Paper-Based Microfluidic Devices: Emerging Themes an

Analytical Chemistry 89, 71-91 DOI: 10.1021/acs.analchem.6b04581

Citation Report

#	Article	IF	CITATIONS
1	A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Analytica Chimica Acta, 2017, 960, 123-130.	2.6	151
2	Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab on A Chip, 2017, 17, 1206-1249.	3.1	345
3	Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Analytical Methods, 2017, 9, 3375-3379.	1.3	12
4	Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays. Biosensors and Bioelectronics, 2017, 96, 194-200.	5.3	21
5	Multiplexed Point-of-Care Testing $\hat{a} \in \mathbb{C}$ xPOCT. Trends in Biotechnology, 2017, 35, 728-742.	4.9	386
6	Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis. Biosensors and Bioelectronics, 2017, 98, 7-14.	5.3	28
7	Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chemical Reviews, 2017, 117, 8447-8480.	23.0	439
8	A selective distance-based paper analytical device for copper(II) determination using a porphyrin derivative. Talanta, 2017, 174, 493-499.	2.9	70
9	True lab-in-a-syringe technology for bioassays. Talanta, 2017, 174, 285-288.	2.9	7
10	Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science, 2017, 504, 751-757.	5.0	13
11	Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout. Analyst, The, 2017, 142, 511-516.	1.7	22
12	Performance of electrokinetic stacking enhanced paper-based analytical device with smartphone for fast detection of fluorescent whitening agent. Analytica Chimica Acta, 2017, 995, 85-90.	2.6	30
13	A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 2017, 11, 041501.	1.2	69
14	Addressing the distribution of proteins spotted on \hat{l} /4PADs. Analyst, The, 2017, 142, 3899-3905.	1.7	16
15	Open channel deterministic lateral displacement for particle and cell sorting. Lab on A Chip, 2017, 17, 3592-3600.	3.1	44
16	Digitally Controlled Procedure for Assembling Fully Drawn Paper-Based Electroanalytical Platforms. Analytical Chemistry, 2017, 89, 10454-10460.	3.2	36
17	Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst, The, 2017, 142, 3132-3135.	1.7	39
18	Biosensors-on-chip: a topical review. Journal of Micromechanics and Microengineering, 2017, 27, 083001.	1.5	75

#	Article	IF	CITATIONS
19	An Ionophoreâ€Based Anionâ€Selective Optode Printed on Cellulose Paper. Angewandte Chemie - International Edition, 2017, 56, 11826-11830.	7.2	64
20	Reconfigurable Pipet for Customized, Cost-Effective Liquid Handling. Analytical Chemistry, 2017, 89, 8656-8661.	3.2	6
21	An Ionophoreâ€Based Anionâ€Selective Optode Printed on Cellulose Paper. Angewandte Chemie, 2017, 129, 11988-11992.	1.6	6
22	Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis. ACS Applied Materials & Interfaces, 2017, 9, 30480-30487.	4.0	79
23	Smart Test Strips: Next-Generation Inkjet-Printed Wireless Comprehensive Liquid Sensing Platforms. IEEE Transactions on Industrial Electronics, 2017, 64, 7359-7367.	5.2	10
24	Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Analytical Chemistry, 2017, 89, 12334-12341.	3.2	41
25	Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 2017, 89, 11918-11923.	3.2	26
26	A paper-based colorimetric spot test for the identification of adulterated whiskeys. Chemical Communications, 2017, 53, 7957-7960.	2.2	38
27	Microfluidics: A new tool for microbial single cell analyses in human microbiome studies. Biomicrofluidics, 2017, 11, .	1.2	23
28	Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®. Sensors, 2017, 17, 2267.	2.1	52
29	An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay. Biosensors, 2017, 7, 58.	2.3	11
30	Luminescence: Solid Phase â~†. , 2018, , 281-281.		0
31	Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Analytical and Bioanalytical Chemistry, 2018, 410, 2647-2655.	1.9	110
32	Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water. Environmental Science & Technology, 2018, 52, 3567-3573.	4.6	68
33	Headspace Solid-Phase Microextraction Coupled to Miniaturized Microplasma Optical Emission Spectrometry for Detection of Mercury and Lead. Analytical Chemistry, 2018, 90, 3683-3691.	3.2	69
34	Electrokinetic stacking of electrically neutral analytes with paper-based analytical device. Talanta, 2018, 182, 247-252.	2.9	9
35	Paperâ€Based Polymer Electrodes for Bioanalysis and Electrochemistry of Neurotransmitters. ChemPhysChem, 2018, 19, 1164-1172.	1.0	11
36	"Dip-and-read―paper-based analytical devices using distance-based detection with color screening. Lab on A Chip, 2018, 18, 1485-1493.	3.1	57

#	Article	IF	CITATIONS
37	Editable TiO ₂ Nanomaterial-Modified Paper in Situ for Highly Efficient Detection of Carcinoembryonic Antigen by Photoelectrochemical Method. ACS Applied Materials & Interfaces, 2018, 10, 14594-14601.	4.0	52
38	Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection. Analytica Chimica Acta, 2018, 1011, 1-10.	2.6	50
39	Rapid flow in multilayer microfluidic paper-based analytical devices. Lab on A Chip, 2018, 18, 793-802.	3.1	95
40	Advances in Microfluidicsâ€Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive Systemâ€onâ€a hip. Advanced Biology, 2018, 2, 1700197.	3.0	64
41	General Strategy To Make an On-Demand Library of Structurally and Functionally Diverse SERS Substrates. ACS Applied Nano Materials, 2018, 1, 960-968.	2.4	11
42	Gold Nanostructure in Sensor Technology: Detection and Estimation of Chemical Pollutants. Energy, Environment, and Sustainability, 2018, , 31-66.	0.6	0
43	Paper-based device with a sputtered tin-film electrode for the voltammetric determination of Cd(II) and Zn(II). Sensors and Actuators B: Chemical, 2018, 260, 223-226.	4.0	50
44	Paper-Based Microfluidic Device with Integrated Sputtered Electrodes for Stripping Voltammetric Determination of DNA via Quantum Dot Labeling. Analytical Chemistry, 2018, 90, 1092-1097.	3.2	49
45	Implementation of a plasticized PVC-based cation-selective optode system into a paper-based analytical device for colorimetric sodium detection. Analyst, The, 2018, 143, 678-686.	1.7	43
46	Rapid Analysis of Unsaturated Fatty Acids on Paper-Based Analytical Devices via Online Epoxidation and Ambient Mass Spectrometry. Analytical Chemistry, 2018, 90, 2070-2078.	3.2	41
47	Rapid Veterinary Diagnosis of Bovine Reproductive Infectious Diseases from Semen Using Paper-Origami DNA Microfluidics. ACS Sensors, 2018, 3, 403-409.	4.0	75
48	Ultrasensitive Enzyme-free Biosensor by Coupling Cyclodextrin Functionalized Au Nanoparticles and High-Performance Au-Paper Electrode. ACS Applied Materials & Interfaces, 2018, 10, 3333-3340.	4.0	60
49	Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 1689-1695.	1.9	28
50	Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Analytical Sciences, 2018, 34, 39-44.	0.8	19
51	A lab-on-a-tip approach to make electroanalysis user-friendly and de-centralized: Detection of copper ions in river water. Analytica Chimica Acta, 2018, 1029, 1-7.	2.6	28
52	Colorimetric paper-based device for gaseous hydrogen cyanide quantification based on absorbance measurements. Sensors and Actuators B: Chemical, 2018, 268, 392-397.	4.0	33
53	Practical High-Performance Lateral Flow Assay Based on Autonomous Microfluidic Replacement on a Film. Analytical Sciences, 2018, 34, 57-63.	0.8	7
54	Highly Sensitive Paper-based Analytical Devices with the Introduction of a Large-Volume Sample via Continuous Flow. Analytical Sciences, 2018, 34, 65-70.	0.8	16

