Environmental impact of estrogens on human, animal a

Environment International 99, 107-119 DOI: 10.1016/j.envint.2016.12.010

Citation Report

#	Article	IF	CITATIONS
1	Quantification of Estradiol Uptake in Zebrafish Embryos and Larvae. Toxicological Sciences, 2017, 158, 465-474.	1.4	26
2	Paternal exposure to environmental 17-alpha-ethinylestradiol concentrations modifies testicular transcription, affecting the sperm transcript content and the offspring performance in zebrafish. Aquatic Toxicology, 2017, 193, 18-29.	1.9	28
3	Environmental application of biochar: Current status and perspectives. Bioresource Technology, 2017, 246, 110-122.	4.8	536
4	Three classes of steroids in typical freshwater aquaculture farms: Comparison to marine aquaculture farms. Science of the Total Environment, 2017, 609, 942-950.	3.9	26
5	The impact of estrogens on aquatic organisms and methods for their determination. Critical Reviews in Environmental Science and Technology, 2017, 47, 909-963.	6.6	35
6	A survey of 17α-ethinylestradiol and mestranol residues in Hawkesbury River, Australia, using a highly specific enzyme-linked immunosorbent assay (ELISA) demonstrates the levels of potential biological significance. Ecotoxicology and Environmental Safety, 2017, 144, 585-592.	2.9	14
7	Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer. Genes, 2017, 8, 229.	1.0	58
8	Dysregulation of Alternative Poly-adenylation as a Potential Player in Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 2017, 10, 279.	1.4	13
9	Adsorption of Contaminants of Emerging Concern from Aqueous Solutions using Cu ²⁺ Amino Grafted SBA-15 Mesoporous Silica: Multicomponent and Metabolites Adsorption. Industrial & Engineering Chemistry Research, 2018, 57, 6426-6439.	1.8	22
10	Simultaneous determination of seven pesticide residues in soil samples using ultrasoundâ€assisted dispersive solidâ€phase extraction combined with UHPLC–MS/MS. Separation Science Plus, 2018, 1, 296-305.	0.3	8
11	The intake of water containing a mix of pollutants at environmentally relevant concentrations leads to defensive response deficit in male C57Bl/6J mice. Science of the Total Environment, 2018, 628-629, 186-197.	3.9	18
12	Cyclodextrin-Functionalized Fiber Yarns Spun from Deep Eutectic Cellulose Solutions for Nonspecific Hormone Capture in Aqueous Matrices. Biomacromolecules, 2018, 19, 652-661.	2.6	19
13	Opportunities for process intensification in the UK water industry: A review. Journal of Water Process Engineering, 2018, 21, 116-126.	2.6	20
14	The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.). Science of the Total Environment, 2018, 634, 1034-1041.	3.9	6
16	Review: Micro-organic contaminants in groundwater in China. Hydrogeology Journal, 2018, 26, 1351-1369.	0.9	34
17	Screening for Biologically Annotated Drugs That Trigger Triacylglycerol Accumulation in the Diatom <i>Phaeodactylum</i> . Plant Physiology, 2018, 177, 532-552.	2.3	43
18	Bioprocessing for elimination antibiotics and hormones from swine wastewater. Science of the Total Environment, 2018, 621, 1664-1682.	3.9	238
19	A novel templated synthesis of C/N-doped β-Bi2O3 nanosheets for synergistic rapid removal of 17α-ethynylestradiol by adsorption and photocatalytic degradation. Ceramics International, 2018, 44, 2178-2185	2.3	32

#	Article	IF	CITATIONS
20	Removal of estrogenic hormones from manure-containing water by vegetable oil capture. Journal of Hazardous Materials, 2018, 343, 125-131.	6.5	4
21	Validation of Arxula Yeast Estrogen Screen assay for detection of estrogenic activity in water samples: Results of an international interlaboratory study. Science of the Total Environment, 2018, 621, 612-625.	3.9	32
22	Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 2018, 130, 38-46.	5.3	289
23	Occurrence of chemicals with known or suspected endocrine disrupting activity in drinking water, groundwater and surface water, Austria 2017/2018. Bodenkultur, 2018, 69, 155-173.	0.1	12
24	Vitellogenesis and Yolk Proteins, Fish. , 2018, , 266-277.		30
25	Pharmaceuticals in the Environment: Focus on Drinking-Water. , 2018, , 325-325.		5
26	Uptake and transformation of steroid estrogens as emerging contaminants influence plant development. Environmental Pollution, 2018, 243, 1487-1497.	3.7	45
27	Toward the determination of estrogenic compounds in the framework of EU watch list: validation and implementation of a two-step solid phase extraction–liquid phase chromatography coupled to tandem mass spectrometry method. Accreditation and Quality Assurance, 2018, 23, 285-295.	0.4	6
28	Litter Type and Number of Flocks Affect Sex Hormones in Broiler Litter. Journal of Environmental Quality, 2018, 47, 156-161.	1.0	8
29	Front Cover: Simultaneous determination of seven pesticide residues in soil samples using ultrasound-assisted dispersive solid-phase extraction combined with UHPLC-MS/MS. Separation Science Plus, 2018, 1, NA-NA.	0.3	0
30	Natural and synthetic estrogens in leafy vegetable and their risk associated to human health. Environmental Science and Pollution Research, 2018, 25, 36712-36723.	2.7	15
31	Selective separation and purification of βâ€estradiol from marine sediment using an optimized core–shell molecularly imprinted polymer. Journal of Separation Science, 2018, 41, 3848-3854.	1.3	5
32	Whole-transcriptome response to wastewater treatment plant and stormwater effluents in the Asian clam, Corbicula fluminea. Ecotoxicology and Environmental Safety, 2018, 165, 96-106.	2.9	20
33	Tailoring MWCNTs and \hat{l}^2 -Cyclodextrin for Sensitive Detection of Acetaminophen and Estrogen. ACS Applied Materials & amp; Interfaces, 2018, 10, 21411-21427.	4.0	66
34	Combined oral contraceptives promote androgen receptor and oestrogen receptor alpha upregulation in the female prostate (Skene's paraurethral glands) of adult gerbils (Meriones) Tj ETQq0 0 0 r	gBTq/@verl	ocks10 Tf 50
35	Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment. Science of the Total Environment, 2018, 640-641, 1015-1023.	3.9	69
36	HPLCâ^'EC Analysis of Estrogenic Compounds: A Comparison of Diamond and Tetrahedral Amorphous Carbon Electrode Performance. Electroanalysis, 2018, 30, 1575-1582.	1.5	3
37	Photodegradation of 17α-Ethynylstradiol (EE2) on Nanostructured Material of Type WO3-SBA-15. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	9

#	Article	IF	CITATIONS
38	A review on the use of hormones in fish farming: Analytical methods to determine their residues. CYTA - Journal of Food, 2018, 16, 679-691.	0.9	62
39	Occurrence and Removal of Emerging Micropollutants from Urban Wastewater. Water Science and Technology Library, 2018, , 231-254.	0.2	4
40	High levels of the endocrine disruptors bisphenol-A and 17β-estradiol detected in populations of green mussel, Perna viridis, cultured in the Gulf of Thailand. Aquaculture, 2018, 497, 348-356.	1.7	26
41	Genomic integration and ligand-dependent activation of the human estrogen receptor \hat{I}_{\pm} in the crustacean Daphnia magna. PLoS ONE, 2018, 13, e0198023.	1.1	5
42	Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules, 2018, 23, 1690.	1.7	23
43	Chloroperoxidase-Mediated Halogenation of Selected Pharmaceutical Micropollutants. Catalysts, 2018, 8, 32.	1.6	18
44	Gestational oral low-dose estradiol-17β induces altered DNA methylation of CDKN2D and PSAT1 in embryos and adult offspring. Scientific Reports, 2018, 8, 7494.	1.6	19
45	Effects of bisphenol analogs on thyroid endocrine system and possible interaction with 17β-estradiol using GH3 cells. Toxicology in Vitro, 2018, 53, 107-113.	1.1	24
46	Emerging Pollutants–Part I: Occurrence, Fate and Transport. Water Environment Research, 2018, 90, 1301-1322.	1.3	18
47	Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review. Science of the Total Environment, 2018, 640-641, 529-542.	3.9	70
48	Investigation of estrogen activity in the raw and treated waters of riverbank infiltration using a yeast estrogen screen and chemical analysis. Journal of Water and Health, 2018, 16, 635-645.	1.1	6
49	Gender differences in bronchiectasis: a real issue?. Breathe, 2018, 14, 108-121.	0.6	50
50	Temporal evaluation of estrogenic endocrine disruption markers in smallmouth bass (Micropterus) Tj ETQq0 0 0	rgBT/Over	logk 10 Tf 50
51	Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruptionâ€. Biology of Reproduction, 2019, 100, 149-161.	1.2	8
52	Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: A life cycle study on Eisenia fetida. Environmental Pollution, 2019, 254, 113032.	3.7	65
53	Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. Environment International, 2019, 132, 105091.	4.8	13
54	Selective degradation of estrogens by a robust iron(III) complex bearing a cross-bridged cyclam ligand via iron(V)-oxo species. Chemical Engineering Journal, 2019, 378, 122223.	6.6	16
55	Gold nanoparticles as dehydrogenase mimicking nanozymes for estradiol degradation. Chinese Chemical Letters, 2019, 30, 1655-1658.	4.8	33

#	Article	IF	CITATIONS
56	Concentration-dependent effects of 17β-estradiol and bisphenol A on lipid deposition, inflammation and antioxidant response in male zebrafish (Danio rerio). Chemosphere, 2019, 237, 124422.	4.2	40
57	Irrigation Water Quality—A Contemporary Perspective. Water (Switzerland), 2019, 11, 1482.	1.2	74
58	Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 2019, 289, 121718.	4.8	158
59	Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Chemical Engineering Research and Design, 2019, 128, 329-341.	2.7	42
60	Spontaneous changes in dissolved organic matter affect the bio-removal of steroid estrogens. Science of the Total Environment, 2019, 689, 616-624.	3.9	6
61	Determination of bisphenol analogues in food-contact plastics using diode array detector, charged aerosol detector and evaporative light-scattering detector. Ecotoxicology and Environmental Safety, 2019, 186, 109778.	2.9	22
62	Determination of environmental estrogens and bisphenol A in water samples by ultra-high performance liquid chromatography coupled to Q-Exactive high resolution mass spectrometry after magnetic solid-phase extraction. Microchemical Journal, 2019, 151, 104212.	2.3	21
63	Mineralization and Biotransformation of Estrone in Simulated Poultry Litter and Cow Manure Runoff Water. Journal of Environmental Quality, 2019, 48, 1120-1125.	1.0	6
64	YestroSens, a field-portable S. cerevisiae biosensor device for the detection of endocrine-disrupting chemicals: Reliability and stability. Biosensors and Bioelectronics, 2019, 146, 111710.	5.3	12
65	Reactive Nitrogen Species Mediated Degradation of Estrogenic Disrupting Chemicals by Biochar/Monochloramine in Buffered Water and Synthetic Hydrolyzed Urine. Environmental Science & Technology, 2019, 53, 12688-12696.	4.6	25
66	Application of a stable Ag/TiO ₂ film in the simultaneous photodegradation of hormones. Journal of Chemical Technology and Biotechnology, 2020, 95, 2656-2663.	1.6	9
67	Toxicity of single steroid hormones and their mixtures toward the cyanobacteriumÂMicrocystis aeruginosa. Journal of Applied Phycology, 2019, 31, 3537-3544.	1.5	14
68	Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere, 2019, 237, 124515.	4.2	37
69	Reproductive Impact of Environmental Chemicals on Animals. Advances in Experimental Medicine and Biology, 2019, 1200, 41-70.	0.8	9
70	Fungal laccase-mediated humification of estrogens in aquatic ecosystems. Water Research, 2019, 166, 115040.	5.3	46
71	Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environmental Pollution, 2019, 247, 534-540.	3.7	94
72	Mating under the influence: male Siamese fighting fish prefer EE2-exposed females. Ecotoxicology, 2019, 28, 201-211.	1.1	4
73	Degradation of 17β-estradiol and products by a mixed culture of <i>Rhodococcus equi</i> DSSKP-R-001 and <i>Comamonas testosteroni</i> QYY20150409. Biotechnology and Biotechnological Equipment, 2019, 33, 268-277.	0.5	18

