The Amazon at sea: Onset and stages of the Amazon Riv special reference to Neogene plant turnover in the drain

Global and Planetary Change 153, 51-65 DOI: 10.1016/j.gloplacha.2017.02.005

Citation Report

#	Article	IF	CITATIONS
1	The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil. Journal of South American Earth Sciences, 2017, 79, 57-66.	1.4	28
2	A tectonically-triggered late Holocene seismite in the southern Amazonian lowlands, Brazil. Sedimentary Geology, 2017, 358, 70-83.	2.1	26
3	Sedimentology and Palynostratigraphy of a Pliocene-Pleistocene (Piacenzian to Gelasian) deposit in the lower Negro River: Implications for the establishment of large rivers in Central Amazonia. Journal of South American Earth Sciences, 2017, 79, 215-229.	1.4	10
4	Miocene fern spores and pollen grains from the Solimões Basin, Amazon Region, Brazil. Acta Botanica Brasilica, 2017, 31, 720-735.	0.8	14
5	The Messinian diatomite deposition in the Mediterranean region and its relationships to the global silica cycle. Earth-Science Reviews, 2018, 178, 154-176.	9.1	38
6	The influence of late Quaternary sedimentation on vegetation in an Amazonian lowland megafan. Earth Surface Processes and Landforms, 2018, 43, 1259-1279.	2.5	8
7	Are the radiations of temperate lineages in tropical alpine ecosystems preâ€adapted?. Global Ecology and Biogeography, 2018, 27, 334-345.	5.8	46
8	Neogene tropical sea catfish (Siluriformes; Ariidae), with insights into paleo and modern diversity within northeastern South America. Journal of South American Earth Sciences, 2018, 82, 108-121.	1.4	4
9	First Neogene Proto-Caribbean pufferfish: new evidence for Tetraodontidae radiation. Journal of South American Earth Sciences, 2018, 85, 57-67.	1.4	2
10	Sedimentary record of Andean mountain building. Earth-Science Reviews, 2018, 178, 279-309.	9.1	222
11	Early Pliocene vegetation and hydrology changes in western equatorial South America. Climate of the Past, 2018, 14, 1739-1754.	3.4	8
12	Meter-Scale Early Diagenesis of Organic Matter Buried Within Deep-Sea Sediments Beneath the Amazon River Plume. Frontiers in Marine Science, 2018, 5, .	2.5	2
13	Iriarteeae palms tracked the uplift of Andean Cordilleras. Journal of Biogeography, 2018, 45, 1653-1663.	3.0	31
14	Ongoing River Capture in the Amazon. Geophysical Research Letters, 2018, 45, 5545-5552.	4.0	33
15	Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Research, 2018, 63, 152-168.	6.0	33
16	Primary productivity in the western tropical Atlantic follows Neogene Amazon River evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506, 12-21.	2.3	5
17	Connecting Amazonian, Cerrado, and Atlantic forest histories: Paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae). Molecular Phylogenetics and Evolution, 2018, 127, 696-705.	2.7	26
18	Testing main Amazonian rivers as barriers across time and space within widespread taxa. Journal of Biogeography, 2019, 46, 2444-2456.	3.0	30