#	Article	IF	Citations
55	Microfluidic Paper-based Analytical Device for the Determination of Hexavalent Chromium by Photolithographic Fabrication Using a Photomask Printed with 3D Printer. Analytical Sciences, 2018, 34, 71-74.	0.8	34
56	Highly sensitive microfluidic paper-based photoelectrochemical sensing platform based on reversible photo-oxidation products and morphology-preferable multi-plate ZnO nanoflowers. Biosensors and Bioelectronics, 2018, 110, 58-64.	5.3	43
57	Development of novel complementary metal-oxide semiconductor-based colorimetric sensors for rapid detection of industrially important gases. Sensors and Actuators B: Chemical, 2018, 265, 600-608.	4.0	14
58	Selective Distance-Based K ⁺ Quantification on Paper-Based Microfluidics. Analytical Chemistry, 2018, 90, 4894-4900.	3.2	99
59	Enzymatic amplification of oligonucleotides in paper substrates. Talanta, 2018, 186, 568-575.	2.9	6
60	Laminated and infused Parafilm® – paper for paper-based analytical devices. Sensors and Actuators B: Chemical, 2018, 255, 3654-3661.	4.0	41
61	Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta, 2018, 177, 176-190.	2.9	194
62	Paper-Based All-Solid-State Ion-Sensing Platform with a Solid Contact Comprising Colloid-Imprinted Mesoporous Carbon and a Redox Buffer. ACS Applied Nano Materials, 2018, 1, 293-301.	2.4	19
63	Sensing Parts per Million Level Ammonia and Parts per Billion Level Acetic Acid in the Gas Phase by Common Black Film with a Fluorescent pH Probe. Analytical Chemistry, 2018, 90, 1356-1362.	3.2	7
64	Highly Sensitive Detection of <i>Salmonella typhimurium</i> Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. Analytical Chemistry, 2018, 90, 1035-1043.	3.2	172
65	An Ultra-Fast and Large-Scale Fabrication Method for Paper-Based Microfluidic Chips. Mechanisms and Machine Science, 2018, , 1561-1572.	0.3	1
66	Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. Biosensors and Bioelectronics, 2018, 102, 411-417.	5.3	108
67	Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs). Analyst, The, 2018, 143, 643-653.	1.7	37
68	Review on microfluidic paper-based analytical devices towards commercialisation. Analytica Chimica Acta, 2018, 1001, 1-17.	2.6	379
69	Improvement in the Reproducibility of a Paper-based Analytical Device (PAD) Using Stable Covalent Binding between Proteins and Cellulose Paper. Biotechnology and Bioprocess Engineering, 2018, 23, 686-692.	1.4	30
70	Single board computing system for automated colorimetric analysis on low-cost analytical devices. Analytical Methods, 2018, 10, 5282-5290.	1.3	11
71	Paper-Based Origami Photoelectrochemical Sensing Platform with TiO ₂ /Bi ₄ NbO ₈ Cl/Co-Pi Cascade Structure Enabling of Bidirectional Modulation of Charge Carrier Separation. Analytical Chemistry, 2018, 90, 14116-14120.	3.2	33
72	From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS Central Science, 2018, 4, 1600-1616.	5.3	140

#	Article	IF	CITATIONS
73	Label-free Paper-based Immunosensor with Graphene Nanocomposites for Electrochemical Detection of Follicle-stimulating Hormone. , 2018, 2018, 2901-2904.		3
74	A Portable Smartphone-Based Sensing System Using a 3D-Printed Chip for On-Site Biochemical Assays. Sensors, 2018, 18, 4002.	2.1	13
75	Versatile and Robust Integrated Sensors To Locally Assess Humidity Changes in Fully Enclosed Paper-Based Devices. ACS Applied Materials & Interfaces, 2018, 10, 35631-35638.	4.0	24
76	Copperâ€Plated Paper for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, e1803313.	5.2	18
77	Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Analytical Chemistry, 2018, 90, 13680-13686.	3.2	64
78	Subtractive Manufacturing of Microfluidic 3D Braid Mixers. Advanced Engineering Materials, 2018, 20, 1800243.	1.6	5
79	Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging. Analytical Chemistry, 2018, 90, 11949-11954.	3.2	46
80	Multilayer sensing platform: gold nanoparticles/prussian blue decorated graphite paper for NADH and H ₂ O ₂ detection. Analyst, The, 2018, 143, 5278-5284.	1.7	18
81	Detection methods and applications of microfluidic paper-based analytical devices. TrAC - Trends in Analytical Chemistry, 2018, 107, 196-211.	5.8	194
82	Pen-on-paper strategies for point-of-care testing of human health. TrAC - Trends in Analytical Chemistry, 2018, 108, 50-64.	5.8	47
83	Paperâ€Based Antibody Detection Devices Using Bioluminescent BRETâ€ S witching Sensor Proteins. Angewandte Chemie, 2018, 130, 15595-15599.	1.6	17
84	Paperâ€Based Antibody Detection Devices Using Bioluminescent BRETâ€Switching Sensor Proteins. Angewandte Chemie - International Edition, 2018, 57, 15369-15373.	7.2	116
85	Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Analytical Chemistry, 2018, 90, 7777-7783.	3.2	66
86	A novel, simple and low-cost paper-based analytical device for colorimetric detection of Cronobacter spp Analytica Chimica Acta, 2018, 1036, 80-88.	2.6	47
87	Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab on A Chip, 2018, 18, 1812-1830.	3.1	110
88	Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics. ACS Sensors, 2018, 3, 1299-1307.	4.0	28
89	Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosensors and Bioelectronics, 2018, 117, 651-658.	5.3	71
90	Integrated paper-based microfluidic devices for point-of-care testing. Analytical Methods, 2018, 10, 3567-3581.	1.3	65