#	Article	IF	CITATIONS
74	Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnology Advances, 2019, 37, 107401.	6.0	130
75	Potential and Feasibility of the Microalgal System in Removal of Pharmaceutical Compounds from Wastewater. , 2019, , 177-206.		3
76	Bioavailability of estrogenic compounds from sediment in the context of flood events evaluated by passive sampling. Water Research, 2019, 161, 540-548.	5.3	29
77	Morphometric signatures of exposure to endocrine disrupting chemicals in zebrafish eleutheroembryos. Aquatic Toxicology, 2019, 214, 105232.	1.9	28
78	Enhanced adsorption of steroid estrogens by one-pot synthesized phenyl-modified mesoporous silica: Dependence on phenyl-organosilane precursors and pH condition. Chemosphere, 2019, 234, 438-449.	4.2	24
79	Modeling the fate of dietary 17B-estradiol and its metabolites in an American eel (Anguilla rostrata) recirculating aquaculture system. Aquacultural Engineering, 2019, 86, 101995.	1.4	6
80	A nanowell-based molecularly imprinted electrochemical sensor for highly sensitive and selective detection of 17β-estradiol in food samples. Food Chemistry, 2019, 297, 124968.	4.2	37
81	Metabolism of obeticholic acid in brown bullhead (Ameiurus nebulosus). Environmental Science and Pollution Research, 2019, 26, 20316-20324.	2.7	3
82	Application of Microalgae in Wastewater Treatment. , 2019, , .		10
83	Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 222, 135-144.	1.3	10
84	Occurrence, distribution, and potential risks of environmental corticosteroids in surface waters from the Pearl River Delta, South China. Environmental Pollution, 2019, 251, 102-109.	3.7	32
85	Development of a Highly Sensitive Colorimetric Method for Detecting 17Î ² -Estradiol Based on Combination of Gold Nanoparticles and Shortening DNA Aptamers. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	17
86	Recent advances in the detection of 17β-estradiol in food matrices: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 2144-2157.	5.4	32
87	Bare polyprolylene hollow fiber as extractive phase for inâ€ŧube solidâ€phase microextraction to determine estrogens in water samples. Journal of Separation Science, 2019, 42, 2398-2406.	1.3	17
88	Estrogen levels in surface sediments from a multi-impacted Brazilian estuarine system. Marine Pollution Bulletin, 2019, 142, 576-580.	2.3	38
89	Bract as a novel extraction phase in thin-film SPME combined with 96-well plate system for the high-throughput determination of estrogens in human urine by liquid chromatography coupled to fluorescence detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2019. 1118-1119. 17-24.	1.2	27
90	Occurrence and risk assessment of multiclass endocrine disrupting compounds in an urban tropical river and a proposed risk management and monitoring framework. Science of the Total Environment, 2019, 671, 431-442.	3.9	81
91	Exploration of 2-deoxy-D-ribose and 17β-Estradiol as alternatives to exogenous VEGF to promote angiogenesis in tissue-engineered constructs. Regenerative Medicine, 2019, 14, 179-197.	0.8	28

#	Article	IF	CITATIONS
92	In situ localization of micropollutants and associated stress response in Populus nigra leaves. Environment International, 2019, 126, 523-532.	4.8	15
93	Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 2019, 119, 3510-3673.	23.0	1,427
94	Chemical mixtures and autochthonous microbial community in an urbanized stretch of the River Danube. Microchemical Journal, 2019, 147, 985-994.	2.3	11
95	The Effect of Structural Diversity on Ligand Specificity and Resulting Signaling Differences of Estrogen Receptor α. Chemical Research in Toxicology, 2019, 32, 1002-1013.	1.7	20
96	Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus. Chemosphere, 2019, 224, 93-102.	4.2	36
97	The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. Environmental Pollution, 2019, 248, 1067-1078.	3.7	54
98	A metal-organic framework of type MIL-101(Cr) for emulsification-assisted micro-solid-phase extraction prior to UHPLC-MS/MS analysis of polar estrogens. Mikrochimica Acta, 2019, 186, 165.	2.5	35
99	Watershed scale patterns in steroid hormones composition and content characters at a typical eutrophic lake in southeastern China. Environmental Science and Pollution Research, 2019, 26, 6107-6115.	2.7	15
100	Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. Environmental Science and Pollution Research, 2019, 26, 9443-9468.	2.7	46
101	Spatially Explicit Large-Scale Environmental Risk Assessment of Pharmaceuticals in Surface Water in China. Environmental Science & Technology, 2019, 53, 2559-2569.	4.6	28
102	The concentration of estrogen in water resources: a systematic review and meta-analysis. International Journal of Environmental Analytical Chemistry, 2019, , 1-10.	1.8	5
103	Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	12
104	17α-Ethinylestradiol in Lakes of Hanoi and its effect on seed germination. Toxicological and Environmental Chemistry, 2019, 101, 420-432.	0.6	0
105	Advances in the Analysis of Veterinary Drug Residues in Food Matrices by Capillary Electrophoresis Techniques. Molecules, 2019, 24, 4617.	1.7	17
106	Presence and Natural Treatment of Organic Micropollutants and their Risks after 100 Years of Incidental Water Reuse in Agricultural Irrigation. Water (Switzerland), 2019, 11, 2148.	1.2	12
107	Biodegradation of 17-Î2-estradiol in water. International Journal of Environmental Science and Technology, 2019, 16, 4935-4944.	1.8	10
108	Predicting future river health in a minimally influenced mountainous area under climate change. Science of the Total Environment, 2019, 656, 1373-1385.	3.9	17
109	Environmental exposure to oestrogenic endocrine disruptors mixtures reflecting on gonadal sex steroids and gametogenesis of the neotropical fishAstyanax rivularis. General and Comparative Endocrinology 2019 279 99-108	0.8	17

#	Article	IF	CITATIONS
110	A prescription for drug-free rivers: uptake of pharmaceuticals by a widespread streamside willow. Environmental Management, 2019, 63, 136-147.	1.2	5
111	Vertical profiles and distributions of aqueous endocrine-disrupting chemicals in different matrices from the Pearl River Delta and the influence of environmental factors. Environmental Pollution, 2019, 246, 328-335.	3.7	33
112	UV-activated persulfate oxidation of 17β-estradiol: Implications for discharge water remediation. Journal of Environmental Chemical Engineering, 2019, 7, 102858.	3.3	19
113	Influence of anthropogenic activities and risk assessment on protected mangrove forest using traditional and emerging molecular markers (CearÃ _i coast, northeastern Brazil). Science of the Total Environment, 2019, 656, 877-888.	3.9	23
114	Digester Slurry Management: The "One Health―Perspective. Biofuel and Biorefinery Technologies, 2019, , 243-256.	0.1	1
115	The endocrine disruptor, 17α-ethinyl estradiol, alters male mate choice in a freshwater fish. Aquatic Toxicology, 2019, 208, 118-125.	1.9	16
116	Emerging and traditional organic markers: Baseline study showing the influence of untraditional anthropogenic activities on coastal zones with multiple activities (CearÃ _i coast, Northeast Brazil). Marine Pollution Bulletin, 2019, 139, 256-262.	2.3	10
117	Emerging and Traditional Organic Markers in Areas with Multiple Anthropogenic Activities: Development of an Analytical Protocol and Its Application in Environmental Assessment Studies. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 66-76.	1.3	11
118	Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta, 2019, 195, 419-425.	2.9	65
119	N-propyl functionalized spherical mesoporous silica as a rapid and efficient adsorbent for steroid estrogen removal: Adsorption behaviour and effects of water chemistry. Chemosphere, 2019, 214, 361-370.	4.2	31
120	Do direct market farms use fewer agricultural chemicals? Evidence from the US census of agriculture. Renewable Agriculture and Food Systems, 2019, 34, 415-429.	0.8	19
121	The comparative study of two kinds of β-Bi2O3/TiO2 binary composite and their removal of 17ɑ-ethynylestradiol. Environmental Science and Pollution Research, 2020, 27, 24692-24701.	2.7	10
122	Assessing the Estrogenic Activity of EDCs and Human Risks of Groundwater after Ozonation and Chlorination. Ozone: Science and Engineering, 2020, 42, 244-254.	1.4	7
123	Investigation of the sorption of 17α-ethynylestradiol (EE2) on soils formed under aerobic and anaerobic conditions. Chemosphere, 2020, 240, 124817.	4.2	5
125	Patterns of estrogenic activity in the Baltic Sea. Chemosphere, 2020, 240, 124870.	4.2	7
126	Validation of ultrasonic-assisted switchable solvent liquid phase microextraction for trace determination of hormones and organochlorine pesticides by GC–MS and combination with QuEChERS. Food Chemistry, 2020, 305, 125487.	4.2	47
127	Pharmaceuticals in the Urban Water Cycle. Springer Water, 2020, , 133-162.	0.2	1
128	Environmental impact and biological removal processes of pharmaceutically active compounds: The particular case of sulfonamides, anticonvulsants and steroid estrogens. Critical Reviews in Environmental Science and Technology, 2020, 50, 698-742.	6.6	21

			_
#	ARTICLE	IF	CITATIONS
129	Efficacy assessment of peracetic acid in the removal of synthetic 17α-ethinyl estradiol contraceptive hormone in wastewater. Journal of Environmental Sciences, 2020, 89, 1-8.	3.2	13
130	Sorption, transport, and transformation of natural and synthetic progestins in soil-water systems. Journal of Hazardous Materials, 2020, 384, 121482.	6.5	15
131	Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. Journal of Hazardous Materials, 2020, 385, 121616.	6.5	30
132	Function of agricultural waste montmorillonite-biochars for sorptive removal of 17β-estradiol. Bioresource Technology, 2020, 296, 122368.	4.8	33
133	Fluorescent Reporter Zebrafish Line for Estrogenic Compound Screening Generated Using a CRISPR/Cas9-Mediated Knock-in System. Toxicological Sciences, 2020, 173, 336-346.	1.4	9
134	Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation. Science of the Total Environment, 2020, 709, 136094.	3.9	104
135	A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 2020, 387, 121682.	6.5	295
136	Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. Environmental Research, 2020, 182, 109091.	3.7	26
137	Pilot study of global endocrine disrupting activity in Iowa public drinking water utilities using cell-based assays. Science of the Total Environment, 2020, 714, 136317.	3.9	15
138	Novel PEP-PAN@PSF rods extraction of EDCs in environmental water, sediment, and fish homogenate followed by pre-column derivatization and UHPLC-MS/MS detection. Talanta, 2020, 210, 120661.	2.9	16
139	Determination of 17α-ethinylestradiol and toxic metals in surface waters, and estimation of daily intake. Environmental Monitoring and Assessment, 2020, 192, 21.	1.3	15
140	Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. Journal of Hazardous Materials, 2020, 389, 121891.	6.5	59
141	Characteristics and Health Risk Assessment of Potentially Toxic Metals in Urban Topsoil in Shenyang City, Northeast China. Clean - Soil, Air, Water, 2020, 48, 1900228.	0.7	7
142	Assessment of water contamination and health risk of endocrine disrupting chemicals in outdoor and indoor swimming pools. Science of the Total Environment, 2020, 704, 135277.	3.9	17
143	Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review. Science of the Total Environment, 2020, 716, 135247.	3.9	49
144	Mo-doped porous BiVO4/Bi2S3 nanoarray to enhance photoelectrochemical efficiency for quantitative detection of 17β-estradiol. Sensors and Actuators B: Chemical, 2020, 305, 127443.	4.0	25
145	Spatiotemporal distribution, source apportionment, and ecological risk of corticosteroids in the urbanized river system of Guangzhou, China. Science of the Total Environment, 2020, 706, 135693.	3.9	14
146	The characteristics of oestrone mobility in water and soil by the addition of Ca-biochar and Fe–Mn-biochar derived from Litchi chinensis Sonn Environmental Geochemistry and Health, 2020, 42, 1601-1615.	1.8	16

