly imprinted nanoplatforms with persistent luminescence for the in vitro specific adsorption and in vivo targeted regulation of food-borne biotoxins. New Journal of Chemistry, 2019, 43, 15097-15104.	1.4	3
174	From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides. Accounts of Chemical Research, 2019, 52, 2266-2277.	7.6	137
175	Activatable Hybrid Polyphosphazene-AuNP Nanoprobe for ROS Detection by Bimodal PA/CT Imaging. ACS Applied Materials & amp; Interfaces, 2019, 11, 28648-28656.	4.0	45
176	SnTe@MnO ₂ â€5P Nanosheet–Based Intelligent Nanoplatform for Second Nearâ€Infrared Light–Mediated Cancer Theranostics. Advanced Functional Materials, 2019, 29, 1903791.	7.8	69
177	Recent progress of nanomaterials for microwave absorption. Journal of Materiomics, 2019, 5, 503-541.	2.8	318
178	Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews, 2019, 119, 9559-9656.	23.0	368
179	Tuning the structure of monomeric amyloid beta peptide by the curvature of carbon nanotubes. Carbon, 2019, 153, 717-724.	5.4	14
180	DNA-templated porous nanoplatform towards programmed "double-hit―cancer therapy via hyperthermia and immunogenicity activation. Biomaterials, 2019, 219, 119395.	5.7	11
181	Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10.	6.2	45

#	ARTICLE Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal	IF 4.5	CITATIONS
183	Imaging Guided Photothermal Therapy. Nano Letters, 2019, 19, 5093-5101. Biological reduction of nitroimidazole-functionalized gold nanorods for photoacoustic imaging of tumor hypoxia. RSC Advances, 2019, 9, 16863-16868.	1.7	11
184	Trapping of Gd(III) Ions by Keplerate Polyanionic Nanocapsules in Water: A ¹ H Fast Field Cycling NMR Relaxometry Study. Journal of Physical Chemistry C, 2019, 123, 18095-18102.	1.5	7
185	Tailoring magnetic resonance imaging relaxivities in macroporous Prussian blue cubes. Dalton Transactions, 2019, 48, 11882-11888.	1.6	6
186	Toxicoâ€Metabolomics of Engineered Nanomaterials: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1904268.	7.8	20
187	Start from Scratch: A Crowdsourcing-Based Data Fusion Approach to Support Location-Aware Applications. Sensors, 2019, 19, 4518.	2.1	4
188	Mitochondria specific oxidative injury by near-infrared energy transfer nanoclusters for amplified photodynamic potency. Journal of Colloid and Interface Science, 2019, 557, 45-54.	5.0	6
189	Spectroscopic Assessment of Gold Nanoparticle Biodistribution Using Surface Plasmon Resonance Phenomena. ACS Biomaterials Science and Engineering, 2019, 5, 6389-6394.	2.6	5
190	Smart H ₂ Sâ€īriggered/Therapeutic System (SHTS)â€Based Nanomedicine. Advanced Science, 2019, 6, 1901724.	5.6	55
191	Engineering pH-Responsive BODIPY Nanoparticles for Tumor Selective Multimodal Imaging and Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 43928-43935.	4.0	43
192	Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T ₁ /T ₂ Dual-Contrast Magnetic Resonance Imaging. International Journal of Nanomedicine, 2019, Volume 14, 8499-8507.	3.3	26
193	Promising Approach in the Treatment of Glaucoma Using Nanotechnology and Nanomedicine-Based Systems. Molecules, 2019, 24, 3805.	1.7	23
194	Hierarchically Nanostructured Hybrid Platform for Tumor Delineation and Imageâ€Guided Surgery via NIRâ€II Fluorescence and PET Bimodal Imaging. Small, 2019, 15, e1903382.	5.2	31
195	Furinâ€Controlled Fe ₃ O ₄ Nanoparticle Aggregation and ¹⁹ F Signal "Turnâ€On―for Precise MR Imaging of Tumors. Advanced Functional Materials, 2019, 29, 1903860.	7.8	55
196	Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chemical Society Reviews, 2019, 48, 5140-5176.	18.7	150
197	Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. Journal of Colloid and Interface Science, 2019, 556, 128-139.	5.0	65
198	Controlling the Interaction of Nanoparticles with Cell Membranes by the Polymeric Tether. Langmuir, 2019, 35, 12851-12857.	1.6	5
199	Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 5583-5601.	2.9	108

ARTICLE IF CITATIONS # Recent progress in the imaging detection of enzyme activities <i>in vivo </i>. RSC Advances, 2019, 9, 200 1.7 20 25285-25302. Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging 4.5 93 Nanocomposite. Nano Letters, 2019, 19, 6725-6733. Tumor microenvironment responsive FePt/MoS₂ nanocomposites with chemotherapy and 202 2.8 73 photothermal therapy for enhancing cancer immunotherapy. Nanoscale, 2019, 11, 19912-19922. Development of a paper-based method to detect Hg2+ in waste water using iturin from Bacillus subtilis. Applied Microbiology and Biotechnology, 2019, 103, 8609-8618. ^{99m}Tc-Labeled Polyethylenimine-Entrapped Gold Nanoparticles with pH-Responsive Charge Conversion Property for Enhanced Dual Mode SPECT/CT Imaging of Cancer Cells. Langmuir, 2019, 35, 204 19 1.6 13405-13412. A targeted biocompatible organic nanoprobe for photoacoustic and near-infrared-II fluorescence imaging in living mice. RSC Advances, 2019, 9, 301-306. 1.7 Metabolizable Semiconducting Polymer Nanoparticles for Second Nearâ€Infrared Photoacoustic 206 11.1 288 Imaging. Advanced Materials, 2019, 31, e1808166. An innovative peptide with high affinity to GPC3 for hepatocellular carcinoma diagnosis. Biomaterials 2.6 Science, 2019, 7, 159-167. Biocompatible Heat-Shock Protein Inhibitor-Delivered Flowerlike Short-Wave Infrared Nanoprobe for 208 Mild Temperature-Driven Highly Efficient Tumor Ablation. ACS Applied Materials & amp; Interfaces, 2019, 4.0 56 11, 6820-6828. Orthogonal shortwave infrared emission based on rare earth nanoparticles for interference-free 209 logical codes and bio-imaging. Chemical Science, 2019, 10, 3281-3288. Boosting single-band red upconversion luminescence in colloidal NaErF4 nanocrystals: Effects of 210 2.5 11 doping and inert shell. Journal of Rare Earths, 2019, 37, 573-579. Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted 4.5 Magnetic Resonance Imaging of Tumors. Nano Letters, 2019, 19, 4213-4220. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. 212 2.6 33 Biomaterials Science, 2019, 7, 867-875. Disparate effects of PEG or albumin based surface modification on the uptake of nano- and 2.6 16 micro-particles. Biomaterials Science, 2019, 7, 1411-1421. Cell Membraneâ€Camouflaged NIR II Fluorescent Ag₂Te Quantum Dotsâ€Based Nanobioprobes 214 3.9 68 for Enhanced In Vivo Homotypic Tumor Imaging. Advanced Healthcare Materials, 2019, 8, e1900341. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. International Journal 1.8 of Molecular Sciences, 2019, 20, 2323. An Organic Afterglow Protheranostic Nanoassembly. Advanced Materials, 2019, 31, e1902672. 216 11.1 97 Lanthanide Photonics: Shaping the Nanoworld. Trends in Chemistry, 2019, 1, 751-762. 4.4 99

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
218	Host-Guest Chemistry in Supramolecular Theranostics. Theranostics, 2019, 9, 3041-3074.		4.6	140
219	A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice. ACS Nano, 2019, 1 7750-7758.	3,	7.3	78
220	Nanostructured Polymer Biocomposites: Pharmaceutical Applications. , 2019, , 227-259.			8
221	Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorog Reaction and Self-Assembly. Journal of the American Chemical Society, 2019, 141, 10331-10341.	enic	6.6	268
222	Green Fluorescent Protein Nanovessel Serves as a Nucleolus Targeting Material and Molecule Carrie in Living Cells. Advanced Biology, 2019, 3, e1900047.	er .	3.0	0
223	pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. Journal of Colloid and Interface Science, 2019, 552, 439-447.		5.0	36
224	Microfluidic chip and its application in autophagy detection. TrAC - Trends in Analytical Chemistry, 2019, 117, 300-315.		5.8	27
225	Peptide-functionalized NaGdF4 nanoparticles for tumor-targeted magnetic resonance imaging and effective therapy. RSC Advances, 2019, 9, 17093-17100.		1.7	16
226	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.		16.0	184
227	Nanoparticle Imaging of Vascular Inflammation and Remodeling in Atherosclerotic Disease. Current Cardiovascular Imaging Reports, 2019, 12, 1.		0.4	5
228	Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members. Analytica Chimica Acta, 2019, 1076, 138-143.		2.6	16
229	Facile one-pot synthesis of monodispersed NIR-II emissive silver sulfide quantum dots. Inorganic Chemistry Communication, 2019, 106, 233-239.		1.8	8
230	2-Dicyanomethylenethiazole based NIR absorbing organic nanoparticles for photothermal therapy a photoacoustic imaging. Journal of Materials Chemistry B, 2019, 7, 3950-3957.	and	2.9	10
231	FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics, 2019, 138, 111314.		5.3	148
232	Iodine-Rich Polymersomes Enable Versatile SPECT/CT Imaging and Potent Radioisotope Therapy for Tumor in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 18953-18959.		4.0	38
233	Peptosome Coadministration Improves Nanoparticle Delivery to Tumors through NRP1-Mediated Co-Endocytosis. Biomolecules, 2019, 9, 172.		1.8	10
234	Bionanomaterials as Imaging Contrast Agents. , 2019, , 401-421.			0
235	A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nature Communications, 2019, 10, 2064.		5.8	210

#	Article	IF	CITATIONS
236	Intelligent polymer–MnO ₂ nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chemical Communications, 2019, 55, 6006-6009.	2.2	24
237	DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nature Communications, 2019, 10, 1926.	5.8	86
238	Strong host-guest interaction enables facile and controllable surface modification of cucurbit[6]uril-based polymer nanocapsules for <i>in vivo</i> cancer targeting. Supramolecular Chemistry, 2019, 31, 289-295.	1.5	13
239	Surface Modification of Nanoparticles for Targeted Drug Delivery. , 2019, , .		27
240	Liposome-based probes for molecular imaging: from basic research to the bedside. Nanoscale, 2019, 11, 5822-5838.	2.8	55
241	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
242	Precise delivery of a multifunctional nanosystem for MRI-guided cancer therapy and monitoring of tumor response by functional diffusion-weighted MRI. Journal of Materials Chemistry B, 2019, 7, 2926-2937.	2.9	15
243	Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today, 2019, 26, 108-122.	6.2	67
244	Ultrafast synthesis of gold nanosphere cluster coated by graphene quantum dot for active targeting PA/CT imaging and near-infrared laser/pH-triggered chemo-photothermal synergistic tumor therapy. Chemical Engineering Journal, 2019, 369, 87-99.	6.6	45
245	Organic/inorganic nanohybrids as multifunctional gene delivery systems. Journal of Gene Medicine, 2019, 21, e3084.	1.4	29
246	Effects of Cr3+ ion concentration on the spectral characterization in Cr3+:Ca0.93Mg1.07Si2O6 crystals. Journal of Luminescence, 2019, 211, 8-13.	1.5	10
247	Surface Modification and Bioconjugation of Nanoparticles for MRI Technology. , 2019, , 405-430.		1
248	Ultrashort Echo Time Quantitative Susceptibility Mapping (UTE-QSM) of Highly Concentrated Magnetic Nanoparticles: A Comparison Study about Different Sampling Strategies. Molecules, 2019, 24, 1143.	1.7	19
249	Dynamic Nanostructures from DNA oupled Molecules, Polymers, and Nanoparticles. Small, 2019, 15, e1900504.	5.2	26
250	Silver-Assisted Synthesis of High-Indexed Palladium Tetrahexahedral Nanoparticles and Their Morphological Variants. Chemistry of Materials, 2019, 31, 2923-2929.	3.2	13
251	In Situ Synthesis of Fluorescent Mesoporous Silica–Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery. Nano-Micro Letters, 2019, 11, 32.	14.4	70
252	Nanoparticle Therapy for Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 635-646.	1.1	106
253	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	14.8	119