#	Article	IF	CITATIONS
91	Cellulose Nanofibers as a Module for Paper-Based Microfluidic Analytical Devices: Labile Substance Storage, Processability, and Reaction Field Provision and Control. ACS Applied Bio Materials, 2018, 1, 480-486.	2.3	15
92	Gold nanoparticles-enhanced ion-transmission mass spectrometry for highly sensitive detection of chemical warfare agent simulants. Talanta, 2018, 190, 403-409.	2.9	9
93	Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sensors, 2018, 3, 1894-2024.	4.0	118
94	Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochimica Acta, 2018, 284, 60-68.	2.6	40
95	Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Analytica Chimica Acta, 2018, 1044, 102-109.	2.6	76
96	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588.	11.1	249
97	Electrophoretic separations on Parafilm-paper-based analytical devices. Sensors and Actuators B: Chemical, 2018, 273, 1022-1028.	4.0	13
98	Detecting Chemical Hazards in Foods Using Microfluidic Paper-Based Analytical Devices (μPADs): The Real-World Application. Micromachines, 2018, 9, 32.	1.4	47
99	Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab on A Chip, 2018, 18, 2323-2347.	3.1	252
100	Paper-Based System for Ion Transfer Across the Liquid–Liquid Interface. Analytical Chemistry, 2018, 90, 8727-8731.	3.2	10
101	"Naked-eye―recognition: Emerging gold nano-family for visual sensing. Applied Materials Today, 2018, 11, 166-188.	2.3	41
102	Asphyxia Diagnosis: An Example of Translational Precision Medicine. , 2018, , 315-332.		0
103	A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature. Biomedical Microdevices, 2018, 20, 68.	1.4	5
104	Development of Paper-Based Analytical Devices for Minimizing the Viscosity Effect in Human Saliva. Theranostics, 2018, 8, 3797-3807.	4.6	37
105	Where are modern flow techniques heading to?. Analytical and Bioanalytical Chemistry, 2018, 410, 6361-6370.	1.9	29
106	Janus Membranes via Diffusion ontrolled Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800658.	1.9	59
107	Microfluidic Lateral Flow Cytochrome P450 Assay on a Novel Printed Functionalized Calcium Carbonateâ€Based Platform for Rapid Screening of Human Xenobiotic Metabolism. Advanced Functional Materials, 2018, 28, 1802793.	7.8	15
108	Portable analytical platforms for forensic chemistry: A review. Analytica Chimica Acta, 2018, 1034, 1-21.	2.6	196

#	Article	IF	CITATIONS
109	Emerging Considerations for the Future Development of Electrochemical Paperâ€Based Analytical Devices. ChemElectroChem, 2019, 6, 10-30.	1.7	70
110	Tubular Au-TTF solid contact layer synthesized in a microfluidic device improving electrochemical behaviors of paper-based potassium potentiometric sensors. Electrochimica Acta, 2019, 322, 134683.	2.6	14
111	Programmable Paper-Based Microfluidic Devices for Biomarker Detections. Micromachines, 2019, 10, 516.	1.4	57
112	Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical, 2019, 301, 126855.	4.0	125
113	Personalized Medicine in Healthcare Systems. Europeanization and Globalization, 2019, , .	0.1	2
114	Combining the geometry of folded paper with liquid-infused polymer surfaces to concentrate and localize bacterial solutions. Biointerphases, 2019, 14, 041005.	0.6	6
115	Vacuum pouch microfluidic system and its application for thin-film micromixers. Lab on A Chip, 2019, 19, 2834-2843.	3.1	12
116	T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices. Talanta, 2019, 205, 120113.	2.9	43
117	Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis. Analytical Chemistry, 2019, 91, 9623-9630.	3.2	57
118	Triggerable H ₂ O ₂ –Cleavable Switch of Paper-Based Biochips Endows Precision of Chemometer/Ratiometric Electrochemical Quantification of Analyte in High-Efficiency Point-of-Care Testing. Analytical Chemistry, 2019, 91, 10273-10281.	3.2	32
119	Two-component ratiometric sensor for Cu2+ detection on paper-based device. Analytical and Bioanalytical Chemistry, 2019, 411, 6165-6172.	1.9	6
120	Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives. Analytical Chemistry, 2019, 91, 8966-8972.	3.2	31
121	Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nature Protocols, 2019, 14, 2437-2451.	5.5	114
122	Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosensors and Bioelectronics, 2019, 146, 111758.	5.3	48
123	Microfluidic technology for investigation of protein function in single adherent cells. Methods in Enzymology, 2019, 628, 145-172.	0.4	1
124	A review of smartphone pointâ€ofâ€care adapter design. Engineering Reports, 2019, 1, e12039.	0.9	30
125	Microfluidic Paper-based Analytical Devices (μPADs): Miniaturization and Enzyme Storage Studies. Analytical Sciences, 2019, 35, 379-384.	0.8	5
126	A versatile, cost-effective, and flexible wearable biosensor for <i>in situ</i> and <i>ex situ</i> sweat analysis, and personalized nutrition assessment. Lab on A Chip, 2019, 19, 3448-3460.	3.1	55

#	Article	IF	Citations
127	A paper microfluidics-based fluorescent lateral flow immunoassay for point-of-care diagnostics of non-communicable diseases. Analyst, The, 2019, 144, 6291-6303.	1.7	19
128	Long-term stabilization of hydrogen peroxide by poly(vinyl alcohol) on paper-based analytical devices. Scientific Reports, 2019, 9, 12951.	1.6	6
129	Directly writing barrier-free patterned biosensors and bioassays on paper for low-cost diagnostics. Sensors and Actuators B: Chemical, 2019, 285, 529-535.	4.0	28
130	Disposable Paper-Based Analytical Device for Visual Speciation Analysis of Ag(I) and Silver Nanoparticles (AgNPs). Analytical Chemistry, 2019, 91, 3359-3366.	3.2	49
131	Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Analytica Chimica Acta, 2019, 1056, 88-95.	2.6	40
132	A rapid and highly selective paper-based device for high-throughput detection of cysteine with red fluorescence emission and a large Stokes shift. Analytical Methods, 2019, 11, 1312-1316.	1.3	16
133	A novel thread-based microfluidic device for capillary electrophoresis with capacitively coupled contactless conductivity detection. Sensors and Actuators B: Chemical, 2019, 286, 301-305.	4.0	38
134	Solid-state NMR of nanocrystals. Annual Reports on NMR Spectroscopy, 2019, 97, 1-82.	0.7	22
135	Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst, The, 2019, 144, 1178-1186.	1.7	73
136	Microfluidic bioanalytical flow cells for biofilm studies: a review. Analyst, The, 2019, 144, 68-86.	1.7	70
137	A field amplification enhanced paper-based analytical device with a robust chemiluminescence detection module. Analyst, The, 2019, 144, 498-503.	1.7	9
138	Electric and Electrochemical Microfluidic Devices for Cell Analysis. Frontiers in Chemistry, 2019, 7, 396.	1.8	33
139	Ion-Exchange Based Immobilization of Chromogenic Reagents on Microfluidic Paper Analytical Devices. Analytical Chemistry, 2019, 91, 8756-8761.	3.2	19
140	Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Analytica Chimica Acta, 2019, 1074, 89-97.	2.6	43
141	Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 2019, 31, e1806739.	11.1	540
142	Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion. Biosensors and Bioelectronics, 2019, 137, 154-160.	5.3	30
143	Sensitivity Enhancement of Nucleic Acid Lateral Flow Assays through a Physical–Chemical Coupling Method: Dissoluble Saline Barriers. ACS Sensors, 2019, 4, 1691-1700.	4.0	29
144	Design and Optimization of Colorimetric Paper-Based Analytical Device for Rapid Detection of Allopurinol in Herbal Medicine. International Journal of Analytical Chemistry, 2019, 2019, 1-7.	0.4	6

