Strategies and challenges for the next generation of ant

Nature Reviews Drug Discovery 16, 315-337

DOI: 10.1038/nrd.2016.268

Citation Report

#	Article	IF	CITATIONS
1	Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs, 2017, 9, 801-811.	2.6	55
2	Protocols for the analytical characterization of therapeutic monoclonal antibodies. I – Non-denaturing chromatographic techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1058, 73-84.	1.2	42
3	Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering. BioDrugs, 2017, 31, 151-166.	2.2	58
4	Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy. Bioconjugate Chemistry, 2017, 28, 1452-1457.	1.8	31
5	Drug discovery and therapeutic delivery for the treatment of B and T cell tumors. Advanced Drug Delivery Reviews, 2017, 114, 285-300.	6.6	20
6	Bicyclic Peptides as Nextâ€Generation Therapeutics. Chemistry - A European Journal, 2017, 23, 12690-12703.	1.7	109
7	Treatment advances in small cell lung cancer (SCLC). , 2017, 180, 16-23.		135
8	Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycineâ€Generating Enzyme. ChemBioChem, 2017, 18, 1755-1761.	1.3	6
9	Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nature Communications, 2017, 8, 1112.	5.8	71
10	Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required?. British Journal of Cancer, 2017, 117, 1736-1742.	2.9	281
11	In situ surface protein conjugation of small molecules for SPR immunoassays. Analytical Biochemistry, 2017, 539, 149-151.	1.1	4
12	An optimised synthesis of SG3376, a non-cleavable antibody-drug conjugate pyrrolobenzodiazepine drug-linker. Tetrahedron Letters, 2017, 58, 4363-4366.	0.7	9
13	The antibody–drug conjugate target landscape across a broad range of tumour types. Annals of Oncology, 2017, 28, 3083-3091.	0.6	40
14	Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. European Journal of Medicinal Chemistry, 2017, 142, 393-415.	2.6	64
15	Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer. Pharmaceutical Research, 2017, 34, 2579-2595.	1.7	30
16	Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: Feasibility assessment for future mass spectrometry hyphenation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066, 35-43.	1.2	73
17	Ligand-Targeted Drug Delivery. Chemical Reviews, 2017, 117, 12133-12164.	23.0	408
18	Antibody Directed Enzyme Prodrug Therapy (ADEPT): Trials and tribulations. Advanced Drug Delivery Reviews, 2017, 118, 2-7.	6.6	96

#	Article	IF	CITATIONS
19	Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs, 2017, 9, 1317-1326.	2.6	11
20	Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Scientific Reports, 2017, 7, 12030.	1.6	52
21	A generic approach for simultaneous measurements of total antibody and cleavable antibody-conjugated drug by LC/MS/MS. Analytical Biochemistry, 2017, 537, 33-36.	1.1	15
22	The Development and Scale-Up of an Antibody Drug Conjugate Tubulysin Payload. Organic Process Research and Development, 2017, 21, 1602-1609.	1.3	16
23	Development and evaluation of \hat{l}^2 -galactosidase-sensitive antibody-drug conjugates. European Journal of Medicinal Chemistry, 2017, 142, 376-382.	2.6	38
24	Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opinion on Emerging Drugs, 2017, 22, 259-273.	1.0	20
25	Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angewandte Chemie - International Edition, 2017, 56, 12481-12485.	7.2	100
26	A Chemoselective Rapid Azo-Coupling Reaction (CRACR) for Unclickable Bioconjugation. Journal of the American Chemical Society, 2017, 139, 11670-11673.	6.6	75
27	Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century. Journal of Drug Targeting, 2017, 25, 759-780.	2.1	46
28	Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules. Nature Protocols, 2017, 12, 2590-2622.	5.5	48
29	Immunoprecipitation middle-up LC–MS for in vivo drug-to-antibody ratio determination for antibody–drug conjugates. Bioanalysis, 2017, 9, 1535-1549.	0.6	12
30	Recent Developments in ADC Technology: Preclinical Studies Signal Future Clinical Trends. BioDrugs, 2017, 31, 521-531.	2.2	70
31	Delivering natural products and biotherapeutics to improve drug efficacy. Therapeutic Delivery, 2017, 8, 947-956.	1.2	67
32	Pyrrolobenzodiazepine Dimer Antibody–Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. Journal of Medicinal Chemistry, 2017, 60, 9490-9507.	2.9	30
33	Cell type-selective imaging and profiling of newly synthesized proteomes by using puromycin analogues. Chemical Communications, 2017, 53, 8443-8446.	2.2	16
34	Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nature Reviews Drug Discovery, 2017, 16, 787-810.	21.5	125
35	CEACAM1 as a Multi-Purpose Target for Cancer Immunotherapy. Oncolmmunology, 2017, 6, 00-00.	2.1	79
36	Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer's disease. MAbs, 2017, 9, 1016-1027.	2.6	23

#	ARTICLE	IF	CITATIONS
37	Development and Properties of Valine-Alanine based Antibody-Drug Conjugates with Monomethyl Auristatin E as the Potent Payload. International Journal of Molecular Sciences, 2017, 18, 1860.	1.8	30
38	Antibodies and Derivatives Targeting DR4 and DR5 for Cancer Therapy. Antibodies, 2017, 6, 16.	1.2	51
39	Design and In Vitro Evaluation of a Cytotoxic Conjugate Based on the Anti-HER2 Affibody Fused to the Fc Fragment of IgG1. International Journal of Molecular Sciences, 2017, 18, 1688.	1.8	10
40	Antibody-Recruiting Small Molecules: Synthetic Constructs as Immunotherapeutics. Annual Reports in Medicinal Chemistry, 2017, 50, 481-518.	0.5	3
41	Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biology and Medicine, 2017, 14, 212.	1.4	98
42	An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ, 2017, 5, e4068.	0.9	18
43	Phase I/II Trial of Labetuzumab Govitecan (Anti-CEACAM5/SN-38 Antibody-Drug Conjugate) in Patients With Refractory or Relapsing Metastatic Colorectal Cancer. Journal of Clinical Oncology, 2017, 35, 3338-3346.	0.8	69
44	Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1080, 37-41.	1.2	39
45	Fate of Antibody-Drug Conjugates in Cancer Cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 20.	3 . 5	125
46	Site-selective installation of an electrophilic handle on proteins for bioconjugation. Bioorganic and Medicinal Chemistry, 2018, 26, 3060-3064.	1.4	23
47	The Placental Barrier: the Gate and the Fate in Drug Distribution. Pharmaceutical Research, 2018, 35, 71.	1.7	95
48	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	18.7	352
49	Design, Synthesis, and inâ€vitro Evaluation of Multivalent Drug Linkers for Highâ€Drug‣oad Antibody–Drug Conjugates. ChemMedChem, 2018, 13, 790-794.	1.6	8
50	A developed antibody–drug conjugate rituximab-vcMMAE shows a potent cytotoxic activity against CD20-positive cell line. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-8.	1.9	24
51	Rapid and Efficient Generation of Stable Antibody–Drug Conjugates via an Encoded Cyclopropene and an Inverseâ€Electronâ€Demand Diels–Alder Reaction. Angewandte Chemie, 2018, 130, 2881-2884.	1.6	19
52	Antikörpergerichtete Therapien: Quo vadis?. Angewandte Chemie, 2018, 130, 2050-2052.	1.6	0
53	In Vivo Characterization of Platinum(II)-Based Linker Technology for the Development of Antibody–Drug Conjugates: Taking Advantage of Dual Labeling with ^{195m} Pt and ⁸⁹ Zr. Journal of Nuclear Medicine, 2018, 59, 1146-1151.	2.8	16
54	Extending the limits of size exclusion chromatography: Simultaneous separation of free payloads and related species from antibody drug conjugates and their aggregates. Journal of Chromatography A, 2018, 1539, 19-29.	1.8	22

#	ARTICLE	IF	Citations
55	Development of an analytical method to assess the occupational health risk of therapeutic monoclonal antibodies using LC-HRMS. Analytical and Bioanalytical Chemistry, 2018, 410, 2829-2836.	1.9	6
56	Reduction–rebridging strategy for the preparation of ADPN-based antibody–drug conjugates. MedChemComm, 2018, 9, 827-830.	3.5	24
57	Biophysical Properties and Heating-Induced Aggregation of Lysine-Conjugated Antibody-Drug Conjugates. Journal of Pharmaceutical Sciences, 2018, 107, 1858-1869.	1.6	19
58	A Two-Step Immunocapture LC/MS/MS Assay for Plasma Stability and Payload Migration Assessment of Cysteine–Maleimide-Based Antibody Drug Conjugates. Analytical Chemistry, 2018, 90, 5989-5994.	3.2	18
59	Resistance to Antibody–Drug Conjugates. Cancer Research, 2018, 78, 2159-2165.	0.4	136
60	Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nature Reviews Drug Discovery, 2018, 17, 197-223.	21.5	595
61	Probing Molecular Basis for Constructing Interface Bionanostructures. Topics in Catalysis, 2018, 61, 1125-1138.	1.3	0
62	Design, Synthesis, and Biological Evaluations of Asymmetric Bow-Tie PAMAM Dendrimer-Based Conjugates for Tumor-Targeted Drug Delivery. ACS Omega, 2018, 3, 3717-3736.	1.6	29
63	Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics. Journal of Chromatography A, 2018, 1554, 45-60.	1.8	73
64	HER2-positive breast cancer: Current and new therapeutic strategies. Breast, 2018, 39, 80-88.	0.9	89
65	Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and nonâ€ig scaffolds. Medicinal Research Reviews, 2018, 38, 1837-1873.	5.0	12
66	Influence of disulfide bond isoforms on drug conjugation sites in cysteine-linked IgG2 antibody-drug conjugates. MAbs, 2018, 10, 583-595.	2.6	13
67	Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends in Molecular Medicine, 2018, 24, 257-277.	3.5	453
68	MI130004, a Novel Antibody–Drug Conjugate Combining Trastuzumab with a Molecule of Marine Origin, Shows Outstanding <i>In Vivo</i> Activity against HER2-Expressing Tumors. Molecular Cancer Therapeutics, 2018, 17, 786-794.	1.9	17
69	A DNA-Interacting Payload Designed to Eliminate Cross-Linking Improves the Therapeutic Index of Antibody–Drug Conjugates (ADCs). Molecular Cancer Therapeutics, 2018, 17, 650-660.	1.9	40
70	Antibody–Drug Conjugates for Cancer Treatment. Annual Review of Medicine, 2018, 69, 191-207.	5.0	227
71	Modulation of Macropinocytosis-Mediated Internalization Decreases Ocular Toxicity of Antibody–Drug Conjugates. Cancer Research, 2018, 78, 2115-2126.	0.4	72
72	Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Organic and Biomolecular Chemistry, 2018, 16, 1305-1311.	1.5	30

#	Article	IF	CITATIONS
73	Hepatotoxicity with antibody maytansinoid conjugates: A review of preclinical and clinical findings. Journal of Applied Toxicology, 2018, 38, 600-615.	1.4	19
74	A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Investigational New Drugs, 2018, 36, 836-847.	1.2	63
75	Development of Antibodyâ€Directed Therapies: <i>Quo Vadis</i> ?. Angewandte Chemie - International Edition, 2018, 57, 2032-2034.	7.2	22
76	AbDesigner3D: a structure-guided tool for peptide-based antibody production. Bioinformatics, 2018, 34, 2158-2160.	1.8	3
77	Utilizing panels of patient derived xenografts to aid the development of antibody drug conjugates. Molecular and Cellular Oncology, 2018, 5, e1394422.	0.3	1
78	Synthesis and evaluation of novel dolastatin 10 derivatives for versatile conjugations. Bioorganic and Medicinal Chemistry, 2018, 26, 1643-1652.	1.4	14
79	Challenges of Antibody Drug Conjugates in Cancer Therapy: Current Understanding of Mechanisms and Future Strategies. Current Pharmacology Reports, 2018, 4, 10-26.	1.5	11
80	Intracellular drug delivery: Potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnology Advances, 2018, 36, 613-623.	6.0	34
81	Rapid and Efficient Generation of Stable Antibody–Drug Conjugates via an Encoded Cyclopropene and an Inverseâ€Electronâ€Demand Diels–Alder Reaction. Angewandte Chemie - International Edition, 2018, 57, 2831-2834.	7.2	80
82	Ion mobility in the pharmaceutical industry: an established biophysical technique or still niche?. Current Opinion in Chemical Biology, 2018, 42, 147-159.	2.8	31
83	Hyaluronic Acid-Shelled Disulfide-Cross-Linked Nanopolymersomes for Ultrahigh-Efficiency Reactive Encapsulation and CD44-Targeted Delivery of Mertansine Toxin. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1597-1604.	4.0	45
84	Intracellular Delivery of Native Proteins Facilitated by Cellâ€Penetrating Poly(disulfide)s. Angewandte Chemie, 2018, 130, 1548-1552.	1.6	28
85	Discovery of a 29-Amino-Acid Reactive Abiotic Peptide for Selective Cysteine Arylation. ACS Chemical Biology, 2018, 13, 527-532.	1.6	18
86	An Anti-GDNF Family Receptor Alpha 1 (GFRA1) Antibody–Drug Conjugate for the Treatment of Hormone Receptor–Positive Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 638-649.	1.9	26
87	Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide–Alkyne Cycloaddition. Bioconjugate Chemistry, 2018, 29, 686-701.	1.8	190
88	Intracellular Delivery of Native Proteins Facilitated by Cellâ€Penetrating Poly(disulfide)s. Angewandte Chemie - International Edition, 2018, 57, 1532-1536.	7.2	95
89	Noncovalent Interactions in Succinic and Maleic Anhydride Derivatives. Crystal Growth and Design, 2018, 18, 506-512.	1.4	15
90	An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Analytical Chemistry, 2018, 90, 1578-1586.	3.2	75

