CITATION REPORT List of articles citing

Kinetic study of hydrodeoxygenation of palmitic acid as a model compound for microalgae oil over Pt/?-Al2O3

DOI: 10.1016/j.apcata.2016.12.014 Applied Catalysis A: General, 2017, 532, 40-49.

Source: https://exaly.com/paper-pdf/66711800/citation-report.pdf

Version: 2024-04-17

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
34	Hydroprocessing Catalysts Containing Noble Metals: Deactivation, Regeneration, Metals Reclamation, and Environment and Safety. <i>Energy & Energy & E</i>	4.1	18
33	Ni/Co-Natural Clay as Green Catalysts for Microalgae Oil to Diesel-Grade Hydrocarbons Conversion. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5351-5359	8.3	35
32	The comparison of Co, Ni, Mo, CoMo and NiMo sulfided catalysts in rapeseed oil hydrodeoxygenation. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2017 , 122, 333-341	1.6	11
31	On the production of bio-hydrogenated diesel over hydrotalcite-like supported palladium and ruthenium catalysts. <i>Fuel Processing Technology</i> , 2018 , 169, 142-149	7.2	19
30	Kinetic modeling of fatty acid methyl esters and triglycerides hydrodeoxygenation over nickel and palladium catalysts. <i>Chemical Engineering Journal</i> , 2018 , 334, 2201-2207	14.7	29
29	Activation of Peroxymonosulfate by Fe3O4IIsxWO3/NiAl Layered Double Hydroxide Composites for the Degradation of 2,4-Dichlorophenoxyacetic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 16308-16317	3.9	21
28	Characterization and Evaluation of Carbon-Supported Noble Metals for the Hydrodeoxygenation of Acetic Acid. <i>Organic Process Research and Development</i> , 2018 , 22, 1628-1635	3.9	4
27	Conceptual process design and Isimulation of microalgae oil Itonversion to aviation fuel. <i>Biofuels, Bioproducts and Biorefining</i> , 2018 , 12, 935-948	5.3	8
26	Kinetic and Reactor Modeling of Catalytic Hydrotreatment of Vegetable Oils. <i>Energy & amp; Fuels</i> , 2018 , 32, 7245-7261	4.1	16
25	The selective production of jet fuel range alkanes via the catalytic upgrading of palmitic acid over Co/HMCM-49 catalysts. <i>Chemical Communications</i> , 2019 , 55, 12096-12099	5.8	13
24	Bifunctional and Bimetallic Pt R u/HZSM-5 Nanoparticles for the Mild Hydrodeoxygenation of Lignin-Derived 4-Propylphenol. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1053-1062	5.6	14
23	Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study. <i>ACS Omega</i> , 2019 , 4, 2833-2843	3.9	16
22	Catalytic hydrotreatment of pyrolysis oil phenolic compounds over Pt/Al2O3 and Pd/C. <i>Fuel</i> , 2019 , 243, 441-448	7.1	11
21	Hydrotreatment of lipid model for diesel-like alkane using nitrogen-doped mesoporous carbon-supported molybdenum carbide. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 150-160	21.8	34
20	Hydrodeoxygenation of karanja oil using ordered mesoporous nickel-alumina composite catalysts. <i>Catalysis Today,</i> 2020 , 348, 45-54	5.3	12
19	Hydrodeoxygenation of ethyl stearate over Re-promoted Ru/TiO2 catalysts: rate enhancement and selectivity control by the addition of Re. <i>Catalysis Science and Technology</i> , 2020 , 10, 222-230	5.5	5
18	Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40 catalyst: an investigation of the surface reaction mechanism and rate limiting step. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 1682-1693	4.9	4

CITATION REPORT

17	Theoretical Study of Deoxygenation of Esters on Small PtBn Intermetallic Clusters. <i>Kinetics and Catalysis</i> , 2020 , 61, 1-39	1.5	3	
16	Highly selective Co3O4/silica-alumina catalytic system for deoxygenation of triglyceride-based feedstock. <i>Fuel</i> , 2020 , 266, 117065	7.1	12	
15	The Role of Metal Species on Aldehyde Hydrogenation over Co13 and Ni13 Supported on EAl2O3(110) Surfaces: A Theoretical Study. <i>ChemistrySelect</i> , 2020 , 5, 4058-4068	1.8	2	
14	Synthesis of NiMo catalysts supported on Mn-Al2O3 for obtaining green diesel from waste soybean oil. <i>Catalysis Today</i> , 2021 , 365, 327-340	5.3	6	
13	Deoxygenation of Methyl Oleate and Commercial Biodiesel Over W and Ni-W Catalysts. <i>Waste and Biomass Valorization</i> , 2021 , 12, 2357-2364	3.2	2	
12	Highlighting the Greener Shift in Transportation Energy and Fuels Based on Novel Catalytic Materials. <i>Energy & Description</i> 2021, 35, 25-44	4.1	4	
11	Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics. <i>Molecular Catalysis</i> , 2021 , 111469	3.3	7	
10	Hydrodeoxygenation of aliphatic acid over NiFe intermetallic compounds: Insights into the mechanism via model compound study. <i>Fuel</i> , 2021 , 305, 121545	7.1	3	
9	Upgraded methyl oleate to diesel-like hydrocarbons through selective hydrodeoxygenation over Mo-based catalyst. <i>Fuel</i> , 2022 , 308, 122038	7.1	3	
8	microalgae.			
7	Improving conversion of methyl palmitate to diesel-like fuel through catalytic deoxygenation with B2O3-modified ZrO2. <i>Fuel Processing Technology</i> , 2022 , 226, 107091	7.2	3	
6	Hydrodeoxygenation of stearic acid to produce diesellike hydrocarbons: kinetic modeling, parameter estimation and simulation. <i>Chemical Engineering Science</i> , 2022 , 254, 117576	4.4	О	
5	Product distribution-tuned and excessive hydrocracking inhibiting in fatty acid deoxygenation over amorphous Co@SiO2 porous nanorattles. <i>Fuel</i> , 2022 , 318, 123605	7.1	1	
4	Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. <i>Chemical Engineering Journal</i> , 2022 , 444, 136564	14.7	2	
3	Kinetic insights into deoxygenation of vegetable oils to produce second-generation biodiesel. 2023 , 333, 126416		2	
2	Understanding the different deoxygenation reaction pathways of lauric acid over alumina-supported Ni and Co catalysts.		Ο	
1	Green Diesel Production via Deoxygenation Process: A Review. 2023 , 16, 844		0	