#	Article	IF	CITATIONS
19	Geologically recent rearrangements in central Amazonian river network and their importance for the riverine barrier hypothesis. Frontiers of Biogeography, 2019, 11, .	1.8	41
20	Andean Tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian Ecosystem. Scientific Reports, 2019, 9, 16879.	3.3	63
21	LACUSTRINE SYSTEMS IN THE EARLY MIOCENE OF NORTHERN SOUTH AMERICAâ€"EVIDENCE FROM THE UPPER MAGDALENA VALLEY, COLOMBIA. Palaios, 2019, 34, 490-505.	1.3	3
22	Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nature Communications, 2019, 10, 4000.	12.8	45
23	Unexpected fish diversity gradients in the Amazon basin. Science Advances, 2019, 5, eaav8681.	10.3	88
24	Integrating phylogeography and ecological niche modelling to test diversification hypotheses using a Neotropical rodent. Evolutionary Ecology, 2019, 33, 111-148.	1.2	18
25	Exploring geophysical and palynological proxies for paleoenvironmental reconstructions in the Miocene of western Amazonia (Solimões Formation, Brazil). Journal of South American Earth Sciences, 2019, 94, 102223.	1.4	9
26	Provenance of the Neogene sediments from the Solimões Formation (Solimões and Acre Basins), Brazil. Journal of South American Earth Sciences, 2019, 93, 232-241.	1.4	12
27	A new modern pollen dataset describing the Brazilian Atlantic Forest. Holocene, 2019, 29, 1253-1262.	1.7	8
28	Controls on the geochemistry of suspended sediments from large tropical South American rivers (Amazon, Orinoco and Maroni). Chemical Geology, 2019, 522, 38-54.	3.3	32
29	A new species of Oxymycterus (Rodentia: Cricetidae: Sigmodontinae) from a transitional area of Cerrado – Atlantic Forest in southeastern Brazil. Journal of Mammalogy, 2019, 100, 578-598.	1.3	12
30	The role of Late Pleistocene-Holocene tectono-sedimentary history on the origin of patches of savanna vegetation in the middle Madeira River, southwest of the Amazonian lowlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 526, 136-156.	2.3	5
31	Could coastal plants in western Amazonia be relicts of past marine incursions?. Journal of Biogeography, 2019, 46, 1749-1759.	3.0	26
32	Chronology of Terra Firme formation in Amazonian lowlands reveals a dynamic Quaternary landscape. Quaternary Science Reviews, 2019, 210, 154-163.	3.0	64
33	Neogene evolution and demise of the Amapá carbonate platform, Amazon continental margin, Brazil. Marine and Petroleum Geology, 2019, 105, 185-203.	3.3	11
34	Contrasting patterns of diversification between Amazonian and Atlantic forest clades of Neotropical lianas (Amphilophium, Bignonieae) inferred from plastid genomic data. Molecular Phylogenetics and Evolution, 2019, 133, 92-106.	2.7	43
35	Past Amazon Basin fluvial systems, insight into the Cenozoic sequences using seismic geomorphology (Marañón Basin, Peru). Journal of South American Earth Sciences, 2019, 90, 440-452.	1.4	9
36	Phylogeny, historical biogeography and diversification rates in an economically important group of Neotropical palms: Tribe Euterpeae. Molecular Phylogenetics and Evolution, 2019, 133, 67-81.	2.7	14

#	Article	IF	CITATIONS
37	Detrital zircon U–Pb geochronology constrains the age of Brazilian Neogene deposits from Western Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516, 64-70.	2.3	26
38	The Pliocene–Pleistocene palynology of the Negro River, Brazil. Palynology, 2019, 43, 223-243.	1.5	9
39	Neogene palynostratigraphic zonation of the Maranon Basin, Western Amazonia, Peru. Palynology, 2020, 44, 675-695.	1.5	9
40	Miocene paleoenvironmental changes in the Solimões Basin, western Amazon, Brazil: A reconstruction based on palynofacies analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 537, 109450.	2.3	8
41	Depositional environments and landscapes of the upper Miocene Ipururo Formation at Shumanza, Subandean Zone, northern Peru. Palaeobiodiversity and Palaeoenvironments, 2020, 100, 719-735.	1.5	3
42	Rain forest shifts through time and riverine barriers shaped the diversification of South American terrestrial pit vipers (<i>Bothrops jararacussu</i> species group). Journal of Biogeography, 2020, 47, 516-526.	3.0	13
43	Evolutionary history of the Pectoral Sparrow <i>Arremon taciturnus</i> : evidence for diversification during the Late Pleistocene. Ibis, 2020, 162, 1198-1210.	1.9	6
44	Niches and radiations: a case study on the Andean sapphireâ€vented puffleg Eriocnemis luciani and copperyâ€naped puffleg E. sapphiropygia (Aves, Trochilidae). Journal of Avian Biology, 2020, 51, .	1.2	1
45	Palaeontological framework from Pirabas Formation (North Brazil) used as potential model for equatorial carbonate platform. Marine Micropaleontology, 2020, 154, 101813.	1.2	18
46	Hidden in the DNA: How multiple historical processes and natural history traits shaped patterns of cryptic diversity in an Amazon leaf″itter lizard <i>Loxopholis osvaldoi</i> (Squamata:) Tj ETQq1 1 0.784314 rg	BT\$ @ verlc	ock610 Tf 50 3
47	Miocene Freshwater Dolphins from La Venta, Huila, Colombia Suggest Independent Invasions of Riverine Environments in Tropical South America. Journal of Vertebrate Paleontology, 2020, 40, e1812078.	1.0	8
48	Molecular phylogenetics and phenotypic reassessment of the Ramphotrigon flycatchers: deep paraphyly in the context of an intriguing biogeographic scenario. Journal of Avian Biology, 2020, 51, .	1.2	1
49	Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics. Botanical Journal of the Linnean Society, 2020, 194, 271-289.	1.6	7
50	Chronology of Miocene terrestrial deposits and fossil vertebrates from Quebrada Honda (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 110013.	2.3	6
51	Piacenzian Environmental Change and the Onset of Cool and Dry Conditions in Tropical South America. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA004060.	2.9	1
52	The role of environmental filtering, geographic distance and dispersal barriers in shaping the turnover of plant and animal species in Amazonia. Biodiversity and Conservation, 2020, 29, 3609-3634.	2.6	34
53	Amphi-American Neogene teleostean tropical fishes. Journal of South American Earth Sciences, 2020, 102, 102657.	1.4	2
54	Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography, 2020, 43, 1291-1304.	4.5	10