#	Article	IF	CITATIONS
91	Macromolecule nanotherapeutics: approaches and challenges. Drug Discovery Today, 2018, 23, 1053-1061.	3.2	32
92	Twoâ€Step Targeted Hybrid Nanoconstructs Increase Brain Penetration and Efficacy of the Therapeutic Antibody Trastuzumab against Brain Metastasis of HER2â€Positive Breast Cancer. Advanced Functional Materials, 2018, 28, 1705668.	7.8	32
93	LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples. Current Pharmacology Reports, 2018, 4, 45-63.	1.5	21
94	Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs, 2018, 10, 222-243.	2.6	79
95	Therapeutic antibodies: A new era in the treatment of respiratory diseases?., 2018, 189, 149-172.		32
96	Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nature Communications, 2018, 9, 1484.	5.8	175
97	Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treatment Reviews, 2018, 67, 10-20.	3.4	107
98	Constructing New Bioorthogonal Reagents and Reactions. Accounts of Chemical Research, 2018, 51, 1073-1081.	7.6	135
99	Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of <i>in Vitro</i> Splicing Inhibition. Journal of Organic Chemistry, 2018, 83, 5187-5198.	1.7	21
100	<scp>ASC</scp> amino acid transporter 2, defined by enzymeâ€mediated activation of radical sources, enhances malignancy of GD2â€positive smallâ€cell lung cancer. Cancer Science, 2018, 109, 141-153.	1.7	33
101	EV20-mediated delivery of cytotoxic auristatin MMAF exhibits potent therapeutic efficacy in cutaneous melanoma. Journal of Controlled Release, 2018, 277, 48-56.	4.8	23
102	An Enantioselective Total Synthesis of (+)-Duocarmycin SA. Journal of Organic Chemistry, 2018, 83, 3928-3940.	1.7	17
103	Antibody–Drug Conjugates for the Treatment of Hematological Malignancies: A Comprehensive Review. Targeted Oncology, 2018, 13, 287-308.	1.7	12
104	Efficacy and safety of the trastuzumab biosimilar candidate CT-P6. Future Oncology, 2018, 14, 1909-1919.	1.1	9
105	Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 493-505.	1.4	54
106	Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncolmmunology, 2018, 7, e1395127.	2.1	117
107	Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Molecular Systems Design and Engineering, 2018, 3, 73-88.	1.7	38
108	Selective and Concentrated Accretion of SN-38 with a CEACAM5-Targeting Antibody–Drug Conjugate (ADC), Labetuzumab Govitecan (IMMU-130). Molecular Cancer Therapeutics, 2018, 17, 196-203.	1.9	24

#	ARTICLE	IF	CITATIONS
109	Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Investigational New Drugs, 2018, 36, 121-135.	1.2	157
110	Current progress in innovative engineered antibodies. Protein and Cell, 2018, 9, 86-120.	4.8	217
111	Oneâ€Pot Selective Functionalization of Nitrogenâ€Containing Heterocycles with <i>N</i> â€tosylhydrazones and Amines. Advanced Synthesis and Catalysis, 2018, 360, 584-594.	2.1	6
112	Assembly of High-Potency Photosensitizer–Antibody Conjugates through Application of Dendron Multiplier Technology. Bioconjugate Chemistry, 2018, 29, 176-181.	1.8	27
113	Protein-Based Therapeutic Killing for Cancer Therapies. Trends in Biotechnology, 2018, 36, 318-335.	4.9	98
114	The target invites a foe: antibody–drug conjugates in gynecologic oncology. Current Opinion in Obstetrics and Gynecology, 2018, 30, 44-50.	0.9	15
116	Native-MS Analysis of Monoclonal Antibody Conjugates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2018, 90, 745-751.	3.2	36
117	Enhancing tumor response to targeted chemotherapy through up-regulation of folate receptor \hat{l}^{\pm} expression induced by dexamethasone and valproic acid. Journal of Controlled Release, 2018, 269, 36-44.	4.8	15
118	CAT-02-106, a Site-Specifically Conjugated Anti-CD22 Antibody Bearing an MDR1-Resistant Maytansine Payload Yields Excellent Efficacy and Safety in Preclinical Models. Molecular Cancer Therapeutics, 2018, 17, 161-168.	1.9	24
119	Scalable thioarylation of unprotected peptides and biomolecules under Ni/photoredox catalysis. Chemical Science, 2018, 9, 336-344.	3.7	123
120	Innovative Strategies: Targeting Subtypes in Metastatic Breast Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 65-77.	1.8	11
121	"From Large-Scale Collections to the Potential Use of Genomic Techniques for Supply of Drug Candidates― Frontiers in Marine Science, 2018, 5, .	1.2	4
122	Tumor stroma–targeted antibody-drug conjugate triggers localized anticancer drug release. Journal of Clinical Investigation, 2018, 128, 2927-2943.	3.9	86
123	A \hat{l}^2 -glucuronidase-responsive albumin-binding prodrug programmed for the double release of monomethyl auristatin E. MedChemComm, 2018, 9, 2068-2071.	3.5	14
124	Reviving old protecting group chemistry for site-selective peptide–protein conjugation. Chemical Communications, 2018, 54, 11929-11932.	2.2	7
125	Compatibility between the cysteine-cyclopentenedione reaction and the copper(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition. Organic and Biomolecular Chemistry, 2018, 16, 9185-9190.	1.5	0
126	Leveraging PET to image folate receptor \hat{l}_{\pm} therapy of an antibody-drug conjugate. EJNMMI Research, 2018, 8, 87.	1.1	12
127	A Comparative Quantitative LC-MS/MS Profiling Analysis of Human Pancreatic Adenocarcinoma, Adjacent-Normal Tissue, and Patient-Derived Tumour Xenografts. Proteomes, 2018, 6, 45.	1.7	21

#	Article	IF	CITATIONS
128	Exploring alternative antibody scaffolds: Antibody fragments and antibody mimics for targeted drug delivery. Drug Discovery Today: Technologies, 2018, 30, 35-46.	4.0	60
129	Biotherapeutics: Challenges and Opportunities for Predictive Toxicology of Monoclonal Antibodies. International Journal of Molecular Sciences, 2018, 19, 3685.	1.8	32
130	Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies. Journal of Hematology and Oncology, 2018, 11, 131.	6.9	33
131	In-Depth Comparison of Lysine-Based Antibody-Drug Conjugates Prepared on Solid Support Versus in Solution. Antibodies, 2018, 7, 6.	1.2	14
132	Novel Antibody Drug Conjugates Targeting Tumor-Associated Receptor Tyrosine Kinase ROR2 by Functional Screening of Fully Human Antibody Libraries Using Transpo-mAb Display on Progenitor B Cells. Frontiers in Immunology, 2018, 9, 2490.	2.2	19
133	In Vivo Antitumor Activity of a Novel Acetazolamide–Cryptophycin Conjugate for the Treatment of Renal Cell Carcinomas. ACS Omega, 2018, 3, 14726-14731.	1.6	23
134	Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Frontiers in Microbiology, 2018, 9, 3158.	1.5	66
135	An accurate TMT-based approach to quantify and model lysine susceptibility to conjugation via N-hydroxysuccinimide esters in a monoclonal antibody. Scientific Reports, 2018, 8, 17680.	1.6	7
136	Bioanalytical workflow for novel scaffold protein–drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin–drug conjugate in plasma and tissue samples using liquid chromatography–tandem mass spectrometry. Bioanalysis, 2018, 10, 1651-1665.	0.6	12
137	Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update. International Journal of Molecular Sciences, 2018, 19, 3924.	1.8	41
138	Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. Drug Discovery Today: Technologies, 2018, 30, 91-104.	4.0	49
139	CLT030, a leukemic stem cell–targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia. Blood Advances, 2018, 2, 1738-1749.	2.5	56
140	Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Frontiers in Pharmacology, 2018, 9, 1300.	1.6	602
141	Antibody Drug Conjugates in the Treatment of Epithelial Ovarian Cancer. Hematology/Oncology Clinics of North America, 2018, 32, 1057-1071.	0.9	5
142	Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E. Molecular Pharmaceutics, 2018, 15, 4854-4861.	2.3	16
143	Recent progress in enzymatic protein labelling techniques and their applications. Chemical Society Reviews, 2018, 47, 9106-9136.	18.7	184
144	The Properties of Cysteine-Conjugated Antibody-Drug Conjugates Are Impacted by the IgG Subclass. AAPS Journal, 2018, 20, 103.	2.2	12
145	Targeted Delivery of Cytotoxic NAMPT Inhibitors Using Antibody–Drug Conjugates. Molecular Cancer Therapeutics, 2018, 17, 2633-2642.	1.9	33

#	Article	IF	CITATIONS
146	MORAb-202, an Antibody–Drug Conjugate Utilizing Humanized Anti-human FRα Farletuzumab and the Microtubule-targeting Agent Eribulin, has Potent Antitumor Activity. Molecular Cancer Therapeutics, 2018, 17, 2665-2675.	1.9	54
147	Development of Highly Chemoselective Oxidative Transformations by Designing Organoradicals. Chemical and Pharmaceutical Bulletin, 2018, 66, 907-919.	0.6	1
148	Syntheses of Cyclopropyl Analogues of Disorazoles A $<$ sub $>$ 1 $<$ /sub $>$ and B $<$ sub $>$ 1 $<$ /sub $>$ and Their Thiazole Counterparts. Journal of Organic Chemistry, 2018, 83, 12374-12389.	1.7	13
149	Genetic Encoding of a Non-Canonical Amino Acid for the Generation of Antibody-Drug Conjugates Through a Fast Bioorthogonal Reaction. Journal of Visualized Experiments, 2018, , .	0.2	5
150	Sortaggable liposomes: Evaluation of reaction conditions for single-domain antibody conjugation by Sortase-A and targeting of CD11b+ myeloid cells. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 138-150.	2.0	18
151	Site-Specific Labeling of Cyanine and Porphyrin Dye-Stabilized Nanoemulsions with Affibodies for Cellular Targeting. Journal of the American Chemical Society, 2018, 140, 13550-13553.	6.6	14
152	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	3.9	63
153	Monitoring of antibody-drug conjugation reactions with UV/Vis spectroscopy. Journal of Biotechnology, 2018, 288, 15-22.	1.9	11
154	Visualization and Quantification of Sortase Activity at the Single-Molecule Level via Transpeptidation-Directed Intramolecular Förster Resonance Energy Transfer. Analytical Chemistry, 2018, 90, 13007-13012.	3.2	12
155	Rational affinity enhancement of fragmented antibody by ligand-based affinity improvement approach. Biochemical and Biophysical Research Communications, 2018, 506, 653-659.	1.0	10
156	Improving Immunotherapy Through Glycodesign. Frontiers in Immunology, 2018, 9, 2485.	2.2	49
157	Enantioselective Synthesis of a Cyclopropane Derivative of Spliceostatin A and Evaluation of Bioactivity. Organic Letters, 2018, 20, 7293-7297.	2.4	15
158	Target Identification Using Chemical Probes. Methods in Enzymology, 2018, 610, 27-58.	0.4	9
159	Site-Specific Conjugation of Auristatins onto Engineered scFv Using Second Generation Maleimide to Target HER2-positive Breast Cancer <i>in Vitro</i> i>. Bioconjugate Chemistry, 2018, 29, 3516-3521.	1.8	20
160	Bispecifics and antibody–drug conjugates: A positive synergy. Drug Discovery Today: Technologies, 2018, 30, 55-61.	4.0	29
161	Single-Site Labeling of Native Proteins Enabled by a Chemoselective and Site-Selective Chemical Technology. Journal of the American Chemical Society, 2018, 140, 15114-15123.	6.6	104
162	Miniaturised â€~antibody'-drug conjugates for solid tumours?. Drug Discovery Today: Technologies, 2018, 30, 47-53.	4.0	19
163	Proximity-Induced Site-Specific Antibody Conjugation. Bioconjugate Chemistry, 2018, 29, 3522-3526.	1.8	49