		CITATION REPORT		
#	Article		IF	CITATIONS
254	Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials, 2019, 9	, 191.	1.9	72
255	Mitochondria-Targeted and Ultrasound-Activated Nanodroplets for Enhanced Deep-Pe Sonodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 935	netration 5-9366.	4.0	139
256	<p>Amorphous aggregation of tau in the presence of titanium dioxide nanopartic computational, and cellular studies</p> . International Journal of Nanomedicine, 2 901-911.	cles: biophysical, 019, Volume 14,	3.3	22
257	Non-spherical micro- and nanoparticles in nanomedicine. Materials Horizons, 2019, 6,	1094-1121.	6.4	120
258	Thieno[3,2- <i>b</i>]thiophene-DPP based near-infrared nanotheranostic agent for dua photothermal/photodynamic synergistic therapy. Journal of Materials Chemistry B, 202	ıl imaging-guided 19, 7, 2454-2462.	2.9	23
259	Magnetic bio-metal–organic framework nanocomposites decorated with folic acid c chitosan as a promising biocompatible targeted theranostic system for cancer treatme Science and Engineering C, 2019, 99, 805-815.	onjugated ent. Materials	3.8	95
260	Development of hollow ferrogadolinium nanonetworks for dual-modal MRI guided can chemotherapy. RSC Advances, 2019, 9, 2559-2566.	cer	1.7	3
261	Advancements of Second Near-Infrared Biological Window Fluorophores: Mechanism, Application In Vivo. Topics in Medicinal Chemistry, 2019, , 81-123.	Synthesis, and	0.4	3
262	In vivo changes of nanoapatite crystals during bone reconstruction and the difference bone apatite. Science Advances, 2019, 5, eaay6484.	s with native	4.7	47
263	One-pot synthesis of chelator-free 89Zr-incorporated hierarchical hematite nanocluste evaluation. Journal of Nanoparticle Research, 2019, 21, 1.	rs for in vitro	0.8	4
264	Pharmaceutical Development and Safety Evaluation of a GMP-Grade Fucoidan for Mole of Cardiovascular Diseases. Marine Drugs, 2019, 17, 699.	cular Diagnosis	2.2	22
265	In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Poly PF8-BT. ACS Applied Materials & Interfaces, 2019, 11, 46525-46535.	mers: Borylated	4.0	15
266	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Co Composite Nanostructures. Chemical Reviews, 2019, 119, 12208-12278.	olloidal	23.0	289
267	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioe Biotechnology, 2019, 7, 320.	ngineering and	2.0	44
268	Iron phosphide nanoparticles as a pH-responsive <i>T</i> ₁ contrast agen resonance tumor imaging. RSC Advances, 2019, 9, 30581-30584.	t for magnetic	1.7	4
269	In-Taken Labeling and in Vivo Tracing Foodborne Probiotics via DNA-Encapsulated Pers Luminescence Nanoprobe Assisted Autofluorescence-Free Bioimaging. Journal of Agric Food Chemistry, 2019, 67, 514-519.	istent ultural and	2.4	13
270	Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart ACS Applied Materials & Comparison (2019, 11, 1864-1875).	Chemotherapy.	4.0	49
271	Bioinspired Amyloid Nanodots with Visible Fluorescence. Advanced Optical Materials, 2	2019, 7, 1801400.	3.6	26

# 272	ARTICLE A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials, 2019, 194, 151-160.	IF 5.7	CITATIONS 83
273	Engineered Paramagnetic Graphene Quantum Dots with Enhanced Relaxivity for Tumor Imaging. Nano Letters, 2019, 19, 441-448.	4.5	41
274	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews, 2019, 119, 1666-1762.	23.0	299
275	Multiscale Modeling and Simulation of Nanoâ€Carriers Delivery through Biological Barriers—A Review. Advanced Theory and Simulations, 2019, 2, 1800105.	1.3	34
276	Hybrid Nanostructures for In Vivo Imaging. , 2019, , 173-208.		8
277	Aggregationâ€Induced Absorption Enhancement for Deep Nearâ€Infrared II Photoacoustic Imaging of Brain Gliomas In Vivo. Advanced Science, 2019, 6, 1801615.	5.6	79
278	Magnetic Nanomaterials for Magnetic Bioanalysis. , 2019, , 89-109.		23
279	In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Analytical Chemistry, 2019, 91, 2128-2134.	3.2	23
280	Identifying a Membrane-Type 2 Matrix Metalloproteinase-Targeting Peptide for Human Lung Cancer Detection and Targeting Chemotherapy with Functionalized Mesoporous Silica. ACS Applied Bio Materials, 2019, 2, 397-405.	2.3	6
281	Exosome-like Nanozyme Vesicles for H ₂ O ₂ -Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma. Nano Letters, 2019, 19, 203-209.	4.5	150
282	Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation. ACS Nano, 2019, 13, 152-162.	7.3	58
283	Design and control luminescence of Li2ZnGe3O8:Cr3+ in NIR І region by cationic regulation. Optik, 2019, 180, 713-723.	1.4	8
284	Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chemical Reviews, 2019, 119, 1456-1518.	23.0	80
285	DNA damage in BVâ€⊋ cells: An important supplement to the neurotoxicity of CdTe quantum dots. Journal of Applied Toxicology, 2019, 39, 525-539.	1.4	28
286	Photoacoustic and fluorescent effects in multilayer plasmonâ€dye interfaces. Journal of Biophotonics, 2019, 12, e201800265.	1.1	16
287	Externally Induced Drug Release Systems with Magnetic Nanoparticle Carriers: An Emerging Field in Nanomedicine. Advanced Therapeutics, 2019, 2, 1800092.	1.6	26
288	Photothermal therapy and photoacoustic imaging <i>via</i> nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48, 2053-2108.	18.7	2,033
289	A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Research, 2019, 12, 273-279.	5.8	86

#	Article	IF	CITATIONS
290	Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. Journal of Luminescence, 2019, 205, 581-620.	1.5	425
291	A review of hyperspectral imaging for nanoscale materials research. Applied Spectroscopy Reviews, 2019, 54, 285-305.	3.4	43
292	Recent Developments in Detection Using Noble Metal Nanoparticles. Critical Reviews in Analytical Chemistry, 2020, 50, 97-110.	1.8	62
293	Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 2020, 228, 119553.	5.7	109
294	Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horizons, 2020, 5, 25-42.	4.1	80
295	Microfluidic Generation of Nanomaterials for Biomedical Applications. Small, 2020, 16, e1901943.	5.2	70
296	Can Intraoperative Fluorescence Imaging Identify All Lesions While the Road Map Created by Preoperative Nuclear Imaging Is Masked?. Journal of Nuclear Medicine, 2020, 61, 834-841.	2.8	24
297	Promising Applications of AlEgens in Animal Models. Small Methods, 2020, 4, 1900583.	4.6	25
298	Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications. , 2020, , 297-327.		10
299	Integration of gadolinium in nanostructure for contrast enhancedâ€nagnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1580.	3.3	33
300	Nano-immunoimaging. Nanoscale Horizons, 2020, 5, 628-653.	4.1	22
301	Nanoparticles decorated with granulocyte-colony stimulating factor for targeting myeloid cells. Nanoscale, 2020, 12, 2752-2763.	2.8	6
302	RNA imaging in living mice enabled by an <i>in vivo</i> hybridization chain reaction circuit with a tripartite DNA probe. Chemical Science, 2020, 11, 62-69.	3.7	71
303	Review—Recent Advances in Nanostructured Graphitic Carbon Nitride as a Sensing Material for Heavy Metal Ions. Journal of the Electrochemical Society, 2020, 167, 037519.	1.3	57
304	Multiplexed Imaging with Coordination Nanoparticles for Cancer Diagnosis and Therapy. ACS Applied Bio Materials, 2020, 3, 713-720.	2.3	10
305	Ultrasmall silicon nanoparticles as a promising platform for multimodal imaging. Faraday Discussions, 2020, 222, 362-383.	1.6	12
306	The role of electrostatic potential polarization in the translocation of graphene quantum dots across membranes. Nanoscale, 2020, 12, 2732-2739.	2.8	15
307	Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4, 449-471.	3.2	101

#	Article	IF	CITATIONS
308	Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer. Chemical Physics Letters, 2020, 739, 136977.	1.2	8
309	Eu(III) complex based on nonsteroidal anti-inflammatory drugs loxoprofen as the ligand: A novel low-toxic luminescent material for cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 118014.	2.0	8
310	Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 2020, 30, 1907093.	7.8	84
311	Selective imaging of diamond nanoparticles within complex matrices using magnetically induced fluorescence contrast. Environmental Science: Nano, 2020, 7, 525-534.	2.2	14
312	A carbon nanocoil-based flexible tip for a live cell study of mechanotransduction and electro-physiological characteristics. Journal of Materials Chemistry B, 2020, 8, 1405-1410.	2.9	6
313	Cu(II)-Regulated On-Site Assembly of Highly Chemiluminescent Multifunctionalized Carbon Nanotubes for Inorganic Pyrophosphatase Activity Determination. ACS Applied Materials & Interfaces, 2020, 12, 2903-2909.	4.0	22
314	Enhancing cancer therapeutic efficacy through ultrasoundâ€mediated microâ€toâ€nano conversion. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1604.	3.3	8
315	Iodinated Metallacrowns: Toward Combined Bimodal Nearâ€Infrared and Xâ€Ray Contrast Imaging Agents. Chemistry - A European Journal, 2020, 26, 1274-1277.	1.7	18
316	DOTA-Branched Organic Frameworks as Giant and Potent Metal Chelators. Journal of the American Chemical Society, 2020, 142, 198-206.	6.6	45
317	Reactive Oxygen Correlated Chemiluminescent Imaging of a Semiconducting Polymer Nanoplatform for Monitoring Chemodynamic Therapy. Nano Letters, 2020, 20, 176-183.	4.5	123
318	<i>In vivo</i> imaging/detection of MRSA bacterial infections in mice using fluorescence labelled polymeric nanoparticles carrying vancomycin as the targeting agent. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 293-309.	1.9	13
319	Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Materials Chemistry and Physics, 2020, 242, 122493.	2.0	55
320	DNA Nanostructures and DNAâ \in Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	5.6	47
321	Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. TrAC - Trends in Analytical Chemistry, 2020, 131, 116010.	5.8	17
322	Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today, 2020, 35, 101005.	6.2	65
323	Improved Stability and Photothermal Performance of Polydopamineâ€Modified Fe ₃ O ₄ Nanocomposites for Highly Efficient Magnetic Resonance Imagingâ€Guided Photothermal Therapy. Small, 2020, 16, e2003969.	5.2	87
324	Graphitic Carbon Nitride Quantum Dots Embedded in Carbon Nanosheets for Near-Infrared Imaging-Guided Combined Photo-Chemotherapy. ACS Nano, 2020, 14, 13304-13315.	7.3	83
325	An Allâ€Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imagingâ€Guided Synergistic Therapy. Advanced Materials, 2020, 32, e2003210.	11.1	259