#	Article	IF	CITATIONS
147	Pharmaceutical and personal care product residues in a macrophyte pond-constructed wetland treating wastewater from a university campus: Presence, removal and ecological risk assessment. Science of the Total Environment, 2020, 703, 135596.	3.9	54
148	Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells, 2020, 9, 13.	1.8	35
149	LP-UV-Nano MgO2 Pretreated Catalysis Followed by Small Bioreactor Platform Capsules Treatment for Superior Kinetic Degradation Performance of 17α-Ethynylestradiol. Materials, 2020, 13, 83.	1.3	7
150	Advanced methods to analyze steroid estrogens in environmental samples. Environmental Chemistry Letters, 2020, 18, 543-559.	8.3	16
151	Clay-catalyzed ozonation of endocrine-disrupting compounds in solvent-free media – to better understand soil catalytic capacity. Dalton Transactions, 2020, 49, 16693-16706.	1.6	7
152	An Update of the Occurrence of Organic Contaminants of Emerging Concern in the Canary Islands (Spain). Water (Switzerland), 2020, 12, 2548.	1.2	3
153	Degradation of Veterinary Antibiotics in Swine Manure via Anaerobic Digestion. Bioengineering, 2020, 7, 123.	1.6	7
154	Photoelectrocatalytic degradation of 17α-ethinylestradiol and estrone under UV and visible light using nanotubular oxide arrays grown on Ti-0.5wt%W. Environmental Research, 2020, 191, 110044.	3.7	24
155	Temperature and Estrogen Alter Predator–Prey Interactions between Fish Species. Integrative Organismal Biology, 2020, 2, obaa008.	0.9	3
156	Serum estradiol levels in infertile men with non-obstructive azoospermia. Therapeutic Advances in Reproductive Health, 2020, 14, 263349412092834.	1.3	3
157	Assessing the impact of synthetic estrogen on the microbiome of aerated submerged fixed-film reactors simulating tertiary sewage treatment and isolation of estrogen-degrading consortium. Science of the Total Environment, 2020, 743, 140428.	3.9	4
158	17α-ethynylestradiol (EE2) limits the impact of ibuprofen upon respiration by streambed biofilms in a sub-urban stream. Environmental Science and Pollution Research, 2020, 27, 37149-37154.	2.7	7
159	Endocrine disrupter chemicals affect the humoral antimicrobial activities of gilthead seabream males even upon the cease of the exposure. Scientific Reports, 2020, 10, 7966.	1.6	4
160	Identification of chemical species created during γâ€irradiation of antioxidant used in polyethylene and polyethyleneâ€ <scp><i>co</i></scp> â€vinyl acetate multilayer film. Journal of Applied Polymer Science, 2020, 137, 49336.	1.3	8
161	Seasonal performance assessment of four riverbank filtration sites by combined non-target and effect-directed analysis. Chemosphere, 2020, 261, 127706.	4.2	12
162	Use of an environmental diagnostic study on a coastal lagoon as a decision support tool for environmental management policies in a coastal zone. Management of Environmental Quality, 2020, 31, 167-184.	2.2	2
163	Biochar-Assisted Wastewater Treatment and Waste Valorization. , 0, , .		12
164	Degradation of estriol (E3) and transformation pathways after applying photochemical removal processes in natural surface water. Water Science and Technology, 2020, 82, 1445-1453.	1.2	9

#	Article	IF	CITATIONS
165	Channeling C1 Metabolism toward S -Adenosylmethionine-Dependent Conversion of Estrogens to Androgens in Estrogen-Degrading Bacteria. MBio, 2020, 11, .	1.8	8
166	A systematic approach of method development for analysis of multiple classes of emerging contaminants in wastewater: a case study of a biological nutrient removal based plant. Analytical Methods, 2020, 12, 4363-4376.	1.3	12
167	Estrogen suppresses SOX9 and activates markers of female development in a human testis-derived cell line. BMC Molecular and Cell Biology, 2020, 21, 66.	1.0	12
168	Determination of Endocrine Disrupting Chemicals in Water and Wastewater Samples by Liquid Chromatography-Negative Ion Electrospray Ionization-Tandem Mass Spectrometry. Molecules, 2020, 25, 3906.	1.7	4
169	Coâ€occurrence characteristics of antibiotics and estrogens and their relationships in a lake system affected by wastewater. Journal of Environmental Quality, 2020, 49, 1322-1333.	1.0	7
170	Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction. Molecules, 2020, 25, 5788.	1.7	9
171	Removal of 17β-Estradiol (E2) from Aqueous Solutions Using Potassium Permanganate Combined with Ultraviolet (KMnO4/UV). International Journal of Chemical Engineering, 2020, 2020, 1-9.	1.4	0
172	Detecting Traces of 17α-Ethinylestradiol in Complex Water Matrices. Sensors, 2020, 20, 7324.	2.1	6
173	Photocatalytic activity of micron-scale brass on emerging pollutant degradation in water: mechanism elucidation and removal efficacy assessment. RSC Advances, 2020, 10, 39931-39942.	1.7	6
174	Steroidal Estrogens During Composting of Animal Manure: Persistence, Degradation, and Fate, a Review. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	15
175	Enhanced photocatalytic degradation of 17β-estradiol by polythiophene modified Al-doped ZnO: Optimization of synthesis parameters using multivariate optimization techniques. Journal of Environmental Chemical Engineering, 2020, 8, 104463.	3.3	36
176	Removal of Estrone, 17β-Estradiol, and 17α-Ethinylestradiol from Water by Adsorption onto Chemically Modified Activated Carbon Cloths. Fibers and Polymers, 2020, 21, 2263-2274.	1.1	14
177	Estrone degrading enzymes of Spirulina CPCC-695 and synthesis of bioplastic precursor as a by-product. Biotechnology Reports (Amsterdam, Netherlands), 2020, 26, e00464.	2.1	6
179	Molecularly Imprinted Polymers and Magnetic Molecularly Imprinted Polymers for Selective Determination of Estrogens in Water by ESI-MS/FAPA-MS. Biomolecules, 2020, 10, 672.	1.8	18
180	Metabolism of mono-(2-ethylhexyl) phthalate in Arabidopsis thaliana: Exploration of metabolic pathways by deuterium labeling. Environmental Pollution, 2020, 265, 114886.	3.7	13
181	Occurrence and distribution of hormones and bisphenol A in Laguna Lake, Philippines. Chemosphere, 2020, 256, 127122.	4.2	26
182	Biocompatible amino acid-based ionic liquids for extracting hormones and antibiotics from swine effluents. Separation and Purification Technology, 2020, 250, 117068.	3.9	9
183	Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Research, 2020, 182, 115976.	5.3	40

ARTICLE Effect of short-term intermittent exposure to waterborne estradiol on the reproductive physiology	IF	Citations
of the round goby (Neogobius melanostomus). Environmental Science and Pollution Research, 2020, 27, 36799-36815.	2.7	2
Spontaneous neoplasia in captive syngnathid species: A retrospective case series (2003–2014) and literature review. Journal of Fish Diseases, 2020, 43, 929-939.	0.9	2
Bioaccumulation of ytterbium oxide nanoparticles insinuate oxidative stress, inflammatory, and pathological lesions in ICR mice. Environmental Science and Pollution Research, 2020, 27, 32944-32953.	2.7	25
Endocrine Disruptors in Water and Their Effects on the Reproductive System. International Journal of Molecular Sciences, 2020, 21, 1929.	1.8	160
Removal of 17α-ethinylestradiol and caffeine from wastewater by UASB-Fenton coupled system. Environmental Technology (United Kingdom), 2021, 42, 3771-3782.	1.2	13
Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. Arabian Journal for Science and Engineering, 2020, 45, 7109-7135.	1.7	37
Reconnaissance of Surface Water Estrogenicity and the Prevalence of Intersex in Smallmouth Bass (Micropterus Dolomieu) Inhabiting New Jersey. International Journal of Environmental Research and Public Health, 2020, 17, 2024.	1.2	7
Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol. Environmental Pollution, 2020, 263, 114381.	3.7	31
Rapid and sensitive analysis of progesterone by solid-phase extraction with amino-functionalized metal-organic frameworks coupled to direct analysis in real-time mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 2939-2947.	1.9	20
Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil. Journal of Hazardous Materials, 2020, 400, 123325.	6.5	72
Quantification of estrogen concentration in a creek receiving wastewater treatment plant effluent. Environmental Monitoring and Assessment, 2020, 192, 426.	1.3	6
Water Depollution and Photo-Detoxification by Means of TiO2: Fluoroquinolone Antibiotics as a Case Study. Catalysts, 2020, 10, 628.	1.6	12
Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Scientific Reports, 2020, 10, 10698.	1.6	12
Environmental estrogen exposure disrupts sensory processing and nociceptive plasticity in the cephalopod, <i>Euprymna scolopes</i> . Journal of Experimental Biology, 2020, 223, .	0.8	8
Future impacts and trends in treatment of hospital wastewater. , 2020, , 599-615.		2
Influence of humic acids on fungal laccase-initiated 17î±-ethynylestradiol oligomerization: Transformation kinetics and products distribution. Chemosphere, 2020, 258, 127371.	4.2	19
Parental exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) affects offspring development in the Sydney rock oyster, Saccostrea glomerata. Environmental Pollution, 2020, 266, 114994.	3.7	9

#

#	Article	IF	CITATIONS
202	A year-long passive sampling of phenolic endocrine disrupting chemicals in the East River, South China. Environment International, 2020, 143, 105936.	4.8	23
203	Steroid hormones and estrogenic activity in the wastewater outfall and receiving waters of the Chascomús chained shallow lakes system (Argentina). Science of the Total Environment, 2020, 743, 140401.	3.9	32
204	Veterinary growth promoters in cattle feedlot runoff: estrogenic activity and potential effects on the rat male reproductive system. Environmental Science and Pollution Research, 2020, 27, 13939-13948.	2.7	1
205	Immune Cells in the Uterine Remodeling: Are They the Target of Endocrine Disrupting Chemicals?. Frontiers in Immunology, 2020, 11, 246.	2.2	21
206	Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision. Ecological Indicators, 2020, 113, 106185.	2.6	46
207	New 6,19-oxidoandrostan derivatives obtained by biotransformation in environmental filamentous fungi cultures. Microbial Cell Factories, 2020, 19, 37.	1.9	8
208	A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands. Journal of Environmental Chemical Engineering, 2020, 8, 103793.	3.3	22
209	Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Human Reproduction Update, 2020, 26, 214-246.	5.2	54
210	Progress in the preparation of TiO2 films at boron-doped diamond toward environmental applications. , 2020, , 197-224.		1
211	Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. Environmental Research, 2020, 185, 109316.	3.7	53
212	Ecological impact assessment of 110 micropollutants in the Yarlung Tsangpo River on the Tibetan Plateau. Journal of Environmental Management, 2020, 262, 110291.	3.8	28
214	Effect of Emerging Contaminants on Crops and Mechanism of Toxicity. Sustainable Agriculture Reviews, 2020, , 217-241.	0.6	4
215	Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines. Environmental Pollution, 2020, 260, 114063.	3.7	12
216	Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants?. Chemosphere, 2020, 248, 125969.	4.2	48
217	The importance of household pharmaceutical products disposal and its risk management: Example from Southwestern Europe. Waste Management, 2020, 104, 139-147.	3.7	18
218	Biotransformation strategies for steroid estrogen and androgen pollution. Applied Microbiology and Biotechnology, 2020, 104, 2385-2409.	1.7	38
219	A low pressure SWCNTâ€ENM sandwich membrane system for the removal of PPCPs from water. Canadian Journal of Chemical Engineering, 2020, 98, 1047-1058.	0.9	3
220	The use of peracetic acid for estrogen removal from urban wastewaters: E2 as a case study. Environmental Monitoring and Assessment, 2020, 192, 114.	1.3	9