#	Article	IF	CITATIONS
164	A Novel Online Four-Dimensional SEC×SEC-IM×MS Methodology for Characterization of Monoclonal Antibody Size Variants. Analytical Chemistry, 2018, 90, 13929-13937.	3.2	49
165	Application of Immuno-PET in Antibody–Drug Conjugate Development. Molecular Imaging, 2018, 17, 153601211880122.	0.7	41
166	Exploring the Orthogonal Chemoselectivity of 2,4,6-Trichloro-1,3,5-Triazine (TCT) as a Trifunctional Linker With Different Nucleophiles: Rules of the Game. Frontiers in Chemistry, 2018, 6, 516.	1.8	30
167	Enzymatic strategies for (near) clinical development of antibody-drug conjugates. Drug Discovery Today: Technologies, 2018, 30, 3-10.	4.0	27
168	Evidence of disulfide bond scrambling during production of an antibody-drug conjugate. MAbs, 2018, 10, 1190-1199.	2.6	13
169	Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II. Nature Communications, 2018, 9, 4394.	5.8	27
170	A \hat{l}^2 -glucuronidase-responsive albumin-binding prodrug for potential selective kinase inhibitor-based cancer chemotherapy. European Journal of Medicinal Chemistry, 2018, 158, 1-6.	2.6	21
171	Antikörperâ€Wirkstoffâ€Konjugate mit Pyrrolâ€basierten KSPâ€Inhibitoren als Payloadâ€Klasse. Angewandte Chemie, 2018, 130, 15463-15467.	1.6	2
172	Preclinical pharmacokinetics and pharmacodynamics of DCLL9718A: An antibody-drug conjugate for the treatment of acute myeloid leukemia. MAbs, 2018, 10, 1312-1321.	2.6	13
173	Binding Performance of Human Intravenous Immunoglobulin and 20(S)-7-Ethylcamptothecin. Molecules, 2018, 23, 2389.	1.7	0
174	DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antibody Therapeutics, 2018, 1, 43-53.	1.2	28
175	Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance. Drug Metabolism and Disposition, 2018, 46, 1900-1907.	1.7	12
176	Clinical translation of immunoliposomes for cancer therapy: recent perspectives. Expert Opinion on Drug Delivery, 2018, 15, 893-903.	2.4	44
177	Streamlined Total Synthesis of Shishijimicin A and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues thereof and Practical Syntheses of PhthNSSMe and Related Sulfenylating Reagents. Journal of the American Chemical Society, 2018, 140, 12120-12136.	6.6	36
178	Antibody–Drug Conjugates with Pyrroleâ€Based KSP Inhibitors as the Payload Class. Angewandte Chemie - International Edition, 2018, 57, 15243-15247.	7.2	28
179	Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Frontiers in Immunology, 2018, 9, 1821.	2.2	205
180	A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Advances, 2018, 2, 848-858.	2.5	125
181	Enhanced anticancer effect of MAP30–S3 by cyclosproin A through endosomal escape. Anti-Cancer Drugs, 2018, 29, 736-747.	0.7	6

#	Article	IF	CITATIONS
182	Through the barricades: overcoming the barriers to effective antibody-based cancer therapeutics. Glycobiology, 2018, 28, 697-712.	1.3	8
183	Characterization of recombinant monoclonal IgG2 antibodies using LC-MS and limited Lys-C digestion. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1092, 15-18.	1,2	6
184	An anti-EGFR × cotinine bispecific antibody complexed with cotinine-conjugated duocarmycin inhibits growth of EGFR-positive cancer cells with KRAS mutations. Experimental and Molecular Medicine, 2018, 50, 1-14.	3.2	12
185	Advancements in Nanomedicine for Multiple Myeloma. Trends in Molecular Medicine, 2018, 24, 560-574.	3.5	23
186	Rapid and reversible hydrazone bioconjugation in cells without the use of extraneous catalysts. Organic and Biomolecular Chemistry, 2018, 16, 4304-4310.	1.5	9
187	Multiâ€ʻlayered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/βâ€ʻcatenin signaling activation (Review). International Journal of Molecular Medicine, 2018, 42, 713-725.	1.8	125
188	Site-Specific Antibody-Drug Conjugates. Cancer Drug Discovery and Development, 2018, , 241-265.	0.2	2
189	Bispecific and Biparatopic Antibody Drug Conjugates. Cancer Drug Discovery and Development, 2018, , 267-280.	0.2	4
190	Targeting Drug Conjugates to the Tumor Microenvironment: Probody Drug Conjugates. Cancer Drug Discovery and Development, 2018, , 281-298.	0.2	8
191	Combining ADCs with Immuno-Oncology Agents. Cancer Drug Discovery and Development, 2018, , 11-44.	0.2	5
192	Improving the Safety Profile of ADCs. Cancer Drug Discovery and Development, 2018, , 45-71.	0.2	1
193	Outlook on Next Generation Technologies and Strategy Considerations for ADC Process Development and Manufacturing. Cancer Drug Discovery and Development, 2018, , 113-161.	0.2	3
194	HER2-Targeted ADCs: At the Forefront of ADC Technology Development. Cancer Drug Discovery and Development, 2018, , 163-185.	0.2	2
195	Phase I Trials of Anti-ENPP3 Antibody–Drug Conjugates in Advanced Refractory Renal Cell Carcinomas. Clinical Cancer Research, 2018, 24, 4399-4406.	3.2	44
196	Metabolism of an Oxime-Linked Antibody Drug Conjugate, AGS62P1, and Characterization of Its Identified Metabolite. Molecular Pharmaceutics, 2018, 15, 2384-2390.	2.3	27
197	Tuned Density of Anti-Tissue Factor Antibody Fragment onto siRNA-Loaded Polyion Complex Micelles for Optimizing Targetability into Pancreatic Cancer Cells. Biomacromolecules, 2018, 19, 2320-2329.	2.6	34
198	A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nature Biomedical Engineering, 2018, 2, 589-599.	11.6	157
199	Immobilization of Photoâ€Immunoconjugates on Nanoparticles Leads to Enhanced Lightâ€Activated Biological Effects. Small, 2018, 14, e1800236.	5.2	43

#	Article	IF	CITATIONS
200	Antibody drug conjugates (ADCs) charged with HDAC inhibitor for targeted epigenetic modulation. Chemical Science, 2018, 9, 6490-6496.	3.7	20
201	Current Trends in the Clinical Development of Antibody-Drug Conjugates in Oncology. Pharmaceutical Medicine, 2018, 32, 259-273.	1.0	6
202	Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for highly efficient cancer nanotherapy. New Journal of Chemistry, 2018, 42, 13157-13168.	1.4	22
203	Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nature Communications, 2018, 9, 2512.	5.8	119
204	Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies. Analytical Chemistry, 2018, 90, 8865-8872.	3.2	51
205	Characterization ofin vivobiotransformations for trastuzumab emtansine by high-resolution accurate-mass mass spectrometry. MAbs, 2018, 10, 1-8.	2.6	15
206	Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1092, 368-378.	1.2	48
207	Tuning the Diels–Alder Reaction for Bioconjugation to Maleimide Drug-Linkers. Bioconjugate Chemistry, 2018, 29, 2406-2414.	1.8	51
208	Activating Autophagy Enhanced the Antitumor Effect of Antibody Drug Conjugates Rituximab-Monomethyl Auristatin E. Frontiers in Immunology, 2018, 9, 1799.	2.2	12
209	Antitumor Activity of MEDI3726 (ADCT-401), a Pyrrolobenzodiazepine Antibody–Drug Conjugate Targeting PSMA, in Preclinical Models of Prostate Cancer. Molecular Cancer Therapeutics, 2018, 17, 2176-2186.	1.9	33
210	The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. Journal of Controlled Release, 2018, 286, 154-166.	4.8	19
211	Scale-up Synthesis of Tesirine. Organic Process Research and Development, 2018, 22, 1241-1256.	1.3	17
212	Harnessing the power of an expanded genetic code toward next-generation biopharmaceuticals. Current Opinion in Chemical Biology, 2018, 46, 123-129.	2.8	21
213	Achieving Controlled Biomolecule–Biomaterial Conjugation. Chemical Reviews, 2018, 118, 7702-7743.	23.0	165
214	Exploration of Pyrrolobenzodiazepine (PBD)-Dimers Containing Disulfide-Based Prodrugs as Payloads for Antibody–Drug Conjugates. Molecular Pharmaceutics, 2018, 15, 3979-3996.	2.3	16
215	FGF2 Dual Warhead Conjugate with Monomethyl Auristatin E and \hat{l} ±-Amanitin Displays a Cytotoxic Effect towards Cancer Cells Overproducing FGF Receptor 1. International Journal of Molecular Sciences, 2018, 19, 2098.	1.8	22
216	Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 1-10.	1.2	25
217	Current Strategies and Applications for Precision Drug Design. Frontiers in Pharmacology, 2018, 9, 787.	1.6	32

#	Article	IF	CITATIONS
218	Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Frontiers in Immunology, 2017, 8, 1751.	2.2	109
219	Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Frontiers in Immunology, 2017, 8, 1936.	2.2	39
220	How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Frontiers in Immunology, 2018, 9, 262.	2.2	91
221	Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Frontiers in Immunology, 2018, 9, 1412.	2.2	40
222	Factors Affecting the Pharmacology of Antibody–Drug Conjugates. Antibodies, 2018, 7, 10.	1.2	75
223	A Polar Sulfamide Spacer Significantly Enhances the Manufacturability, Stability, and Therapeutic Index of Antibody–Drug Conjugates. Antibodies, 2018, 7, 12.	1.2	22
224	Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours?. Antibodies, 2018, 7, 16.	1.2	64
225	Immunoconjugates for Osteosarcoma Therapy: Preclinical Experiences and Future Perspectives. Biomedicines, 2018, 6, 19.	1.4	15
226	Molecular Consortiaâ€"Various Structural and Synthetic Concepts for More Effective Therapeutics Synthesis. International Journal of Molecular Sciences, 2018, 19, 1104.	1.8	52
227	Microneedle-Mediated Transdermal Delivery of Bevacizumab. Molecular Pharmaceutics, 2018, 15, 3545-3556.	2.3	79
228	The Pharmaceutical Industry in 2017. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2018, 23, 533.	1.7	94
229	Current Mass Spectrometric Tools for the Bioanalyses of Therapeutic Monoclonal Antibodies and Antibody-Drug Conjugates. Analytical Sciences, 2018, 34, 397-406.	0.8	25
230	Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates. Journal of Biotechnology, 2018, 278, 48-55.	1.9	7
231	Unraveling the Interaction between Carboxylesterase 1c and the Antibody–Drug Conjugate SYD985: Improved Translational PK/PD by Using Ces1c Knockout Mice. Molecular Cancer Therapeutics, 2018, 17, 2389-2398.	1.9	29
232	Boronic Acids as Bioorthogonal Probes for Siteâ€Selective Labeling of Proteins. Angewandte Chemie - International Edition, 2018, 57, 13028-13044.	7.2	85
233	SNAP-Tagged Nanobodies Enable Reversible Optical Control of a G Protein-Coupled Receptor <i>via</i> a Remotely Tethered Photoswitchable Ligand. ACS Chemical Biology, 2018, 13, 2682-2688.	1.6	41
234	Boronsären als bioorthogonale Sonden für zentrenselektives Protein‣abeling. Angewandte Chemie, 2018, 130, 13210-13228.	1.6	15
235	XCMS-MRM and METLIN-MRM: a cloud library and public resource for targeted analysis of small molecules. Nature Methods, 2018, 15, 681-684.	9.0	112

#	Article	IF	CITATIONS
236	Antibody-drug conjugates (ADCs): Potent biopharmaceuticals to target solid and hematological cancers- an overview. Journal of Drug Delivery Science and Technology, 2018, 48, 106-117.	1.4	16
237	Improved Methodology for the Synthesis of a Cathepsin B Cleavable Dipeptide Linker, Widely Used in Antibody-Drug Conjugate Research. Tetrahedron Letters, 2018, 59, 3594-3599.	0.7	13
238	Small-Molecule Probes for Affinity-Guided Introduction of Biocompatible Handles on Metal-Binding Proteins. Bioconjugate Chemistry, 2018, 29, 3016-3025.	1.8	16
239	Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody–Drug Conjugates. BioDrugs, 2018, 32, 465-480.	2.2	40
240	Treating Tissue Factor–Positive Cancers with Antibody–Drug Conjugates That Do Not Affect Blood Clotting. Molecular Cancer Therapeutics, 2018, 17, 2412-2426.	1.9	33
241	Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. Molecular Therapy - Nucleic Acids, 2018, 11, 518-527.	2.3	48
242	LC–HRMS quantitation of intact antibody drug conjugate trastuzumab emtansine from rat plasma. Bioanalysis, 2018, 10, 851-862.	0.6	32
243	Polysulfurating reagent design for unsymmetrical polysulfide construction. Nature Communications, 2018, 9, 2191.	5.8	128
244	Glucuronide-Linked Antibody–Tubulysin Conjugates Display Activity in MDR+ and Heterogeneous Tumor Models. Molecular Cancer Therapeutics, 2018, 17, 1752-1760.	1.9	17
245	Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs. Nucleic Acid Therapeutics, 2018, 28, 178-193.	2.0	78
246	Biâ€Enzymatic Embolization Beads for Twoâ€Armed Enzymeâ€Prodrug Therapy. Advanced Therapeutics, 2018, 1, 1800023.	1.6	11
247	Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation. Methods, 2019, 154, 93-101.	1.9	17
248	Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry - A European Journal, 2019, 25, 43-59.	1.7	319
249	Sacituzumab govitecan: breakthrough targeted therapy for triple-negative breast cancer. Expert Review of Anticancer Therapy, 2019, 19, 673-679.	1.1	37
250	Convergent synthesis of hydrophilic monomethyl dolastatin 10 based drug linkers for antibody–drug conjugation. Organic and Biomolecular Chemistry, 2019, 17, 8115-8124.	1.5	16
251	A Reactive Antibody Platform for One-Step Production of Antibody–Drug Conjugates through a Diels–Alder Reaction with Maleimide. Bioconjugate Chemistry, 2019, 30, 2340-2348.	1.8	18
252	Substrate Design Enables Heterobifunctional, Dual "Click―Antibody Modification via Microbial Transglutaminase. Bioconjugate Chemistry, 2019, 30, 2452-2457.	1.8	23
253	Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, 14740-14757.	1.7	68