#	Article	IF	CITATIONS
326	Singleâ€Photomolecular Nanotheranostics for Synergetic Nearâ€Infrared Fluorescence and Photoacoustic Imagingâ€Guided Highly Effective Photothermal Ablation. Small, 2020, 16, e2002672.	5.2	23
327	Flexible Photothermal Assemblies with Tunable Gold Patterns for Improved Imagingâ€Guided Synergistic Therapy. Small, 2020, 16, 2002790.	5.2	9
328	A pretargeting nanoplatform for imaging and enhancing anti-inflammatory drug delivery. Bioactive Materials, 2020, 5, 1102-1112.	8.6	16
329	The synthesis of rare earth metal-doped upconversion nanoparticles coated with <scp>d</scp> -glucose or 2-deoxy- <scp>d</scp> -glucose and their evaluation for diagnosis and therapy in cancer. New Journal of Chemistry, 2020, 44, 13834-13842.	1.4	2
330	Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. Science Advances, 2020, 6, eaay5279.	4.7	70
331	Facile Synthesis, Enhanced Photostability, and Long-term Cellular Imaging of Bright Red Luminescent Organosilica Nanoparticles. ACS Applied Bio Materials, 2020, 3, 5438-5445.	2.3	4
332	Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 1311-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. International Journal of Pharmaceutics, 2020, 587, 119628.	2.6	19
333	Nanodiamond-enabled biomedical imaging. Nanomedicine, 2020, 15, 1599-1616.	1.7	28
334	Sensitive Photoacoustic/Magnetic Resonance Dual Imaging Probe for Detection of Malignant Tumors. Journal of Pharmaceutical Sciences, 2020, 109, 3153-3159.	1.6	6
335	Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals. Journal of the American Chemical Society, 2020, 142, 20368-20379.	6.6	22
336	Delicately Designed Cancer Cell Membrane-Camouflaged Nanoparticles for Targeted ¹⁹ F MR/PA/FL Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2020, 12, 57290-57301.	4.0	38
337	Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano, 2020, 14, 16220-16240.	7.3	59
338	Sulfonated Cellulose-Based Magnetic Composite as Useful Media for Water Remediation from Amine Pollutants. Applied Sciences (Switzerland), 2020, 10, 8155.	1.3	16
339	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie - International Edition, 2020, 59, 21049-21057.	7.2	108
340	Materdicine: Interdiscipline of materials and medicine. View, 2020, 1, 20200016.	2.7	22
341	Longitudinal In-Vivo X-Ray Fluorescence Computed Tomography With Molybdenum Nanoparticles. IEEE Transactions on Medical Imaging, 2020, 39, 3910-3919.	5.4	19
342	An Ultrasoundâ€Excitable Aggregationâ€Induced Emission Dye for Enhanced Sonodynamic Therapy of Tumors. Advanced Healthcare Materials, 2020, 9, e2000560.	3.9	32
343	High-peak-power 918-nm laser light source based two-photon spinning-disk microscopy for green fluorophores. Biochemical and Biophysical Research Communications, 2020, 529, 238-242.	1.0	9

#	Article	IF	CITATIONS
344	Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chemical Reviews, 2020, 120, 9554-9582.	23.0	296
345	Self-Assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS Applied Bio Materials, 2020, 3, 5664-5677.	2.3	21
346	Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. International Journal of Pharmaceutics, 2020, 587, 119712.	2.6	15
347	A Mimosa-Inspired Cell-Surface-Anchored Ratiometric DNA Nanosensor for High-Resolution and Sensitive Response of Target Tumor Extracellular pH. Analytical Chemistry, 2020, 92, 15104-15111.	3.2	24
348	Directly observing intracellular nanoparticle formation with nanocomputed tomography. Science Advances, 2020, 6, .	4.7	24
349	Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances, 2020, 8, 100087.	2.5	21
350	A Perspective on Application of Carbon Quantum Dots in Luminescence Immunoassays. Frontiers in Chemistry, 2020, 8, 580033.	1.8	8
351	Multifunctional nano-enabled delivery systems in Alzheimer's disease management. Biomaterials Science, 2020, 8, 5538-5554.	2.6	14
352	Mesoporous Silica Nanoparticles in Bioimaging. Materials, 2020, 13, 3795.	1.3	37
353	Matrix metalloproteinase-initiated aggregation of melanin nanoparticles as highly efficient contrast agent for enhanced tumor accumulation and dual-modal imaging. Journal of Materials Chemistry B, 2020, 8, 9888-9898.	2.9	13
354	Activatable Magnetic/Photoacoustic Nanoplatform for Redox-Unlocked Deep-Tissue Molecular Imaging <i>In Vivo</i> via Prussian Blue Nanoprobe. Analytical Chemistry, 2020, 92, 13452-13461.	3.2	28
355	Facile synthesis and characterization of graphene oxide/prussian blue/amino-terminated perylene derivative nanomaterials. Materials Express, 2020, 10, 922-927.	0.2	0
356	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie, 2020, 132, 21235-21243.	1.6	15
357	Spontaneous and Induced Animal Models for Cancer Research. Diagnostics, 2020, 10, 660.	1.3	42
358	Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Research, 2020, 13, 3338-3346.	5.8	56
359	Tâ€Cellâ€Mimicking Nanoparticles for Cancer Immunotherapy. Advanced Materials, 2020, 32, e2003368	11.1	73
360	Characterization and Inhibitory Effects of Magnetic Iron Oxide Nanoparticles Synthesized from Plant Extracts on HeLa Cells. International Journal of Biomaterials, 2020, 2020, 1-11.	1.1	4
361	Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities. Molecules, 2020, 25, 5547.	1.7	24

#	Article	IF	CITATIONS
362	Cyclodextrin mediated efficient energy transfer between 4-amido-1,8-naphthalimide and porphyrin. Dyes and Pigments, 2020, 180, 108518.	2.0	1
363	Peptide and protein modified metal clusters for cancer diagnostics. Chemical Science, 2020, 11, 5614-5629.	3.7	28
364	New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine, 2020, 15, 1127-1145.	1.7	33
365	Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals, 2020, 10, 357.	1.0	32
366	Multiphoton Fabrication of Proteinaceous Nanocomposite Microstructures with Photothermal Activity in the Infrared. Advanced Optical Materials, 2020, 8, 2000584.	3.6	9
367	There's no place like real-space: elucidating size-dependent atomic structure of nanomaterials using pair distribution function analysis. Nanoscale Advances, 2020, 2, 2234-2254.	2.2	71
368	Theoretical modeling of interactions at the bio-nano interface. Nanoscale, 2020, 12, 10426-10429.	2.8	7
369	Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium. Electromagnetic Biology and Medicine, 2020, 39, 183-195.	0.7	6
370	Triton Xâ€100 functionalized Cu(II) dihydrazone based complex immobilized on Fe 3 O 4 @dopa: A highly efficient catalyst for oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes. Applied Organometallic Chemistry, 2020, 34, e5695.	1.7	5
372	Cyanine-Based Polymer Dots with Long-Wavelength Excitation and Near-Infrared Fluorescence beyond 900 nm for <i>In Vivo</i> Biological Imaging. ACS Applied Bio Materials, 2020, 3, 3846-3858.	2.3	8
373	Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chemical Science, 2020, 11, 5819-5829.	3.7	57
374	Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics, 2020, 10, 6278-6309.	4.6	213
375	Effect of Cationic Brush-Type Copolymers on the Colloidal Stability of GdPO ₄ Particles with Different Morphologies in Biological Aqueous Media. Langmuir, 2020, 36, 7533-7544.	1.6	7
376	Liposomal nanotheranostics for multimode targeted in vivo bioimaging and nearâ€infrared light mediated cancer therapy. Communications Biology, 2020, 3, 284.	2.0	46
377	Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. Advanced Therapeutics, 2020, 3, 2000051.	1.6	17
378	Effect of surface functionality of molecularly imprinted composite nanospheres on specific recognition of proteins. Materials Science and Engineering C, 2020, 116, 111076.	3.8	7
379	Fate of Fe ₃ O ₄ @NH ₂ in soil and their fixation effect to reduce lead translocation in two rice cultivars. Food Science and Nutrition, 2020, 8, 3673-3681.	1.5	4
380	Enhancing the targeting ability of nanoparticles <i>via</i> protected copolymers. Nanoscale, 2020, 12, 7804-7813.	2.8	12

#	Article	IF	CITATIONS
381	Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomaterials Science, 2020, 8, 4129-4146.	2.6	12
382	Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale, 2020, 12, 14957-14975.	2.8	39
383	Novel ultrasmall multifunctional nanodots for dual-modal MR/NIR-II imaging-guided photothermal therapy. Biomaterials, 2020, 256, 120219.	5.7	38
384	<i>In Vivo</i> Single-Molecule Detection of Nanoparticles for Multiphoton Fluorescence Correlation Spectroscopy to Quantify Cerebral Blood Flow. Nano Letters, 2020, 20, 6135-6141.	4.5	18
385	Supramolecular and biomacromolecular enhancement of metal-free magnetic resonance imaging contrast agents. Chemical Science, 2020, 11, 2045-2050.	3.7	34
386	Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano, 2020, 14, 2585-2627.	7.3	239
387	Blue quantum dot-based electroluminescent light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1340-1365.	3.2	40
388	Organic Thermally Activated Delayed Fluorescence Materials for Timeâ€Resolved Luminescence Imaging and Sensing. Advanced Optical Materials, 2020, 8, 1902187.	3.6	91
389	Paramagnetic Relaxation Enhancement in Hydrophilic Colloids Based on Gd(III) Complexes with Tetrathia- and Calix[4]arenes. Journal of Physical Chemistry C, 2020, 124, 4320-4329.	1.5	17
390	Synthesis and Cytotoxicity Studies on Ru and Rh Nanoparticles as Potential X-Ray Fluorescence Computed Tomography (XFCT) Contrast Agents. Nanomaterials, 2020, 10, 310.	1.9	9
391	Autophagic stress; a new cellular response to nanoparticles. Could it be a new strategy for inhibition of liver cancer cell invasion and metastasis?. Nanoscale, 2020, 12, 6556-6561.	2.8	9
392	Using SERS Tags to Image the Threeâ€Dimensional Structure of Complex Cell Models. Advanced Functional Materials, 2020, 30, 1909655.	7.8	44
393	Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics, 2020, 10, 2067-2094.	4.6	85
394	Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends in Cancer, 2020, 6, 205-222.	3.8	14
395	Surface charge modulates the internalization <i>vs.</i> penetration of gold nanoparticles: comprehensive scrutiny on monolayer cancer cells, multicellular spheroids and solid tumors by SERS modality. Nanoscale, 2020, 12, 6971-6975.	2.8	38
396	Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Advanced Functional Materials, 2020, 30, 1910402.	7.8	28
397	Hierarchically porous graphitic carbon membrane with homogeneously encapsulated metallic nanoparticles as monolith electrodes for high-performance electrocatalysis and sensing. Journal of Colloid and Interface Science, 2020, 570, 223-231.	5.0	4
398	Oligodots: Structurally Defined Fluorescent Nanoprobes for Multiscale Dual-Color Imaging <i>in Vitro</i> and <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2020, 12, 10183-10192.	4.0	9