#	Article	IF	CITATIONS
145	An overview of the Brazilian contributions to Green Analytical Chemistry. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180294.	0.3	9
146	Electrophoretic Separation on an Origami Paper-Based Analytical Device Using a Portable Power Bank. Sensors, 2019, 19, 1724.	2.1	6
147	Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. Journal of Analysis and Testing, 2019, 3, 19-36.	2.5	30
148	A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosensors and Bioelectronics, 2019, 134, 97-102.	5.3	21
149	Chemical traffic light: A self-calibrating naked-eye sensor for fluoride. Journal of Porphyrins and Phthalocyanines, 2019, 23, 117-124.	0.4	9
150	Development of a Paper-Based Viscometer for Blood Plasma Using Colorimetric Analysis. Analytical Chemistry, 2019, 91, 4868-4875.	3.2	16
151	Instrument-free argentometric determination of chloride via trapezoidal distance-based microfluidic paper devices. Analytica Chimica Acta, 2019, 1063, 1-8.	2.6	53
152	Novel Hg2+-Selective Signaling Probe Based on Resorufin Thionocarbonate and its μPAD Application. Scientific Reports, 2019, 9, 3348.	1.6	18
153	Analytical reliability of simple, rapid, minuturizated, direct analytical processes: A call to arms. TrAC - Trends in Analytical Chemistry, 2019, 114, 98-107.	5.8	11
154	High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices. Analytical and Bioanalytical Chemistry, 2019, 411, 4007-4016.	1.9	26
155	3D Capillary-Driven Paper-Based Sequential Microfluidic Device for Electrochemical Sensing Applications. ACS Sensors, 2019, 4, 1211-1221.	4.0	79
156	Nanoplasmonics in Paper-Based Analytical Devices. Frontiers in Bioengineering and Biotechnology, 2019, 7, 69.	2.0	25
157	Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing. Annual Review of Analytical Chemistry, 2019, 12, 41-67.	2.8	45
158	Highly smooth, stable and reflective Ag-paper electrode enabled by silver mirror reaction for organic optoelectronics. Chemical Engineering Journal, 2019, 370, 1048-1056.	6.6	33
159	Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosensors and Bioelectronics, 2019, 135, 64-70.	5.3	27
160	Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. , 2019, , \cdot		10
161	Novel paper-based electroanalytical tools for food surveillance. Analytical and Bioanalytical Chemistry, 2019, 411, 4303-4311.	1.9	27
162	Droplet manipulation with bioinspired liquid-infused surfaces: A review of recent progress and potential for integrated detection. Current Opinion in Colloid and Interface Science, 2019, 39, 137-147.	3.4	33

#	Article	IF	CITATIONS
163	SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction. Mikrochimica Acta, 2019, 186, 175.	2.5	20
164	Printed low-cost microfluidic analytical devices based on a transparent substrate. Analyst, The, 2019, 144, 2746-2754.	1.7	10
165	A paper-based chemiluminescence immunoassay device for rapid and high-throughput detection of allergen-specific IgE. Analyst, The, 2019, 144, 2584-2593.	1.7	23
166	Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosensors and Bioelectronics, 2019, 132, 17-37.	5.3	249
167	Multiplex Immunoassays. , 2019, , 177-196.		0
168	Paper-based electroanalytical strip for user-friendly blood glutathione detection. Sensors and Actuators B: Chemical, 2019, 294, 291-297.	4.0	39
169	Molecularly imprinted paper-based analytical device obtained by a polymerization-free synthesis. Sensors and Actuators B: Chemical, 2019, 287, 138-146.	4.0	38
170	Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Scientific Reports, 2019, 9, 20215.	1.6	67
171	Rotary manifold for automating a paper-based <i>Salmonella</i> immunoassay. RSC Advances, 2019, 9, 29078-29086.	1.7	28
172	High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices. Analytica Chimica Acta, 2019, 1047, 115-123.	2.6	29
173	The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chemical Reviews, 2019, 119, 231-292.	23.0	718
174	Recent Progress in Microfluidics-Based Biosensing. Analytical Chemistry, 2019, 91, 388-404.	3.2	89
175	Fast analysis of ketamine using a colorimetric immunosorbent assay on a paper-based analytical device. Sensors and Actuators B: Chemical, 2019, 282, 251-258.	4.0	41
176	Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectronic Engineering, 2019, 206, 45-54.	1.1	230
177	Thermoplastic Electrode Arrays in Electrochemical Paper-Based Analytical Devices. Analytical Chemistry, 2019, 91, 2431-2438.	3.2	42
178	Paper-supported thin-layer ion transfer voltammetry for ion detection. Sensors and Actuators B: Chemical, 2019, 280, 69-76.	4.0	14
179	Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors. Applied Spectroscopy Reviews, 2019, 54, 117-141.	3.4	61
180	Electroosmosis with Augmented Mixing in Rigid to Flexible Microchannels with Surface Patterns. Industrial & Engineering Chemistry Research, 2020, 59, 3717-3729.	1.8	13

#	Article	IF	CITATIONS
181	A paper-based colorimetric assay with non-instrumental detection for determination of boron in water samples. Talanta, 2020, 208, 120365.	2.9	23
182	High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydrate Polymers, 2020, 229, 115463.	5.1	137
183	Development of a multiplex immunochromatographic strip test and ultrasensitive electrochemical immunosensor for hepatitis B virus screening. Analytica Chimica Acta, 2020, 1095, 162-171.	2.6	32
184	Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin. SLAS Technology, 2020, 25, 47-57.	1.0	28
185	Advanced Wearable Microfluidic Sensors for Healthcare Monitoring. Small, 2020, 16, e1903822.	5.2	107
186	Determination of glucose with an enzymatic paper-based sensor. , 2020, , 257-265.		0
189	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Analytical Chemistry, 2020, 92, 1674-1679.	3.2	43
190	Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Analytical Chemistry, 2020, 92, 150-168.	3.2	158
191	Material development using the inherent features of nano-cellulose and nano-chitin: Necessity of simple processes and cross-disciplinary collaboration. Advanced Powder Technology, 2020, 31, 528-532.	2.0	9
192	Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering. Analyst, The, 2020, 145, 983-991.	1.7	39
193	Localized surface plasmon resonance based point-of-care system for sepsis diagnosis. Materials Science for Energy Technologies, 2020, 3, 274-281.	1.0	18
194	Tailoring Electrospun Poly(<scp>l</scp> -lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Interfaces, 2020, 12, 60-69.	4.0	16
195	Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices. Analytica Chimica Acta, 2020, 1100, 156-162.	2.6	41
196	A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Analytica Chimica Acta, 2020, 1100, 215-224.	2.6	59
197	Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye. Analytical and Bioanalytical Chemistry, 2020, 412, 3489-3497.	1.9	13
198	Online sample clean-up and enrichment of proteins from salty media with dynamic double gradients on a paper fluidic channel. Analytica Chimica Acta, 2020, 1100, 149-155.	2.6	18
199	Electroâ€kinetically driven route for highly sensitive blood pathology on a paperâ€based device. Electrophoresis, 2020, 41, 615-620.	1.3	26
200	Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosensors and Bioelectronics, 2020, 169, 112652.	5.3	45