#	Article	IF	CITATIONS
55	Patterns and Processes of Diversification in Amazonian White Sand Ecosystems: Insights from Birds and Plants. Fascinating Life Sciences, 2020, , 245-270.	0.9	25
56	Controls on overpressure evolution during the gravitational collapse of the Amazon deep-sea fan. Marine and Petroleum Geology, 2020, 121, 104576.	3.3	4
57	The onset of grasses in the Amazon drainage basin, evidence from the fossil record. Frontiers of Biogeography, 2020, 12, .	1.8	23
58	New outcrop with vertebrate remains from Solimões Formation (Eocene–Pliocene), Southern Solimões Basin, Acre State, Northern Brazil. Journal of South American Earth Sciences, 2020, 101, 102588.	1.4	4
59	Quaternary climate changes as speciation drivers in the Amazon floodplains. Science Advances, 2020, 6, eaax4718.	10.3	55
60	New Neogene index pollen and spore taxa from the Solimões Basin (Western Amazonia), Brazil. Palynology, 2021, 45, 115-141.	1.5	12
61	Going against the flow: Barriers to gene flow impact patterns of connectivity in cryptic coral reef gobies throughout the western Atlantic. Journal of Biogeography, 2021, 48, 427-439.	3.0	16
62	Upper Oligocene-Miocene deposits of Eastern Amazonia: Implications for the collapse of Neogene carbonate platforms along the coast of northern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 563, 110178.	2.3	10
63	Compositional and diversity comparisons between the palynological records of the Neogene (Solimões Formation) and Holocene sediments of Western Amazonia. Palynology, 2021, 45, 3-14.	1.5	8
64	Linking modern-day relicts to a Miocene mangrove community of western Amazonia. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 123-140.	1.5	7
65	Sporopollenin chemistry and its durability in the geological record: an integration of extant and fossil chemical data across the seed plants. Palaeontology, 2021, 64, 285-305.	2.2	15
67	Systematics and biogeography of the <i>Boana albopunctata</i> species group (Anura, Hylidae), with the description of two new species from Amazonia. Systematics and Biodiversity, 2021, 19, 375-399.	1.2	20
68	Biogeography of the neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals effects of continentâ€scale paleogeographic change and drainage evolution. Journal of Biogeography, 2021, 48, 1406-1419.	3.0	31
69	Climate and geological change as drivers of Mauritiinae palm biogeography. Journal of Biogeography, 2021, 48, 1001-1022.	3.0	14
70	Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae). Trees - Structure and Function, 2021, 35, 1367-1384.	1.9	6
73	Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biological Journal of the Linnean Society, 2021, 134, 177-197.	1.6	3
75	Exploring the effects of the quaternary glacial–interglacial cycles on the geographic distributions of tropical Andean rodents: species in the genus Aepeomys Thomas, 1898 (Thomasomyini:) Tj ETQq0 0 0 rgBT /O	ve rlo ck 10) T£ 50 97 Td