#	Article	IF	CITATIONS
399	Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. Journal of Electroanalytical Chemistry, 2020, 860, 113928.	1.9	37
400	Ratiometric fluorescent probe based on AuNCs induced AIE for quantification and visual sensing of glucose. Analytica Chimica Acta, 2020, 1104, 140-146.	2.6	27
401	Anthracene Diphosphate Ligands for CdSe Quantum Dots; Molecular Design for Efficient Upconversion. Chemistry of Materials, 2020, 32, 1461-1466.	3.2	46
402	Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics, 2020, 10, 968-997.	4.6	41
403	Nanotherapeutic Shots through the Heart of Plaque. ACS Nano, 2020, 14, 1236-1242.	7.3	24
404	Dual Imaging Gold Nanoplatforms for Targeted Radiotheranostics. Materials, 2020, 13, 513.	1.3	15
405	Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nature Nanotechnology, 2020, 15, 154-161.	15.6	173
406	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	18.7	261
407	Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.	5.7	48
408	Ferrimagnetic mPEG- <i>b</i> -PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia–chemotherapy. National Science Review, 2020, 7, 723-736.	4.6	59
409	Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. Nanomaterials, 2020, 10, 209.	1.9	54
410	Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nature Biomedical Engineering, 2020, 4, 325-334.	11.6	160
411	Recent Progress of Nanomedicine in the Treatment of Central Nervous System Diseases. Advanced Therapeutics, 2020, 3, 1900159.	1.6	12
412	Integrated Microdroplets Array for Intelligent Electrochemical Fabrication. Advanced Functional Materials, 2020, 30, 1910329.	7.8	18
413	Synthesis of Sn nanowire by template electrodeposition and its conversion into Sn nanosolder. Materials Characterization, 2020, 163, 110278.	1.9	9
414	Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1629.	3.3	21
415	Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. Journal of Controlled Release, 2020, 323, 83-101.	4.8	20
416	Small-Molecule Probe for Sensing Serum Albumin with Consequential Self-Assembly as a Fluorescent Organic Nanoparticle for Bioimaging and Drug-Delivery Applications. ACS Applied Bio Materials, 2020, 3, 3099-3113.	2.3	20

#	Article	IF	CITATIONS
417	Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Science Advances, 2020, 6, eaay6825.	4.7	126
418	Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. International Journal of Molecular Sciences, 2020, 21, 2323.	1.8	31
419	Imageâ€guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1628.	3.3	24
420	Particle tracking microrheology of cancer cells in living subjects. Materials Today, 2020, 39, 98-109.	8.3	20
421	A novel universal nano-luciferase-involved reporter system for long-term probing food-borne probiotics and pathogenic bacteria in mice by <i>in situ</i> bioluminescence imaging. RSC Advances, 2020, 10, 13029-13036.	1.7	3
422	Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. , 2020, 211, 107550.		45
423	A Fluorescence and Surface-Enhanced Raman Spectroscopic Dual-Modal Aptasensor for Sensitive Detection of Cyanotoxins. ACS Sensors, 2020, 5, 1419-1426.	4.0	72
424	Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Frontiers in Chemistry, 2020, 8, 205.	1.8	12
425	Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Research, 2020, 13, 999-1007.	5.8	12
426	Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. Journal of Colloid and Interface Science, 2021, 584, 505-519.	5.0	76
427	Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. Nano Today, 2021, 36, 101014.	6.2	45
428	Polymethineâ€Based Semiconducting Polymer Dots with Narrowâ€Band Emission and Absorption/Emission Maxima at NIRâ€II for Bioimaging. Angewandte Chemie, 2021, 133, 996-1002.	1.6	7
429	A versatile synthetic approach to tunable dual-emissive Pdots with very small-size based on amphiphilic block copolymers for cell imaging. Materials Chemistry Frontiers, 2021, 5, 355-367.	3.2	8
430	Intracellular Selfâ€Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Advanced Healthcare Materials, 2021, 10, e2001211.	3.9	53
431	Polymethineâ€Based Semiconducting Polymer Dots with Narrowâ€Band Emission and Absorption/Emission Maxima at NIRâ€II for Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 983-989.	7.2	69
432	Advances in non-covalent crosslinked polymer micelles for biomedical applications. Materials Science and Engineering C, 2021, 119, 111626.	3.8	55
433	Gold nanoparticles to enhance ophthalmic imaging. Biomaterials Science, 2021, 9, 367-390.	2.6	34
434	Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. Materials Chemistry Frontiers, 2021, 5, 458-464.	3.2	5

#	ARTICLE	IF	Citations
435	Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1671.	3.3	15
436	Full-spectrum responsive WO _{3â^'x} @HA nanotheranostics for NIR-II photoacoustic imaging-guided PTT/PDT/CDT synergistic therapy. Inorganic Chemistry Frontiers, 2021, 8, 636-646.	3.0	40
437	Stimuliâ€Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001044.	3.9	27
438	Macrophage-targeted single walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release. Nano Research, 2021, 14, 762-769.	5.8	16
439	SERSTEM: An app for the statistical analysis of correlative SERS and TEM imaging and evaluation of SERS tags performance. Journal of Raman Spectroscopy, 2021, 52, 355-365.	1.2	9
440	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
441	Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioactive Materials, 2021, 6, 1878-1909.	8.6	103
442	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie, 2021, 133, 4045-4049.	1.6	23
443	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie - International Edition, 2021, 60, 3999-4003.	7.2	113
444	Novel white-emitting afterglow phosphor Na2CaSn2Ge3O12:Dy3+: Preparation, photoluminescence, and phosphorescence properties. Journal of Alloys and Compounds, 2021, 856, 157230.	2.8	15
445	Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion. Accounts of Chemical Research, 2021, 54, 70-80.	7.6	34
446	Wash-free detection and bioimaging by AlEgens. Materials Chemistry Frontiers, 2021, 5, 723-743.	3.2	25
447	Interaction of nanoparticles with soil. , 2021, , 101-132.		8
448	Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. , 2021, 4, 382-413.		5
449	Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate, 2021, 2, 114-132.	5.2	133
450	Theranostics: Agents for Diagnosis and Therapy. , 2021, , 655-677.		3
451	Hydrogen Sulfide Dual-Activated NIR-II Photoacoustic Probes for Accurate Imaging and Efficient Photothermal Therapy of Colon Cancer. ACS Applied Bio Materials, 2021, 4, 974-983.	2.3	18
452	Green synthesis of silver nanoparticles: Characterization and its potential biomedical applications. Green Processing and Synthesis, 2021, 10, 412-420.	1.3	24

ARTICLE IF CITATIONS # Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. 453 4.6 6 Theranostics, 2021, 11, 5876-5888. Magneto-Plasmonic Nanoparticles. Springer Series in Materials Science, 2021, , 107-136. 454 0.4 Chapter 10. Porphyrins and Hydroporphyrins for In Vivo Bioimaging. RSC Smart Materials, 2021, , 455 0.1 0 292-327. Mn³⁺-rich oxide/persistent luminescence nanoparticles achieve light-free generation of singlet oxygen and hydroxyl radicals for responsive imaging and tumor treatment. Theranostics, 2021, 456 11, 7439-7449. Near-Infrared II Optical Imaging., 2021, , 397-420. 457 0 Intracellular mineralization of gold nanoparticles using gold ion-binding peptides with cell-penetrating ability. Chemical Communications, 2021, 57, 725-728. 2.2 Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging 459 2.4 17 and Boron Delivery. ACS Applied Nano Materials, 2021, 4, 1613-1625. Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging 1.3 Applications. Chemical Research in Chinese Universities, 2021, 37, 73-82. Novel multifunctional theranostic nanoagents based on Ho3+ for CT/MRI dual-modality 461 4.2 11 imaging-guided photothermal therapy. Science China Chemistry, 2021, 64, 558-564. Green-synthesized nanoparticles for fluorescence bioimaging and diagnostic applications., 2021, 153-188. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. 463 2.9 17 Journal of Materials Chemistry B, 2021, 9, 6536-6552. Nanomaterials for Medical Imaging and In Vivo Sensing. Springer Series in Biomaterials Science and 464 Engineering, 2021, , 335-403. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chemical Society Reviews, 465 18.7 64 2021, 50, 8102-8146. Nanobiosensors: Usability of Imprinted Nanopolymers., 2021, , 163-202. Biologically-derived nanoparticles for chemo-ferroptosis combination therapy. Materials Chemistry 467 3.2 5 Frontiers, 2021, 5, 3813-3822. Clinical trials of MRI-based immune cell imaging: challenges and perspectives. Science Bulletin, 2021, 66, 303-306. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel 469 7.0 35 composites for biomedical applications. Advances in Colloid and Interface Science, 2021, 288, 102351. Fluorescent Signaling of Molecularly Imprinted Nanogels Prepared via Postimprinting Modifications 470 for Specific Protein Detection. Advanced NanoBiomed Research, 2021, 1, 2000079.