#	ARTICLE	IF	CITATIONS
254	Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibody–DM1 Drug Conjugates. Cancers, 2019, 11, 1168.	1.7	12
255	Folate Receptor α-Targeted 89Zr-M9346A Immuno-PET for Image-Guided Intervention with Mirvetuximab Soravtansine in Triple-Negative Breast Cancer. Molecular Pharmaceutics, 2019, 16, 3996-4006.	2.3	12
256	Antibody–Drug Conjugate that Exhibits Synergistic Cytotoxicity with an Endosome–Disruptive Peptide. ACS Omega, 2019, 4, 12955-12968.	1.6	9
257	Intact Mass Spectrometry Analysis of Immuno-Isolated Human Therapeutic Antibodies from Serum. Methods in Molecular Biology, 2019, 2024, 153-166.	0.4	1
258	Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opinion on Therapeutic Patents, 2019, 29, 623-641.	2.4	73
259	Chemoenzymatic glycan labelling as a platform for site-specific IgM-antibody drug conjugates. Analytical Biochemistry, 2019, 584, 113385.	1.1	5
260	A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2419-2429.	1.2	23
261	An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regulatory Toxicology and Pharmacology, 2019, 107, 104429.	1.3	52
262	Design, synthesis and evaluation of novel, potent DNA alkylating agents and their antibody-drug conjugates (ADCs). Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2455-2458.	1.0	3
263	Effect of Linker Stereochemistry on the Activity of Indolinobenzodiazepine Containing Antibody–Drug Conjugates (ADCs). ACS Medicinal Chemistry Letters, 2019, 10, 1193-1197.	1.3	8
264	Cleavable linkers in antibody–drug conjugates. Chemical Society Reviews, 2019, 48, 4361-4374.	18.7	316
265	Highly Efficient Mono-Functionalization of Knob-in-Hole Antibodies with Strain-Promoted Click Chemistry. ACS Omega, 2019, 4, 11801-11807.	1.6	14
266	Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomaterials Science, 2019, 7, 4000-4016.	2.6	44
267	Intracellular targets as source for cleaner targets for the treatment of solid tumors. Biochemical Pharmacology, 2019, 168, 275-284.	2.0	8
268	Novel Silyl Ether-Based Acid-Cleavable Antibody-MMAE Conjugates with Appropriate Stability and Efficacy. Cancers, 2019, 11, 957.	1.7	25
269	Conjugates of Cryptophycin and RGD or <i>iso</i> DGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen, 2019, 8, 737-742.	0.9	17
270	Site-specifically labeled ⁸⁹ Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model. Theranostics, 2019, 9, 4409-4420.	4.6	41
271	Synthesis of Highly Potent N-10 Amino-Linked DNA-Alkylating Indolinobenzodiazepine Antibody–Drug Conjugates (ADCs). ACS Medicinal Chemistry Letters, 2019, 10, 1211-1215.	1.3	8

#	Article	IF	CITATIONS
272	A novel anti-DR5 antibody-drug conjugate possesses a high-potential therapeutic efficacy for leukemia and solid tumors. Theranostics, 2019, 9, 5412-5423.	4.6	23
273	Ethynylphosphonamidates for the Rapid and Cysteineâ€Selective Generation of Efficacious Antibody–Drug Conjugates. Angewandte Chemie, 2019, 131, 11757-11762.	1.6	10
274	Antibody–Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjugate Chemistry, 2019, 30, 2483-2501.	1.8	83
275	First platinum(II)-based metal-organic linker technology ($Lx\hat{A}^{\otimes}$) for a plug-and-play development of antibody-drug conjugates (ADCs). Expert Opinion on Drug Delivery, 2019, 16, 783-793.	2.4	14
276	Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metabolism, 2019, 30, 689-705.e6.	7.2	66
277	Ethynylphosphonamidates for the Rapid and Cysteineâ€Selective Generation of Efficacious Antibody–Drug Conjugates. Angewandte Chemie - International Edition, 2019, 58, 11631-11636.	7.2	40
278	Designing Poly-agonists for Treatment of Metabolic Diseases: Challenges and Opportunities. Drugs, 2019, 79, 1187-1197.	4.9	15
279	Polyacetate and Polycarbonate RNA: Acylating Reagents and Properties. Organic Letters, 2019, 21, 5413-5416.	2.4	15
280	"Doubly Orthogonal―Labeling of Peptides and Proteins. CheM, 2019, 5, 2243-2263.	5.8	83
281	Evaluation and use of an antiâ€eynomolgus monkey CD79b surrogate antibody–drug conjugate to enable clinical development of polatuzumab vedotin. British Journal of Pharmacology, 2019, 176, 3805-3818.	2.7	18
282	Site-Selective Antibody Functionalization via Orthogonally Reactive Arginine and Lysine Residues. Cell Chemical Biology, 2019, 26, 1229-1239.e9.	2.5	25
283	Identification and Validation of a Novel Biologics Target in Triple Negative Breast Cancer. Scientific Reports, 2019, 9, 14934.	1.6	19
284	Exposure-Efficacy Analysis of Antibody-Drug Conjugates Delivering an Excessive Level of Payload to Tissues. Drug Metabolism and Disposition, 2019, 47, 1146-1155.	1.7	20
285	Responsive Antibody Conjugates Enable Quantitative Determination of Intracellular Bond Degradation Rate. Cell Chemical Biology, 2019, 26, 1643-1651.e4.	2.5	14
286	One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology. Nature Protocols, 2019, 14, 3101-3125.	5.5	19
287	Transferrinâ€Coated Nanodiamond–Drug Conjugates for Milliwatt Photothermal Applications. Advanced Therapeutics, 2019, 2, 1900067.	1.6	12
288	Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging. Advanced Therapeutics, 2019, 2, 1900093.	1.6	14
289	Antibody-Drug Conjugates Targeting the Urokinase Receptor (uPAR) as a Possible Treatment of Aggressive Breast Cancer. Antibodies, 2019, 8, 54.	1.2	16

#	Article	IF	CITATIONS
290	Site-Specific Lysine Arylation as an Alternative Bioconjugation Strategy for Chemically Programmed Antibodies and Antibody–Drug Conjugates. Bioconjugate Chemistry, 2019, 30, 2889-2896.	1.8	26
291	Hydrophilic Sequence-Defined Cross-Linkers for Antibody–Drug Conjugates. Bioconjugate Chemistry, 2019, 30, 2982-2988.	1.8	15
292	Affinity-bound antibody–drug conjugates. Nature Biomedical Engineering, 2019, 3, 850-851.	11.6	3
293	Computationally designed antibody–drug conjugates self-assembled via affinity ligands. Nature Biomedical Engineering, 2019, 3, 917-929.	11.6	19
294	Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antibody Therapeutics, 2019, 2, 71-78.	1.2	35
295	Structure and Dynamics of a Site-Specific Labeled Fc Fragment with Altered Effector Functions. Pharmaceutics, 2019, 11, 546.	2.0	8
296	Target engagement and intracellular delivery of mono- and bivalent LDL receptor-binding peptide-cargo conjugates: Implications for the rational design of new targeted drug therapies. Journal of Controlled Release, 2019, 314, 141-161.	4.8	6
297	Distinctive Low-Resolution Structural Features of Dimers of Antibody–Drug Conjugates and Parent Antibody Determined by Small-Angle X-ray Scattering. Molecular Pharmaceutics, 2019, 16, 4902-4912.	2.3	0
298	Copper-Triggered Bioorthogonal Cleavage Reactions for Reversible Protein and Cell Surface Modifications. Journal of the American Chemical Society, 2019, 141, 17133-17141.	6.6	66
300	An Isomerization Approach to Tesirine and Pyrrolobenzodiazepines. Organic Process Research and Development, 2019, 23, 2543-2548.	1.3	10
301	Site-Selective Protein Immobilization on Polymeric Supports through N-Terminal Imidazolidinone Formation. Biomacromolecules, 2019, 20, 3933-3939.	2.6	17
302	Ethynylbenziodoxolone Reactivity in Cysteine Bioconjugation. CheM, 2019, 5, 1932-1934.	5.8	3
303	Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Analytical Chemistry, 2019, 91, 11661-11669.	3.2	22
304	CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity. Nature Chemical Biology, 2019, 15, 949-958.	3.9	56
305	Preclinical Efficacy and Safety Comparison of CD3 Bispecific and ADC Modalities Targeting BCMA for the Treatment of Multiple Myeloma. Molecular Cancer Therapeutics, 2019, 18, 2008-2020.	1.9	25
306	Yangpumicins F and G, Enediyne Congeners from <i>Micromonospora yangpuensis</i> DSM 45577. Journal of Natural Products, 2019, 82, 2483-2488.	1.5	23
307	Synthetic Methodology-driven Chemical Protein Modifications. Chemistry Letters, 2019, 48, 1421-1432.	0.7	13
308	A Novel HER3-Targeting Antibody–Drug Conjugate, U3-1402, Exhibits Potent Therapeutic Efficacy through the Delivery of Cytotoxic Payload by Efficient Internalization. Clinical Cancer Research, 2019, 25, 7151-7161.	3.2	88

#	Article	IF	CITATIONS
309	Antibody–drug conjugates for cancer. Lancet, The, 2019, 394, 793-804.	6.3	425
310	Comparison of Analytical Methods for Antibody–Drug Conjugates Produced by Chemical Site-Specific Conjugation: First-Generation AJICAP. Analytical Chemistry, 2019, 91, 12724-12732.	3.2	27
311	First-in-Human Phase I Study of Aprutumab Ixadotin, a Fibroblast Growth Factor Receptor 2 Antibody–Drug Conjugate (BAY 1187982) in Patients with Advanced Cancer. Targeted Oncology, 2019, 14, 591-601.	1.7	43
312	HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor. Biomacromolecules, 2019, 20, 3855-3863.	2.6	13
313	Novel HER2-Targeting Antibody-Drug Conjugates of Trastuzumab Beyond T-DM1 in Breast Cancer: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)Trastuzumab Duocarmazine (SYD985). European Journal of Medicinal Chemistry, 2019, 183, 111682.	2.6	102
314	Synergistic Cytotoxicity of Renieramycin M and Doxorubicin in MCF-7 Breast Cancer Cells. Marine Drugs, 2019, 17, 536.	2.2	29
315	TCR-like antibodies in cancer immunotherapy. Journal of Hematology and Oncology, 2019, 12, 99.	6.9	39
316	GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses. Cell Reports, 2019, 28, 3367-3380.e8.	2.9	37
317	Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Molecular Pharmacology, 2019, 96, 753-764.	1.0	31
318	Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials, 2019, 224, 119494.	5.7	48
319	Dual Site-Specific Labeling of an Antibody Fragment through Sortase A and π-Clamp Conjugation. Bioconjugate Chemistry, 2019, 30, 2539-2543.	1.8	17
320	Hypoxia-Activated PEGylated Conditional Aptamer/Antibody for Cancer Imaging with Improved Specificity. Journal of the American Chemical Society, 2019, 141, 18421-18427.	6.6	85
321	DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horizons, 2019, 4, 378-387.	4.1	74
322	A general approach for the site-selective modification of native proteins, enabling the generation of stable and functional antibody–drug conjugates. Chemical Science, 2019, 10, 694-700.	3.7	85
323	Native Reversed-Phase Liquid Chromatography: A Technique for LCMS of Intact Antibody–Drug Conjugates. Analytical Chemistry, 2019, 91, 2805-2812.	3.2	31
324	Targeting the niche: depleting haemopoietic stem cells with targeted therapy. Bone Marrow Transplantation, 2019, 54, 961-968.	1.3	9
325	Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2545-2550.	3.3	96
326	Dissociative Bioorthogonal Reactions. ChemBioChem, 2019, 20, 1615-1627.	1.3	61