76The role of vicariance and dispersal on the temporal range dynamics of forest vipers in the
Neotropical region. PLoS ONE, 2021, 16, e0257519.2.54

#	Article	IF	CITATIONS
77	Miocene paleoenvironments and paleoclimatic reconstructions based on the palynology of the Solimões Formation of Western Amazonia (Brazil). Palynology, 2022, 46, 1-19.	1.5	1
78	Tropical Weathering History Recorded in the Silicon Isotopes of Lateritic Weathering Profiles. Geophysical Research Letters, 2021, 48, e2021GL092957.	4.0	7
79	Late Neogene megariver captures and the Great Amazonian Biotic Interchange. Global and Planetary Change, 2021, 205, 103554.	3.5	19
80	Marine influence in western Amazonia during the late Miocene. Global and Planetary Change, 2021, 205, 103600.	3.5	10
81	Mapping floodplain bathymetry in the middle-lower Amazon River using inundation frequency and field control. Geomorphology, 2021, 392, 107937.	2.6	7
82	Provenance of the Middle Jurassic-Cretaceous sedimentary rocks of the Arequipa Basin (South Peru) and implications for the geodynamic evolution of the Central Andes. Gondwana Research, 2022, 101, 59-76.	6.0	5
83	Species diversity and biogeography of an ancient frog clade from the Guiana Shield (Anura:) Tj ETQq0 0 0 rgBT /C phenotypic diversification. Biological Journal of the Linnean Society, 2021, 132, 233-256.	Dverlock 1 1.6	0 Tf 50 507 T 23
84	The Origin and Evolution of Amazonian Species Diversity. Fascinating Life Sciences, 2020, , 225-244.	0.9	26
85	Biotic and Landscape Evolution in an Amazonian Contact Zone: Insights from the Herpetofauna of the Tapajós River Basin, Brazil. Fascinating Life Sciences, 2020, , 683-712.	0.9	9
86	Modern pollen signatures of Amazonian rivers and new insights for environmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554, 109802.	2.3	7
87	The Fishes of the Amazon: Distribution and Biogeographical Patterns, with a Comprehensive List of Species. Bulletin of the American Museum of Natural History, 2019, 2019, 1.	3.4	160
88	Neogene Proto-Caribbean porcupinefishes (Diodontidae). PLoS ONE, 2017, 12, e0181670.	2.5	16
89	Thermal physiology of Amazonian lizards (Reptilia: Squamata). PLoS ONE, 2018, 13, e0192834.	2.5	31
90	Phylogeny and Biogeography of the Amazonian <i>Pachyptera</i> (Bignonieae, Bignoniaceae). Systematic Botany, 2020, 45, 361-374.	0.5	6
91	Conceptual and empirical advances in Neotropical biodiversity research. PeerJ, 2018, 6, e5644.	2.0	107
92	Linking high diversification rates of rapidly growing Amazonian plants to geophysical landscape transformations promoted by Andean uplift. Botanical Journal of the Linnean Society, 2022, 199, 36-52.	1.6	3
93	Molecular diversity and historical phylogeography of the widespread genus <i>Mastiglanis</i> (Siluriformes: Heptapteridae) based on palaeogeographical events in South America. Biological Journal of the Linnean Society, 2022, 135, 322-335.	1.6	3
94	The Inachoididae spider crabs (Crustacea, Brachyura) from the Neogene of the tropical Americas. Journal of Paleontology, 2022, 96, 334-354.	0.8	1

