Demonstration of a self-pulsing photonic crystal Fano la

Nature Photonics 11, 81-84 DOI: 10.1038/nphoton.2016.248

Citation Report

#	Article	IF	CITATIONS
1	General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles. Physical Review Letters, 2017, 119, 133601.	7.8	20
2	Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing. Journal Physics D: Applied Physics, 2017, 50, 285101.	2.8	46
3	Fano resonances in photonics. Nature Photonics, 2017, 11, 543-554.	31.4	1,240
4	An actively controlled silicon ring resonator with a fully tunable Fano resonance. APL Photonics, 2017, 2, .	5.7	31
5	Theory of Selfâ€pulsing in Photonic Crystal Fano Lasers. Laser and Photonics Reviews, 2017, 11, 1700089.	8.7	24
6	Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	6
7	Photonic crystal Fano lasers and Fano switches. , 2017, , .		0
8	Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers. Physical Review A, 2017, 96, .	2.5	30
9	Lasers, switches and non-reciprocal elements based on photonic crystal Fano resonances. , 2017, , .		1
10	Experimental demonstration of a Fano laser based on photonic crystals. , 2017, , .		0
11	Regimes of self-pulsing in photonic crystal Fano lasers. , 2017, , .		0
12	Large signal simulation of photonic crystal Fano laser. , 2017, , .		0
13	Designing a low-threshold quantum-dot laser based on a slow-light photonic crystal waveguide. Applied Optics, 2017, 56, 9629.	1.8	3
14	Theory and simulations of self-pulsing in photonic crystal Fano lasers. , 2017, , .		0
15	Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering. Journal of Applied Physics, 2018, 123, .	2.5	4
16	Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches. , 2018, , .		0
17	Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation. ACS Photonics, 2018, 5, 4229-4237.	6.6	20
18	Small and Large Signal Analysis of Photonic Crystal Fano Laser. Journal of Lightwave Technology, 2018, 36, 5611-5616.	4.6	8

#	Article	IF	CITATIONS
19	Allâ€Inorganic CsPbBr ₃ Nanowire Based Plasmonic Lasers. Advanced Optical Materials, 2018, 6, 1800674.	7.3	107
20	Silicon slot waveguide Fano resonator. Optics Letters, 2018, 43, 3489.	3.3	13
21	Mapping bifurcation structure and parameter dependence in quantum dot spin-VCSELs. Optics Express, 2018, 26, 14636.	3.4	19
22	Modes, stability, and small-signal response of photonic crystal Fano lasers. Optics Express, 2018, 26, 16365.	3.4	19
23	Double Fano resonance in a side-by-side gratings structure. Journal of Optics (United Kingdom), 2018, 20, 085002.	2.2	3
24	Self-healing responsive chiral photonic films for sensing and encoding. Journal of Materials Chemistry C, 2018, 6, 7767-7775.	5.5	51
25	1305Ânm Fewâ€Layer MoTe ₂ â€onâ€Silicon Laserâ€Like Emission. Laser and Photonics Reviews, 201 12, 1800015.	.8 8.7	39
26	Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures. Optics Letters, 2018, 43, 955.	3.3	14
27	Polarizing properties of a 2D photonic crystal slab for simultaneous in-plane and out-of-plane light incidence. Journal Physics D: Applied Physics, 2018, 51, 355101.	2.8	3
28	Signal reshaping and noise suppression using photonic crystal Fano structures. Optics Express, 2018, 26, 19596.	3.4	21
29	Spectral characterization of silicon photonic crystal slab using out-of-plane light coupling arrangement. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	12
30	Wideband excitation of Fano resonances and induced transparency by coherent interactions between Brillouin resonances. Scientific Reports, 2018, 8, 9175.	3.3	14
31	Two-dimensional phase-space picture of the photonic crystal Fano laser. Physical Review A, 2019, 100, .	2.5	4
32	Resonance effects in photonic crystals and metamaterials: (100th anniversary of the loffe Institute). Physics-Uspekhi, 2019, 62, 823-838.	2.2	22
33	Inâ€Plane Photonic Crystal Devices using Fano Resonances. Laser and Photonics Reviews, 2019, 13, 1900054.	8.7	40
34	Coupling Distant Quantum Dots using a Photonic Crystal Fano Structure. , 2019, , .		0
35	Multiple fano resonances in a coupled plasmonic resonator system. Journal of Applied Physics, 2019, 126, 083102.	2.5	9
36	Multiple Fano resonances based on coupled hetero-cavities in a terahertz photonic crystal. AIP Conference Proceedings, 2019, , .	0.4	0