#	Article	IF	CITATIONS
327	Development of a dual-functional conjugate of antigenic peptide and Fc-III mimetics (DCAF) for targeted antibody blocking. Chemical Science, 2019, 10, 3271-3280.	3.7	12
328	Bone Marrow Mast Cell Antibody-Targetable Cell Surface Protein Expression Profiles in Systemic Mastocytosis. International Journal of Molecular Sciences, 2019, 20, 552.	1.8	9
329	Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Review of Proteomics, 2019, 16, 337-362.	1.3	47
331	Site-selective protein conjugation at histidine. Chemical Science, 2019, 10, 427-439.	3.7	42
332	A single dose of antibody-drug conjugate cures a stage $1\mathrm{model}$ of African trypanosomiasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007373.	1.3	11
333	Timeâ€toâ€Event Modeling of Peripheral Neuropathy: Platform Analysis of Eight Valineâ€Citrullineâ€Monomethylauristatin E Antibody–Drug Conjugates. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 606-615.	1.3	7
334	Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. MAbs, 2019, 11, 1276-1288.	2.6	60
335	lmmunogenicity of antibody–drug conjugates: observations across 8 molecules in 11 clinical trials. Bioanalysis, 2019, 11, 1555-1568.	0.6	25
336	Aryl Sulfate is a Useful Motif for Conjugating and Releasing Phenolic Molecules: Sulfur Fluorine Exchange Click Chemistry Enables Discovery of Ortho-Hydroxy-Protected Aryl Sulfate Linker. Bioconjugate Chemistry, 2019, 30, 1957-1968.	1.8	18
337	Treatment in real-life patients with HER2-positive metastatic breast cancer: What we learn from the KAMILLA trial?. European Journal of Cancer, 2019, 117, 1-4.	1.3	2
338	Investigational drugs in early stage clinical trials for the treatment of HER2+ breast cancer. Expert Opinion on Investigational Drugs, 2019, 28, 617-627.	1.9	6
339	Encapsulating maytansinoid in pH-sensitive nanocarriers: The importance of using extremely potent cytotoxic agents and fast release for nanomedicine to achieve tumor elimination. Nano Research, 2019, 12, 1959-1966.	5.8	4
340	Characterization of Positional Isomers of Interchain Cysteine Linked Antibodyâ^'Drug Conjugates by High-Resolution Mass Spectrometry. Analytical Chemistry, 2019, 91, 8558-8563.	3.2	2
341	Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Marine Drugs, 2019, 17, 329.	2.2	64
342	New drugs for old targets. Hematological Oncology, 2019, 37, 101-104.	0.8	2
343	Site-Specific Antibody–Drug Conjugation Using Microbial Transglutaminase. Methods in Molecular Biology, 2019, 2012, 135-149.	0.4	9
344	A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics, 2019, 9, 2662-2677.	4.6	13
345	Study on the Heterogeneity of T-DM1 and the Analysis of the Unconjugated Linker Structure under a Stable Conjugation Process. ACS Omega, 2019, 4, 8834-8845.	1.6	10

#	Article	IF	CITATIONS
346	Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. International Journal of Biological Macromolecules, 2019, 135, 907-918.	3.6	62
347	A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge-Multiplexed Collision-Induced Unfolding. Analytical Chemistry, 2019, 91, 8137-8146.	3.2	31
348	Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Letters, 2019, 459, 192-203.	3.2	23
349	Simultaneous quantification of total antibody and antibody-conjugated drug for XMT-1522 in human plasma using immunocapture-liquid chromatography/mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 441-449.	1.4	9
350	Targeting CLDN18.2 by CD3 Bispecific and ADC Modalities for the Treatments of Gastric and Pancreatic Cancer. Scientific Reports, 2019, 9, 8420.	1.6	41
351	Empowering Synthesis of Complex Natural Products. Chemistry - A European Journal, 2019, 25, 13248-13270.	1.7	15
352	Site-specific antibody-drug conjugate heterogeneity characterization and heterogeneity root cause analysis. MAbs, 2019, 11, 1064-1076.	2.6	28
353	Targeting of DDR1 with antibodyâ€drug conjugates has antitumor effects in a mouse model of colon carcinoma. Molecular Oncology, 2019, 13, 1855-1873.	2.1	24
355	Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules, 2019, 24, 1855.	1.7	68
356	Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: an open-label, non-randomised, phase 1b–2 study. Lancet Oncology, The, 2019, 20, 998-1010.	5.1	101
357	Dual Site-Specific Antibody Conjugates for Sequential and Orthogonal Cargo Release. Bioconjugate Chemistry, 2019, 30, 1702-1710.	1.8	29
358	The Analysis of Key Factors Related to ADCs Structural Design. Frontiers in Pharmacology, 2019, 10, 373.	1.6	45
359	Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. Journal of Medicinal Chemistry, 2019, 62, 8881-8914.	2.9	164
360	Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1122-1123, 1-17.	1.2	50
361	The Role of Organic Synthesis in the Emergence and Development of Antibody–Drug Conjugates as Targeted Cancer Therapies. Angewandte Chemie - International Edition, 2019, 58, 11206-11241.	7.2	75
362	The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates. Chemical Science, 2019, 10, 5197-5210.	3.7	10
363	Die Bedeutung der organischen Synthese bei der Entstehung und Entwicklung von Antikörperâ€Wirkstoffâ€Konjugaten als gezielte Krebstherapien. Angewandte Chemie, 2019, 131, 11326-11363	3. ^{1.6}	11
364	\hat{l}^2 -Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Organic and Biomolecular Chemistry, 2019, 17, 4705-4710.	1.5	14

#	Article	IF	CITATIONS
365	Prodrugs for targeted cancer therapy. Expert Review of Anticancer Therapy, 2019, 19, 483-502.	1.1	44
367	<p>Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy</p> . Biologics: Targets and Therapy, 2019, Volume 13, 33-51.	3.0	115
368	Applications of the immunoglobulin Cw fragment (IgCw) composed of the constant regions of heavy and light (CH and CL) chains. Biochemical and Biophysical Research Communications, 2019, 512, 571-576.	1.0	1
369	Photo-controlled delivery of a potent analogue of doxorubicin. Chemical Communications, 2019, 55, 5607-5610.	2.2	9
370	Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates., 2019, 200, 110-125.		98
371	Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Molecules, 2019, 24, 1629.	1.7	71
372	Visibleâ€Lightâ€Mediated Synthesis of βâ€Chloro Ketones from Aryl Cyclopropanes. Angewandte Chemie - International Edition, 2019, 58, 8577-8580.	7.2	52
373	Pulling together to improve stability. Nature Chemistry, 2019, 11, 295-296.	6.6	1
374	Acquired Resistance to Antibody-Drug Conjugates. Cancers, 2019, 11, 394.	1.7	89
375	Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites. Journal of the American Chemical Society, 2019, 141, 6204-6212.	6.6	77
376	Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Review of Clinical Pharmacology, 2019, 12, 453-470.	1.3	28
377	Cancer Treatment in the Genomic Era. Annual Review of Biochemistry, 2019, 88, 247-280.	5.0	24
378	Conjugation of Emtansine Onto Trastuzumab Promotes Aggregation of the Antibody–Drug Conjugate by Reducing Repulsive Electrostatic Interactions and Increasing Hydrophobic Interactions. Journal of Pharmaceutical Sciences, 2019, 108, 1973-1983.	1.6	13
379	Enzymatic and Site-Specific Ligation of Minimal-Size Tetrazines and Triazines to Proteins for Bioconjugation and Live-Cell Imaging. Bioconjugate Chemistry, 2019, 30, 1405-1414.	1.8	38
380	Vesicular Antibodies: A Bioactive Multifunctional Combination Platform for Targeted Therapeutic Delivery and Cancer Immunotherapy. Advanced Materials, 2019, 31, e1808294.	11.1	63
381	Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 178, 199-207.	2.5	64
382	The current state and future directions of RNAi-based therapeutics. Nature Reviews Drug Discovery, 2019, 18, 421-446.	21.5	896
383	HER2 Directed Antibody-Drug-Conjugates beyond T-DM1 in Breast Cancer. International Journal of Molecular Sciences, 2019, 20, 1115.	1.8	144

#	Article	IF	CITATIONS
384	Europium labeled lactosylated albumin as a model workflow for the development of biotherapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 21-30.	1.7	2
385	Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. Journal of Physical Chemistry B, 2019, 123, 2636-2644.	1.2	19
386	Durch sichtbares Licht vermittelte Synthese von βâ€Chlorketonen aus Arylcyclopropanen. Angewandte Chemie, 2019, 131, 8665-8669.	1.6	5
387	Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Advanced Drug Delivery Reviews, 2019, 149-150, 19-48.	6.6	31
388	Glycoengineering of Antibodies for Modulating Functions. Annual Review of Biochemistry, 2019, 88, 433-459.	5.0	91
389	AJICAP: Affinity Peptide Mediated Regiodivergent Functionalization of Native Antibodies. Angewandte Chemie - International Edition, 2019, 58, 5592-5597.	7.2	7 3
390	Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chemical Science, 2019, 10, 4048-4053.	3.7	59
391	Covalent binders in drug discovery. Progress in Medicinal Chemistry, 2019, 58, 1-62.	4.1	32
392	Natural product–drug conjugates for modulation of TRPV1-expressing tumors. Bioorganic and Medicinal Chemistry, 2019, 27, 2531-2536.	1.4	8
393	Antibody-Drug Conjugate-Based Therapeutics: State of the Science. Journal of the National Cancer Institute, 2019, 111, 538-549.	3.0	257
394	Antibody–Prodrug Conjugates with KSP Inhibitors and Legumainâ€Mediated Metabolite Formation. Chemistry - A European Journal, 2019, 25, 8208-8213.	1.7	13
395	Engineering Na _V 1.7 Inhibitory JzTx-V Peptides with a Potency and Basicity Profile Suitable for Antibody Conjugation To Enhance Pharmacokinetics. ACS Chemical Biology, 2019, 14, 806-818.	1.6	14
396	An auristatinâ€based antibodyâ€drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer. International Journal of Cancer, 2019, 145, 1838-1851.	2.3	33
397	Peptide–Drug Conjugate-Based Nanocombination Actualizes Breast Cancer Treatment by Maytansinoid and Photothermia with the Assistance of Fluorescent and Photoacoustic Images. Nano Letters, 2019, 19, 3229-3237.	4.5	40
398	David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies, 2019, 8, 28.	1.2	136
399	Recent Chemical Approaches for Siteâ€Specific Conjugation of Native Antibodies: Technologies toward Nextâ€Generation Antibody–Drug Conjugates. ChemBioChem, 2019, 20, 2729-2737.	1.3	57
400	A method to directly analyze free-drug–related species in antibody-drug conjugates without sample preparation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1116, 51-59.	1.2	3
401	Future prospects for noncanonical amino acids in biological therapeutics. Current Opinion in Biotechnology, 2019, 60, 168-178.	3.3	63

#	Article	IF	Citations
402	Antibody–Drug Conjugates Derived from Cytotoxic seco-CBI-Dimer Payloads Are Highly Efficacious in Xenograft Models and Form Protein Adducts In Vivo. Bioconjugate Chemistry, 2019, 30, 1356-1370.	1.8	15
403	Antibody–Drug Conjugates: Future Directions in Clinical and Translational Strategies to Improve the Therapeutic Index. Clinical Cancer Research, 2019, 25, 5441-5448.	3.2	217
404	AJICAP: Affinity Peptide Mediated Regiodivergent Functionalization of Native Antibodies. Angewandte Chemie, 2019, 131, 5648-5653.	1.6	12
405	Characterization of Disulfide Bond Rebridged Fab–Drug Conjugates Prepared Using a Dual Maleimide Pyrrolobenzodiazepine Cytotoxic Payload. ChemMedChem, 2019, 14, 1185-1195.	1.6	15
406	Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics, 2019, 11, 151.	2.0	25
407	Considerations on Probe Design for Affinityâ€Guided Protein Conjugation. ChemBioChem, 2019, 20, 2711-2728.	1.3	10
408	Antibody-Drug Conjugates in Breast Cancer: a Comprehensive Review. Current Treatment Options in Oncology, 2019, 20, 37.	1.3	60
409	Antibody-drug conjugates in gynecologic malignancies. Gynecologic Oncology, 2019, 153, 694-702.	0.6	22
410	Characterization of Antibody Products Obtained through Enzymatic and Nonenzymatic Glycosylation Reactions with a Glycan Oxazoline and Preparation of a Homogeneous Antibody–Drug Conjugate via Fc <i>N</i> -Glycan. Bioconjugate Chemistry, 2019, 30, 1343-1355.	1.8	30
411	Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nature Biomedical Engineering, 2019, 3, 264-280.	11.6	40
412	A potent targeted cancer nanotherapeutic. Nature Biomedical Engineering, 2019, 3, 248-250.	11.6	5
413	Synthesis and DFT studies of novel aryloxymaleimides via nucleophilic substitution of tosyloxy group. Journal of Molecular Structure, 2019, 1189, 155-160.	1.8	4
414	Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies, 2019, 8, 18.	1,2	71
415	Antibody-Drug Conjugates for the Therapy of Thoracic Malignancies. Journal of Thoracic Oncology, 2019, 14, 358-376.	0.5	11
416	The novel CD19-targeting antibody-drug conjugate huB4-DGN462 shows improved anti-tumor activity compared to SAR3419 in CD19-positive lymphoma and leukemia models. Haematologica, 2019, 104, 1633-1639.	1.7	28
417	Antibody-drug conjugates of 7-ethyl-10-hydroxycamptothecin: Sacituzumab govitecan and labetuzumab govitecan. European Journal of Medicinal Chemistry, 2019, 167, 583-593.	2.6	22
418	Maytansine-bearing antibody-drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. Oncolmmunology, 2019, 8, e1565859.	2.1	31
419	Identification of C-6 as a New Site for Linker Conjugation to the Taccalonolide Microtubule Stabilizers. Journal of Natural Products, 2019, 82, 583-588.	1.5	8