#	Article	IF	CITATIONS
201	Thread- and Capillary Tube-Based Electrodes for the Detection of Glucose and Acetylthiocholine. Micromachines, 2020, 11, 920.	1.4	3
202	An ultrasensitive non-noble metal colorimetric assay using starch-iodide complexation for Ochratoxin A detection. Analytica Chimica Acta, 2020, 1135, 29-37.	2.6	14
203	Usability as a guiding principle for the design of paper-based, point-of-care devices – A review. Analytica Chimica Acta, 2020, 1140, 236-249.	2.6	40
204	Paper-based microfluidic aptasensors. Biosensors and Bioelectronics, 2020, 170, 112649.	5.3	38
205	A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. International Journal of Environmental Research and Public Health, 2020, 17, 5220.	1.2	26
206	Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing. Analytica Chimica Acta, 2020, 1128, 149-173.	2.6	23
207	Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 8331.	1.2	47
208	Development of a Microfluidic Paper-Based Immunoassay for Rapid Detection of Allergic Protein in Foods. ACS Sensors, 2020, 5, 4048-4056.	4.0	19
209	Affinity Immobilization of Semiconductor Quantum Dots and Metal Nanoparticles on Cellulose Paper Substrates. ACS Applied Materials & Interfaces, 2020, 12, 53462-53474.	4.0	9
210	NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications. Lab on A Chip, 2020, 20, 3322-3333.	3.1	21
211	Diffraction-Limited Imaging with a Graphene Metalens*. Chinese Physics Letters, 2020, 37, 106801.	1.3	3
212	Enhanced functional DNA biosensor for distance-based read-by-eye quantification of various analytes based on starch-hydrolysis-adjusted wettability change in paper devices. RSC Advances, 2020, 10, 28121-28127.	1.7	9
213	A Microfluidic Paper-Based Analytical Device for Type-II Pyrethroid Targets in an Environmental Water Sample. Sensors, 2020, 20, 4107.	2.1	11
214	On-Site and Quantitative Detection of Trace Methamphetamine in Urine/Serum Samples with a Surface-Enhanced Raman Scattering-Active Microcavity and Rapid Pretreatment Device. Analytical Chemistry, 2020, 92, 13539-13549.	3.2	29
215	All-printed semiquantitative paper-based analytical devices relying on QR code array readout. Analyst, The, 2020, 145, 6071-6078.	1.7	18
216	100th Anniversary of Macromolecular Science Viewpoint: Integrated Membrane Systems. ACS Macro Letters, 2020, 9, 1267-1279.	2.3	19
217	Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors. Micromachines, 2020, 11, 1059.	1.4	24
218	One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds. Polymers, 2020, 12, 2493.	2.0	6

#	ARTICLE Simultaneous colorimetric sensing of malachite & leucomalachite green in aquatic products	IF	CITATIONS
219	based on novel ionic associate self-visualization HPTLC strips. Sensors and Actuators B: Chemical, 2020, 325, 128753.	4.0	6
220	A perfect tandem: chemometric methods and microfluidic colorimetric twin sensors on paper. Beyond the traditional analytical approach. Microchemical Journal, 2020, 157, 104930.	2.3	5
221	A Combined System of Paper Device and Portable Spectrometer for the Detection of Pesticide Residues. Food Analytical Methods, 2020, 13, 1492-1502.	1.3	12
222	Selection of appropriate protein assay method for a paper microfluidics platform. Practical Laboratory Medicine, 2020, 21, e00166.	0.6	13
223	Paperâ€Based Electrochemical Sensors and How to Make Them (Work). ChemElectroChem, 2020, 7, 2939-2956.	1.7	26
224	Paper-Based Electrochemical Sensors Using Paper as a Scaffold to Create Porous Carbon Nanotube Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 30680-30685.	4.0	37
225	Blocking-free and self-contained immunoassay platform for one-step point-of-care testing. Biosensors and Bioelectronics, 2020, 165, 112394.	5.3	8
226	Centrifugal Paperfluidic Platform for Accelerated Distance-Based Colorimetric Signal Readout. Analytical Chemistry, 2020, 92, 4749-4754.	3.2	23
227	Introducing Students to Chemical Security Concepts through Interdisciplinary Experiments Using Organic Chemosensors in Engaging Applications of Chemistry. Journal of Chemical Education, 2020, 97, 1779-1788.	1.1	2
228	Paper-based microfluidics for rapid diagnostics and drug delivery. Journal of Controlled Release, 2020, 322, 187-199.	4.8	53
229	Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS Applied Materials & Interfaces, 2020, 12, 15538-15552.	4.0	64
230	Hybrid paper and 3D-printed microfluidic device for electrochemical detection of Ag nanoparticle labels. Lab on A Chip, 2020, 20, 1648-1657.	3.1	27
231	Quantitatively controllable fluid flows with ballpoint-pen-printed patterns for programmable photo-paper-based microfluidic devices. Lab on A Chip, 2020, 20, 1601-1611.	3.1	6
232	Emerging applications of paper-based analytical devices for drug analysis: A review. Analytica Chimica Acta, 2020, 1116, 70-90.	2.6	113
233	Inkjet printing of paraffin on paper allows low-cost point-of-care diagnostics for pathogenic fungi. Cellulose, 2020, 27, 7691-7701.	2.4	42
234	A vinyl sulfone clicked carbon dot-engineered microfluidic paper-based analytical device for fluorometric determination of biothiols. Mikrochimica Acta, 2020, 187, 421.	2.5	17
235	Dual Eu-MOFs based logic device and ratiometric fluorescence paper microchip for visual H ₂ O ₂ assay. Journal of Materials Chemistry C, 2020, 8, 3562-3570.	2.7	28
236	Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Mikrochimica Acta, 2020, 187, 167.	2.5	48

#	Article	IF	CITATIONS
237	Simultaneous electrochemical detection in paper-based analytical devices. Current Opinion in Electrochemistry, 2020, 23, 1-6.	2.5	35
238	Mix-Bricks and Flip-Lids: 3D Printed Devices for Simple, Simultaneous Mixing of Reactant Solutions. Analytical Chemistry, 2020, 92, 3522-3527.	3.2	3
239	On-Chip CMOS-MEMS-Based Electroosmotic Flow Micropump Integrated With High-Voltage Generator. Journal of Microelectromechanical Systems, 2020, 29, 86-94.	1.7	11
240	Challenges and perspectives in the development of paper-based lateral flow assays. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	63
241	Ultra-highly conductive hollow channels guided by a bamboo bio-template for electric and electric and electricchemical devices. Journal of Materials Chemistry A, 2020, 8, 4030-4039.	5.2	31
242	Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review. Current Analytical Chemistry, 2020, 16, 41-51.	0.6	21
243	DNAzyme-Triggered Visual and Ratiometric Electrochemiluminescence Dual-Readout Assay for Pb(II) Based on an Assembled Paper Device. Analytical Chemistry, 2020, 92, 3874-3881.	3.2	117
244	Abnormal Liquid Chasing Effect in Paper Capillary Enables Versatile Gradient Generation on Microfluidic Paper Analytical Devices. Analytical Chemistry, 2020, 92, 2722-2730.	3.2	4
245	Kenaf cellulose-based 3D printed device: a novel colorimetric sensor for Ni(II). Cellulose, 2020, 27, 5211-5222.	2.4	13
246	A three-dimensional origami microfluidic device for paper chromatography: Application to quantification of Tartrazine and Indigo carmine in food samples. Journal of Chromatography A, 2020, 1621, 461049.	1.8	30
247	Bioinspired Superwettable Microspine Chips with Directional Droplet Transportation for Biosensing. ACS Nano, 2020, 14, 4654-4661.	7.3	81
248	Paper-based flexible surface enhanced Raman scattering platforms and their applications to food safety. Trends in Food Science and Technology, 2020, 100, 349-358.	7.8	48
249	Digital image analysis for microfluidic paper based pH sensor platform. Materials Today: Proceedings, 2021, 40, S64-S68.	0.9	3
250	Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosensors and Bioelectronics, 2021, 177, 112672.	5.3	100
251	Enclosed paper-based analytical devices: Concept, variety, and outlook. Analytica Chimica Acta, 2021, 1144, 158-174.	2.6	24
252	Reagent-Pencil and Paper Spray Mass Spectrometry: A Convenient Combination for Selective Analyses in Complex Matrixes. Journal of the American Society for Mass Spectrometry, 2021, 32, 281-288.	1.2	3
253	Microdroplet Impact-Induced Spray Ionization Mass Spectrometry (MISI MS) for Online Reaction Monitoring and Bacteria Discrimination. Journal of the American Society for Mass Spectrometry, 2021, 32, 355-363.	1.2	2
254	Gold Nanozymes: From Concept to Biomedical Applications. Nano-Micro Letters, 2021, 13, 10.	14.4	150