#	Article	IF	CITATIONS
471	Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nature Chemical Biology, 2021, 17, 509-518.	3.9	134
472	Zinc Ferrite Nanoparticles: Unusual Growth Mechanism for Sizeâ€Dependent Properties. ChemistrySelect, 2021, 6, 1862-1869.	0.7	6
473	Review—Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. Journal of the Electrochemical Society, 2021, 168, 027504.	1.3	10
474	BiVO4/Fe3O4@polydopamine superparticles for tumor multimodal imaging and synergistic therapy. Journal of Nanobiotechnology, 2021, 19, 90.	4.2	16
475	Viscoelastic Cell Microenvironment: Hydrogelâ€Based Strategy for Recapitulating Dynamic ECM Mechanics. Advanced Functional Materials, 2021, 31, 2100848.	7.8	80
476	Advances in singleâ€molecule fluorescent nanosensors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1716.	3.3	19
477	The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. International Journal of Molecular Sciences, 2021, 22, 2514.	1.8	35
478	Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. Nano-Micro Letters, 2021, 13, 88.	14.4	10
479	Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SPIO for achieving endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. Journal of Nanobiotechnology, 2021, 19, 76.	4.2	10
480	A Diradicaloid Small Molecular Nanotheranostic with Strong Near-Infrared Absorbance for Effective Cancer Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 15983-15991.	4.0	37
481	Hypoxia modulation by dual-drug nanoparticles for enhanced synergistic sonodynamic and starvation therapy. Journal of Nanobiotechnology, 2021, 19, 87.	4.2	23
482	Organic multicomponent microparticle libraries. Nature Communications, 2021, 12, 1838.	5.8	19
483	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
484	The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Frontiers in Nanotechnology, 2021, 3, . Bonding behavior and passivation mechanism of organic ligands (-SH, -NH2, -COOH) on ZnS (<mml:math) etc<="" td="" ti=""><td>2.4)a0 0 0 rg1</td><td>20 3T /Overlock</td></mml:math)>	2.4)a0 0 0 rg1	20 3T /Overlock
485		3.1	9
486	surface from first-principles calculations. Applied Surface Science, 2021, 545, 148970. Biological membrane derived nanomedicines for cancer therapy. Science China Chemistry, 2021, 64, 719-733.	4.2	23
487	Real-Time Intraoperative Surface-Enhanced Raman Spectroscopy-Guided Thermosurgical Eradication of Residual Microtumors in Orthotopic Breast Cancer. Nano Letters, 2021, 21, 3066-3074.	4.5	41
488	Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angewandte Chemie, 2021, 133, 17941-17953.	1.6	1

#	Article	IF	Citations
489	Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angewandte Chemie - International Edition, 2021, 60, 17797-17809.	7.2	61
490	The performance of bismuth-based compounds in photocatalytic applications. Surfaces and Interfaces, 2021, 23, 100927.	1.5	31
491	A pH-Activatable MnCO ₃ Nanoparticle for Improved Magnetic Resonance Imaging of Tumor Malignancy and Metastasis. ACS Applied Materials & Interfaces, 2021, 13, 18462-18471.	4.0	16
492	Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Analytical Chemistry, 2021, 93, 5862-5871.	3.2	25
493	Nanotheranostics for the Management of Hepatic Ischemiaâ€Reperfusion Injury. Small, 2021, 17, e2007727.	5.2	51
494	Multi-Functional Nanocavities Fabricated Using Molecular Imprinting and Post-Imprinting Modifications for Efficient Biomarker Detection. Chromatography, 2021, 42, .	0.8	3
495	Pt-Coated Au Nanoparticle Toxicity Is Preferentially Triggered Via Mitochondrial Nitric Oxide/Reactive Oxygen Species in Human Liver Cancer (HepG2) Cells. ACS Omega, 2021, 6, 15431-15441.	1.6	5
496	Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. Nanoscale Research Letters, 2021, 16, 88.	3.1	76
497	One-pot green synthesis of I@CNDs-Fe3O4 hybrid nanoparticles from kelp for multi-modal imaging in vivo. Materials Science and Engineering C, 2021, 124, 112037.	3.8	5
498	Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. Advanced Materials, 2021, 33, e2007290.	11.1	118
499	Low-dose X-ray enhanced tumor accumulation of theranostic nanoparticles for high-performance bimodal imaging-guided photothermal therapy. Journal of Nanobiotechnology, 2021, 19, 155.	4.2	10
500	Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnology Advances, 2021, 48, 107711.	6.0	26
501	Self-Assembled Hybrid Nanogel as a Multifunctional Theranostic Probe for Enzyme-Regulated Ultrasound Imaging and Tumor Therapy. ACS Applied Bio Materials, 2021, 4, 4244-4253.	2.3	21
502	Highly doped NaErF4-based nanocrystals for multi-tasking application. Journal of Rare Earths, 2021, 39, 1467-1476.	2.5	10
503	Erbium-doped tungsten selenide nanosheets with near-infrared II emission and photothermal conversion. Chemical Engineering Journal, 2021, 411, 128610.	6.6	38
504	Multifunctional Hybrid Nanoprobe for Photoacoustic/PET/MR Imaging-Guided Photothermal Therapy of Laryngeal Cancer. ACS Applied Bio Materials, 2021, 4, 5312-5323.	2.3	5
505	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	2.0	8
507	Fabrication of Nd3+ and Yb3+ doped NIR emitting nano fluorescent probe: A candidate for bioimaging applications. Materials Science and Engineering C, 2021, 125, 112095.	3.8	12

#	Article	IF	CITATIONS
508	Theragnostic nanomotors: Successes and upcoming challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1736.	3.3	12
509	In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis. Chemical Research in Chinese Universities, 2021, 37, 855-869.	1.3	2
510	Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics, 2021, 13, 943.	2.0	96
511	Ultraselective Carbon Nanotubes for Photoacoustic Imaging of Inflamed Atherosclerotic Plaques. Advanced Functional Materials, 2021, 31, 2101005.	7.8	24
512	Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging. Nature Communications, 2021, 12, 3840.	5.8	35
513	Trifunctional Graphene Quantum Dot@LDH Integrated Nanoprobes for Visualization Therapy of Gastric Cancer. Advanced Healthcare Materials, 2021, 10, e2100512.	3.9	16
514	Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 2021, 38, 101119.	6.2	135
515	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	23.0	162
516	An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics, 2021, 13, 1067.	2.0	57
517	Long Persistent Luminescence: A Road Map Toward Promising Future Developments in Energy and Environmental Science. Annual Review of Materials Research, 2021, 51, 409-433.	4.3	26
518	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	9.5	82
519	Influence of Process Design on the Preparation of Solid Lipid Nanoparticles by an Ultrasonic-Nanoemulsification Method. Processes, 2021, 9, 1265.	1.3	9
520	Citrate-Coated Magnetic Polyethyleneimine Composites for Plasmid DNA Delivery into Glioblastoma. Polymers, 2021, 13, 2228.	2.0	2
521	Aptamer-based biosensors for the diagnosis of sepsis. Journal of Nanobiotechnology, 2021, 19, 216.	4.2	26
522	A Bionanozyme with Ultrahigh Activity Enables Spatiotemporally Controlled Reactive Oxygen Species Generation for Cancer Therapy. Advanced Functional Materials, 2021, 31, 2104100.	7.8	18
523	Biogenic synthesis, in-vitro cytotoxicity, esterase activity and interaction studies of copper oxide nanoparticles with lysozyme. Journal of Materials Research and Technology, 2021, 13, 2066-2077.	2.6	19
524	A Greener Chemistry Process Using Microwaves in Continuous Flow to Synthesize Metallic Bismuth Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 9177-9187.	3.2	6
525	Cerium-based Dual-Modality Imaging Contrast Agent for Efficient Retention in Tumor Acidic Microenvironment. Chinese Journal of Analytical Chemistry, 2021, 49, e21126-e21132.	0.9	0

#	Article	IF	CITATIONS
526	Determine the position of nanoparticles in cells by using surface-enhanced Raman three-dimensional imaging. Nano Research, 2021, 14, 3402-3406.	5.8	4
527	State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir, 2021, 37, 9281-9301.	1.6	24
528	Nanotherapeutics for cardiovascular disease. Nature Reviews Cardiology, 2021, 18, 617-618.	6.1	12
529	Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS Applied Bio Materials, 2021, 4, 5908-5925.	2.3	42
530	2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials, 2021, 275, 120953.	5.7	12
531	DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosensors and Bioelectronics, 2021, 186, 113305.	5.3	37
532	A Nanotheranostic System Combining Lysosomal Cell Death and Nuclear Apoptosis Functions for Synergistic Cancer Therapy and Addressing Drug Resistance. Advanced Functional Materials, 2021, 31, 2106091.	7.8	19
533	Organic Semiconducting Luminophores for Nearâ€Infrared Afterglow, Chemiluminescence, and Bioluminescence Imaging. Advanced Functional Materials, 2021, 31, 2106154.	7.8	47
534	Deep NIR-I Emissive Iridium(III) Complex Bearing D-A Ligand: Synthesis, Photophysical Properties and DFT/TDDFT Calculation. Crystals, 2021, 11, 1038.	1.0	0
535	High Stability Au NPs: From Design to Application in Nanomedicine. International Journal of Nanomedicine, 2021, Volume 16, 6067-6094.	3.3	21
536	Manganese Ferrite Nanoparticles Encapsulated into Vitamin E/Sphingomyelin Nanoemulsions as Contrast Agents for Highâ€Sensitive Magnetic Resonance Imaging. Advanced Healthcare Materials, 2021, 10, e2101019.	3.9	24
537	Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy?. Coordination Chemistry Reviews, 2021, 440, 213974.	9.5	22
538	Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews, 2021, 441, 213978.	9.5	15
539	Tailoring Local Hysteresis in Small Clusters of Dipolar Interacting Magnetic Nanoparticles. Nano, 2021, 16, .	0.5	6
540	Add the Finishing Touch: Molecular Engineering of Conjugated Small Molecule for Highâ€₽erformance AIE Luminogen in Multimodal Phototheranostics. Small, 2021, 17, e2102044.	5.2	28
541	Controllable synthesis of CdSe/ZnS core–shell quantum dots by one-step thermal injection and application in light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 22024-22034.	1.1	6
542	Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Metals, 2022, 41, 56-66.	3.6	29
543	Eco-Mediated Synthesis of Visible Active Bi2WO6 Nanoparticles and its Performance Towards Photocatalyst, Supercapacitor, Biosensor, and Antioxidant Activity. Journal of Cluster Science, 2022, 33, 2233, 2248	1.7	10

ARTICLE IF CITATIONS Synthesis of water-soluble europium-containing nanoprobes via polymerization-induced self-assembly 2.9 6 544 and their cellular imaging applications. Talanta, 2021, 232, 122182. Molecular Probes for Autofluorescence-Free Optical Imaging. Chemical Reviews, 2021, 121, 13086-13131. 545 23.0 Plasmonic Oxygen Defects in $MO < sub > 3\hat{a}^{\prime\prime} < |sub > \langle i > \langle sub > \langle i \rangle < |i > \langle m = W \text{ or } Mo)$ Nanomaterials: 546 Synthesis, Modifications, and Biomedical Applications. Advanced Healthcare Materials, 2021, 10, 3.9 12 e2101331. An approach for optimizing gold nanoparticles for possible medical applications, using correlative electron energy loss and Raman spectroscopies on electron beam lithographically fabricated arrays. Journal of Materials Research, 2021, 36, 3383. 547 1.2 Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the 548 Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward 1.7 33 Clinical Implementation. Cancers, 2021, 13, 4583. Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxideâ€Initiated Chemiluminescence for Activated Tumor Theranostics. Angewandte Chemie, 2021, 133, 23998. 549 1.6 Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxideâ€Initiated Chemiluminescence for 550 7.2 43 Activated Tumor Theranostics. Angewandte Chemie - International Edition, 2021, 60, 23805-23811. Imaging strategies using cyanine probes and materials for biomedical visualization of live animals. 551 26 Coordination Chemistry Réviews, 2021, 447, 214134. Sequential SPECT and NIR-II imaging of tumor and sentinel lymph node metastasis for diagnosis and 552 2.6 14 image-guided surgery. Biomaterials Science, 2021, 9, 3069-3075. Luminescent Nanomaterials (II). Advances in Experimental Medicine and Biology, 2021, 1309, 97-132. 0.8 CHAPTER 5. Inorganic Nanocrystals and Biointerfaces. RSC Nanoscience and Nanotechnology, 2021, , 0 554 0.2 161-208. Ultrahigh Penetration and Retention of Graphene Quantum Dot Mesoporous Silica Nanohybrids for 2.3 Image Guided Tumor Regression. ACS Applied Bio Materials, 2021, 4, 1693-1703. Intravital NIR-II three-dimensional photoacoustic imaging of biomineralized copper sulfide 556 2.9 10 nanoprobes. Journal of Materials Chemistry B, 2021, 9, 3005-3014. <i>In situ</i> formation of Hg²⁺-coordinated fluorescent nanoparticles through a supramolecular polymer network used for efficient Hg²⁺ sensing and separation. Nanoscale, 2021, 13, 9172-9176. 2.8 Er³⁺ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb 558 2.9 32 <i>in vivo</i> bio-imaging. Journal of Materials Chemistry B, 2021, 9, 2899-2908. Nanomaterials to target immunity. Advances in Pharmacology, 2021, 91, 293-335. 1.2 Functionalized nanoprobes for <i>in situ</i> detection of telomerase. Chemical Communications, 560 2.214 2021, 57, 3736-3748. Nanopharmacokinetics: key role in in vivo imaging., 2021, , 233-251.