#	Article	IF	CITATIONS
37	Coherent interaction of orthogonal polarization modes in a photonic crystal nanofiber cavity. Optics Express, 2019, 27, 1453.	3.4	4
38	Cavity Quantum Electrodynamics with Frequency-Dependent Reflectors. Physical Review Letters, 2019, 122, 243601.	7.8	30
39	Dynamically tunable multifunctional QED platform. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	4
40	Semiconductor Fano Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-14.	2.9	18
41	Crucial Role of Metal Surface Morphology in Photon Emission from a Tunnel Junction at Ambient Conditions. Journal of Physical Chemistry C, 2019, 123, 8813-8817.	3.1	8
42	Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	6
43	Order of Magnitude Improvement in Feedback Stability of Nanolasers by Inclusion of a Fano Resonance-Based Mirror. , 2019, , .		0
44	Towards High-Speed Fano Photonic Switches. , 2019, , .		1
45	Quantum light-matter interaction and controlled phonon scattering in a photonic Fano cavity. Physical Review B, 2019, 100, .	3.2	21
46	Low-Power Thermo-Optic Switching Using Photonic Crystal Fano Structure with p-i-n Junction. , 2019, , .		2
47	Mode Locking of the Hermite-Gaussian Modes of a Nanolaser. Physical Review Letters, 2019, 123, 233901.	7.8	16
48	Suppression of Coherence Collapse in Semiconductor Fano Lasers. Physical Review Letters, 2019, 123, 233904.	7.8	21
49	Dynamic plasma/metal/dielectric photonic crystals in the mm-wave region: Electromagnetically-active artificial material for wireless communications and sensors. Applied Physics Reviews, 2019, 6, .	11.3	29
50	Mode-Locking with Hermite-Gaussian Modes. , 2019, , .		0
51	Bound states in the continuum in the double-period rectangular hole arrays perforated in one layer of photonic crystal slab in the visible wavelength region. Optics Communications, 2019, 436, 151-160.	2.1	12
52	Progress of binary cooperative complementary interfacial nanomaterials. Nano Today, 2019, 24, 48-80.	11.9	14
53	Observation of Fano-like resonance in dual-blade shaped gold nanostructures. Journal Physics D: Applied Physics, 2019, 52, 045106.	2.8	3
54	Multipolar Fano resonances in concentric semi-disk ring cavities. Optik, 2020, 200, 163416.	2.9	2

		REPORT	
#	Article	IF	CITATIONS
55	Optical processing and manipulation of wavelength division multiplexed signals. , 2020, , 233-299.		2
56	Fano resonance in partially complementary split ring resonators arranged in circular columns. Laser Physics, 2020, 30, 025402.	1.2	1
57	One-way rotating state of multi-periodicity frequency bands in circular photonic crystal. Journal Physics D: Applied Physics, 2020, 53, 075104.	2.8	21
58	Dynamics of mode-locked nanolasers based on Hermite-Gaussian modes. Physical Review A, 2020, 102, .	2.5	7
59	Topology-Controlled Photonic Cavity Based on the Near-Conservation of the Valley Degree of Freedom. Physical Review Letters, 2020, 125, 213902.	7.8	18
60	Monolithic integration of InP on Si by molten alloy driven selective area epitaxial growth. Nanoscale, 2020, 12, 23780-23788.	5.6	5
61	Controlling Resonance Lineshapes of a Side-Coupled Waveguide-Microring Resonator. Journal of Lightwave Technology, 2020, 38, 4429-4434.	4.6	9
62	Tunable toroidal Fano resonance in the multiple split-ring resonators metamaterials. Optik, 2020, 216, 164936.	2.9	1
63	Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nature Photonics, 2020, 14, 369-374.	31.4	145
64	Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing. Physical Review Letters, 2020, 125, 013903.	7.8	77
65	Mode-field switching of nanolasers. APL Photonics, 2020, 5, .	5.7	3
66	Photon-correlation measurements of stochastic limit cycles emerging from high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Q</mml:mi> nonlinear silicon photonic crystal microcavities. Physical Review A, 2020, 102, .</mml:math 	2.5	4
67	Symmetryâ€Assisted Spectral Line Shapes Manipulation in Dielectric Doubleâ€Fano Metasurfaces. Advanced Optical Materials, 2021, 9, 2001874.	7.3	12
68	Ahighly sensitive tunable filter using hybrid 1-D photonic crystal and plasmonic MIM waveguide. Optik, 2021, 228, 166174.	2.9	15
69	The multi-photon induced Fano effect. Nature Communications, 2021, 12, 454.	12.8	6
70	Optical Properties of Site-Selectively Grown InAs/InP Quantum Dots with Predefined Positioning by Block Copolymer Lithography. Materials, 2021, 14, 391.	2.9	3
71	From Fano to Quasi-BIC Resonances in Individual Dielectric Nanoantennas. Nano Letters, 2021, 21, 1765-1771.	9.1	96
72	Strongly Coupled Systems for Nonlinear Optics. Laser and Photonics Reviews, 2021, 15, 2000514.	8.7	31