#	Article	IF	CITATIONS
255	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
256	Detection of low glucose levels in sweat with colorimetric wearable biosensors. Analyst, The, 2021, 146, 3273-3279.	1.7	34
257	Heavy Metals Detection with Paper-Based Electrochemical Sensors. Analytical Chemistry, 2021, 93, 1880-1888.	3.2	127
258	Microchannels for microfluidic systems. , 2021, , 37-75.		0
259	Increasing the packing density of assays in paper-based microfluidic devices. Biomicrofluidics, 2021, 15, 011502.	1.2	22
260	A progressive review on paper-based bacterial colorimetric detection and antimicrobial susceptibility testing. , 2021, , 687-718.		2
261	Acceleration Sensors: Sensing Mechanisms, Emerging Fabrication Strategies, Materials, and Applications. ACS Applied Electronic Materials, 2021, 3, 504-531.	2.0	35
262	Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors, 2021, 21, 604.	2.1	12
263	Low-cost potentiometric paper-based analytical device based on newly synthesized macrocyclic pyrido-pentapeptide derivatives as novel ionophores for point-of-care copper(<scp>ii</scp>) determination. RSC Advances, 2021, 11, 27174-27182.	1.7	8
264	Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. Analytical Methods, 2021, 13, 4830-4857.	1.3	21
265	Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors, 2021, 11, 51.	2.3	49
266	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 2021, 93, 5225-5233.	3.2	62
267	Feasibility Study of Dielectric Barrier Discharge Jet-Patterned Perfluorodecyltrichlorosilane-Coated Paper for Biochemical Diagnosis. ECS Journal of Solid State Science and Technology, 2021, 10, 037005.	0.9	4
268	Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices. Sensors and Actuators B: Chemical, 2021, 331, 129463.	4.0	26
269	Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr(VI) in water. 3 Biotech, 2021, 11, 183.	1.1	16
270	Recent progress of microfluidics in surfaceâ€enhanced Raman spectroscopic analysis. Journal of Separation Science, 2021, 44, 1752-1768.	1.3	13
271	Remote Investigation of Total Chromium Determination in Environmental Samples of the Kombolcha Industrial Zone, Ethiopia, Using Microfluidic Paper-based Analytical Devices. Analytical Sciences, 2021, 37, 585-592.	0.8	9
272	Paper and Other Fibrous Materials—A Complete Platform for Biosensing Applications. Biosensors, 2021, 11, 128.	2.3	4

#	Article	IF	CITATIONS
273	Paper-based electrode assemble for impedimetric detection of miRNA. Talanta, 2021, 225, 122043.	2.9	21
274	Fluorinated Polymer Membranes as Advanced Substrates for Portable Analytical Systems and Their Proof of Concept for Colorimetric Bioassays. ACS Applied Materials & Interfaces, 2021, 13, 18065-18076.	4.0	9
275	Simple and Equipment-Free Paper-Based Device for Determination of Mercury in Contaminated Soil. Molecules, 2021, 26, 2004.	1.7	10
276	Programmable microfluidic flow for automatic multistep digital assay in a single-sheet 3-dimensional paper-based microfluidic device. Chemical Engineering Journal, 2021, 411, 128429.	6.6	8
277	Development of conductive inks for electrochemical sensors and biosensors. Microchemical Journal, 2021, 164, 105998.	2.3	81
278	Visual Quantitative Detection of Glutathione and Cholesterol in Human Blood Based on the Thiol–Ene Click Reaction-Triggered Wettability Change of the Interface. Analytical Chemistry, 2021, 93, 7292-7299.	3.2	7
279	Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. Biochip Journal, 2021, 15, 216-232.	2.5	34
280	Barrier-Free Microfluidic Paper Analytical Devices for Multiplex Colorimetric Detection of Analytes. Analytical Chemistry, 2021, 93, 8954-8961.	3.2	16
281	Office Paper-Based Electrochemical Strips for Organophosphorus Pesticide Monitoring in Agricultural Soil. Environmental Science & Technology, 2021, 55, 8859-8865.	4.6	69
282	Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chemical Reviews, 2021, 121, 11835-11885.	23.0	260
283	Emerging Technology Solutions Towards REASSURED Point-of-Need Diagnostics. , 2021, , .		3
284	Chemical QR Code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chemistry, 2021, 350, 129243.	4.2	17
285	Paper-based analytical devices for point-of-care blood tests. Biomicrofluidics, 2021, 15, 041303.	1.2	9
286	Laserjet Printed Micro/Nano Sensors and Microfluidic Systems: A Simple and Facile Digital Platform for Inexpensive, Flexible, and Lowâ€Volume Devices. Advanced Materials Technologies, 2021, 6, 2100401.	3.0	16
287	Immobilization of Proteinase K for urine pretreatment to improve diagnostic accuracy of active tuberculosis. PLoS ONE, 2021, 16, e0257615.	1.1	13
288	Modern microfluidic approaches for determination of ions. Microchemical Journal, 2021, 171, 106845.	2.3	14
289	A printed and self-powered test strip for digital conductivity measurement of low volume liquid samples. Flexible and Printed Electronics, 2021, 6, 044003.	1.5	2
290	Agarose hydrogel doped with gold nanobipyramids(AuNBPs@AG)as colorful height readout device for sensing hydrogen peroxide in complex sample matrix. Sensors and Actuators B: Chemical, 2021, 344, 130059.	4.0	4