#	Article	IF	Citations
420	Contemporary approaches to site-selective protein modification. Nature Reviews Chemistry, 2019, 3, 147-171.	13.8	325
421	The Pharmaceutical Industry in 2018. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2019, 24, 809.	1.7	95
422	Antibody conjugation and formulation. Antibody Therapeutics, 2019, 2, 33-39.	1.2	4
423	A RAGE-Targeted Antibody-Drug Conjugate: Surface Plasmon Resonance as a Platform for Accelerating Effective ADC Design and Development. Antibodies, 2019, 8, 7.	1.2	7
424	PDL-1 Antibody Drug Conjugate for Selective Chemo-Guided Immune Modulation of Cancer. Cancers, 2019, 11, 232.	1.7	43
425	Computationally Assisted Discovery and Assignment of a Highly Strained and PANC-1 Selective Alkaloid from Alaska's Deep Ocean. Journal of the American Chemical Society, 2019, 141, 4338-4344.	6.6	43
426	A Concise, Modular Antibody–Oligonucleotide Conjugation Strategy Based on Disuccinimidyl Ester Activation Chemistry. ChemBioChem, 2019, 20, 1599-1605.	1.3	17
427	Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta, 2019, 198, 350-357.	2.9	26
428	Precision medicine for human cancers with Notch signaling dysregulation (Review). International Journal of Molecular Medicine, 2020, 45, 279-297.	1.8	105
429	Cupid and Psyche system for the diagnosis and treatment of advanced cancer. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 602-611.	1.6	8
430	Remote Controlled Autonomous Microgravity Lab Platforms for Drug Research in Space. Pharmaceutical Research, 2019, 36, 183.	1.7	32
431	Biomimetic catalytic oxidative coupling of thiols using thiolate-bridged dinuclear metal complexes containing iron in water under mild conditions. Catalysis Science and Technology, 2019, 9, 6492-6502.	2.1	18
432	Binding and functional profiling of antibody mutants guides selection of optimal candidates as antibody drug conjugates. PLoS ONE, 2019, 14, e0226593.	1.1	8
433	Good Manufacturing Practice Strategy for Antibody–Drug Conjugate Synthesis Using Site-Specific Chemical Conjugation: First-Generation AJICAP. ACS Omega, 2019, 4, 20564-20570.	1.6	26
434	Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers, 2019, 11, 1887.	1.7	28
435	Discovery of Potent and Selective Antibody–Drug Conjugates with Eg5 Inhibitors through Linker and Payload Optimization. ACS Medicinal Chemistry Letters, 2019, 10, 1674-1679.	1.3	10
436	Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nature Communications, 2019, 10, 5382.	5.8	32
437	Gram-Scale Antibody–Drug Conjugate Synthesis by Site-Specific Chemical Conjugation: AJICAP First Generation. Organic Process Research and Development, 2019, 23, 2647-2654.	1.3	23

#	Article	IF	CITATIONS
438	A view on drug resistance in cancer. Nature, 2019, 575, 299-309.	13.7	1,391
439	Use of pyridazinediones as extracellular cleavable linkers through reversible cysteine conjugation. Chemical Communications, 2019, 55, 14829-14832.	2.2	9
442	Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule–Related Therapeutic Modalities. Drug Metabolism and Disposition, 2019, 47, 1122-1135.	1.7	79
443	Recent Progress in Linker Technology for Antibody-Drug Conjugates: Methods for Connection and Release., 2019,, 93-123.		2
444	Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. Journal of Clinical Medicine, 2019, 8, 7.	1.0	66
445	Selective Delivery of Doxorubicin to EGFR ⁺ Cancer Cells by Cetuximab–DNA Conjugates. ChemBioChem, 2019, 20, 1014-1018.	1.3	19
446	Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates?. Journal of Chromatography A, 2019, 1586, 149-153.	1.8	18
447	Non-covalent hitchhiking on endogenous carriers as a protraction mechanism for antiviral macromolecular prodrugs. Journal of Controlled Release, 2019, 294, 298-310.	4.8	17
448	An Alternative Focus for Route Design for the Synthesis of Antibody–Drug Conjugate Payloads. Journal of Organic Chemistry, 2019, 84, 4830-4836.	1.7	12
449	Chemical structure modifications and nanoâ€technology applications for improving ADMEâ€Tox properties, a review. Archiv Der Pharmazie, 2019, 352, e1800213.	2.1	10
450	Total Synthesis in Search of Potent Antibody–Drug Conjugate Payloads. From the Fundamentals to the Translational. Accounts of Chemical Research, 2019, 52, 127-139.	7.6	34
451	Development, Optimization, and Structural Characterization of an Efficient Peptide-Based Photoaffinity Cross-Linking Reaction for Generation of Homogeneous Conjugates from Wild-Type Antibodies. Bioconjugate Chemistry, 2019, 30, 148-160.	1.8	17
452	Recent Advances in Chromatography for Pharmaceutical Analysis. Analytical Chemistry, 2019, 91, 210-239.	3.2	85
453	Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. Journal of Cellular Physiology, 2019, 234, 5628-5642.	2.0	157
454	Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics, 2019, 35, 1870-1876.	1.8	65
455	APOMAB Antibody–Drug Conjugates Targeting Dead Tumor Cells are Effective <i>In Vivo</i> . Molecular Cancer Therapeutics, 2019, 18, 335-345.	1.9	16
456	Preclinical Efficacy of Endoglin-Targeting Antibody–Drug Conjugates for the Treatment of Ewing Sarcoma. Clinical Cancer Research, 2019, 25, 2228-2240.	3.2	44
457	Highly potent monomethyl auristatin E prodrug activated by caspase-3 for the chemoradiotherapy of triple-negative breast cancer. Biomaterials, 2019, 192, 109-117.	5.7	29

#	Article	IF	CITATIONS
458	Evaluation of Prophylactic Corticosteroid Eye Drop Use in the Management of Corneal Abnormalities Induced by the Antibody–Drug Conjugate Mirvetuximab Soravtansine. Clinical Cancer Research, 2019, 25, 1727-1736.	3.2	39
459	Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxinâ€D. Angewandte Chemie - International Edition, 2019, 58, 248-253.	7.2	41
460	From natural products to drugs. Physical Sciences Reviews, 2019, 4, .	0.8	10
461	Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrinâ€Targeted Conjugate. Chemistry - A European Journal, 2019, 25, 1696-1700.	1.7	29
462	Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nature Protocols, 2019, 14, 86-99.	5.5	49
463	Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxinâ€D. Angewandte Chemie, 2019, 131, 254-259.	1.6	15
464	Oriented immobilization to nanoparticles enhanced the therapeutic efficacy of antibody drugs. Acta Biomaterialia, 2019, 86, 373-380.	4.1	14
465	Glypicanâ€3‧pecific Antibody Drug Conjugates Targeting Hepatocellular Carcinoma. Hepatology, 2019, 70, 563-576.	3.6	65
466	Recent Progress in Chemical Modification of Proteins. Analytical Sciences, 2019, 35, 5-27.	0.8	74
467	Exploration of the carmaphycins as payloads in antibody drug conjugate anticancer agents. European Journal of Medicinal Chemistry, 2019, 161, 416-432.	2.6	21
469	Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery, 2019, 18, 273-294.	21.5	579
470	Natural Product Bis-Intercalator Depsipeptides as a New Class of Payloads for Antibody–Drug Conjugates. Bioconjugate Chemistry, 2019, 30, 200-209.	1.8	15
471	A Road Map to Personalizing Targeted Cancer Therapies Using Synthetic Lethality. Trends in Cancer, 2019, 5, 11-29.	3.8	21
472	Antibody-Assisted Delivery of a Peptide–Drug Conjugate for Targeted Cancer Therapy. Molecular Pharmaceutics, 2019, 16, 165-172.	2.3	10
473	Quantitative collisionâ€induced unfolding differentiates model antibody–drug conjugates. Protein Science, 2019, 28, 598-608.	3.1	26
474	Developing an Antibody–Drug Conjugate Approach to Selective Inhibition of an Extracellular Protein. ChemBioChem, 2019, 20, 754-758.	1.3	11
475	Quantitative mapping of specific proteins in biological tissues by laser ablation–ICP-MS using exogenous labels: aspects to be considered. Analytical and Bioanalytical Chemistry, 2019, 411, 549-558.	1.9	27
476	Bispecific anti-mPDGFRÎ ² x cotinine scFv-CÎ ⁹ -scFv fusion protein and cotinine-duocarmycin can form antibody-drug conjugate-like complexes that exert cytotoxicity against mPDGFRÎ ² expressing cells. Methods, 2019, 154, 125-135.	1.9	9

#	Article	IF	CITATIONS
477	Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry, 2019, 400, 257-274.	1.2	27
478	Site-specific protein modification by genetic encoded disulfide compatible thiols. Chinese Chemical Letters, 2020, 31, 163-166.	4.8	17
479	Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. Journal of Cellular Physiology, 2020, 235, 31-64.	2.0	97
480	Thera-SAbDab: the Therapeutic Structural Antibody Database. Nucleic Acids Research, 2020, 48, D383-D388.	6.5	88
481	HER2-Overexpressing/Amplified Breast Cancer as a Testing Ground for Antibody–Drug Conjugate Drug Development in Solid Tumors. Clinical Cancer Research, 2020, 26, 775-786.	3.2	36
482	Considerations for the Design of Antibody-Based Therapeutics. Journal of Pharmaceutical Sciences, 2020, 109, 74-103.	1.6	146
483	Precise sequence regulation through maleimide chemistry. Polymer Journal, 2020, 52, 21-31.	1.3	12
484	Alteration of Physicochemical Properties for Antibody-Drug Conjugates and Their Impact on Stability. Journal of Pharmaceutical Sciences, 2020, 109, 161-168.	1.6	28
485	Current In Vitro Assays for Prediction of T Cell Mediated Immunogenicity of Biotherapeutics and Manufacturing Impurities. Journal of Pharmaceutical Innovation, 2020, 15, 202-218.	1.1	13
486	Challenges with the biophysical characterization of complex (multi-chain assembly, chemically) Tj ETQq $1\ 1\ 0.784$	l314 rgBT	/Oyerlock 10
487	VHH characterization. Recombinant VHHs: Production, characterization and affinity. Analytical Biochemistry, 2020, 589, 113491.	1.1	9
488	Antibody–Drug Conjugates: A Comprehensive Review. Molecular Cancer Research, 2020, 18, 3-19.	1.5	442
489	Antibody Conjugation of a Chimeric BET Degrader Enables <i>inâ€vivo</i> Activity. ChemMedChem, 2020, 15, 17-25.	1.6	111
490	Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1093-1107.	2.9	79
491	Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chemical Science, 2020, 11, 467-473.	3.7	26
492	Bioorthogonal Ligation and Cleavage by Reactions of Chloroquinoxalines with <i>ortho</i> †) 3€Dithiophenols. Angewandte Chemie, 2020, 132, 3700-3706.	1.6	5
493	Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 2020, 27, 1.	2.6	1,277
494	Efficient continuous-flow aldehyde tag conversion using immobilized formylglycine generating enzyme. Catalysis Science and Technology, 2020, 10, 484-492.	2.1	11

#	Article	IF	CITATIONS
495	Design of protein-based "turn on―molecular probes for intracellular bond cleavage. Molecular Systems Design and Engineering, 2020, 5, 385-391.	1.7	2
496	Universal Affinity Capture Liquid Chromatography-Mass Spectrometry Assay for Evaluation of Biotransformation of Site-Specific Antibody Drug Conjugates in Preclinical Studies. Analytical Chemistry, 2020, 92, 2065-2073.	3 . 2	19
497	Bioorthogonal Ligation and Cleavage by Reactions of Chloroquinoxalines with <i>ortho</i> â€Dithiophenols. Angewandte Chemie - International Edition, 2020, 59, 3671-3677.	7.2	13
498	A growth model of neuroendocrine tumor surrogates and the efficacy of a novel somatostatin-receptor–guided antibody-drug conjugate: Perspectives on clinical response?. Surgery, 2020, 167, 197-203.	1.0	4
499	TR1801â€ADC: a highly potent cMet antibody–drug conjugate with high activity in patientâ€derived xenograft models of solid tumors. Molecular Oncology, 2020, 14, 54-68.	2.1	39
500	Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: A review of recent advances and future perspectives. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 112991.	1.4	33
501	ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Letters, 2020, 473, 156-163.	3.2	39
502	Automated linkage of proteins and payloads producing monodisperse conjugates. Chemical Science, 2020, 11, 1210-1215.	3.7	19
503	Cancerâ€Cellâ€Specific Drug Delivery by a Tumorâ€Homing CPPâ€Gossypol Conjugate Employing a Tracelessly Cleavable Linker. Chemistry - A European Journal, 2020, 26, 3010-3015.	1.7	22
504	Self-assembling mertansine prodrug improves tolerability and efficacy of chemotherapy against metastatic triple-negative breast cancer. Journal of Controlled Release, 2020, 318, 234-245.	4.8	10
505	Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Molecular Pharmaceutics, 2020, 17, 98-108.	2.3	14
506	A Systems Pharmacology Model for Drug Delivery to Solid Tumors by Antibody-Drug Conjugates: Implications for Bystander Effects. AAPS Journal, 2020, 22, 12.	2.2	21
507	HER2-specific immunotoxins constructed based on single-domain antibodies and the improved toxin PE24X7. International Journal of Pharmaceutics, 2020, 574, 118939.	2.6	14
508	Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126907.	1.0	75
509	Multi-attribute quality screening of immunoglobulin G using polarized Excitation Emission Matrix spectroscopy. Analytica Chimica Acta, 2020, 1101, 99-110.	2.6	9
510	Polymeric Engineering of Aptamer–Drug Conjugates for Targeted Cancer Therapy. Bioconjugate Chemistry, 2020, 31, 37-42.	1.8	27
511	Efficacy of the Antibody–Drug Conjugate W0101 in Preclinical Models of IGF-1 Receptor Overexpressing Solid Tumors. Molecular Cancer Therapeutics, 2020, 19, 168-177.	1.9	19
512	Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs, 2020, 12, 1682866.	2.6	47