#	Article	IF	CITATIONS
73	Open-geometry modal method based on transverse electric and transverse magnetic mode expansion for orthogonal curvilinear coordinates. Physical Review E, 2021, 103, 033301.	2.1	7
75	Evidence of the retardation effect on the plasmonic resonances of aluminum nanodisks in the symmetric/asymmetric environment. Optics Express, 2021, 29, 14799.	3.4	5
76	Fano Lineshapes and Rabi Splittings: Can They Be Artificially Generated or Obscured by the Numerical Aperture?. ACS Photonics, 2021, 8, 1271-1276.	6.6	7
78	Quantum Langevin approach for superradiant nanolasers. New Journal of Physics, 2021, 23, 063010.	2.9	11
79	Tunable Polymer/Airâ€Bragg Optical Microcavity Configurations for Controllable Light–Matter Interaction Scenarios. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100182.	2.4	4
80	Lasing action in Fano-resonant superlattice metagratings. Journal Physics D: Applied Physics, 2021, 54, 345101.	2.8	3
81	Physics and Applications of Highâ€Î² Micro―and Nanolasers. Advanced Optical Materials, 2021, 9, 2100415.	7.3	20
82	Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka. Plasmonics, 2021, 16, 2117-2124.	3.4	13
83	Realization and Modulation of Fano-Like Lineshape in Fiber Bragg Gratings. Journal of Lightwave Technology, 2021, 39, 4419-4423.	4.6	3
84	Ultrashort Pulse Generation in Nanolasers by Means of Lorenz–Haken Instabilities. Annalen Der Physik, 2021, 533, 2100122.	2.4	2
85	Interference between atomic Rb (5d _{5/2} –5p _{3/2}) and (5p _{3/2} –5s) Tj Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 165001.	ETQq0 0 0 1.5	rgBT /Overlo 2
86	Fano resonance from a one-dimensional topological photonic crystal. APL Photonics, 2021, 6, 086105.	5.7	14
87	Ultra-coherent Fano laser based on a bound state in the continuum. Nature Photonics, 2021, 15, 758-764.	31.4	76
88	Fano resonance for applications. Advances in Optics and Photonics, 2021, 13, 703.	25.5	61
89	High-Q Fano Resonance in Subwavelength Stub-Wall-Coupled MDM Waveguide Structure and Its Terahertz Sensing Application. IEEE Access, 2021, 9, 123939-123949.	4.2	2
90	Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration. Journal of Applied Physics, 2020, 128, .	2.5	25
91	Global <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="double-struck">T</mml:mi </mml:math> operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections. Physical Review Research, 2020, 2, .	3.6	26
92	Bifunctional resonance effects of classical electromagnetically induced transparency and Fano response using a terahertz metamaterial resonator. Applied Optics, 2019, 58, 4414.	1.8	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
93	Tunable all-optical microwave filter with high tuning efficiency. Optics Express, 2020, 28,	6918.	3.4	20
94	Designs toward synchronization of optical limit cycles with coupled silicon photonic cryst microcavities. Optics Express, 2020, 28, 27657.	al	3.4	7
95	Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Optics 45, 2363.	Letters, 2020,	3.3	21
96	All-optical non-linear activation function for neuromorphic photonic computing using semiconductor Fano lasers. Optics Letters, 2020, 45, 3844.		3.3	28
97	Room-temperature up-conversion random lasing from CsPbBr ₃ quantum dot TiO ₂ nanotubes. Optics Letters, 2019, 44, 4706.	:s with	3.3	14
98	Superlattice bilayer metasurfaces simultaneously supporting electric and magnetic Fano r Optical Materials Express, 2019, 9, 944.	esonances.	3.0	10
99	Synthesis and systematic optical investigation of selective area droplet epitaxy of InAs/InF dots assisted by block copolymer lithography. Optical Materials Express, 2019, 9, 1738.	'quantum	3.0	4
100	Analysis of the Effect of Partial Transmission Element on the Performance of Fano Laser. ,	2021,,.		0
101	Photonic Crystal with Buried Heterostructure Platform for Laser Devices Directly Bonded $^{\circ}$ 2017, , .	to Si. ,		2
102	Photonic crystal Fano resonances for realizing optical switches, lasers, and non-reciprocal , 2017, , .	elements.		1
103	Coupled photonic crystal cavity-waveguide structures incorporating site-controlled semic quantum dots. , 2018, , .	onductor		0
104	Learning of Laser Dynamics using Bayesian Inference. , 2018, , .			0
105	Silicon based tunable Fano resonance with ultrahigh slope rate and extinction ratio. , 201	8, , .		0
106	Manipulation and Optical Processing of WDM Signals Using Optical Time Lenses. , 2019,			0
107	Tunable Fano resonance with a high slope rate in a microring-resonator-coupled Mach– interferometer. Optics Letters, 2019, 44, 251.	Zehnder	3.3	11
108	Fano resonances in symmetric gold nanorod trimers. Wuli Xuebao/Acta Physica Sinica, 20	19, 68, 197801.	0.5	0
109	Photonic crystal laser based on Fano interference allows for ultrafast frequency modulation THz range. , 2019, , .	on in the		2
110	Numerical Analysis of Fano Resonator in 2D Periodic Structure for Integrated Microwave (Advances in Intelligent Systems and Computing, 2020, , 630-637.	Circuit.	0.6	2