	CITATION	CITATION REPORT	
# 291	ARTICLE Sensory materials for microfluidic paper based analytical devices - A review. Talanta, 2021, 235, 122733.	IF 2.9	CITATIONS
292	Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosensors and Bioelectronics, 2021, 194, 113574.	5.3	26
293	Determination of blood lithium-ion concentration using digital microfluidic whole-blood separation and preloaded paper sensors. Biosensors and Bioelectronics, 2022, 195, 113631.	5.3	17
294	Rapid disease diagnosis using low-cost paper and paper-hybrid microfluidic devices. , 2022, , 325-360.		4
295	Liquid Mixing Based on Electrokinetic Vortices Generated in a T-Type Microchannel. Micromachines, 2021, 12, 130.	1.4	4
296	Multifunctional nanoscale lanthanide metal–organic framework based ratiometric fluorescence paper microchip for visual dopamine assay. Nanoscale, 2021, 13, 11188-11196.	2.8	38
297	Food Borne Bacterial Pathogens and Food Safety $\hat{a} \in \hat{A}$ An Outlook. , 2021, , 3-13.		1
298	A paper-based chemiluminescence detection device based on S,N-doped carbon quantum dots for the selective and highly sensitive recognition of bendiocarb. Analytical Methods, 2021, 13, 3461-3470.	1.3	11
299	Microfabrication Techniques for Microfluidic Devices. , 2018, , 25-51.		10
300	In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta, 2018, 178, 160-165.	2.9	29
301	Advances in Paper-Based Analytical Devices. Annual Review of Analytical Chemistry, 2020, 13, 85-109.	2.8	197
302	Fabrication of Paper-based Microfluidic Devices Using a Laser Beam Scanning Technique. Analytical Sciences, 2020, 36, 1275-1278.	0.8	3
303	Point-Of-Care or Point-Of-Need Diagnostic Tests: Time to Change Outbreak Investigation and Pathogen Detection. Tropical Medicine and Infectious Disease, 2020, 5, 151.	0.9	17
304	Geometric Flow Control Lateral Flow Immunoassay Devices (GFC-LFIDs): A New Dimension to Enhance Analytical Performance. Research, 2019, 2019, 8079561.	2.8	18
305	Asymmetric invasion in anisotropic porous media. Physical Review E, 2021, 104, 045103.	0.8	0
306	Bicomponent Cellulose Fibrils and Minerals Afford Wicking Channels Stencil-Printed on Paper for Rapid and Reliable Fluidic Platforms. ACS Applied Polymer Materials, 2021, 3, 5536-5546.	2.0	3
307	Nanocellulose-based Functional Materials Oriented to Life Science. Kami Pa Gikyoshi/Japan Tappi Journal, 2018, 72, 1228-1232.	0.1	0
308	High-Throughput Analytics in the Function of Personalized Medicine. Europeanization and Globalization, 2019, , 67-87.	0.1	0

#	Article	IF	CITATIONS
309	Preparation of Biosensor Based on Supermolecular Recognization. , 2019, , 1-21.		0
310	Inkjet-Printed Colorimetric Paper-Based Gas Sensor Arrays for the Discrimination of Volatile Primary Amines with Amine-Responsive Dye-Encapsulating Polymer Nanoparticles. Methods in Molecular Biology, 2019, 2027, 101-114.	0.4	1
311	Microfluidics for health monitoring applications. , 2019, , .		0
312	Laser-direct-writing to enable filtration in paper-based devices. , 2019, , .		0
313	A Hybrid Approach for Large-scale Fabrication of Paper-based Electrochemical Assays for Biomedical Diagnosis. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2019, 15, 271-277.	0.1	0
314	Material Development Using the Inherent Features of Nano-cellulose and Nano-chitin: Necessity of Simple Processes and Cross-disciplinary Collaboration. Journal of the Society of Powder Technology, Japan, 2020, 57, 97-102.	0.0	0
315	MEMS TABANLI MİKRO-AKIŞKAN ÇİPİN ZAMANA BAĞLI BASINÇ ANALİZİ. International Journal of 3d P Technologies and Digital Industry, 2020, 4, 116-123.	rinting 0.3	0
316	Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules, 2021, 26, 6606.	1.7	14
317	Preparation of Biosensor Based on Supermolecular Recognization. , 2020, , 231-251.		0
318	Diagnosis and prognosis for exercise-induced muscle injuries: from conventional imaging to emerging point-of-care testing. RSC Advances, 2020, 10, 38847-38860.	1.7	1
319	Paper-Based Diagnostic Device History and Challenges. Bioanalysis, 2021, , 1-5.	0.1	0
320	Predicting Dimensions in Microfluidic Paper Based Analytical Devices. Sensors, 2021, 21, 101.	2.1	4
322	Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview. Sensors, 2021, 21, 7571.	2.1	13
323	Design of an Integrated Microfluidic Paper-Based Chip and Inspection Machine for the Detection of Mercury in Food with Silver Nanoparticles. Biosensors, 2021, 11, 491.	2.3	6
324	Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms, 2021, 9, 2330.	1.6	8
325	Microchip-Based Devices for Bioanalytical Applications. , 2022, , 467-482.		2
326	Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. Lab on A Chip, 2022, 22, 476-511.	3.1	13
327	Sensing of body fluid hormones using paper-based analytical devices. Microchemical Journal, 2022, 174, 107069.	2.3	21

#	Article	IF	CITATIONS
328	Characterization of pH Sensors Based on Iridium Oxide and Gold Encapsulated Polypropylene Membranes. , 2021, , .		2
329	Ball pen writing-without-ink: a truly simple and accessible method for sensitivity enhancement in lateral flow assays. RSC Advances, 2022, 12, 2068-2073.	1.7	2
330	Paper based micro/nanofluidics devices for biomedical applications. Progress in Molecular Biology and Translational Science, 2022, 186, 159-190.	0.9	2
331	Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. Progress in Molecular Biology and Translational Science, 2022, 186, 109-158.	0.9	6
332	Bromine speciation by a paper-based sensor integrated with a citric acid/cysteamine fluorescent probe and smartphone detection. Sensors and Actuators B: Chemical, 2022, 358, 131499.	4.0	12
333	Aqueous two-phase systems evolved double-layer film for enzymatic activity preservation: A universal protein storage strategy for paper based microdevice. Analytica Chimica Acta, 2022, 1197, 339540.	2.6	3
334	Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip. Sensors, 2022, 22, 1144.	2.1	3
335	Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers, 2022, 14, 639.	2.0	5
336	Paper-based microfluidic devices: Fabrication, detection, and significant applications in various fields. Reviews in Analytical Chemistry, 2022, 41, 112-136.	1.5	21
338	Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sensors & Diagnostics, 2022, 1, 312-342.	1.9	32
339	Printed Ultrastable Bioplasmonic Microarrays for Point-of-Need Biosensing. ACS Applied Materials & Interfaces, 2022, 14, 10729-10737.	4.0	5
340	A new method for selective determination of creatinine using smartphone-based digital image. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	5
341	Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sensors, 2022, 7, 884-892.	4.0	11
342	Screen-Printed Electrodes on Tyvek Substrate as Low-Cost Device to Applications in Alzheimer's Disease Detection. Journal of the Electrochemical Society, 2022, 169, 037505.	1.3	1
343	Virus Detection: From Stateâ€ofâ€theâ€Art Laboratories to Smartphoneâ€Based Pointâ€ofâ€Care Testing. Advan Science, 2022, 9, e2105904.	ced 5.6	66
344	Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. Journal of Controlled Release, 2022, 344, 80-96.	4.8	92
345	Polymer Components for Paperâ€Based Analytical Devices. Advanced Materials Technologies, 2022, 7, .	3.0	4
346	Nanozyme enhanced paper-based biochip with a smartphone readout system for rapid detection of cyanotoxins in water. Biosensors and Bioelectronics, 2022, 205, 114099.	5.3	11