#	ARTICLE	IF	CITATIONS
513	Improved Physical Stability of an Antibody–Drug Conjugate Using Host–Guest Chemistry. Bioconjugate Chemistry, 2020, 31, 123-129.	1.8	6
514	Antibody drug conjugates: Development, characterization, and regulatory considerations. Polymers for Advanced Technologies, 2020, 31, 1177-1193.	1.6	11
515	Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery. Bioorganic Chemistry, 2020, 105, 104321.	2.0	7
516	Photoconjugation of an Fc-Specific Peptide Enables Efficient DAR 2 Antibody–Drug Conjugate Formation. Organic Letters, 2020, 22, 8419-8423.	2.4	1
517	Biotherapeutic Products, Cellular Factories, and Multiomics Integration in Metabolic Engineering. OMICS A Journal of Integrative Biology, 2020, 24, 621-633.	1.0	2
518	Visible-Light Photocatalysis as an Enabling Technology for Drug Discovery: A Paradigm Shift for Chemical Reactivity. ACS Medicinal Chemistry Letters, 2020, 11, 2120-2130.	1.3	63
519	A highly potent maytansinoid analogue and its use as a cytotoxic therapeutic agent in gold nanoparticles for the treatment of hepatocellular carcinoma. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127634.	1.0	4
520	Triple, Mutually Orthogonal Bioorthogonal Pairs through the Design of Electronically Activated Sulfamate-Containing Cycloalkynes. Journal of the American Chemical Society, 2020, 142, 18826-18835.	6.6	30
521	When liposomes met antibodies: Drug delivery and beyond. Advanced Drug Delivery Reviews, 2020, 154-155, 151-162.	6.6	51
522	Exploiting azido-dichloro-triazine as a linker for regioselective incorporation of peptides through their N, O, S functional groups. Bioorganic Chemistry, 2020, 104, 104334.	2.0	3
523	Divinylsulfonamides enable the construction of homogeneous antibody–drug conjugates. Bioorganic and Medicinal Chemistry, 2020, 28, 115793.	1.4	4
524	Dichloroacetophenone Derivatives: A Class of Bioconjugation Reagents for Disulfide Bridging. Organic Letters, 2020, 22, 8193-8197.	2.4	11
525	Preclinical Activity of SAR408701: A Novel Anti-CEACAM5–maytansinoid Antibody–drug Conjugate for the Treatment of CEACAM5-positive Epithelial Tumors. Clinical Cancer Research, 2020, 26, 6589-6599.	3.2	36
526	A click-ready pH-triggered phosphoramidate-based linker for controlled release of monomethyl auristatin E. Tetrahedron Letters, 2020, 61, 152398.	0.7	19
527	Synthesis and Biological Evaluation of Shishijimicin A-Type Linker-Drugs and Antibody–Drug Conjugates. Journal of the American Chemical Society, 2020, 142, 12890-12899.	6.6	11
528	Characterization of TnmH as an <i>O</i> -Methyltransferase Revealing Insights into Tiancimycin Biosynthesis and Enabling a Biocatalytic Strategy To Prepare Antibodyâ€"Tiancimycin Conjugates. Journal of Medicinal Chemistry, 2020, 63, 8432-8441.	2.9	18
529	Conjugation Ratio, Light Dose, and pH Affect the Stability of Panitumumab–IR700 for Near-Infrared Photoimmunotherapy. ACS Medicinal Chemistry Letters, 2020, 11, 1598-1604.	1.3	12
530	A near-infrared light-mediated cleavable linker strategy using the heptamethine cyanine chromophore. Methods in Enzymology, 2020, 641, 245-275.	0.4	12

#	Article	IF	CITATIONS
531	Tailored Linker Chemistries for the Efficient and Selective Activation of ADCs with KSPi Payloads. Bioconjugate Chemistry, 2020, 31, 1893-1898.	1.8	13
532	Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjugate Chemistry, 2020, 31, 462-473.	1.8	21
533	Unveiling Druggable Pockets by Site-Specific Protein Modification: Beyond Antibody-Drug Conjugates. Frontiers in Chemistry, 2020, 8, 586942.	1.8	2
534	DiPODS: A Reagent for Site-Specific Bioconjugation via the Irreversible Rebridging of Disulfide Linkages. Bioconjugate Chemistry, 2020, 31, 2789-2806.	1.8	14
535	Impact of Physiologically Based Pharmacokinetics, Population Pharmacokinetics and Pharmacokinetics/Pharmacodynamics in the Development of Antibodyâ€Drug Conjugates. Journal of Clinical Pharmacology, 2020, 60, S105-S119.	1.0	8
536	Two Patient Studies of a Companion Diagnostic Immuno-Positron Emission Tomography (PET) Tracer for Measuring Human CA6 Expression in Cancer for Antibody Drug Conjugate (ADC) Therapy. Molecular Imaging, 2020, 19, 153601212093939.	0.7	3
537	IL3RA-Targeting Antibody–Drug Conjugate BAY-943 with a Kinesin Spindle Protein Inhibitor Payload Shows Efficacy in Preclinical Models of Hematologic Malignancies. Cancers, 2020, 12, 3464.	1.7	11
538	Cell-Permeant Bioadaptors for Cytosolic Delivery of Native Antibodies: A "Mix-and-Go―Approach. ACS Central Science, 2020, 6, 2362-2376.	5.3	39
539	Generation and testing of engineered multimeric Fabs of trastuzumab. International Journal of Biological Macromolecules, 2020, 164, 4516-4531.	3.6	2
540	PF-06804103, A Site-specific Anti-HER2 Antibody–Drug Conjugate for the Treatment of HER2-expressing Breast, Gastric, and Lung Cancers. Molecular Cancer Therapeutics, 2020, 19, 2068-2078.	1.9	32
541	In vivo synthesis of triple-loaded albumin conjugate for efficient targeted cancer chemotherapy. Journal of Controlled Release, 2020, 327, 19-25.	4.8	17
542	Cetuximab-Triptolide Conjugate Suppresses the Growth of EGFR-Overexpressing Lung Cancers through Targeting RNA Polymerase II. Molecular Therapy - Oncolytics, 2020, 18, 304-316.	2.0	12
543	Capturing the Magic Bullet: Pharmacokinetic Principles and Modeling of Antibody-Drug Conjugates. AAPS Journal, 2020, 22, 105.	2.2	12
544	Construction of paclitaxel-based antibody–drug conjugates with a PEGylated linker to achieve superior therapeutic index. Signal Transduction and Targeted Therapy, 2020, 5, 132.	7.1	21
545	Antibody–Drug Conjugates in Thoracic Malignancies: Clinical Trials Reveal Both Promise and Challenges. Targeted Oncology, 2020, 15, 429-448.	1.7	0
546	Targeting estrogen receptor \hat{l}_{\pm} for degradation with PROTACs: A promising approach to overcome endocrine resistance. European Journal of Medicinal Chemistry, 2020, 206, 112689.	2.6	49
547	Personalized biomedicine in cancer: from traditional therapy to sustainable healthcare. , 2020, , 441-457.		0
548	Polatuzumab vedotin: an investigational anti-CD79b antibody drug conjugate for the treatment of diffuse large B-cell lymphoma. Expert Opinion on Investigational Drugs, 2020, 29, 1079-1088.	1.9	16

#	Article	IF	CITATIONS
549	Antibody-Drug Conjugates: A Promising Novel Therapy for the Treatment of Ovarian Cancer. Cancers, 2020, 12, 2223.	1.7	18
550	Antibody–drug conjugates to treat gastric cancer. Expert Opinion on Biological Therapy, 2021, 21, 923-930.	1.4	10
551	Preclinical Antitumor Activity and Biodistribution of a Novel Anti-GCC Antibody–Drug Conjugate in Patient-derived Xenografts. Molecular Cancer Therapeutics, 2020, 19, 2079-2088.	1.9	8
552	Antibody–drug conjugates in breast cancer: the chemotherapy of the future?. Current Opinion in Oncology, 2020, 32, 494-502.	1.1	25
553	Light-induced primary amines and o-nitrobenzyl alcohols cyclization as a versatile photoclick reaction for modular conjugation. Nature Communications, 2020, 11, 5472.	5.8	46
554	Expeditious Total Synthesis of Hemiasterlin through a Convergent Multicomponent Strategy and Its Use in Targeted Cancer Therapeutics. Angewandte Chemie, 2020, 132, 23245-23250.	1.6	0
555	Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins, 2020, 12, 658.	1.5	14
556	Antibody-drug conjugates in metastatic triple negative breast cancer: a spotlight on sacituzumab govitecan, ladiratuzumab vedotin, and trastuzumab deruxtecan. Expert Opinion on Biological Therapy, 2021, 21, 903-913.	1.4	28
557	Rapid Analysis of Reduced Antibody Drug Conjugate by Online LC-MS/MS with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2020, 92, 15096-15103.	3.2	8
558	Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chemical Reviews, 2020, 120, 13135-13272.	23.0	296
559	An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics, 2020, 12, 802.	2.0	62
560	Advancements in Assay Technologies and Strategies to Enable Drug Discovery. ACS Chemical Biology, 2020, 15, 2636-2648.	1.6	16
561	The Future of ER+/HER2â^' Metastatic Breast Cancer Therapy: Beyond PI3K Inhibitors. Anticancer Research, 2020, 40, 4829-4841.	0.5	21
562	Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. Journal of Controlled Release, 2020, 328, 1-12.	4.8	28
563	Tissue cross-reactivity studies of CPGJ701 in humans, cynomolgus monkeys and Sprague-Dawley rats and correlation analysis with in vivo toxicity. Annals of Translational Medicine, 2020, 8, 325-325.	0.7	1
564	Cadherin-17 Targeted Near-Infrared Photoimmunotherapy for Treatment of Gastrointestinal Cancer. Molecular Pharmaceutics, 2020, 17, 3941-3951.	2.3	16
565	Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates. Antibodies, 2020, 9, 46.	1,2	3
566	Antibody–Drug Conjugates: The Last Decade. Pharmaceuticals, 2020, 13, 245.	1.7	207

#	ARTICLE	IF	CITATIONS
567	Proteolysis targeting chimeras (PROTACs) in cancer therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 189.	3.5	36
568	Expeditious Total Synthesis of Hemiasterlin through a Convergent Multicomponent Strategy and Its Use in Targeted Cancer Therapeutics. Angewandte Chemie - International Edition, 2020, 59, 23045-23050.	7.2	14
569	Controlled coupling of an ultrapotent auristatin warhead to cetuximab yields a next-generation antibody-drug conjugate for EGFR-targeted therapy of KRAS mutant pancreatic cancer. British Journal of Cancer, 2020, 123, 1502-1512.	2.9	14
570	Genetically Encoded Quinone Methides Enabling Rapid, Site-Specific, and Photocontrolled Protein Modification with Amine Reagents. Journal of the American Chemical Society, 2020, 142, 17057-17068.	6.6	25
571	Addressing the Biochemical Foundations of a Glucose-Based "Trojan Horse―Strategy to Boron Neutron Capture Therapy: From Chemical Synthesis to ⟨i⟩In Vitro⟨/i⟩ Assessment. Molecular Pharmaceutics, 2020, 17, 3885-3899.	2.3	15
572	Unsymmetrical polysulfidation via designed bilateral disulfurating reagents. Nature Communications, 2020, 11, 4170.	5.8	56
573	Making smart drugs smarter: The importance of linker chemistry in targeted drug delivery. Medicinal Research Reviews, 2020, 40, 2682-2713.	5.0	35
574	A poly-ADP-ribose polymer-based antibody-drug conjugate. Chemical Science, 2020, 11, 9303-9308.	3.7	14
575	Predicting antibody affinity changes upon mutations by combining multiple predictors. Scientific Reports, 2020, 10, 19533.	1.6	12
576	Site-specific conjugation of native antibody. Antibody Therapeutics, 2020, 3, 271-284.	1.2	28
577	Analytical Methods for the Detection and Quantification of ADCs in Biological Matrices. Pharmaceuticals, 2020, 13, 462.	1.7	15
578	Palladium–Protein Oxidative Addition Complexes by Amine-Selective Acylation. Journal of the American Chemical Society, 2020, 142, 21237-21242.	6.6	16
579	Platform to Discover Protease-Activated Antibiotics and Application to Siderophore–Antibiotic Conjugates. Journal of the American Chemical Society, 2020, 142, 21310-21321.	6.6	25
580	Metalloporphyrins in Medicine: From History to Recent Trends. ACS Applied Bio Materials, 2020, 3, 8146-8171.	2.3	20
581	<p>Treatment Landscape for Patients with HER2-Positive Metastatic Breast Cancer: A Review on Emerging Treatment Options</p> . Cancer Management and Research, 2020, Volume 12, 10615-10629.	0.9	11
582	Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regulatory Toxicology and Pharmacology, 2020, 118, 104813.	1.3	13
583	Tyrosine bioconjugation – an emergent alternative. Organic and Biomolecular Chemistry, 2020, 18, 9018-9028.	1.5	49
584	Selective elimination of human pluripotent stem cells by Anti-Dsg2 antibody-doxorubicin conjugates. Biomaterials, 2020, 259, 120265.	5.7	8