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
111	Multimode Fano resonances for low-power mode switching. Optics Letters, 2020, 45,	1035.	3.3	8
112	Remote excitation between quantum emitters mediated by an optical Fano resonance 1605.	. Optica, 2021, 8,	9.3	7
113	Nanomass Sensing via Node Shift Tracing in Vibrations of Coupled Nanowires Enhance Resonances. ACS Applied Nano Materials, 2021, 4, 11989-11996.	ed by Fano	5.0	1
114	High-speed photonic reservoir computer based on a delayed Fano laser under electrica Optics Letters, 2021, 46, 6035.	l modulation.	3.3	15
115	Numerical Investigation and Design of Electrically-Pumped Self-Pulsing Fano Laser Base III-V/Silicon Integration. Photonics, 2021, 8, 530.	ed on	2.0	1
116	Modal Properties of Photonic Crystal Cavities and Applications to Lasers. Nanomateria	ils, 2021, 11, 3030.	4.1	20
117	Engineering the Optical Response of the Novel Plasmonic Binary Nanohole Array. Plasr 735-743.	nonics, 2022, 17,	3.4	1
118	Direct Optical Modulation of Photonic Crystal Fano Laser via the Mirror. , 2021, , .			0
119	Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coup double-heterostructure cavities. Optics Express, 2022, 30, 10229.	pled	3.4	2
120	"Phase transitions―in small systems: Why standard threshold definitions fail for r Solitons and Fractals, 2022, 157, 111850.	1anolasers. Chaos,	5.1	7
121	Ultra narrow Fano resonance of 2D array of the Ag trigonal-helix nanostructure. Photo Nanostructures - Fundamentals and Applications, 2022, 50, 101021.	nics and	2.0	0
122	Temperature dependent Raman spectroscopic study of Fano resonance in perovskite f KTa _{1-x} Nb _x O ₃ single crystal. Optical Materials I 247.	erroelectric Express, 2022, 12,	3.0	9
123	Fano enhancement of unlocalized nonlinear optical processes. Physical Review B, 202	1, 104, .	3.2	4
124	Fast dispersion tailoring of multimode photonic crystal resonators. Physical Review A,	2022, 106, .	2.5	1
125	Electricallyâ€Driven Photonic Crystal Lasers with Ultraâ€low Threshold. Laser and Phot 2022, 16, .	tonics Reviews,	8.7	11
126	Transition from Lorentz to Fano Spectral Line Shapes in Nonrelativistic Quantum Elect ACS Photonics, 2022, 9, 2946-2955.	rodynamics.	6.6	4
127	Boolean logic gates implemented by a single photonic neuron based on a semiconduc 2022, 1, 1859.	tor Fano laser. ,		3
128	All optical switching in a silicon nonlinear Fano resonator. , 2022, , .			1