#	Article	IF	CITATIONS
348	Research progress on optical biosensors for pathogenic bacteria detection. , 2021, , .		0
349	Nanotechnology-assisted microfluidic systems for chemical sensing, biosensing, and bioanalysis. TrAC - Trends in Analytical Chemistry, 2022, 152, 116637.	5.8	32
350	Adsorptive preconcentration integrated with colorimetry for ultra-sensitive detection of lead and copper. Analytical and Bioanalytical Chemistry, 2022, 414, 4089-4102.	1.9	3
351	Quantifying DNA damage on paper sensors <i>via</i> controlled template-independent DNA polymerization. Chemical Science, 2022, 13, 6496-6501.	3.7	2
352	Reticular framework materials in miniaturized and emerging formats in analytical chemistry. Journal of Chromatography A, 2022, 1673, 463092.	1.8	3
353	Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydrate Polymers, 2022, 291, 119670.	5.1	13
354	Recent advances in potentiometric analysis: Paper–based devices. Sensors International, 2022, 3, 100189.	4.9	14
355	Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environment International, 2022, 166, 107357.	4.8	62
356	A microfluidic paper analytical device using capture aptamers for the detection of PfLDH in blood matrices. Malaria Journal, 2022, 21, .	0.8	3
357	Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process. Lab on A Chip, 2022, 22, 3377-3389.	3.1	11
358	Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. Journal of Agricultural and Food Chemistry, 2022, 70, 8188-8206.	2.4	12
359	A strategy of "fluorescence-visualization dual channel―for highly sensitive and rapid detection of phosphate biomarkers based on stimulus-responsive infinite coordination polymers. Sensors and Actuators B: Chemical, 2022, 370, 132366.	4.0	3
360	Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta, 2022, 250, 123747.	2.9	6
361	A portable and affordable paper electrochemical platform for the simultaneous detection of sunset yellow and tartrazine in food beverages and desserts. Microchemical Journal, 2022, 181, 107799.	2.3	8
362	Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. Sensors, 2022, 22, 6232.	2.1	15
363	Effects of Relative Humidity and Paper Geometry on the Imbibition Dynamics and Reactions in Lateral Flow Assays. Langmuir, 2022, 38, 9863-9873.	1.6	6
364	Development of a photothermal-sensing microfluidic paper-based analytical chip (PT-Chip) for sensitive quantification of diethylstilbestrol. Food Chemistry, 2023, 402, 134128.	4.2	6
365	Application of Microfluidic Chips in the Detection of Airborne Microorganisms. Micromachines, 2022, 13, 1576.	1.4	6

#	Article	IF	CITATIONS
366	The Effect of Paper on the Detection Limit of Paper-Based Potentiometric Chloride Sensors. Analytical Chemistry, 2022, 94, 14898-14905.	3.2	4
367	Colorimetric analysis based on solid-phase extraction with sedimentable dispersed particulates: demonstration of concept and application for on-site environmental water analysis. Analytical and Bioanalytical Chemistry, 2022, 414, 8389-8400.	1.9	2
368	A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of Î ² -Glucosidase Activity. Biosensors, 2022, 12, 893.	2.3	9
369	Exploring Interdigitated Electrode Arrays Screen-Printed on Paper Substrates for Steady-State Electrochemical Measurements. Journal of the Electrochemical Society, 2022, 169, 103502.	1.3	2
370	Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of d-glucose via a molecularly imprinted polymer. Monatshefte Für Chemie, 2022, 153, 1129-1135.	0.9	1
371	Recent progress in CRISPR-based microfluidic assays and applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116812.	5.8	10
372	Detection of pathogens in foods using microfluidic "lab-on-chip― A mini review. Journal of Agriculture and Food Research, 2022, 10, 100430.	1.2	7
373	Recent development of microfluidic biosensors for the analysis of antibiotic residues. TrAC - Trends in Analytical Chemistry, 2022, 157, 116797.	5.8	12
374	A portable paper-based aptasensor for simultaneous visual detection of two mycotoxins in corn flour using dual-color upconversion nanoparticles and Cu-TCPP nanosheets. Food Chemistry, 2023, 404,	4.2	10
	134750.		
375	134750. CMOS-based microanalysis systems. , 2023, , 259-286.		0
375 376		1.4	0
	CMOS-based microanalysis systems. , 2023, , 259-286. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines,	1.4	
376	CMOS-based microanalysis systems. , 2023, , 259-286. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines, 2022, 13, 1901. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC -		3
376 377	CMOS-based microanalysis systems. , 2023, , 259-286. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines, 2022, 13, 1901. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC - Trends in Analytical Chemistry, 2022, 157, 116816.	5.8	3 6
376 377 378	CMOS-based microanalysis systems. , 2023, , 259-286. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines, 2022, 13, 1901. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC - Trends in Analytical Chemistry, 2022, 157, 116816. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta, 2023, 254, 124133. A comprehensive review on graphene-based materials as biosensors for cancer detection. Oxford Open	5.8 2.9	3 6 22
376 377 378 379	CMOS-based microanalysis systems. , 2023, , 259-286. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines, 2022, 13, 1901. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC - Trends in Analytical Chemistry, 2022, 157, 116816. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta, 2023, 254, 124133. A comprehensive review on graphene-based materials as biosensors for cancer detection. Oxford Open Materials Science, 2023, 3, . Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels	5.8 2.9 0.5	3 6 22 8
 376 377 378 379 380 	CMOS-based microanalysis systems. , 2023, , 259-286. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines, 2022, 13, 1901. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC- Trends in Analytical Chemistry, 2022, 157, 116816. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta, 2023, 254, 124133. A comprehensive review on graphene-based materials as biosensors for cancer detection. Oxford Open Materials Science, 2023, 3, . Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor. Analytical Chemistry, 2022, 94, 18059-18066.	5.8 2.9 0.5 3.2	3 6 22 8 3

#	Article	IF	CITATIONS
384	Hollow microneedle microfluidic paper-based chip for biomolecules rapid sampling and detection in in interstitial fluid. Analytica Chimica Acta, 2023, 1255, 341101.	2.6	9
385	A method for the rapid determination of pesticides coupling thin-layer chromatography and enzyme inhibition principles. Food Chemistry, 2023, 416, 135822.	4.2	7
386	Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction. TrAC - Trends in Analytical Chemistry, 2023, 160, 116959.	5.8	5
387	Paper-based microfluidics in sweat detection: from design to application. Analyst, The, 2023, 148, 1175-1188.	1.7	3
388	Combining microfluidic paper-based platform and metal–organic frameworks in a single device for phenolic content assessment in fruits. Mikrochimica Acta, 2023, 190, .	2.5	2
389	A Road Map to Paper-Based Microfluidics Towards Affordable Disease Detection. Lecture Notes in Electrical Engineering, 2023, , 47-64.	0.3	0
390	Cells-on-electrode-on-paper: Analytical platforms for the chemical study of cellular secretion. Biosensors and Bioelectronics: X, 2023, 14, 100327.	0.9	0
391	Detection of gases and organic vapors by cellulose-based sensors. Analytical and Bioanalytical Chemistry, 2023, 415, 4039-4060.	1.9	10
392	Miniaturized electrochemical devices. , 2023, , 211-242.		0
393	Disposable paper-based sensors. , 2023, , 803-860.		1
413	Advances in microfluidic technology for sperm screening and in vitro fertilization. Analytical and Bioanalytical Chemistry, 0, , .	1.9	0
414	Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab on A Chip, 2024, 24, 1175-1206.	3.1	1
415	High-throughput microfluidic systems accelerated by artificial intelligence for biomedical applications. Lab on A Chip, 2024, 24, 1307-1326.	3.1	0