#	Article	IF	CITATIONS
562	Periodic nanostructures: preparation, properties and applications. Chemical Society Reviews, 2021, 50, 6423-6482.	18.7	34
563	Water-soluble polysiloxane for drug delivery in bioimaging. Russian Chemical Bulletin, 2021, 70, 99-106.	0.4	1
564	Nanoparticles weaponized with builtâ€in functions for imagingâ€guided cancer therapy. View, 2020, 1, e19.	2.7	35
565	Tellurium, the Forgotten Element: A Review of the Properties, Processes, and Biomedical Applications of the Bulk and Nanoscale Metalloid. , 2020, , 723-783.		6
566	Clinical Toxicity of Nanomedicines. , 2020, , 533-560.		5
567	Advanced hybrid nanomaterials for biomedical applications. Progress in Materials Science, 2020, 114, 100686.	16.0	140
568	Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. ACS Nano, 2020, 14, 17203-17212.	7.3	19
569	Nanomedicine for Spontaneous Brain Tumors: A Companion Clinical Trial. ACS Nano, 2019, 13, 2858-2869.	7.3	41
570	CHAPTER 12. Stimuli-responsive Materials in Theranostics. Biomaterials Science Series, 0, , 284-316.	0.1	1
571	Cucurbit[6]uril-based Polymer Nanocapsules. RSC Smart Materials, 2019, , 217-234.	0.1	1
572	Feasibility of USPIOs for T ₁ -weighted MR molecular imaging of tumor receptors. RSC Advances, 2017, 7, 31671-31681.	1.7	5
573	Synthesis of deep red emitting Cu–In–Zn–Se/ZnSe quantum dots for dual-modal fluorescence and photoacoustic imaging. Nanotechnology, 2021, 32, 085101.	1.3	5
574	Noninvasive and real-time pharmacokinetics imaging of polymeric nanoagents in the thoracoepigastric vein networks of living mice. Journal of Biomedical Optics, 2019, 24, 1.	1.4	2
575	Magnetic Fe ₃ O ₄ @Mesoporous Silica Composite Microspheres: Synthesis and Biomedical Applications. Nanoscience and Nanotechnology Letters, 2017, 9, 1849-1860.	0.4	8
576	Mesoscale nanoparticles encapsulated with emodin for targeting antifibrosis in animal models. Open Chemistry, 2020, 18, 1207-1216.	1.0	2
577	A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. Journal of Materials Research, 2020, 35, 430-441.	1.2	33
578	Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications. Current Medicinal Chemistry, 2019, 26, 4042-4064.	1.2	53
579	Research Advances in Chitosan Oligosaccharides: From Multiple Biological Activities to Clinical Applications. Current Medicinal Chemistry, 2020, 27, 5037-5055.	1.2	11

#	Article	IF	CITATIONS
580	Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents. Current Pharmaceutical Design, 2020, 26, 2167-2181.	0.9	2
581	Nano-Metal Organic Frame Work an Excellent Tool for Biomedical Imaging. Current Medical Imaging, 2018, 14, 669-674.	0.4	18
582	Coordination-induced exfoliation to monolayer Bi-anchored MnB ₂ nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics, 2020, 10, 1861-1872.	4.6	43
583	Nano-oncology: Clinical Application for Cancer Therapy and Future Perspectives. Nanotechnology in the Life Sciences, 2021, , 49-95.	0.4	0
584	Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chemical Society Reviews, 2021, 50, 12883-12896.	18.7	108
585	Revisiting the factors influencing the magnetic resonance contrast of Gd ₂ O ₃ nanoparticles. Nanoscale Advances, 2021, 4, 95-101.	2.2	4
586	Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms. Indian Institute of Metals Series, 2021, , 27-69.	0.2	0
587	Nanomedicines: Recent Progress, Impact and Challenges in Applications. Asian Journal of Chemistry, 2021, 33, 2561-2578.	0.1	0
588	¹⁹ F-Grafted Fluorescent Carbonized Polymer Dots for Dual-Mode Imaging. Analytical Chemistry, 2021, 93, 13880-13885.	3.2	9
589	Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Advanced Healthcare Materials, 2022, 11, e2101703.	3.9	5
590	Anchoring Group Mediated Radiolabeling for Achieving Robust Nanoimaging Probes. Small, 2021, 17, e2104977.	5.2	11
591	Supramolecular peptide nanostructures: Self-assembly and biomedical applications. Ciant, 2022, 9, 100082.	2.5	15
592	Donor/Ï€â€Bridge Manipulation for Constructing a Stable NIRâ€II Aggregationâ€Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angewandte Chemie, 2021, 133, 26973-26980.	1.6	17
593	Donor/Ï€â€Bridge Manipulation for Constructing a Stable NIRâ€l Aggregationâ€Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angewandte Chemie - International Edition, 2021, 60, 26769-26776.	7.2	96
594	Nanotechnology at the Rescue of Neurodegenerative Diseases: Tools for Early Diagnostic. , 2019, , 19-48.		1
595	Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100067.	1.7	12
596	Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials, 2021, 11, 2888.	1.9	15
597	Use of Polyhedral Oligomeric Silsesquioxane (POSS) in Drug Delivery, Photodynamic Therapy and Bioimaging. Molecules, 2021, 26, 6453.	1.7	30

#	Article	IF	CITATIONS
598	Novel advanced nanotechnologies for nuclear medicine. Journal of Physics: Conference Series, 2021, 2058, 012035.	0.3	1
599	Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics, 2022, 6, 184-194.	2.7	27
600	Bioorthogonal regulation of DNA circuits for smart intracellular microRNA imaging. Chemical Science, 2021, 12, 15710-15718.	3.7	36
601	Biocompatible Fluorescent Nanomaterials for Molecular Imaging Applications. , 2020, , 27-53.		1
602	Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Science China Chemistry, 2021, 64, 2218-2229.	4.2	34
604	In vivo visualization of murine melanoma cells B16-derived exosomes through magnetic resonance imaging. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130062.	1.1	3
605	Antibody mounting capability of 1D/2D carbonaceous nanomaterials toward rapid-specific detection of SARS-CoV-2. Talanta, 2022, 239, 123113.	2.9	15
606	Cholecystokinin-B Receptor-Targeted Nanoparticle for Imaging and Detection of Precancerous Lesions in the Pancreas. Biomolecules, 2021, 11, 1766.	1.8	6
607	Iron Carbide Nanostructures: An Emerging Material for Tumor Theranostics. Accounts of Materials Research, 2022, 3, 89-99.	5.9	9
608	Nanoparticle theranostics in cardiovascular inflammation. Seminars in Immunology, 2021, 56, 101536.	2.7	13
609	Shedding Light on DNAâ€Based Nanoprobes for Liveâ€Cell MicroRNA Imaging. Small, 2022, 18, e2106281.	5.2	9
610	Orally administered Bi2S3@SiO2 core-shell nanomaterials as gastrointestinal contrast agents and their influence on gut microbiota. Materials Today Bio, 2022, 13, 100178.	2.6	5
611	Chapter 3. Imaging Applications of Inorganic Nanomaterials. Inorganic Materials Series, 2021, , 127-193.	0.5	0
612	Radiolabeled porous silicon for nuclear imaging and theranostic applications. , 2021, , 223-253.		1
613	Intracellular Biosensing. , 2021, , .		0
614	Chapter 4. Diagnostic and Theranostic Applications of Inorganic Materials. Inorganic Materials Series, 2021, , 194-241.	0.5	0
615	Nanotechnology for Drug Delivery and Cancer Therapy. Advances in Chemical and Materials Engineering Book Series, 2022, , 338-362.	0.2	3
616	Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. Nano Today, 2022, 42, 101351.	6.2	22

#	ARTICLE	IF	Citations
617	Fusogenic liposome-enhanced cytosolic delivery of magnetic nanoparticles. RSC Advances, 2021, 11, 35796-35805.	1.7	4
618	Advances in Imaging Modalities and Contrast Agents for the Early Diagnosis of Colorectal Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 558-581.	0.5	4
619	Cellâ€Derived Biomimetic 2D Nanoparticles to Improve Cellâ€Specific Targeting and Tissue Penetration for Enhanced Magnetic Resonance Imaging. Advanced Materials Interfaces, 2022, 9, .	1.9	10
620	Glucose biosensing based on a hydrogel optical fiber immobilized with glucose oxidase. Optik, 2022, 255, 168655.	1.4	4
621	Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview. , 2022, , 277-308.		5
622	Nanomaterials for Biophotonics. , 2023, , 67-91.		0
623	Supervised learning model predicts protein adsorption to carbon nanotubes. Science Advances, 2022, 8, eabm0898.	4.7	19
624	Developing sensor materials for screening intestinal diseases. Materials Futures, 2022, 1, 022401.	3.1	5
625	Recent development of magneto-optical nanoplatform for multimodality imaging of Pancreatic Ductal Adenocarcinoma. Nanoscale, 2022, , .	2.8	6
626	Noninvasive Visualization of Sub-5 mm Orthotopic Hepatic Tumors by a Nanoprobe-Mediated Positive and Reverse Contrast-Balanced Imaging Strategy. ACS Nano, 2022, 16, 897-909.	7.3	8
627	Nanotechnology for cancer theranostics. , 2022, , 19-36.		0
628	NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors, 2022, 12, 46.	2.3	15
629	Reasonable design of NIR AlEgens for fluorescence imaging and effective photothermal/photodynamic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 1418-1426.	2.9	6
630	Characterization of Mechanochemical Modification of Porous Silicon with Arginine. Surfaces, 2022, 5, 143-154.	1.0	0
631	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications. Advanced Materials, 2022, 34, e2106456.	11.1	51
632	Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. Nanomaterials, 2022, 12, 506.	1.9	12
633	Tuning the electrical properties of colloidal nanoalloys by varying their composition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128496.	2.3	2
634	Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews, 2022, 458, 214427.	9.5	30