# 129	ARTICLE Self-Pulsing Nanobeam Photonic Crystal Laser. , 2022, , .	IF	CITATIONS
130	Narrow-Linewidth Fano Laser. , 2022, , .		0
131	Fano Laser Based on a Photonic Crystal Nanobeam Cavity. , 2022, , .		0
132	Cascades of Fano resonances in light scattering by dielectric particles. Materials Today, 2022, 60, 69-78.	14.2	5
133	Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nature Communications, 2022, 13, .	12.8	36
134	Achieving Fano resonance with ultra-high slope rate by silicon nitride CROW embedded in Mach-Zehnder interferometer. Optics Express, 0, , .	3.4	1
135	Canonical Resonant Four-Wave-Mixing in Photonic Crystal Cavities : tuning, tolerances and scaling. IEEE Journal of Selected Topics in Quantum Electronics, 2022, , 1-13.	2.9	2
136	Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system. Physical Chemistry Chemical Physics, 2023, 25, 1685-1689.	2.8	5
137	Oscillator Laser Model. Annalen Der Physik, 0, , 2200298.	2.4	1
138	Submicron-Size Emitters of the 1.2–1.55 μ4m Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate. Nanomaterials, 2022, 12, 4213.	4.1	Ο
139	Dispersive self-Q-switching in a microscopic laser. , 2022, , .		0
140	Modulations in Superconductors: Probes of Underlying Physics. Advanced Materials, 2023, 35, .	21.0	Ο
141	Theory of linewidth narrowing in Fano lasers. Physical Review Research, 2022, 4, .	3.6	3
142	Cavity dumping using a microscopic Fano laser. Optica, 2023, 10, 248.	9.3	4
144	Resonance Effects in the Bent Waveguide-Based Fabry–Perot Resonator with Mirrors of Spatially Varying Reflectivity. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, S50-S59.	0.6	0
145	Optical Analogs of Rabi Splitting in Integrated Waveguide oupled Resonators. , 2023, 2, .		4
146	Multiple Fano resonances driven by bound states in the continuum in an all-dielectric nanoarrays system. AIP Advances, 2023, 13, .	1.3	4
147	Detection of glucose concentrations in urine based on coupling of Tamm–Fano resonance in photonic crystals. Optical and Quantum Electronics, 2023, 55, .	3.3	10

#	Article	IF	CITATIONS
148	Digital Coding Fano Resonance Based On Active Plasmonic Metamaterials. Applied Optics, 0, , .	1.8	0
149	Fano-resonant propagating plexcitons and Rabi-splitting local plexcitons of bilayer borophene in TERS. Applied Physics Letters, 2023, 122, .	3.3	4
150	Fano‣ike Resonance from Disorder Correlation in Vacancyâ€Doped Photonic Crystals. Small, 2023, 19, .	10.0	0
151	Tunable Fano resonance with an ultra-wide free spectral range from a photonic integrated circuit. Applied Optics, 2023, 62, 5342.	1.8	ο

152 基于C3å⁻¹ç§°æ€§ç´ç¼ºçš"å**ἕ**¢‡œ³•è⁻ºå...±æŒ⁻ä,Žå...‰å¦ä¼æ"Ÿ. Laser and Optoelectronics Progress, 2023, 60,∞825001Ω

153	Superbound state in photonic bandgap and its application to generate complete tunable SBS-EIT, SBS-EIR and SBS-Fano. Optics Express, 2023, 31, 20572.	3.4	1
154	Tunable Fano resonance and optical switching in the one-dimensional topological photonic crystal with graphene. Journal of Applied Physics, 2023, 133, .	2.5	2
155	Bistable Fano Laser with Optical Feedback. , 2023, , .		0
156	Self-pulsing and dual-mode lasing in a square microcavity semiconductor laser. Optics Letters, 0, , .	3.3	0
157	Nonlinearly tunable Fano resonance in photonic crystal heterostructure with embedded a varactor-loaded split ring resonator. Journal of Applied Physics, 2023, 134, .	2.5	0
158	Non-Hermitian Waveguide Cavity QED with Tunable Atomic Mirrors. Physical Review Letters, 2023, 131, .	7.8	0
159	Deterministic relation between thermal-phonon dressings and a non-Hermitian multi-Fano interferences router in ion-doped microcrystals. , 2024, 3, 100077.		0
160	Tailoring Fano Lineshape in Photonic Local Density of States by Losses Engineering. Advanced Quantum Technologies, 0, , .	3.9	0
161	90 \hat{A}° nano-pixel bending waveguide toward highly compact reflecting element. , 2023, , .		0
162	ENZ medium triggered collapse of Fano resonances and emergence of generalized nonreciprocal Kerker effects by subwavelength hybrid meta-atoms. Physical Review B, 2023, 108, .	3.2	0
163	Linewidth narrowing and intense optical pulse generation in microscopic Fano lasers. , 2023, , .		0
164	Experimental demonstration of a nanobeam Fano laser. Optics Express, 2024, 32, 5242.	3.4	0
165	Photonic computing: an introduction. , 2024, , 37-65.		0

		CHATION REPORT		
#	Article	IF	CITATIONS	
166	Optical bistability and flip-flop function in feedback Fano laser. Optics Express, 2024, 32, 8230	. 3.4	0	