Collection and characterization of grapevine genetic res Land, towards the renewal of ancient winemaking prace

Scientific Reports 7, 44463 DOI: 10.1038/srep44463

Citation Report

#	Article	IF	CITATIONS
1	A multivariate approach for the ampelographic discrimination of grapevine (Vitis vinifera) cultivars: application to local Syrian genetic resources. Genetic Resources and Crop Evolution, 2017, 64, 1841-1851.	1.6	15
2	Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. Horticulture Research, 2018, 5, 34.	6.3	42
3	Development of a 3D seed morphological tool for grapevine variety identification, and its comparison with SSR analysis. Scientific Reports, 2018, 8, 6545.	3.3	21
4	Promising Bioanalytical Approaches to Wine Analysis. , 2019, , 419-457.		4
5	Identification of disease resistance-linked alleles in Vitis vinifera germplasm. BIO Web of Conferences, 2019, 13, 01004.	0.2	3
6	Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers. Genetica, 2019, 147, 91-101.	1.1	28
7	Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in Vitis vinifera. Scientific Reports, 2020, 10, 15000.	3.3	22
8	The Cypriot Indigenous Grapevine Germplasm Is a Multi-Clonal Varietal Mixture. Plants, 2020, 9, 1034.	3.5	11
9	Marginal Grapevine Germplasm from Apulia (Southern Italy) Represents an Unexplored Source of Genetic Diversity. Agronomy, 2020, 10, 563.	3.0	11
10	Innovation or preservation? Abbasid aubergines, archaeobotany, and the Islamic Green Revolution. Archaeological and Anthropological Sciences, 2020, 12, 1.	1.8	22
11	Population structure of <i>Erysiphe necator</i> on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environmental Microbiology, 2021, 23, 6019-6037.	3.8	11
12	Genomic evidence supports an independent history of Levantine and Eurasian grapevines. Plants People Planet, 2021, 3, 414-427.	3.3	13
13	Demographic and ecogeographic factors limit wild grapevine spread at the southern edge of its distribution range. Ecology and Evolution, 2021, 11, 6657-6671.	1.9	3
14	Accurate classification of fresh and charred grape seeds to the varietal level, using machine learning based classification method. Scientific Reports, 2021, 11, 13577.	3.3	11
16	Differences between microbiota, phytochemical, antioxidant profile and dna fingerprinting of cabernet sauvignon grape from Slovakia and Macedonia. Potravinarstvo, 0, 14, 945-953.	0.6	2
17	Ampelographic collection of NSĐ; «V.Ye. Tairov IVW», current trends in studies and prospects of usage. GenetiĂnì Resursi Roslin (Plant Genetic Resources), 2019, , 129-139.	0.2	0
18	The Rise of Wine among Ancient Civilizations across the Mediterranean Basin. Heritage, 2022, 5, 788-812.	1.9	13
19	A Field Collection of Indigenous Grapevines as a Valuable Repository for Applied Research. Plants, 2022, 11, 2563.	3.5	6

CITATION REPORT

#	Article	IF	CITATIONS
20	Influence of late pruning practice on two red skin grapevine cultivars in a semi-desert climate. Frontiers in Plant Science, 0, 14, .	3.6	1
21	Ancient DNA from a lost Negev Highlands desert grape reveals a Late Antiquity wine lineage. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
22	Grapevine in the Ancient Upper Euphrates: Horticultural Implications of a Bayesian Morphometric Study of Archaeological Seeds. Horticulturae, 2023, 9, 803.	2.8	2
23	Wild Grapevine (Vitis vinifera L. subsp. sylvestris (C.C. Gmelin) Hegi)—Novel Species to the Israeli Flora. Horticulturae, 2023, 9, 998.	2.8	2
24	Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics. Frontiers in Plant Science, 0, 14, .	3.6	2
26	The Potential of Grapevine Leaf Extract in Treating Hyperpigmentation. Cosmetics, 2024, 11, 2.	3.3	0
27	Grapevine and Horseradish Leaves as Natural, Sustainable Additives for Improvement of the Microbial, Sensory, and Antioxidant Properties of Traditionally Fermented Low-Salt Cucumbers. Sustainability, 2024, 16, 2431.	3.2	0
28	Integration of machine learning models with microsatellite markers: New avenue in world grapevine germplasm characterization. Biochemistry and Biophysics Reports, 2024, 38, 101678.	1.3	Ο