# 635	ARTICLE Futureâ€Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems, Advanced Materials, 2022, 34, e2108289	IF 11.1	CITATIONS
636	Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. Journal of Materials Chemistry B, 2022, 10, 2077-2096.	2.9	33
637	Molecular Immune Targeted Imaging of Tumor Microenvironment. Nanotheranostics, 2022, 6, 286-305.	2.7	11
638	Metal complexes for the visualisation of amyloid peptides. Sensors & Diagnostics, 2022, 1, 627-647.	1.9	4
639	Gamma camera imaging of sentinel node in prostate cancer. , 2022, , .		0
640	Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters, 2022, 33, 3361-3370.	4.8	7
641	Thiolate Etching Route for the Ripening of Uniform Ag ₂ Te Quantum Dots Emitting in the Second Near-Infrared Window: Implication for Noninvasive <i>In Vivo</i> Imaging. ACS Applied Nano Materials, 2022, 5, 3415-3421.	2.4	6
642	Luminescence-Tunable ZnS–AgInS ₂ Nanocrystals for Cancer Cell Imaging and Photodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 1230-1238.	2.3	5
643	Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochimica Acta, 2022, 189, 109.	2.5	26
644	Applications of Nonâ€precious Transition Metal Oxide Nanoparticles in Electrochemistry. Electroanalysis, 2022, 34, 1065-1091.	1.5	17
646	Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands. Jacs Au, 2022, 2, 711-722.	3.6	18
647	Recent Developments in Porous Silicon Nanovectors with Various Imaging Modalities in the Framework of Theranostics. ChemMedChem, 2022, 17, .	1.6	2
648	Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS Nano, 2022, 16, 5036-5061.	7.3	30
649	Nano-cryospray: An adjuvant assisted approach to increase the efficacy of cryospray. Cryobiology, 2022, 106, 148-156.	0.3	1
650	Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Analytical Chemistry, 2022, 94, 4737-4746.	3.2	8
651	Advanced molecular imaging for the characterisation of complex medicines. Drug Discovery Today, 2022, 27, 1716-1723.	3.2	3
652	Optical detection of atherosclerosis at molecular level by optical coherence tomography: An in vitro study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102556.	1.7	2
653	When imaging meets size-transformable nanosystems. Advanced Drug Delivery Reviews, 2022, 183, 114176.	6.6	11

#	Article	IF	CITATIONS
654	Nanobiomaterials in support of drug delivery related issues. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 279, 115680.	1.7	16
655	Retroreflection-based optical biosensing: From concept to applications. Biosensors and Bioelectronics, 2022, 207, 114202.	5.3	9
656	Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. Nanomaterials, 2022, 12, 18.	1.9	18
657	Imaging of Nanoscale Gold in "Intact―Biological Cells by Environmental Electron Microscopy. Journal of Physical Chemistry C, 2021, 125, 27865-27875.	1.5	0
658	Visualization of Acute Inflammation through a Macrophage-Camouflaged Afterglow Nanocomplex. ACS Applied Materials & Interfaces, 2022, 14, 259-267.	4.0	13
659	Enhanced X-ray Attenuating Efficiency of Silicon Dioxide Nanoparticles with Cesium Lead Bromide and 2,5-Diphenyloxazole Co-Embedded Therein. Crystals, 2021, 11, 1531.	1.0	1
660	Multifunctional Near-Infrared (NIR) Phosphors with NIR I and NIR II Luminescence for Biological Detection. ACS Applied Electronic Materials, 2022, 4, 432-442.	2.0	10
661	Non-metallic T2-MRI agents based on conjugated polymers. Nature Communications, 2022, 13, 1994.	5.8	6
662	Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1800.	3.3	12
664	AIE bio-conjugates for biomedical applications. , 2022, , 529-553.		1
665	Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. Materials, 2022, 15, 3251.	1.3	32
666	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
667	Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. Materials, 2022, 15, 3355.	1.3	28
668	Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Subâ€5 Ultrafine Iron Oxide Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2102816.	3.9	6
669	Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials, 2022, 285, 121531.	5.7	48
670	Engineering carbon nanotubes for sensitive viral detection. TrAC - Trends in Analytical Chemistry, 2022, 153, 116659.	5.8	12
671	Amino-modified-silica-coated gadolinium-copper nanoclusters, conjugated to AS1411 aptamer and radiolabeled with technetium-99Âm as a novel multimodal imaging agent. Bioorganic Chemistry, 2022, 125, 105827.	2.0	11
672	Plasmonic anisotropic gold nanorods: Preparation and biomedical applications. Nano Research, 2022, 15, 6372-6398.	5.8	15

#	Article	IF	CITATIONS
673	Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers, 2022, 14, 2456.	1.7	4
674	Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology, 2022, 20, 236.	4.2	9
675	Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Advances in Colloid and Interface Science, 2022, 305, 102705.	7.0	51
676	Multinuclear Mn(II) united-DOTA complexes with enhanced inertness and high MRI contrast ability. Cell Reports Physical Science, 2022, , 100920.	2.8	4
677	Threeâ€Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregationâ€Induced Emission Photosensitizer for Potent Cancer Theranostics. Small Methods, 2022, 6, .	4.6	11
678	Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications. Acta Biomaterialia, 2022, 148, 22-43.	4.1	39
679	Recent advances in AlEgens for three-photon fluorescence bioimaging. Materials Today Chemistry, 2022, 25, 100975.	1.7	3
681	A short review on cancer therapeutics. ChemistrySelect, 2022, .	0.7	2
682	Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem, 2022, 17, .	1.6	31
683	Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics. ACS Sensors, 2022, 7, 1747-1756.	4.0	7
684	Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opinion on Drug Delivery, 2022, 19, 847-860.	2.4	6
685	Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science, 2022, 131, 101578.	11.8	12
686	One-step continuous flow synthesis of aminopropyl silica-coated magnetite nanoparticles. Journal of Saudi Chemical Society, 2022, 26, 101506.	2.4	10
687	Functionalized DNA nanostructures for bioimaging. Coordination Chemistry Reviews, 2022, 469, 214648.	9.5	15
688	Emerging technologies in cancer detection. , 2022, , 353-392.		1
689	Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma. Nano Research, 2022, 15, 9082-9091.	5.8	7
690	pH-Responsive Chitosan-Adorned Niosome Nanocarriers for Co-Delivery of Drugs for Breast Cancer Therapy. ACS Applied Nano Materials, 2022, 5, 8811-8825.	2.4	36
691	Promise and Perspective of Nanomaterials in Antisenescence Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, 8, 3133-3141.	2.6	5

#	Article	IF	Citations
692	Universal Chelator-Free Radiolabeling of Organic and Inorganic-Based Nanocarriers with Diagnostic and Therapeutic Isotopes for Internal Radiotherapy. Chemistry of Materials, 2022, 34, 6593-6605.	3.2	11
693	Radiotheranostic Agents in Hematological Malignancies. Frontiers in Immunology, 0, 13, .	2.2	5
694	Luminescence-Sensitive Surfaces Bearing Ratiometric Nanoparticles for Bacteria Growth Detection. ACS Applied Polymer Materials, 0, , .	2.0	1
695	Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Frontiers in Oncology, 0, 12, .	1.3	6
696	Imaging-guided/improved diseases management for immune-strategies and beyond. Advanced Drug Delivery Reviews, 2022, 188, 114446.	6.6	8
697	An update on dual targeting strategy for cancer treatment. Journal of Controlled Release, 2022, 349, 67-96.	4.8	18
698	Enzymatic and Cellular Degradation of Carbon-Based Biconcave Nanodisks. Micromachines, 2022, 13, 1144.	1.4	1
699	Nanoplatformâ€Based Reactive Oxygen Species Scavengers for Therapy of Ischemiaâ€Reperfusion Injury. Advanced Therapeutics, 2022, 5, .	1.6	9
700	Application of Nanomaterials in Visual Effects of National Costume Pattern Design. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.0	1
701	In Situ Growing Prussian Blue Nanocrystals on Ti3c2 Lamellae as High-Performance Electrode for Potassium-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
702	Hydrothermal Synthesis and In Vivo Fluorescent Bioimaging Application of Eu3+/Gd3+ Co-Doped Fluoroapatite Nanocrystals. Journal of Functional Biomaterials, 2022, 13, 108.	1.8	4
703	Computational Biomaterials: Computational Simulations for Biomedicine. Advanced Materials, 2023, 35, .	11.1	10
704	Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials, 2022, 289, 121753.	5.7	9
705	Cross-scale modulation for aqueous fabrication of monodisperse Cu2â^'xE (E = S, Se, Te) nanocrystals and supraparticles. Nano Research, O, , .	5.8	1
706	A ratiometric fluorescent nanoprobe for ultrafast imaging of peroxynitrite in living cells. Journal of Biological Inorganic Chemistry, 2022, 27, 595-603.	1.1	2
707	Magnetic Field-Modulated Plasmonic Scattering of Hybrid Nanorods for FFT-Weighted OCT Imaging in NIR-II. ACS Nano, 2022, 16, 12738-12746.	7.3	4
708	Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. International Journal of Nanomedicine, 0, Volume 17, 3511-3529.	3.3	9
709	Polyacrylic acid complexes to mineralize ultrasmall europium-doped calcium phosphate nanodots for fluorescent bioimaging. Materials and Design, 2022, 221, 111008.	3.3	4

	C	ITATION REPORT	
#	Article	IF	CITATIONS
710	A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 261, 109428.	1,3	5
711	Research progress of phosphorescent probe for biological imaging. Journal of Molecular Structure, 2022, 1269, 133855.	1.8	5
712	Dual-signal output paper sensor based on coordinative self-assembly biomimetic nanozyme for point-of-care detection of biomarker. Biosensors and Bioelectronics, 2022, 216, 114656.	5.3	10
713	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2022, , 1-60.	0.1	0
714	Organic–Inorganic Nanohybrids in Medicine. Materials Horizons, 2022, , 77-106.	0.3	0
715	Based on the Application Practice of Multifunctional Nanomaterials in Art Design and Industrial Manufacturing Concept. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.0	1
716	Engineered Nanomaterials as Emerging Water Pollutants. , 2022, , 77-99.		0
717	Omniparticle Contrast Agent for Multimodal Imaging: Synthesis and Characterization in an Animal Model. Molecular Imaging and Biology, 2023, 25, 401-412.	1.3	2
718	Inorganic Complexes and Metal-Based for Biomarkers Sensors. , 2023, , 113-155.		0
719	Near-infrared II plasmonic porous cubic nanoshells for in vivo noninvasive SERS visualization of sub-millimeter microtumors. Nature Communications, 2022, 13, .	5.8	22
720	Multifunctional Modulation of Highâ€Performance Zn <i>_x</i> Fe _{3â°°<i>x</i>} O ₄ Nanoparticles by Precisely Tuning Zinc Doping Content. Small, 2022, 18, .	g the 5.2	10
721	Nanotechnology-based approaches in diagnosis and treatment of epilepsy. Journal of Nanoparticle Research, 2022, 24, .	0.8	1
722	Magnesium and gadolinium doping of superparamagnetic magnetite nanoparticles as T2 contrast nanoagents for magnetic resonance imaging. MRS Communications, 2022, 12, 944-951.	0.8	2
723	Recent progress in nanocomposites of carbon dioxide fixation derived reproducible biomedical polymers. Frontiers in Chemistry, 0, 10, .	1.8	4
724	Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomedicine and Pharmacotherapy, 2022, 155, 113791.	2.5	21
725	Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of <i>in vivo</i> imaging. Theranostics, 2022, 12, 7509-7531.	4.6	43
726	A Voyage on Biomedical Applications of Multicomponent Nanoparticles in Medical Imaging. , 2022, , 401-421.		0
727	Fate and biological impact of persistent luminescence nanoparticles after injection in mice: a one-yea follow-up. Nanoscale, 2022, 14, 15760-15771.	r 2.8	15