#	Article	IF	Citations
221	Luminescence-Sensing Tb-MOF Nanozyme for the Detection and Degradation of Estrogen Endocrine Disruptors. ACS Applied Materials & amp; Interfaces, 2020, 12, 8351-8358.	4.0	73
222	Feasibility studies on the uptake and bioaccessibility of pesticides, hormones and endocrine disruptive compounds in plants, and simulation of gastric and intestinal conditions. Microchemical Journal, 2020, 155, 104669.	2.3	10
223	Feasibility and mechanism of enhanced 17β-estradiol degradation by the nano Zero Valent Iron-citrate system. Journal of Hazardous Materials, 2020, 396, 122657.	6.5	15
224	Magnetic solid-phase extraction modified Quick, Easy, Cheap, Effective, Rugged and Safe method combined with pre-column derivatization and ultra-high performance liquid chromatography-tandem mass spectrometry for determination of estrogens and estrogen mimics in pork and chicken samples. Journal of Chromatography A. 2020. 1622. 461137.	1.8	21
225	Estrogenic Hormones in São Paulo Waters (Brazil) and Their Relationship with Environmental Variables and Sinapis alba Phytotoxicity. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	17
226	Advanced oxidative processes in the degradation of 17β-estradiol present on surface waters: kinetics, byproducts and ecotoxicity. Environmental Science and Pollution Research, 2020, 27, 21032-21039.	2.7	18
227	Polymer-based biosensor for estrogenic endocrine-disrupting chemicals in water. International Journal of Environmental Analytical Chemistry, 2022, 102, 1963-1986.	1.8	4
228	Comparison of 17Î ² -estradiol adsorption on soil organic components and soil remediation agent-biochar. Environmental Pollution, 2020, 263, 114572.	3.7	14
229	Immobilization of horseradish peroxidase on Fe3O4 nanoparticles for enzymatic removal of endocrine disrupting chemicals. Environmental Science and Pollution Research, 2020, 27, 24357-24368.	2.7	17
230	Norethindrone alters mating behaviors, ovary histology, hormone production and transcriptional expression of steroidogenic genes in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 2020, 195, 110496.	2.9	11
231	Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study. Journal of Environmental Management, 2020, 263, 110365.	3.8	58
232	Interactions between carbon-based nanoparticles and steroid hormone micropollutants in water. Journal of Hazardous Materials, 2021, 402, 122929.	6.5	21
233	Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. Chemosphere, 2021, 267, 128888.	4.2	44
234	Endocrine disruptive estrogens in wastewater: Revisiting bacterial degradation and zymoremediation. Environmental Technology and Innovation, 2021, 21, 101248.	3.0	16
235	An electrochemiluminescence sensor for 17β-estradiol detection based on resonance energy transfer in α-FeOOH@CdS/Ag NCs. Talanta, 2021, 221, 121479.	2.9	11
236	Sensitive Determination of 17βâ€Estradiol using a Magneto Sensor Based on Magnetic Molecularly Imprinted Polymer. Electroanalysis, 2021, 33, 506-514.	1.5	16
237	Occurrence and distribution of natural and synthetic progestins, androgens, and estrogens in soils from agricultural production areas in China. Science of the Total Environment, 2021, 751, 141766.	3.9	36
238	Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models. Science of the Total Environment, 2021, 751, 141418.	3.9	21

#	Article	IF	CITATIONS
239	A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Research, 2021, 188, 116446.	5.3	131
240	Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere, 2021, 264, 128436.	4.2	55
241	Tuning ZnO/GO p-n heterostructure with carbon interlayer supported on clay for visible-light catalysis: Removal of steroid estrogens from water. Chemical Engineering Journal, 2021, 420, 127668.	6.6	31
242	Uptake, accumulation, and translocation mechanisms of steroid estrogens in plants. Science of the Total Environment, 2021, 753, 141979.	3.9	20
243	Validation of a QuEChERS method for extraction of estrogens from a complex water matrix and quantitation via high-performance liquid chromatography-mass spectrometry. Chemosphere, 2021, 263, 128315.	4.2	9
244	Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. Environmental Pollution, 2021, 269, 116223.	3.7	30
245	A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity. Journal of Water Process Engineering, 2021, 40, 101778.	2.6	87
246	Occurrence and Fate of Steroid Estrogens in a Chinese Typical Concentrated Dairy Farm and Slurry Irrigated Soil. Journal of Agricultural and Food Chemistry, 2021, 69, 67-77.	2.4	13
247	Theoretical and experimental findings regarding the electroanalysis of dienestrol in natural waters using a silver nanoparticles/single-walled carbon nanotubes-based amperometric sensor. Journal of Electroanalytical Chemistry, 2021, 880, 114821.	1.9	3
248	Modified humic acids mediate efficient mineralization in a photo-bio-electro-Fenton process. Water Research, 2021, 190, 116740.	5.3	34
249	Response of periphytic biofilm in water to estrone exposure: Phenomenon and mechanism. Ecotoxicology and Environmental Safety, 2021, 207, 111513.	2.9	7
250	Activation of persulfate by nanoscale zero-valent iron loaded porous graphitized biochar for the removal of 17l²-estradiol: Synthesis, performance and mechanism. Journal of Colloid and Interface Science, 2021, 588, 776-786.	5.0	45
251	Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicology and Environmental Safety, 2021, 207, 111521.	2.9	15
252	Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Science of the Total Environment, 2021, 755, 142873.	3.9	14
253	Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosensors and Bioelectronics, 2021, 172, 112719.	5.3	149
254	Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. Journal of Hazardous Materials, 2021, 405, 123634.	6.5	62
255	Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. Environment International, 2021, 146, 106191.	4.8	30
256	Highly sensitive determination of endocrine disrupting chemicals in foodstuffs through magnetic solidâ€phase extraction followed by highâ€performance liquid chromatographyâ€ŧandem mass spectrometry. Journal of the Science of Food and Agriculture, 2021, 101, 1666-1675.	1.7	19

	Сітатіо	n Report	
# 257	ARTICLE Adsorption of Methylene blue and Congo red from aqueous solution using synthesized	IF 1.2	Citations 30
	alumina–zirconia composite. Environmental Technology (United Kingdom), 2021, 42, 1061-1070. Coatings of magnetic composites of iron oxide and carbon nitride for photocatalytic water		
258	purification. RSC Advances, 2021, 11, 14053-14062.	1.7	4
259	Sources and Impacts of Emerging Contaminants in Agroecosystems. Sustainable Agriculture Reviews, 2021, , 3-34.	0.6	2
260	Oxidative Stress and Genotoxicity Induced by Industrial Wastes and Effluents in Plants. , 2021, , 199-212.		0
262	Stimuli-responsive engineered living materials. Soft Matter, 2021, 17, 785-809.	1.2	64
263	Occurrence of Steroidal Hormone in Environment. , 2021, , 163-178.		0
264	Molecular detection using aptamer-modified gold nanoparticles with an immobilized DNA brush for the prevention of non-specific aggregation. RSC Advances, 2021, 11, 11984-11991.	1.7	10
265	Endocrine disrupting chemicals (EDCs) and sex steroid receptors. Advances in Pharmacology, 2021, 92, 191-235.	1.2	4
266	Simultaneous removal of emerging contaminants and disinfection for municipal wastewater treatment plant effluent quality improvement: a systemic analysis of the literature. Environmental Science and Pollution Research, 2021, 28, 24092-24111.	2.7	11
267	Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers, 2021, 13, 392.	2.0	38
268	Sorption and desorption of sex hormones in soil- and sediment-water systems: A review. Soil Ecology Letters, 2022, 4, 1-17.	2.4	7
269	Microbial Degradation of Steroids. Environmental and Microbial Biotechnology, 2021, , 273-295.	0.4	1
270	Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature Materials, 2021, 20, 691-700.	13.3	151
271	Modeling estrogenic activity in streams throughout the Potomac and Chesapeake Bay watersheds. Environmental Monitoring and Assessment, 2021, 193, 105.	1.3	6
272	Endocrine-Disrupting Compounds in Fish Physiology, with Emphasis on their Effects on the Arginine Vasotocin/Isotocin System. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2021, 21, .	0.6	3
273	A contemporary review of enzymatic applications in the remediation of emerging estrogenic compounds. Critical Reviews in Environmental Science and Technology, 2022, 52, 2661-2690.	6.6	17
274	Impact of Nonylphenols and Polyhalogenated Compounds in Follicular Fluid on the Outcome of Intracytoplasmic Sperm Injection. Reproductive Sciences, 2021, 28, 2118-2128.	1.1	4
275	Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules, 2021, 26, 1010.	1.7	11

#	Article	IF	CITATIONS
276	Biochar production, activation and adsorptive applications: a review. Environmental Chemistry Letters, 2021, 19, 2237-2259.	8.3	80
277	Ultrasensitive Detection of 17β-Estradiol (E2) Based on Multistep Isothermal Amplification. Analytical Chemistry, 2021, 93, 4488-4496.	3.2	28
278	Pro-social and anxiolytic-like behavior following a single 24-h exposure to 17β-estradiol in adult male zebrafish. Neuroscience Letters, 2021, 747, 135591.	1.0	4
279	Identification of novel catabolic genes involved in 17 <i>β</i> â€estradiol degradation by <i>Novosphingobium</i> sp. <scp>ES2</scp> â€1. Environmental Microbiology, 2021, 23, 2550-2563.	1.8	13
280	Organotin derivatives of cholic acid induce apoptosis into breast cancer cells and interfere with mitochondrion; Synthesis, characterization and biological evaluation. Steroids, 2021, 167, 108798.	0.8	13
281	Ethinylestradiol removal of membrane bioreactor effluent by reverse osmosis and UV/H2O2: A technical and economic assessment. Journal of Environmental Management, 2021, 282, 111948.	3.8	9
282	Effects of Biochar on Replant Disease by Amendment Soil Environment. Communications in Soil Science and Plant Analysis, 2021, 52, 673-685.	0.6	12
283	Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays – Oxidative stress and antiandrogenic effects after artificial infiltration. Science of the Total Environment, 2021, 758, 144001.	3.9	21
284	Effect of Water pH on the Uptake of Acidic (Ibuprofen) and Basic (Propranolol) Drugs in a Fish Gill Cell Culture Model. Environmental Science & Technology, 2021, 55, 6848-6856.	4.6	13
285	Effects of maternal exposure to environmentally relevant concentrations of 17α-ethinyloestradiol in a live bearing freshwater fish, Xenotoca eiseni (Cyprinodontiformes, Goodeidae). Aquatic Toxicology, 2021, 232, 105746.	1.9	0
286	Productivity-Enhancing Technologies. Can Consumer Choices Affect the Environmental Footprint of Beef?. Sustainability, 2021, 13, 4283.	1.6	5
287	A Comparative Study on the Biodegradation of $17\hat{l}^2$ -Estradiol by Candida utilis CU-2 and Lactobacillus casei LC-1. Frontiers in Energy Research, 2021, 9, .	1.2	8
288	Development and validation of vortex-assisted dispersive liquid–liquid microextraction method based on solidification of floating hydrophobic deep eutectic solvent for the determination of endocrine disrupting chemicals in sewage. Microchemical Journal, 2021, 163, 105915.	2.3	17
289	Carbon-mediated visible-light clay-Fe2O3–graphene oxide catalytic nanocomposites for the removal of steroid estrogens from water. Journal of Water Process Engineering, 2021, 40, 101865.	2.6	20
290	Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients, 2021, 13, 1623.	1.7	15
292	Reproductive potential of mosquitofish is reduced by the masculinizing effect of a synthetic progesterone, gestodene: Evidence from morphology, courtship behaviour, ovary histology, sex hormones and gene expressions. Science of the Total Environment, 2021, 769, 144570.	3.9	13
293	Cantilever Nanobiosensors Applied for Endocrine Disruptor Detection in Water: A Review. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	5
294	Occurrence and distribution of estrogenic substances in the northern South China Sea. Science of the Total Environment, 2021, 770, 145239.	3.9	20