CITATION	REDUBL

#	Article	IF	CITATIONS
95	Large rivers, slow drainage rearrangements: The ongoing fluvial piracy of a major river by its tributary in the Branco River Basin - Northern Amazon. Journal of South American Earth Sciences, 2021, 112, 103598.	1.4	2
97	The First Botanical Exploration to the Upper CuiarÃ-(CuyarÃ) and Isana Rivers, Upper RÃo Negro Basin, GuainÃa Department, Colombia. Harvard Papers in Botany, 2019, 24, 83.	0.2	3
98	The Miocene wetland of western Amazonia and its role in Neotropical biogeography. Botanical Journal of the Linnean Society, 2022, 199, 25-35.	1.6	27
99	Biogeographic evidence supports the Old Amazon hypothesis for the formation of the Amazon fluvial system. PeerJ, 2021, 9, e12533.	2.0	8
100	Incision and aggradation phases of the Amazon River in central-eastern Amazonia during the late Neogene and Quaternary. Geomorphology, 2022, 399, 108073.	2.6	7
101	Provenance of Miocene-Pleistocene siliciclastic deposits in the Eastern Amazonia coast (Brazil) and paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587, 110799.	2.3	4
102	Diversification of tiny toads (Bufonidae: <i>Amazophrynella</i>) sheds light on ancient landscape dynamism in Amazonia. Biological Journal of the Linnean Society, 2022, 136, 75-91.	1.6	9
103	The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science, 2022, 27, 364-378.	8.8	67
104	Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change, 2022, 210, 103717.	3.5	8
105	Biogeographic reconstruction of the migratory Neotropical fish family Prochilodontidae (Teleostei:) Tj ETQq1 1	0.784314 1.7	rgBŢ /Overloc
105 106	Biogeographic reconstruction of the migratory Neotropical fish family Prochilodontidae (Teleostei:) Tj ETQq1 1 Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73.	0.784314 1.7 3.9	rgBJ /Overloc 9
		1.7	- 4
106	Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73. Diversity, biogeography, and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae).	3.9	9
106 107	Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73. Diversity, biogeography, and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Molecular Phylogenetics and Evolution, 2022, 170, 107442. River Reorganization Affects Populations of Dwarf Cichlid Species (Apistogramma Genus) in the Lower	1.7 3.9 2.7	9 11
106 107 108	 Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73. Diversity, biogeography, and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Molecular Phylogenetics and Evolution, 2022, 170, 107442. River Reorganization Affects Populations of Dwarf Cichlid Species (Apistogramma Genus) in the Lower Negro River, Brazil. Frontiers in Ecology and Evolution, 2021, 9, . A historical vertebrate collection from the Middle Miocene of the Peruvian Amazon. Swiss Journal of 	1.7 3.9 2.7 2.2	9 11 1
106 107 108 110	 Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73. Diversity, biogeography, and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Molecular Phylogenetics and Evolution, 2022, 170, 107442. River Reorganization Affects Populations of Dwarf Cichlid Species (Apistogramma Genus) in the Lower Negro River, Brazil. Frontiers in Ecology and Evolution, 2021, 9, . A historical vertebrate collection from the Middle Miocene of the Peruvian Amazon. Swiss Journal of Palaeontology, 2021, 140, . Drivers of phylogenetic structure in Amazon freshwater fish assemblages. Journal of Biogeography, 	1.7 3.9 2.7 2.2 1.7	9 11 1 5
106 107 108 110	Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73. Diversity, biogeography, and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Molecular Phylogenetics and Evolution, 2022, 170, 107442. River Reorganization Affects Populations of Dwarf Cichlid Species (Apistogramma Genus) in the Lower Negro River, Brazil. Frontiers in Ecology and Evolution, 2021, 9, . A historical vertebrate collection from the Middle Miocene of the Peruvian Amazon. Swiss Journal of Palaeontology, 2021, 140, . Drivers of phylogenetic structure in Amazon freshwater fish assemblages. Journal of Biogeography, 2022, 49, 310-323. Cenozoic weathering of fluvial terraces and emergence of biogeographic boundaries in Central	1.7 3.9 2.7 2.2 1.7 3.0	9 11 1 5 3