#	Article	IF	CITATIONS
728	High spin Fe(<scp>III</scp>)â€doped nanostructures as <i>T</i> <scp>₁ MR</scp> imaging probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
729	Fabrication and application of cisplatin-loaded mesoporous magnetic nanobiocomposite: a novel approach to smart cervical cancer chemotherapy. Cancer Nanotechnology, 2022, 13, .	1.9	7
730	Organic persistent luminescence imaging for biomedical applications. Materials Today Bio, 2022, 17, 100481.	2.6	6
731	Nanomaterials for NIRâ€II Photoacoustic Imaging. Advanced Healthcare Materials, 2023, 12, .	3.9	29
732	Plasmonic hot-hole injection combined with patterned substrate forÂperformance improvement in trapezoidal PIN GaN microwire self-powered ultraviolet photodetector. Nano Energy, 2022, 104, 107926.	8.2	7
733	Determination of the nanoparticle- and cell-specific toxicological mechanisms in 3D liver spheroids using scRNAseq analysis. Nano Today, 2022, 47, 101652.	6.2	5
734	Electrochemical biosensors based on saliva electrolytes for rapid detection and diagnosis. Journal of Materials Chemistry B, 2022, 11, 33-54.	2.9	7
735	In situ growing Prussian blue nanocrystals on Ti3C2 lamellae as high-performance electrode for potassium-ion storage. Applied Surface Science, 2023, 610, 155583.	3.1	0
736	Facile Synthesis of Weakly Ferromagnetic Organogadolinium Macrochelatesâ€Based T ₁ â€Weighted Magnetic Resonance Imaging Contrast Agents. Advanced Science, 2023, 10, .	5.6	16
737	Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
738	Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS Applied Materials & Interfaces, 2022, 14, 53359-53369.	4.0	10
739	Molecular Planarization of Raman Probes to Avoid Background Interference for High-Precision Intraoperative Imaging of Tumor Micrometastases and Lymph Nodes. Nano Letters, 0, , .	4.5	1
740	Nanotheranostic Strategies for Cancer Immunotherapy. Small Methods, 2022, 6, .	4.6	7
741	Monitoring leaching of Cd2+ from cadmium-based quantum dots by an Cd aptamer fluorescence sensor. Biosensors and Bioelectronics, 2023, 220, 114880.	5.3	7
742	Disturbed Flowâ€Facilitated Margination and Targeting of Nanodisks Protect against Atherosclerosis. Small, 0, , 2204694.	5.2	1
743	Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics, 2023, 13, 483-509.	4.6	21
744	Ultrasound combined with nanomaterials for cancer therapy. Materials Today Advances, 2023, 17, 100330.	2.5	10
745	Terahertz Circular Dichroism Spectroscopy of Molecular Assemblies and Nanostructures. Journal of the American Chemical Society, 2022, 144, 22789-22804.	6.6	10

#	Article	IF	CITATIONS
746	"Advances in cancer imaging and technology"—special collection —introductory Editorial. BJR Open, 2022, 4, .	0.4	0
747	Noninvasive Gastrointestinal Tract Imaging Using BSA-Ag ₂ Te Quantum Dots as a CT/NIR-II Fluorescence Dual-Modal Imaging Probe in Vivo. ACS Biomaterials Science and Engineering, 2023, 9, 449-457.	2.6	4
748	Laser-induced deep-subwavelength periodic nanostructures with large-scale uniformity. Applied Physics Letters, 2023, 122, .	1.5	5
749	Localized Instillation Enables <i>In Vivo</i> Screening of Targeting Peptides Using One-Bead One-Compound Technology. ACS Nano, 2023, 17, 1381-1392.	7.3	3
750	Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment. Methods in Molecular Biology, 2023, , 187-235.	0.4	2
751	A clinically translatable kit for MRI/NMI dual-modality nanoprobes based on anchoring group-mediated radiolabeling. Nanoscale, 2023, 15, 3991-3999.	2.8	3
752	Theoretical insights into the rational design of small organic phototheranostic agents for promoting image-guided cancer surgery. Materials Chemistry Frontiers, 0, , .	3.2	0
753	Photo-Activated Ratiometric Fluorescent Indicator for Real-Time and Visual Detection of Plasma Membrane Homeostasis. Analytical Chemistry, 2023, 95, 1838-1846.	3.2	2
754	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2023, , 99-156.	0.1	0
755	Constructing bimodal nanoprobe based on Gd:AgInS2/ZnS quantum dots for fluorometric/magnetic resonance imaging in mesenchymal stem cells. Journal of Materials Science and Technology, 2023, 148, 116-122.	5.6	11
756	Dextran Sulfate Nanocarriers: Design, Strategies and Biomedical Applications. International Journal of Molecular Sciences, 2023, 24, 355.	1.8	8
757	De Novo Design of Reversibly pH-Switchable NIR-II Aggregation-Induced Emission Luminogens for Efficient Phototheranostics of Patient-Derived Tumor Xenografts. Journal of the American Chemical Society, 2023, 145, 334-344.	6.6	46
758	Biological applications of green bionanomaterials: diagnosis applications. , 2023, , 443-467.		0
759	Highly Bright Nearâ€Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
760	Highly Bright Nearâ€Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angewandte Chemie, 2023, 135, .	1.6	0
761	Ir(III)-based Ratiometric Hypoxic Probe for Cell Imaging. Chinese Journal of Polymer Science (English) Tj ETQq1 1	0.784314 2.0	rg <mark>B</mark> T /Overloo
762	Carbon nanotubes for anticancer therapy: new trends and innovations. , 2023, , 175-204.		0
763	A tumor-targetable NIR probe with photoaffinity crosslinking characteristics for enhanced imaging-guided cancer phototherapy. Chemical Science, 2023, 14, 2369-2378.	3.7	4

#	Article	IF	CITATIONS
764	Synthesis of I@MPA-Mn:ZnSe as an efficient contrast agent for CT/fluorescence bi-modal imaging application. Radiation Physics and Chemistry, 2023, 209, 110947.	1.4	0
765	Bifunctional nanomaterial with antibody-like and electrocatalytic activity to facilitate electrochemical biosensor of Escherichia coli. Journal of Electroanalytical Chemistry, 2023, 935, 117303.	1.9	2
766	Linguistic Analysis Identifies Emergent Biomaterial Fabrication Trends for Orthopaedic Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	4
767	Crosslinked albumin–manganese nanoaggregates with sensitized <i>T</i> ₁ relaxivity and indocyanine green loading for multimodal imaging and cancer phototherapy. Journal of Materials Chemistry B, 2023, 11, 2157-2165.	2.9	2
768	Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnology, 2023, 14, .	1.9	1
769	Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Longâ€Term Visualization of Local Pharmacokinetics. Advanced Materials, 2023, 35, .	11.1	15
770	Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals, 2023, 16, 249.	1.7	3
771	Nanomaterials for Fluorescence and Multimodal Bioimaging. Chemical Record, 2023, 23, .	2.9	4
772	Basic Theoretical Description of Sensor-Target Binding. , 2023, , 37-72.		0
773	Review of ultrafast laser ablation for sensing and photonic applications. Journal of Optics (United) Tj ETQq1 1 0.7	84314 rg 1.0	BT_/Overlock
774	Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnology, 2023, 14, .	1.9	18
775	2D MoS ₂ and BN Nanosheets Damage Mitochondria through Membrane Penetration. ACS Nano, 2023, 17, 4716-4728.	7.3	7
776	Lower Energy Excitation of Water Soluble Nearâ€Infrared Emitting Mixedâ€Ligand Metallacrowns. Chemistry - A European Journal, 2023, 29, .	1.7	2
777	Electrochemical biosensor based on antibody-modified Au nanoparticles for rapid and sensitive analysis of influenza A virus. Ionics, 2023, 29, 2021-2029.	1.2	4
778	Tracking tumor heterogeneity and progression with nearâ€infrared II fluorophores. Exploration, 2023, 3, .	5.4	13
779	Application of bismuth sulfide based nanomaterials in cancer diagnosis and treatment. Nano Today, 2023, 49, 101799.	6.2	8
780	Plate-Like Colloidal Metal Nanoparticles. Chemical Reviews, 2023, 123, 3493-3542.	23.0	24
781	Theranostic Applications of Functional Nanomaterials in Targeting Glioma: A Review of Current Practices and Future Perspectives. Journal of Biomedical Nanotechnology, 2022, 18, 2453-2462.	0.5	0

ARTICLE IF CITATIONS # BODIPY-Based Multifunctional Nanoparticles for Dual Mode Imaging-Guided Tumor Photothermal and 782 2.3 2 Photodynamic Therapy. ACS Applied Bio Materials, 2023, 6, 3406-3413. Nanomedicines for cardiovascular disease., 2023, 2, 351-367. Recent Applications and Future Perspectives of Chemiluminescent and Bioluminescent Imaging 784 5 Technologies., 2023, 1, 297-314. Nanomaterial-based contrast agents. Nature Reviews Methods Primers, 2023, 3, . 785 11.8 A report on Se/Eu-doped hydroxyapatite: crystal structure analysis, biological property assessment, 786 2.6 0 and applications in osteosarcoma inhibition and bioimaging. Materials Advances, 0, , . Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules, 2023, 28, 1.7 3561. Tunable Nanoparticles with Aggregationâ€Induced Emission Heater for Precise Synergistic 788 Photothermal and Thermodynamic Oral Cancer Therapy of Patientâ€Derived Tumor Xenograft. Advanced 5.6 6 Science, 2023, 10, . Interactions between amphiphilic nanoparticles coated with striped hydrophilic/hydrophobic ligands 789 1.1 and a lipid bilayer. Communications in Theoretical Physics, 2023, 75, 065601. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomaterials Science 800 2 2.6 and Engineering, 2024, 10, 38-50. Tissue Oxygenation and pH-Responsive Fluorescent Nanosensors in Tumor Diagnosis., 2023, , 187-206. Nanotechnological tools for the diagnosis and treatment of cancer., 2023, , 337-352. 816 0 Review on iron nanoparticles for cancer theranostics: synthesis, modification, characterization and 0.8 applications. Journal of Nanoparticle Research, 2023, 25, . Nanoprobe-based molecular imaging for tumor stratification. Chemical Society Reviews, 2023, 52, 821 18.7 7 6447-6496. Nanoporous YVO₄ as a luminescent host for probing molecular encapsulation. Chemical Communications, 2023, 59, 11393-11396. 2.2 Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. 824 2.6 2 Biomaterials Science, 2023, 11, 6942-6976. Nanozymes for Live Assays., 2023, , 87-109. 850 Liquid Metal Biomedical Imaging., 2024, , 1-35. 0 A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer., 2024, 41, .

#	Article	IF	CITATIONS
867	Synthesis and processing methods of magnetic nanosystems for diagnostic tools and devices: Design strategies and physicochemical aspects. , 2024, , 43-78.		0