#	Article	IF	CITATIONS
295	Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. Journal of Xenobiotics, 2021, 11, 61-76.	2.9	29
296	Compounds of emerging concern as new plant stressors linked to water reuse and biosolid application in agriculture. Journal of Environmental Chemical Engineering, 2021, 9, 105198.	3.3	14
297	Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors. Journal of Hazardous Materials, 2021, 412, 125197.	6.5	26
299	In vitro bioanalytical assessment of toxicity of wetland samples from Spanish Mediterranean coastline. Environmental Sciences Europe, 2021, 33, .	2.6	2
300	Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	12
301	Seaweeds fast EDC bioremediation: Supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy of marine-borne phenol pollutants. Environmental Pollution, 2021, 278, 116853.	3.7	10
302	Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: A review. Applied Surface Science Advances, 2021, 4, 100064.	2.9	59
303	How much do human and livestock actually contribute to steroids emission and surface water pollution from past to the future: A global research. Science of the Total Environment, 2021, 772, 145558.	3.9	19
304	An UPLC-MS/MS method to monitor Estriol injection and comparison of pharmacokinetic characteristics after irradiation. Radiation Medicine and Protection, 2021, 2, 72-78.	0.4	0
305	Broad diversity of bacteria degrading 17ß-estradiol-3-sulfate isolated from river sediment and biofilm at a wastewater treatment plant discharge. Archives of Microbiology, 2021, 203, 4209-4219.	1.0	2
306	A chemical prioritization process: Applications to contaminants of emerging concern in freshwater ecosystems (Phase I). Science of the Total Environment, 2021, 772, 146030.	3.9	18
307	Nevertheless, They Persisted: Can Hyporheic Zones Increase the Persistence of Estrogens in Streams?. Water Resources Research, 2021, 57, e2020WR028518.	1.7	1
308	Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC - Trends in Analytical Chemistry, 2021, 139, 116254.	5.8	32
309	Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals, 2021, 11, 2152.	1.0	31
310	Modification of cyclodextrin and use in environmental applications. Environmental Science and Pollution Research, 2022, 29, 182-209.	2.7	25
311	Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Science of the Total Environment, 2021, 777, 145988.	3.9	96
312	Endocrine disruptors of sex hormone activities. Molecular and Cellular Endocrinology, 2022, 539, 111415.	1.6	22
313	Experimental and Genomic Evaluation of the Oestrogen Degrading Bacterium Rhodococcus equi ATCC13557. Frontiers in Microbiology, 2021, 12, 670928.	1.5	2

#	Article	IF	Citations
314	Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Management, 2021, 131, 117-125.	3.7	23
315	Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chemical Engineering Journal, 2021, 415, 129040.	6.6	134
316	Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. Environmental Research, 2021, 198, 111225.	3.7	21
317	Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. Water (Switzerland), 2021, 13, 2065.	1.2	19
318	Prenatal and pubertal exposure to 17αâ€ethinylestradiol cause morphological changes in the prostate of old gerbils. Cell Biology International, 2021, 45, 2074-2085.	1.4	1
319	Biochar and environmental sustainability: Emerging trends and techno-economic perspectives. Bioresource Technology, 2021, 332, 125102.	4.8	66
320	Investigation of steroid hormone residues in fish: A systematic review. Chemical Engineering Research and Design, 2021, 152, 14-24.	2.7	19
321	Trametes versicolor laccase-assisted oxidative coupling of estrogens: Conversion kinetics, linking mechanisms, and practical applications in water purification. Science of the Total Environment, 2021, 782, 146917.	3.9	21
322	Acute and Chronic Toxicity of Endocrine Disruptive Heavy Metals and Pesticides Exposed to Freshwater Fish P. reticulata and P. sphenops. Current World Environment Journal, 2021, 16, 427-435.	0.2	0
323	Natural and synthetic estrogenic compounds in the Pearl River Estuary and northern shelf of the South China Sea. Oceanologia, 2023, 65, 30-43.	1.1	5
324	Screening for androgen agonists using autonomously bioluminescent HEK293 reporter cells. BioTechniques, 2021, 71, 403-415.	0.8	2
325	Environmental estrogens inhibit the expression of insulin-like growth factor mRNAs in rainbow trout in vitro by altering activation of the JAK-STAT, AKT-PI3K, and ERK signaling pathways. General and Comparative Endocrinology, 2021, 309, 113792.	0.8	5
326	Cometabolism of 17α-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation. Environment International, 2021, 153, 106528.	4.8	14
327	Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. Science of the Total Environment, 2021, 780, 146544.	3.9	36
328	The Uptake of Sporopollenin Exine Capsules and Associated Bioavailability of Adsorbed Oestradiol in Selected Aquatic Invertebrates. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 876-882.	1.3	2
329	Electrochemical evaluation of organic pollutant estradiol in industrial effluents. Journal of Environmental Chemical Engineering, 2021, 9, 105723.	3.3	12
330	An extensive clean-up method for extraction of 17β-estradiol from eel aquaculture waste solids for quantitation via high-performance liquid chromatography tandem-mass spectrometry. Aquaculture, 2021, 542, 736873.	1.7	1
331	Design and controllable synthesis of C-doped Bi2O3 nanowires with superior performance for removal of bisphenol A. Materials Science in Semiconductor Processing, 2021, 132, 105875.	1.9	9

#	Article	IF	CITATIONS
332	Visual-afterglow dual-mode immunochromatographic strip for 17β-estradiol detection in milk. Talanta, 2021, 232, 122427.	2.9	16
333	Adsorption of EDCs on Reclaimed Water-Irrigated Soils: A Comparative Analysis of a Branched Nonylphenol, Nonylphenol and Bisphenol A. Water (Switzerland), 2021, 13, 2532.	1.2	1
334	Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. International Journal of Molecular Sciences, 2021, 22, 10046.	1.8	0
335	The status of fertility control for rodents—recent achievements and future directions. Integrative Zoology, 2022, 17, 964-980.	1.3	26
336	Norethisterone exposure alters the transcriptome of Marine Medaka (<i>Oryzias melastigma</i>) larvae. Chemistry and Ecology, 2021, 37, 767-779.	0.6	4
337	Biotransformation of Current-Use Progestin Dienogest and Drospirenone in Laboratory-Scale Activated Sludge Systems Forms High-Yield Products with Altered Endocrine Activity. Environmental Science & Technology, 2021, 55, 13869-13880.	4.6	9
338	Cattle manure management using microbial fuel cells for green energy generation. Biofuels, Bioproducts and Biorefining, 2022, 16, 460-470.	1.9	16
339	Environmental estrogens in surface water and their interaction with microalgae: A review. Science of the Total Environment, 2022, 807, 150637.	3.9	14
340	Estrogenicity of chemical mixtures revealed by a panel of bioassays. Science of the Total Environment, 2021, 785, 147284.	3.9	19
341	A citrate-loaded nano-zero-valent iron heterogeneous Fenton system for steroid estrogens degradation under different acidity levels: The effects and mechanisms. Chemical Engineering Journal, 2021, 421, 129967.	6.6	7
342	Efficient photocatalytic removal of four endocrine-disrupting compounds using N-doped BiOBr catalyst under UV-Vis radiation. Journal of Environmental Chemical Engineering, 2021, 9, 106185.	3.3	20
343	Growth and gonadal development retardations after long-term exposure to estradiol in little yellow croaker, Larimichthys polyactis. Ecotoxicology and Environmental Safety, 2021, 222, 112462.	2.9	7
344	Efficient removal of estrogenic compounds in water by MnIII-activated peroxymonosulfate: Mechanisms and application in sewage treatment plant water. Environmental Pollution, 2021, 288, 117728.	3.7	18
345	Adsorption of Estradiol from aqueous solution by hydrothermally carbonized and steam activated palm kernel shells. Energy Nexus, 2021, 1, 100009.	3.3	12
346	Structural basis for molecular recognition of G protein-coupled estrogen receptor by selected bisphenols. Science of the Total Environment, 2021, 793, 148558.	3.9	8
347	Analysis of microplastics-sorbed endocrine-disrupting compounds in pellets and microplastic fragments from beaches. Microchemical Journal, 2021, 171, 106834.	2.3	8
348	Removal efficiencies and risk assessment of endocrine-disrupting chemicals at two wastewater treatment plants in South China. Ecotoxicology and Environmental Safety, 2021, 225, 112758.	2.9	15
349	Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources. Science of the Total Environment, 2021, 800, 149635.	3.9	44

#	Article	IF	CITATIONS
350	Isolation and identification of 17β-estradiol degrading bacteria and its degradation pathway. Journal of Hazardous Materials, 2022, 423, 127185.	6.5	28
351	Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. Journal of Hazardous Materials, 2022, 423, 127108.	6.5	6
352	Preparation of lightweight daisy-like magnetic molecularly imprinted polymers via etching synergized template immobilization for enhanced rapid detection of trace 17β-estradiol. Journal of Hazardous Materials, 2022, 424, 127216.	6.5	9
353	Maturation Inducing Hormones in teleosts: Are progestogens always the first to be nominated?. Aquaculture, 2022, 546, 737315.	1.7	9
354	Metabolism analysis of 17α-ethynylestradiol by Pseudomonas citronellolis SJTE-3 and identification of the functional genes. Journal of Hazardous Materials, 2022, 423, 127045.	6.5	8
355	Assessment of the efficacy of an advanced tertiary sewage treatment plant to remove biologically active chemicals using endocrine and genotoxicity bioassays. Emerging Contaminants, 2021, 7, 124-131.	2.2	2
356	Spectrophotometric Determination of p-Nitrophenol under ENP Interference. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-9.	0.7	18
357	Monitoring wetland water quality related to livestock grazing in amphibian habitats. Environmental Monitoring and Assessment, 2021, 193, 58.	1.3	3
358	Occurrence of pharmaceutical active compounds in sewage sludge from two urban wastewater treatment plants and their potential behaviour in agricultural soils. Environmental Science: Water Research and Technology, 2021, 7, 969-982.	1.2	16
359	LED irradiated photo-Fenton for the removal of estrogenic activity and endocrine disruptors from wastewater treatment plant effluent. Environmental Science and Pollution Research, 2021, 28, 24067-24078.	2.7	18
360	Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. Environmental Chemistry for A Sustainable World, 2020, , 87-129.	0.3	6
361	Development And Validation Of A Method For Determining Estrogenic Compounds In Surface Water At The Ultra-Trace Level Required By The EU Water Framework Directive Watch List. Journal of Chromatography A, 2020, 1624, 461242.	1.8	12
362	Sorption and desorption of seven steroidal synthetic progestins in five agricultural soil-water systems. Ecotoxicology and Environmental Safety, 2020, 196, 110586.	2.9	8
364	Transition towards sustainable pharmacy? The influence of public debates on policy responses to pharmaceutical contaminants in water. Environmental Sciences Europe, 2020, 32, .	2.6	9
365	Development and validation of a high performance liquid chromatography/diode array detection method for estrogen determination: Application to residual analysis in meat products. Open Chemistry, 2020, 18, 995-1010.	1.0	1
366	Pharmaceutical market, environmental public policies and water quality: the case of the São Paulo Metropolitan Region, Brazil. Cadernos De Saude Publica, 2020, 36, e00192319.	0.4	6
367	PHARMACEUTICALS IN WATER AND WASTEWATER – OVERVIEW. Structure and Environment, 2020, 12, 79-84.	0.2	3
368	Direct and indirect parental exposure to endocrine disruptors and elevated temperature influences gene expression across generations in a euryhaline model fish. PeerJ, 2019, 7, e6156.	0.9	29