#	Article	IF	CITATIONS
115	Historical processes explain fish diversity in the upper Amazon River basin. Hydrobiologia, 0, , 1.	2.0	1
116	From the Andes and the Drake Passage to the Rio Grande Submarine Fan: Paleoclimatic and paleogeographic evidence in the Cenozoic Era from the South Atlantic – Austral Segment, Pelotas Basin. Global and Planetary Change, 2022, 213, 103838.	3.5	1
117	Phylogenetics and an updated taxonomic status of the Tamarins (Callitrichinae, Cebidae). Molecular Phylogenetics and Evolution, 2022, 173, 107504.	2.7	9
118	The <scp>Amazonâ€Orinoco</scp> Barrier as a driver of reefâ€fish speciation in the Western Atlantic through time. Journal of Biogeography, 2022, 49, 1407-1419.	3.0	10
119	Back from the deaf: integrative taxonomy revalidates an earless and mute species, Hylodes grandoculis van Lidth de Jeude, 1904, and confirms a new species of Pristimantis Jiménez de la Espada, 1870 (Anura:) Tj ET 1065-1098.	[Qq0_0 0	gBŢ /Overloc
120	A 1.8 Million Year History of Amazonian Biomes. SSRN Electronic Journal, 0, , .	0.4	1
121	Occurrence of Cyclusphaera Scabrata in Achiri (Late Middle-Early Late Miocene?, Bolivian Altiplano): Paleogeographical Implication. SSRN Electronic Journal, 0, , .	0.4	0
122	Ongoing landscape transience in the Eastern Amazon Craton consistent with lithologic control of base level. Earth Surface Processes and Landforms, 0, , .	2.5	2
123	Small mammal diversity of a poorly known and threatened Amazon region, the Tapajós Area of Endemism. Biodiversity and Conservation, 2022, 31, 2683-2697.	2.6	1
124	Fossil frogs from the upper Miocene of southwestern Brazilian Amazonia (Solimões Formation, Acre) Tj ETQq1	1 0,78433 1.0	14 rgBT /Overl
125	The sediment routing systems of Northern South America since 250 Ma. Earth-Science Reviews, 2022, 232, 104139.	9.1	4
126	Frans Florschütz as founding father of pollen analysis in the Netherlands, and expansion of palynology into the tropics. Grana, 2022, 61, 241-255.	0.8	3
127	Occurrence of Cyclusphaera scabrata in Achiri (late middle-early late Miocene?, Bolivian Altiplano): Paleogeographical implication. Journal of South American Earth Sciences, 2022, 119, 103990.	1.4	2
128	Humboldt, Biogeography, and the Dimension of Time. , 2022, , 61-95.		0
129	Marsupials from the South American "Dry Diagonalâ€ŧ Diversity, Endemism, and Biogeographic History. , 2022, , 1-30.		0
130	Temporal and seasonal variation of metazoan parasites in Pimelodus ornatus (Siluriformes:) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tfl
132	Diversification of the <i>Pristimantis conspicillatus</i> group (Anura: Craugastoridae) within distinct neotropical areas throughout the Neogene. Systematics and Biodiversity, 2022, 20, 1-16.	1.2	7
133	Historical biogeography highlights the role of Miocene landscape changes on the diversification of a clade of Amazonian tree frogs. Organisms Diversity and Evolution, 2023, 23, 395-414.	1.6	7