#	Article	IF	CITATIONS
369	Post-synthetically modified metal–organic frameworks for sensing and capture of water pollutants. Dalton Transactions, 2021, 50, 17832-17850.	1.6	22
370	Enhanced biodegradation of 17α-ethinylestradiol by rhamnolipids in sediment/water systems. Environmental Chemistry, 2021, 18, 300-310.	0.7	2
371	Antifertility effects of crude extracts from Acacia nilotica pods and Albizia lebbeck stem bark in female multimammate rats, Mastomys natalensis. Journal of Physiology and Pathophysiology, 2021, 12, 1-10.	0.3	1
372	Alterations in the Development and Gonadal Structure of Nile Tilapia (Oreochromis niloticus) Exposed to Natural and Synthetic Estrogens. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	3
373	Estrogens and the regulation of glucose metabolism. World Journal of Diabetes, 2021, 12, 1622-1654.	1.3	24
374	How temperature rise will influence the toxic impacts of 17 α-ethinylestradiol in Mytilus galloprovincialis?. Environmental Research, 2022, 204, 112279.	3.7	11
375	Free and immobilized biocatalysts for removing micropollutants from water and wastewater: Recent progress and challenges. Bioresource Technology, 2022, 344, 126201.	4.8	61
376	Does the scientific knowledge reflect the chemical diversity of environmental pollution? – A twenty-year perspective. Environmental Science and Policy, 2021, 126, 90-98.	2.4	18
377	Chronic Estradiol exposure-harmful effects on behavior, cardiovascular and reproductive functions. Reproduction, 2018, 156, R169-R186.	1.1	5
379	Policies to Tame a Wicked Problem. , 2019, , 93-120.		0
381	×sztrogének és ösztrogénhatású anyagok a növénytermesztésben. Agrokemia Es Talajtan, 201 385-401.	⁹ , 68, 0 . 1	1
382	Stacking broiler litter to reduce natural hormones. Poultry Science, 2020, 99, 1379-1386.	1.5	1
383	Effect of Seasonal Changes on Steroid Hormones Concentrations in the Golden Horn Estuary (Sea of) Tj ETQq0 0	0 rgBT /O	verlock 10 T
386	Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. Journal of Environmental Management, 2022, 301, 113708.	3.8	10
387	Acute exposure to 17-α-ethinylestradiol disrupt the embryonic development and oxidative status of Danio rerio. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 251, 109199.	1.3	5
388	Acute and chronic toxicity assessments of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) on the calanoid copepod Acartia clausi: Effects on survival, development, sex-ratio and reproduction. Science of the Total Environment, 2022, 807, 150845.	3.9	17
389	Agricultural Runoff and Treatment Methods. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 550-575.	0.3	1
390	Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials, 2021, 11, 2935.	1.9	128

#	Article	IF	CITATIONS
391	The adsorption, kinetics, and interaction mechanisms of various types of estrogen on electrospun polymeric nanofiber membranes. Nanotechnology, 2022, 33, 075702.	1.3	6
392	Environmental and health impacts of electric service vessels in the recreational boating industry. Water Practice and Technology, 2020, 15, 781-796.	1.0	2
393	Immunosensor based on MWNT and Au Nanoparticles for detection of 17 $ ilde{ extsf{A}}$ '- estradiol in pg/mL. , 2020, , .		0
395	RXFP2 as novel potential biomarker for abnormal differentiation induced by diethylstilbestrol in the gubernaculum of fetal mice. American Journal of Translational Research (discontinued), 2020, 12, 3715-3727.	0.0	0
396	Comparative Study of Environmental Disclosure in Indonesia and Malaysia: Testing Company Characteristics. Jurnal Riset Akuntansi Terpadu, 2021, 14, .	0.1	0
397	Identification of an important function of CYP123: Role in the monooxygenase activity in a novel estradiol degradation pathway in bacteria. Journal of Steroid Biochemistry and Molecular Biology, 2022, 215, 106025.	1.2	3
398	Strategies to enhance micropollutant removal from wastewater by membrane bioreactors: Recent advances and future perspectives. Bioresource Technology, 2022, 344, 126322.	4.8	27
399	Thiol-ene click synthesis of β-cyclodextrin-functionalized covalent organic framework-based magnetic nanocomposites (Fe3O4@COF@β-CD) for solid-phase extraction and determination of estrogens and estrogen mimics. Microchemical Journal, 2022, 174, 106987.	2.3	14
400	Irrigation water quality in Ghana and associated implications on vegetables and public health. A systematic review. Journal of Hydrology, 2022, 604, 127211.	2.3	13
401	Estrogenic mixtures induce alterations in lipidomic profiles in the gonads of female oysters. Chemosphere, 2022, 291, 132997.	4.2	5
402	Monitoring estrogen and androgen residues from livestock farms in Phayao Lake, Thailand. Environmental Monitoring and Assessment, 2021, 193, 812.	1.3	7
403	Development of a Novel Microgap Reactor System for the Photocatalytic Degradation of Micropollutants from Aqueous Solutions with TiO2-Based Photocatalysts Immobilized by Spray Coating. Catalysts, 2021, 11, 1351.	1.6	2
404	A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17β-estradiol. Food Chemistry, 2022, 373, 131591.	4.2	33
405	Ecotoxicological investigations of milking cow slurry and changes of oestrogenic compounds in the solid and liquid phase. Energy, Ecology and Environment, 2022, 7, 97-110.	1.9	0
406	Cyanobacterial Biomass as a Potential Biosorbent for the Removal of Recalcitrant Dyes from Water. Water (Switzerland), 2021, 13, 3176.	1.2	4
407	Highly-sensitive and simple fluorescent aptasensor for 17Âb-estradiol detection coupled with HCR-HRP structure. Talanta, 2022, 240, 123094.	2.9	8
408	Backbone extension via peptidomimetics at N-terminal; self-assembled nanofibrous cluster and application to selective progesterone detection in an aqueous medium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120691.	2.0	1
409	Single and Multicomponent Adsorption for the Removal of Natural Hormones from Swine Manure Using Soybean Hull. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
410	Investigating a Broad Range of Emerging Contaminants in a Set of Anthropogenically Impacted Environmental Compartments. SSRN Electronic Journal, 0, , .	0.4	0
412	A New Electrochemical Sensor Based on Carbon Black Modified With Palladium Nanoparticles for Direct Determination of 17αâ€Ethinylestradiol in Real Samples. Electroanalysis, 2022, 34, 863-871.	1.5	5
413	Envisaging the role of pharmaceutical contaminant 17-Î ² estradiol on growth and lipid productivity of marine diatom Chaetoceros gracilis. Bioresource Technology, 2022, 346, 126642.	4.8	9
414	Suppression mechanism of model humic constituents on laccase-enabled 17β-estradiol oxidation and oligomerization. Chemosphere, 2022, 290, 133356.	4.2	4
415	Behavioral, physiological and biochemical responses and differential gene expression in Mytilus galloprovincialis exposed to 17 alpha-ethinylestradiol and sodium lauryl sulfate. Journal of Hazardous Materials, 2022, 426, 128058.	6.5	10
416	Uptake and transport of steroid estrogens in soil-plant systems and their dissipation in rhizosphere: Influence factors and mechanisms. Journal of Hazardous Materials, 2022, 428, 128171.	6.5	8
417	Environmental Contaminants, Oxidative Stress, and Reproductive Cancer. , 2021, , 1-14.		0
418	Applied Voltage Effect in Lbl Sensors While Detecting 17α-Ethinylestradiol in Water Samples. , 2021, 5, .		1
419	Presence of steroid hormones in Lake Titicaca and drinking water, Puno (Peru). Journal of High Andean Research, 2021, 23, .	0.1	3
420	Occurrence of endocrine disrupting chemicals (EDCs) in river water, ground water and agricultural soils of India. International Journal of Environmental Science and Technology, 2022, 19, 11459-11474.	1.8	26
421	Transport, fate, and bioavailability of emerging pollutants in soil, sediment, and wastewater treatment plants: potential environmental impacts. , 2022, , 111-136.		3
422	Dual ambient plasma source ionization mass spectrometry for the rapid detection of trace sterols in urban water. Journal of Mass Spectrometry, 2022, 57, e4809.	0.7	6
423	The 3-oxoacyl-(acyl-carrier-protein) reductase HSD-X1 of Pseudomonas citronellolis SJTE-3 catalyzes the conversion of 17β-estradiol to estrone. Protein and Peptide Letters, 2022, 29, .	0.4	1
424	Biological effect and chemical monitoring of Watch List substances in European surface waters: Steroidal estrogens and diclofenac – Effect-based methods for monitoring frameworks. Environment International, 2022, 159, 107033.	4.8	28
425	A signal-off photoelectrochemical aptasensor for ultrasensitive 17β-estradiol detection based on rose-like CdS@C nanostructure and enzymatic amplification. Mikrochimica Acta, 2022, 189, 56.	2.5	14
426	Adsorption of antibiotics onto graphene oxide imparts their antagonistic effects on <i>Synechocystis</i> sp.: model development and proteomic analysis. Environmental Science: Nano, 2022, 9, 243-253.	2.2	7
427	Recovery of 17β-Estradiol Using 3D Printed Polyamide-12 Scavengers. 3D Printing and Additive Manufacturing, 2023, 10, 1122-1129.	1.4	2
428	Photocatalytic water purification under visible light using carbon nitride materials and β-Bi2O3 immobilized on electrospun polyvinyl acetate fibers. SN Applied Sciences, 2022, 4, 1.	1.5	2

		CITATION RE	PORT	
# 429	ARTICLE Environmental Contaminants, Oxidative Stress, and Reproductive Cancer. , 2022, , 423-	436.	IF	CITATIONS
729	Environmental containinants, Oxidative Stress, and Reproductive Cancell, 2022, 125	150.		0
430	Metabolic and oxidative status alterations induced in Ruditapes philippinarum exposed estrogen 17î±-ethinylestradiol under a warming scenario. Aquatic Toxicology, 2022, 24	chronically to 4, 106078.	1.9	8
431	Bacteria are better predictive biomarkers of environmental estrogen transmission than Environmental Pollution, 2022, 298, 118838.	fungi.	3.7	1
432	Treatment of saline wastewater amended with endocrine disruptors by aerobic granular Assessing performance and microbial community dynamics. Journal of Environmental C Engineering, 2022, 10, 107272.	sludge: hemical	3.3	7
433	Prediction of sludge settleability, density and suspended solids of aerobic granular sludg presence of pharmaceutically active compounds by quantitative image analysis and che Journal of Environmental Chemical Engineering, 2022, 10, 107136.	ge in the mometric tools.	3.3	3
434	Investigating a broad range of emerging contaminants in a set of anthropogenically impenvironmental compartments. Science of the Total Environment, 2022, 824, 153757.	pacted	3.9	14
435	Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endo Disrupting Chemicals on Embryonic Brain Development. Frontiers in Pharmacology, 202		1.6	3
436	Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secc tertiary sewage treatment processes. Water Research, 2022, 214, 118189.	ndary and	5.3	30
437	Advances in electrochemical detection methods for measuring contaminants of emergi Electrochemical Science Advances, 2022, 2, .	ng concerns.	1.2	19
438	17αâ€Ethynylestradiolâ€induced changes in <i>Brassica rapa</i> during the seedling g	rowth stage. , 2022, 5, .		2
439	Use of Caffeine for the Evaluation of the Anthropic Influence over the Upper and Middle Iguaçu River Basins. Journal of Water Resource and Protection, 2022, 1	4, 273-291.	0.3	1
440	Application of Graphene-Based Screen-Printed Electrodes for the Amperometric Determ Estradiol in Water Samples. SSRN Electronic Journal, 0, , .	ination of	0.4	Ο
441	Pollution Characteristics and Risk Prediction of Endocrine Disruptors in Lakes of Wuhar 2022, 10, 93.	. Toxics,	1.6	7
442	Biocatalytic System Made of 3D Chitin, Silica Nanopowder and Horseradish Peroxidase Removal of 17α-Ethinylestradiol: Determination of Process Efficiency and Degradation Molecules, 2022, 27, 1354.		1.7	10
443	Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of E Estrogens from Water and Soil. Materials, 2022, 15, 1894.	nvironmental	1.3	16
444	Transcriptomic and Physiological Responses of Chlorella pyrenoidosa during Exposure t 17α-Ethinylestradiol. International Journal of Molecular Sciences, 2022, 23, 3583.	D	1.8	8
445	Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chemosensors, 2022, 10, 114.		1.8	4
446	Isolation of a Monoclonal Antibody and its Derived Immunosensor for Rapid and Sensiti of 17β-Estradiol. Frontiers in Bioengineering and Biotechnology, 2022, 10, 818983.	ve Detection	2.0	6

	Сітатіс	on Report	
#	Article	IF	Citations
447	Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nature Nanotechnology, 2022, 17, 417-423.	15.6	125
448	A sensitive, robust method for determining natural and synthetic hormones in surface and wastewaters by continuous solid-phase extraction–gas chromatography–mass spectrometry. Environmental Science and Pollution Research, 2022, 29, 53619-53632.	2.7	10
449	Emerging Contaminants in Soil and Water. Frontiers in Environmental Science, 2022, 10, .	1.5	35
450	Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. Journal of Material Cycles and Waste Management, 2022, 24, 852-876.	1.6	42
451	Membrane biorreactor, reverse osmosis and UV/H2O2 process integration for ethinylestradiol removal: A cost-benefit analysis. Journal of Environmental Management, 2022, 310, 114760.	3.8	2
452	Ultrasensitive detection and application of estradiol based on nucleic acid aptamer and circulating amplification technology. Journal of Electroanalytical Chemistry, 2022, 913, 116284.	1.9	6
453	Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. Science of the Total Environment, 2022, 825, 153895.	3.9	49
454	Bioremoval of estrogens by laccase immobilized onto polyacrylonitrile/polyethersulfone material: Effect of inhibitors and mediators, process characterization and catalytic pathways determination. Journal of Hazardous Materials, 2022, 432, 128688.	6.5	16
455	Sexual hormones in a coastal river adjacent to the Bohai Sea: Characteristic pollutants and dominantly influencing factors. Environmental Research, 2022, 212, 113133.	3.7	2
456	Application of Carbon Nanotubes (CNTs) for Remediation of Emerging Pollutants - A Review. Tropical Aquatic and Soil Pollution, 2021, 2, 13-26.	3.0	27
457	Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers, 2022, 14, 206.	1.7	17
458	Hormones-active substances. , 2022, , 151-181.		1
459	Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions. Molecules, 2022, 27, 2567.	1.7	7
460	Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review. Environmental Pollution, 2022, 305, 119285.	3.7	10
461	Simultaneous 17β-estradiol degradation, carbon dioxide fixation, and carotenoid accumulation by Thermosynechococcus sp. CL-1. Bioresource Technology, 2022, 354, 127197.	4.8	3
462	The Response of Steroid Estrogens Bioavailability to Various Sorption Mechanisms by Soil Organic Matter Extracted with Sequential Alkaline-Extraction Method from an Agriculture Soil. SSRN Electronic Journal, 0, , .	0.4	0
463	Metal Recovery From Polluted Water Using Electrochemical Technologies. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 400-421.	0.3	0
464	Modulation by Estradiol of L-Dopa-Induced Dyskinesia in a Rat Model of Post-Menopausal Hemiparkinsonism. Life, 2022, 12, 640.	1.1	Ο

#	Article	IF	CITATIONS
465	Sources, Pollution Characteristics, and Ecological Risk Assessment of Steroids in Beihai Bay, Guangxi. Water (Switzerland), 2022, 14, 1399.	1.2	6
466	Sizeâ€Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception. Advanced NanoBiomed Research, 0, , 2100152.	1.7	0
467	Effect of W concentration in the organized Ti-W alloy oxide nanotubes array on the photoelectrocatalytic properties and its application in the removal of endocrine disruptors using real water matrix. Journal of Environmental Chemical Engineering, 2022, 10, 107830.	3.3	2
468	Chemical divergence of the Juglans Regia L. across districts Swat and Dir, Khyber Pakhtunkhwa, Pakistan. Brazilian Journal of Biology, 2022, 84, e259731.	0.4	2
470	Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban soils from 23 cities in China. Environmental Science and Pollution Research, 2022, 29, 73401-73413.	2.7	5
471	Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. Sensors, 2022, 22, 4178.	2.1	21
472	Insights into the Applications of Extracellular Laccase-Aided Humification in Livestock Manure Composting. Environmental Science & amp; Technology, 2022, 56, 7412-7425.	4.6	38
473	Models of Murine Vaginal Colonization by Anaerobically Grown Bacteria. Journal of Visualized Experiments, 2022, , .	0.2	2
474	Single and multi-component removal of natural hormones from aqueous solutions using soybean hull. Journal of Environmental Chemical Engineering, 2022, 10, 107995.	3.3	5
475	Tracking the historical urban and rural sources of fecal pollution in a South American tropical semi-arid region using sterols and endocrine-disrupting chemicals. Science of the Total Environment, 2022, 838, 156497.	3.9	3
476	Occurrence, ecological risk assessment and source apportionment of pharmaceuticals, steroid hormones and xenoestrogens in the Ghanaian aquatic environments. Toxicology Reports, 2022, 9, 1398-1409.	1.6	4
477	The response of steroid estrogens bioavailability to various sorption mechanisms by soil organic matter extracted with sequential alkaline-extraction method from an agriculture soil. Environmental Pollution, 2022, , 119630.	3.7	0
478	Comparative analysis of the white rot fungus <i>Trametes hirsuta</i> 072 laccases ability to modify 17β-oestradiol in the aqueous medium. Biocatalysis and Biotransformation, 2023, 41, 475-485.	1.1	0
479	Abiotic transformation of synthetic progestins in representative soil mineral suspensions. Journal of Environmental Sciences, 2023, 127, 375-388.	3.2	4
480	The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies, 2022, 3, 206-224.	0.7	32
481	Developing a quantitative framework to track the fate and transport of estrogens on a watershed scale. Journal of Hydrology, 2022, 611, 128013.	2.3	0
482	Development, optimization and validation of modified QuEChERS based UPLC-MS/MS for simultaneous determination of nine steroid hormones in milk powder and milk. New Journal of Chemistry, 2022, 46, 14597-14604.	1.4	1
483	Dealing with complex contamination scenarios: using a multi-geochemical approach to assess environmental quality and identify pollution sources in a semi-arid estuary from Brazil. Environmental Monitoring and Assessment, 2022, 194, .	1.3	1

#	Article	IF	CITATIONS
484	Environmental fate and toxicity of androgens: A critical review. Environmental Research, 2022, 214, 113849.	3.7	2
485	Enhanced photocatalytic performance under visible light of TiO2 through incorporation with transition metals for degradation of 17α-ethynylestradiol. International Journal of Environmental Science and Technology, 2023, 20, 7343-7352.	1.8	4
486	Evaluation of Three ISO Estrogen Receptor Transactivation Assays Applied to 52 Domestic Effluent Samples. Environmental Toxicology and Chemistry, 2022, 41, 2512-2526.	2.2	2
487	Microinjection based zebrafish embryo test for the detection of estrogenic substances in slurry based irrigation water and its combined application with yeast estrogen screen. Agricultural Water Management, 2022, 272, 107830.	2.4	1
488	Hepatic Transcriptomic Responses to Ethinylestradiol in Two Life Stages of Japanese Quail. Environmental Toxicology and Chemistry, 2022, 41, 2769-2781.	2.2	2
489	Fate, occurrence, and removal of estrogens in livestock wastewaters. Water Science and Technology, 2022, 86, 814-833.	1.2	5
490	Mechanism of 17β-estradiol degradation by Rhodococcus equi via the 4,5-seco pathway and its key genes. Environmental Pollution, 2022, 312, 120021.	3.7	9
491	Synergistic recognition and electrochemical sensing of 17β-Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver nanoparticles composite films. Journal of Electroanalytical Chemistry, 2022, 922, 116713.	1.9	8
492	Hormetic effect of 17α-ethynylestradiol on activated sludge microbial community response. Frontiers in Microbiology, 0, 13, .	1.5	0
493	Functionalized magnetic nanostructured composites and hybrids for photocatalytic elimination of pharmaceuticals and personal care products. Science of the Total Environment, 2022, 849, 157683.	3.9	10
494	Steroid hormone-inducible biosensor based on EGFP-tagged and environmental application. Environmental Research, 2022, 215, 114303.	3.7	0
495	Development of Targeted and nonâ€Targeted LCâ€MS Approaches for Determining Hormones and their Transformation Products in Stable Dusts. Lebensmittelchemie, 2022, 76, .	0.0	0
496	Impact of 17-β estradiol on growth and metabolism of marine diatom Thalassiosira weissflogii. Environmental Advances, 2022, 9, 100291.	2.2	3
497	Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. Chemosphere, 2022, 308, 136370.	4.2	5
498	Emerging impacts of steroids and antibiotics on the environment and their remediation using constructed wetlands: A critical review. Chemical Engineering Journal, 2023, 451, 138759.	6.6	16
499	Efficient and Stable Removal of the Synthetic Estrogen 17α-Ethynylestradiol by Pseudomonas Citronellolis Sjte-3 from Various Environments. SSRN Electronic Journal, 0, , .	0.4	0
500	An Automated Centrifugal Microfluidic Platform Integrated with Etalon Sensor Films for Rapid Image-Analysis-Based Detection of Progesterone. SSRN Electronic Journal, 0, , .	0.4	0
501	A New Multi-Identification System Based on a Poly(L-Cysteine) Sensor for Simultaneous Detection of Multiple Steroid Hormones in Serum. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
503	Lysinibacillus sp. GG242 from Cattle Slurries Degrades 17β-Estradiol and Possible 2 Transformation Routes. Microorganisms, 2022, 10, 1745.	1.6	2
504	Emerging Water Pollutants, their Toxicities, and Global Legislations. , 2022, , 1-27.		Ο

Xenobiotic estradiolâ $\in 17$ ÄŸ alters gut microbiota of hatchling American Alligators (<i>Alligator) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 6

506	Construction of Magnetic Composite Bacterial Carrier and Application in 17β-Estradiol Degradation. Molecules, 2022, 27, 5807.	1.7	3
507	Characterization and Degradation Pathways of Microbacterium resistens MZT7, A Novel 17β-Estradiol-Degrading Bacterium. International Journal of Environmental Research and Public Health, 2022, 19, 11097.	1.2	6
508	Occurrence and removal of conventional pollutants, estrogenicities, and fecal coliform in village sewage treatment plants along the Yangtze River, China. Environmental Science and Pollution Research, 2023, 30, 18014-18025.	2.7	1
509	An ultra-sensitive photothermal lateral flow immunoassay for 17β-estradiol in food samples. Food Chemistry, 2023, 404, 134482.	4.2	9
510	Fabrication of an innovative electrochemical sensor based on graphene-coated silver nanoparticles decorated over graphitic carbon nitride for efficient determination of estradiol. Environmental Science and Pollution Research, 0, , .	2.7	11
511	POZOSTAÅOÅšCI SUBSTANCJI FARMAKOLOGICZNIE CZYNNYCH JAKO ZANIECZYSZCZENIE ÅŠRODOWISKA I ROL GRZYBÓW BIAÅEJ ZGNILIZNY W ICH USUWANIU. , 2021, 19, 42-63.	A	0
512	Bioremediation Technologies for the Treatment of Water Contaminated by Organic and Inorganic Contaminants. , 2022, , 61-129.		2
513	Sorption kinetics, isotherms and molecular dynamics simulation of 17β-estradiol onto microplastics. Science of the Total Environment, 2023, 858, 159803.	3.9	13
515	Electrochemical Sensor Based on Poly-L-Tyrosine/AuNCs/PDA-CNTs Nanocomposites for the Detection of 17β-Estradiol in Wastewater. Journal of the Electrochemical Society, 2022, 169, 107506.	1.3	2
516	A Colorimetric Detection of Noradrenaline in Wastewater Using Citrate-Capped Colloidal Gold Nanoparticles Probe. Colloids and Interfaces, 2022, 6, 61.	0.9	3
517	BODIPY-Labeled Estrogens for Fluorescence Analysis of Environmental Microbial Degradation. ACS Omega, 2022, 7, 41284-41295.	1.6	1
519	Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples. Talanta Open, 2022, 6, 100163.	1.7	1
520	Intensive poultry farming: A review of the impact on the environment and human health. Science of the Total Environment, 2023, 858, 160014.	3.9	61
521	Carbon Dots Conjugated Antibody as an Effective FRET-Based Biosensor for Progesterone Hormone Screening. Biosensors, 2022, 12, 993.	2.3	9
522	Determination of Diethylstilbestrol in Environmental Water Based on Co(II)-Sensitized Electrochemical Sensing. Journal of the Electrochemical Society, 2022, 169, 117503.	1.3	1