#	Article	IF	CITATIONS
134	The Role of Vicariance and Paleoclimatic Shifts in the Diversification of Uranoscodon superciliosus (Squamata, Tropiduridae) of the Amazonian Floodplains. Evolutionary Biology, 0, , .	1.1	0
135	Cycles of Andean mountain building archived in the Amazon Fan. Nature Communications, 2022, 13, .	12.8	2
136	A 1.8 million year history of Amazon vegetation. Quaternary Science Reviews, 2023, 299, 107867.	3.0	5
137	Remarkable population structure in the tropical Atlantic lace corals Stylaster roseus (Pallas, 1766) and Stylaster blatteus (Boschma, 1961). Coral Reefs, 2023, 42, 181-194.	2.2	1
138	Diversification of Amazonian spiny tree rats in genus Makalata (Rodentia, Echimyidae): Cryptic diversity, geographic structure and drivers of speciation. PLoS ONE, 2022, 17, e0276475.	2.5	1
139	Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	24
140	A new species of jupati, genus <i>Metachirus</i> Burmeister 1854 (Didelphimorphia, Didelphidae) for the Brazilian Amazon. Mammalia, 2023, .	0.7	1
141	A different path to the Negro River in the Chibanian as a window to temporalize the eastward-flowing transcontinental Amazon. Journal of South American Earth Sciences, 2023, 122, 104187.	1.4	0
142	Karyotypic variation of two populations of the small freshwater stingray Potamotrygon wallacei Carvalho, Rosa & Araújo 2016: A classical and molecular approach. PLoS ONE, 2023, 18, e0278828.	2.5	0
143	Ancestral chromosomal signatures of Paenungulata (Afroteria) reveal the karyotype of Amazonian manatee (Trichechus inunguis, Sirenia: Trichechidae) as the oldest among American manatees. BMC Genomics, 2023, 24, .	2.8	0
144	Evolutionary History and Taxonomic Reclassification of the Critically Endangered Daggernose Shark, a Species Endemic to the Western Atlantic. Journal of Zoological Systematics and Evolutionary Research, 2023, 2023, 1-16.	1.4	3
145	The Amazon paleoenvironment resulted from geodynamic, climate, and sea-level interactions. Earth and Planetary Science Letters, 2023, 605, 118033.	4.4	3
146	New stratigraphic and paleoenvironmental constraints on the Paleogene paleogeography of Western Amazonia. Journal of South American Earth Sciences, 2023, 124, 104256.	1.4	2
147	Drainage and sedimentary response of the Northern Andes and the Pebas system to Miocene strikeâ€slip tectonics: AÂsource to sink study of the Magdalena Basin. Basin Research, 2023, 35, 1674-1717.	2.7	3
148	New insights into the Cretaceous evolution of the Western Amazonian paleodrainage system. Sedimentary Geology, 2023, 453, 106434.	2.1	3
149	Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynological, and Molecular Phylogenetic Data. Annual Review of Earth and Planetary Sciences, 2023, 51, 419-446.	11.0	0
150	First evaluation of the population genetics and aspects of the evolutionary history of the Amazonian snook, Centropomus irae, and its association with the Amazon plume. Hydrobiologia, 2023, 850, 2115-2125.	2.0	1
151	The evolution of extant South American tropical biomes. New Phytologist, 2023, 239, 477-493.	7.3	7

#	Article	IF	CITATIONS
152	Sediment routing systems to the Atlantic rifted margin of the Guiana Shield. , 2023, 19, 957-974.		1
153	Marsupials from the South American "Dry Diagonal― Diversity, Endemism, and Biogeographic History. , 2023, , 693-722.		1
154	Early evolution of the megadiverse subtribe Philonthina (Staphylinidae: Staphylininae: Staphylinini) and its Neotropical lineage. Systematic Entomology, 2024, 49, 28-47.	3.9	0
156	The Forests of the Upper Rio Negro (North-Western Amazon) and Adjacent South-Western Orinoco Basins: A Phytosociological Classification. Ecological Studies, 2023, , 55-109.	1.2	1
157	Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since the Late Cretaceous. Nature Ecology and Evolution, 0, , .	7.8	0
158	Relicts in the mist: Two new frog families, genera and species highlight the role of Pantepui as a biodiversity museum throughout the Cenozoic. Molecular Phylogenetics and Evolution, 2024, 191, 107971.	2.7	1
159	New constraints on the Late Miocene-Pliocene deformational and depositional evolution of the Eastern Cordillera and Sub-Andean Zone in Southern Peru. Journal of South American Earth Sciences, 2024, 133, 104700.	1.4	1
161	A New Record for the Flora of Venezuela and the Rio Negro Basin: Douradoa consimilis (Ximeniaceae). Harvard Papers in Botany, 2023, 28, .	0.2	0
162	Integrative species delimitation and biogeography of the <i>Rhinella margaritifera</i> species group (Amphibia, Anura, Bufonidae) suggest an intense diversification throughout Amazonia during the last 10 million years. Systematics and Biodiversity, 2024, 22, .	1.2	0
163	Geodiversity in the Amazon drainage basin. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2024, 382, .	3.4	2
164	The vicariant role of Caribbean formation in driving speciation in American loliginid squids: the case of Doryteuthis pealeii (Lesueur 1821). Marine Biology, 2024, 171, .	1.5	0
165	The largest freshwater odontocete: A South Asian river dolphin relative from the proto-Amazonia. Science Advances, 2024, 10, .	10.3	0