#	Article	IF	CITATIONS
523	Identification of a 17β-estradiol-degrading Microbacterium hominis SJTG1 with high adaptability and characterization of the genes for estrogen degradation. Journal of Hazardous Materials, 2023, 444, 130371.	6.5	8
524	Optimized culture conditions facilitate the estrone biodegradation ability and laccase activity of Spirulina CPCC-695. Biodegradation, 2023, 34, 43-51.	1.5	2
525	Antibiotics and hormone residues in wastewater: Occurrence, risks, and its biological, physical and chemical treatments. Advances in Chemical Pollution, Environmental Management and Protection, 2022, , .	0.3	1
526	Construction of surface oxygen vacancies by bimetallic doping combined with ellagic acid modification to enhance the photocatalytic degradation of ethinyl estradiol by TiO2. Chemical Engineering Journal, 2023, 455, 140929.	6.6	10
527	Transcriptome profiling of Microbacterium resistens MZT7 reveals mechanisms of 17β-estradiol response and biotransformation. Environmental Research, 2023, 217, 114963.	3.7	4
528	A new multi-identification system based on a poly(l-cysteine) sensor for simultaneous detection of multiple steroid hormones in serum. Chemical Engineering Journal, 2023, 455, 140812.	6.6	2
529	Estrogen pollution of the European aquatic environment: A critical review. Water Research, 2023, 229, 119413.	5.3	9
531	Occurrence and Degradation of Free and Conjugated Estrogens in a River Receiving Feedlot Animal Discharge. Applied Sciences (Switzerland), 2022, 12, 11961.	1.3	1
532	Capture-SELEX of DNA Aptamers for Estradiol Specifically and Estrogenic Compounds Collectively. Environmental Science & Technology, 2022, 56, 17702-17711.	4.6	17
533	A scientometric analysis of research trends on emerging contaminants in the field of cancer in 2012–2021. Frontiers in Public Health, 0, 10, .	1.3	1
534	A global overview of endocrine disrupting chemicals in the environment: occurrence, effects, and treatment methods. International Journal of Environmental Science and Technology, 2023, 20, 12875-12902.	1.8	5
535	Ecological risk assessment associated with five endocrine-disrupting compounds in wastewater treatment plants of Northeast Mexico. Environmental Science and Pollution Research, 2023, 30, 30714-30726.	2.7	1
536	Embryo developmental toxicity in marine medaka (Oryzias melastigma) due to parental and embryonic 17α-ethinylestradiol exposure. Science of the Total Environment, 2023, 861, 160594.	3.9	3
537	Preparation and Adsorption Properties of Magnetic Molecularly Imprinted Polymers for Selective Recognition of 17l²-Estradiol. Separations, 2022, 9, 381.	1.1	1
538	Presence of Some Commonly used Pharmaceutical Residues in Seawater and Net Plankton: a Case Study of Spitsbergen, Svalbard Archipelago. International Journal of Environment and Geoinformatics, 2022, 9, 1-10.	0.5	1
539	Minimizing the environmental impact of unused pharmaceuticals: Review focused on prevention. Frontiers in Environmental Science, 0, 10, .	1.5	9
540	Food Safety Issues and Regulatory Requirements of Sea Cucumber Products and Their Internationalization. , 2023, , 349-364.		0
541	Pharmaceutical pollution disrupts the behavior and predator-prey interactions of two widespread aquatic insects. IScience, 2022, 25, 105672.	1.9	2

#	Article	IF	CITATIONS
542	Methods of Removal of Hormones in Wastewater. Water (Switzerland), 2023, 15, 353.	1.2	3
543	Toxic effects of a mixture of pharmaceuticals in Mytilus galloprovincialis: The case of 17α-ethinylestradiol and salicylic acid. Environmental Pollution, 2023, 324, 121070.	3.7	6
544	Aqueous biphasic systems as a key tool for food processing. Current Opinion in Food Science, 2023, 50, 100991.	4.1	0
545	Assessment of Xenoestrogens in Jordanian Water System: Activity and Identification. Toxics, 2023, 11, 63.	1.6	2
546	Strategies based on the use of microorganisms for the elimination of pollutants with endocrine-disrupting activity in the environment. Journal of Environmental Chemical Engineering, 2023, 11, 109268.	3.3	10
547	Emissions of pharmaceuticals and plant protection products to the lagoon of Venice: development of a new emission inventory. Journal of Environmental Management, 2023, 330, 117153.	3.8	1
548	Developmental toxicity and transcriptome analysis of equine estrogens in developing medaka (Oryzias) Tj ETQqQ Physiology Part - C: Toxicology and Pharmacology, 2023, 266, 109547.	0 0 rgBT 1.3	Overlock 10 0
549	Chronic estrone exposure affects spermatogenesis and sperm quality in zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 2023, 98, 104058.	2.0	1
550	Preparation of bionanomaterial based on green reduced graphene immobilized Ochrobactrum sp. FJ1: Optimization, characterization and its application. Separation and Purification Technology, 2023, 310, 123144.	3.9	4
551	The Impact of 17β-estradiol (E2) on the Growth Profile of Environmental Enterobacteriaceae. Water, Air, and Soil Pollution, 2023, 234, .	1.1	1
552	Photocatalytic Degradation and Mineralization of Estriol (E3) Hormone Using Boron-Doped TiO2 Catalyst. Catalysts, 2023, 13, 43.	1.6	2
553	Contraceptive-Pill-Sourced Synthetic Estrogen and Progestogen in Water Causes Decrease in GSI and HSI and Alters Blood Glucose Levels in Climbing Perch (Anabas testudineus). Hydrobiology, 2023, 2, 19-35.	0.9	1
554	Emerging contaminants in municipal wastewater: Occurrence, characteristics, and bioremediation. , 2023, , 153-178.		0
555	Surface plasmon field enhanced upconversion luminescence for the screening and detection of phenolic environmental estrogens. Food Chemistry, 2023, 413, 135606.	4.2	1
556	Application of molecularly imprinted polymers in recognition and detection of environmental oestrogens: a review. Environmental Chemistry, 2023, 19, 461-482.	0.7	0
557	Estetrol has a lower impact than 17α-ethinylestradiol on the reproductive capacity of zebrafish (Danio) Tj ETQq1	1 0,7843 1.9	14 ₃ rgBT /Ove
558	Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS Journal, 2023, 31, 57-92.	1.9	7
559	The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie, 2023, 209, 103-115.	1.3	14

#	Article	IF	CITATIONS
560	Secondary growth synthesis of covalent organic framework modified electrospun nanofibers for extraction of estrogens in milk samples. Journal of Food Composition and Analysis, 2023, 119, 105222.	1.9	2
561	Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerging Contaminants, 2023, 9, 100210.	2.2	15
562	Poly(vinylidene fluoride) membrane with immobilized TiO2 for degradation of steroid hormone micropollutants in a photocatalytic membrane reactor. Journal of Hazardous Materials, 2023, 447, 130832.	6.5	16
563	Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17î±-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3. Chemosphere, 2023, 317, 137893.	4.2	3
564	Insights into sorption and molecular transport of atrazine, testosterone, and progesterone onto polyamide microplastics in different aquatic matrices. Chemosphere, 2023, 318, 137949.	4.2	2
565	Does dietary exposure to 17α-ethinylestradiol alter biomarkers related with endocrine disruption and oxidative stress in the adult triploid of Danio rerio?. Science of the Total Environment, 2023, 870, 161911.	3.9	0
567	Visible-light induced photocatalytic degradation of estrone (E1) with hexagonal copper selenide nanoflakes in water. Chemical Engineering Research and Design, 2023, 172, 1-15.	2.7	1
568	Environmental estrogens shape disease susceptibility. International Journal of Hygiene and Environmental Health, 2023, 249, 114125.	2.1	5
569	Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds. Biosensors, 2023, 13, 305.	2.3	7
570	A Novel Estrone Degradation Gene Cluster and Catabolic Mechanism in Microbacterium oxydans ML-6. Applied and Environmental Microbiology, 2023, 89, .	1.4	6
571	Reconsidering "lowâ€doseâ€â€"ImpactsÂof oralÂestrogen exposure during preimplantation embryo development. Molecular Reproduction and Development, 2023, 90, 445-458.	1.0	4
572	The Material Matters: Sorption/Desorption Study of Selected Estrogens on Common Tubing or Sampling Materials Used in Water Sampling, Handling, Analysis or Treatment Technologies. Applied Sciences (Switzerland), 2023, 13, 3328.	1.3	0
573	DNA damage, alterations in the expression of antioxidant enzyme genes and in the histoarchitecture of gill cells of zebrafish exposed to 17-î±-ethinylestradiol. Drug and Chemical Toxicology, 2024, 47, 60-66.	1.2	1
574	Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors. Biosensors, 2023, 13, 432.	2.3	3
575	Determination of Environmental Estrogens by Polybenzothiophene-based Solid-phase Extraction (SPE) and High-Performance Liquid Chromatography (HPLC). Analytical Letters, 2024, 57, 41-57.	1.0	0
576	Microbially-assisted phytoremediation toward air pollutants: Current trends and future directions. Environmental Technology and Innovation, 2023, 31, 103140.	3.0	10
577	Unraveling the Roles of MW/UV/TiO2 Photocatalysis Technologies for Organic Wastewater Treatment. Catalysts, 2023, 13, 754.	1.6	3
578	A ratiometric aptasensor for simultaneous determination of two estrogens based on multicolor upconversion nanoparticles. Sensors and Actuators B: Chemical, 2023, 389, 133842.	4.0	2

ARTICLE IF CITATIONS Emerging Contaminants and Their Removal from Aqueous Media Using Conventional/Non-Conventional Adsorbents: A Glance at the Relationship between Materials, 579 1.2 9 Processes, and Technologies. Water (Switzerland), 2023, 15, 1626. 589 Green Iron Nanoparticles for Nanoremediation., 2023, , 231-251. Bio-treatment of the swine wastewater and resource recovery: A sustainable approach towards 592 1 circular bioeconomy., 2023, , 299-329. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: a systemic 604 scientometric review. RSC Advances, 2023, 13, 22675-22697. Biochar for Management of Wastewater. Materials Horizons, 2023, , 107-121. 616 0.3 0 Hormone, Medikamente und was sich sonst noch in unseren AbwÄßsern finden lÄßst., 2023, , 139-158. 644 Plantation-Based Soil Reclamation of Emerging Contaminants., 2023, , 1-26. 0 Vitellogenin: As a Hormone., 2023, , 123-138. 645 646 Environmental Toxicology., 2023, , 1-28. 0 Biological elements as important tools in the detection/monitoring of drug compounds in organic 659 and environmental samples. , 2024, , 337-371. Innovative technologies for emerging issues in pharmaceuticals. , 2024, , 243-270. 660 0 Bioremediation of pharmaceutical waste waters., 2024, , 289-336.