#	Article	IF	CITATIONS
585	Folate Receptor Targeting and Cathepsin B-Sensitive Drug Delivery System for Selective Cancer Cell Death and Imaging. ACS Medicinal Chemistry Letters, 2020, 11, 1514-1520.	1.3	32
586	Site-Specific Antibody–Drug Conjugates in Triple Variable Domain Fab Format. Biomolecules, 2020, 10, 764.	1.8	11
587	Robust Strategy for Antibody–Polymer–Drug Conjugation: Significance of Conjugating Orientation and Linker Charge on Targeting Ability. ACS Applied Materials & Interfaces, 2020, 12, 23717-23725.	4.0	10
588	Depatuxizumab Mafodotin (ABT-414)-induced Glioblastoma Cell Death Requires EGFR Overexpression, but not EGFRY1068 Phosphorylation. Molecular Cancer Therapeutics, 2020, 19, 1328-1339.	1.9	17
589	Induction of ADCC by a folic acid–mAb conjugate prepared by tryptophan-selective reaction toward folate-receptor-positive cancer cells. RSC Advances, 2020, 10, 16727-16731.	1.7	8
590	Middle Level IM–MS and CIU Experiments for Improved Therapeutic Immunoglobulin Subclass Fingerprinting. Analytical Chemistry, 2020, 92, 8827-8835.	3.2	14
591	Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug Conjugates (ADCs). Scientific Reports, 2020, 10, 8869.	1.6	11
592	The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by ⁸⁹ Zr-immuno-PET in xenograft bearing mice. Theranostics, 2020, 10, 5815-5828.	4.6	25
593	Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals, 2020, 13, 88.	1.7	27
594	Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics, 2020, 12, 440.	2.0	66
595	Heterogeneous Drug Efficacy of an Antibody-Drug Conjugate Visualized Using Simultaneous Imaging of Its Delivery and Intracellular Damage in Living Tumor Tissues. Translational Oncology, 2020, 13, 100764.	1.7	1
596	Glycan-Mediated Technology for Obtaining Homogeneous Site-Specific Conjugated Antibody–Drug Conjugates: Synthesis and Analytical Characterization by Using Complementary Middle-up LC/HRMS Analysis. Analytical Chemistry, 2020, 92, 8170-8177.	3.2	17
597	General dual functionalisation of biomacromolecules <i>via</i> a cysteine bridging strategy. Organic and Biomolecular Chemistry, 2020, 18, 4224-4230.	1.5	19
598	Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. Journal of the American Chemical Society, 2020, 142, 10358-10372.	6.6	44
599	Preclinical Characterization of an Antibody–Drug Conjugate Targeting CS-1 and the Identification of Uncharacterized Populations of CS-1–Positive Cells. Molecular Cancer Therapeutics, 2020, 19, 1649-1659.	1.9	0
600	Platinum-Triggered Bond-Cleavage of Pentynoyl Amide and <i>N</i> -Propargyl Handles for Drug-Activation. Journal of the American Chemical Society, 2020, 142, 10869-10880.	6.6	68
601	Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. Nanoscale, 2020, 12, 11647-11658.	2.8	16
602	Novel antibody–drug conjugates for triple negative breast cancer. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592091598.	1.4	74

#	Article	IF	CITATIONS
603	Development of a Versatile and Modular Linker for Antibody–Drug Conjugates Based on Oligonucleotide Strand Pairing. Bioconjugate Chemistry, 2020, 31, 1804-1811.	1.8	9
604	Modularly Engineered Solidâ€Phase Synthesis of Aptamerâ€Functionalized Small Molecule Drugs for Targeted Cancer Therapy. Advanced Therapeutics, 2020, 3, 2000074.	1.6	15
605	Comprehensive Middle-Down Mass Spectrometry Characterization of an Antibody–Drug Conjugate by Combined Ion Activation Methods. Analytical Chemistry, 2020, 92, 9790-9798.	3.2	15
606	Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. Science Advances, 2020, 6, eaba6752.	4.7	24
607	Site-Specific, Stoichiometric-Controlled, PEGylated Conjugates of Fibroblast Growth Factor 2 (FGF2) with Hydrophilic Auristatin Y for Highly Selective Killing of Cancer Cells Overproducing Fibroblast Growth Factor Receptor 1 (FGFR1). Molecular Pharmaceutics, 2020, 17, 2734-2748.	2.3	8
608	Multispecific drugs: the fourth wave of biopharmaceutical innovation. Signal Transduction and Targeted Therapy, 2020, 5, 86.	7.1	7
609	Nonclinical Development of Next-generation Site-specific HER2-targeting Antibody–drug Conjugate (ARX788) for Breast Cancer Treatment. Molecular Cancer Therapeutics, 2020, 19, 1822-1832.	1.9	13
610	Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomaterials Science, 2020, 8, 3935-3943.	2.6	21
611	New Therapeutics in HER2-Positive Advanced Breast Cancer: Towards a Change in Clinical Practices?. Cancers, 2020, 12, 1573.	1.7	25
612	The emerging role of antibody-drug conjugates in urothelial carcinoma. Expert Review of Anticancer Therapy, 2020, 20, 551-561.	1.1	23
613	Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. International Journal of Pharmaceutics, 2020, 586, 119537.	2.6	19
614	Efficient and selective antibody modification with functionalised divinyltriazines. Organic and Biomolecular Chemistry, 2020, 18, 4739-4743.	1.5	17
615	Vesicular antibodies for immunotherapy: The blooming intersection of nanotechnology and biotechnology. Nano Today, 2020, 34, 100896.	6.2	7
616	Evaluation of hydrophobicâ€interaction chromatography resins for purification of antibodyâ€drug conjugates using a mimetic model with adjustable hydrophobicity. Journal of Separation Science, 2020, 43, 2255-2263.	1.3	12
617	Cancer prevention and treatment using combination therapy with natural compounds. Expert Review of Clinical Pharmacology, 2020, 13, 265-285.	1.3	92
618	Development and Differentiation in Monobodies Based on the Fibronectin Type 3 Domain. Cells, 2020, 9, 610.	1.8	35
619	Synthesis and Biological Evaluation of Antibody Drug Conjugates Based on an Antibody Expression System: Conamax. ACS Omega, 2020, 5, 7193-7200.	1.6	25
620	Advances in Antibody–Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS Discovery, 2020, 25, 843-868.	1.4	47

#	Article	IF	CITATIONS
621	ImmunoPET: Concept, Design, and Applications. Chemical Reviews, 2020, 120, 3787-3851.	23.0	263
622	Construction of Bispecific Aptamer–Drug Conjugate by a Hybrid Chemical and Biological Approach. Bioconjugate Chemistry, 2020, 31, 1289-1294.	1.8	14
623	Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell. Current Tissue Microenvironment Reports, 2020, 1, 13-22.	1.3	4
624	Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Science Advances, 2020, 6, eaaz0051.	4.7	78
625	Crosstalk between HER2 and PD-1/PD-L1 in Breast Cancer: From Clinical Applications to Mathematical Models. Cancers, 2020, 12, 636.	1.7	40
626	Chemoselective and Siteâ€Selective Lysineâ€Directed Lysine Modification Enables Singleâ€Site Labeling of Native Proteins. Angewandte Chemie - International Edition, 2020, 59, 10332-10336.	7.2	49
627	Nanobodyâ€Ferritin Conjugate for Targeted Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 7442-7450.	1.7	31
628	Synthesis of Pharmacologically Relevant New Derivatives of Maleimides via Ligand-Free Pd-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions. Arabian Journal for Science and Engineering, 2020, 45, 4717-4725.	1.7	1
629	Improving antibody-based therapies by chemical engineering of antibodies with multimeric cell-penetrating peptides for elevated intracellular delivery. Journal of Controlled Release, 2020, 322, 200-208.	4.8	30
630	An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. Science Advances, 2020, 6, eaax2271.	4.7	22
631	Targets and Antibody Formats for Immunotherapy of Neuroblastoma. Journal of Clinical Oncology, 2020, 38, 1836-1848.	0.8	74
632	Chemoselective and Siteâ€Selective Lysineâ€Directed Lysine Modification Enables Singleâ€Site Labeling of Native Proteins. Angewandte Chemie, 2020, 132, 10418-10422.	1.6	16
633	DNA-PK Inhibitor, M3814, as a New Combination Partner of Mylotarg in the Treatment of Acute Myeloid Leukemia. Frontiers in Oncology, 2020, 10, 127.	1.3	21
634	Synthesis of Potent Cytotoxic Epidithiodiketopiperazines Designed for Derivatization. Journal of Organic Chemistry, 2020, 85, 4648-4662.	1.7	12
635	Localization of Therapeutic Fab-CHP Conjugates to Sites of Denatured Collagen for the Treatment of Rheumatoid Arthritis. Bioconjugate Chemistry, 2020, 31, 1960-1970.	1.8	5
636	HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. Journal of Controlled Release, 2020, 325, 304-322.	4.8	11
637	Identification of a peptide targeting CD56. Immunobiology, 2020, 225, 151982.	0.8	4
638	Tubulysin Synthesis Featuring Stereoselective Catalysis and Highly Convergent Multicomponent Assembly. Organic Letters, 2020, 22, 5396-5400.	2.4	20

#	Article	IF	CITATIONS
639	Antibody-Drug Conjugates and Targeted Treatment Strategies for Hepatocellular Carcinoma: A Drug-Delivery Perspective. Molecules, 2020, 25, 2861.	1.7	14
640	Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates. Analytical Biochemistry, 2020, 595, 113615.	1.1	38
641	Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells. Drug Metabolism and Disposition, 2020, 48, 368-377.	1.7	21
642	Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. Journal of the American Chemical Society, 2020, 142, 5078-5086.	6.6	51
643	Harnessing immunotherapy for pediatric T-cell malignancies. Expert Review of Clinical Immunology, 2020, 16, 361-371.	1.3	12
644	Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5733-5740.	3.3	35
645	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
646	High-throughput quantitative microscopy-based half-life measurements of intravenously injected agents. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3502-3508.	3.3	11
647	Protein labeling approach to improve lysosomal targeting and efficacy of antibody–drug conjugates. Organic and Biomolecular Chemistry, 2020, 18, 3229-3233.	1.5	13
648	Peptide asparaginyl ligases—renegade peptide bond makers. Science China Chemistry, 2020, 63, 296-307.	4.2	19
649	Trastuzumab Emtansine: Mechanisms of Action and Resistance, Clinical Progress, and Beyond. Trends in Cancer, 2020, 6, 130-146.	3.8	58
650	Opportunities for use of one species for longer-term toxicology testing during drug development: A cross-industry evaluation. Regulatory Toxicology and Pharmacology, 2020, 113, 104624.	1.3	22
651	The Pharmaceutical Industry in 2019. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 2020, 25, 745.	1.7	121
652	Metabolism of bioconjugate therapeutics: why, when, and how?. Drug Metabolism Reviews, 2020, 52, 66-124.	1.5	14
653	Precision Chemoradiotherapy for HER2 Tumors Using Antibody Conjugates of an Auristatin Derivative with Reduced Cell Permeability. Molecular Cancer Therapeutics, 2020, 19, 157-167.	1.9	21
654	Synthesis of a metal-chelating polymer with NOTA pendants as a carrier for 64Cu, intended for radioimmunotherapy. European Polymer Journal, 2020, 125, 109501.	2.6	2
655	Synthesis and Biological Characterization of Monomeric and Tetrameric RGDâ€Cryptophycin Conjugates. Chemistry - A European Journal, 2020, 26, 2602-2605.	1.7	14
656	Antibody Conjugates-Recent Advances and Future Innovations. Antibodies, 2020, 9, 2.	1.2	75

#	Article	IF	CITATIONS
657	Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of Controlled Release, 2020, 320, 180-200.	4.8	170
659	Proteaseâ€activated prodrugs: strategies, challenges, and future directions. FEBS Journal, 2020, 287, 1936-1969.	2.2	71
660	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
661	Heavy chain dimers stabilized by disulfide bonds are required to promote in vitro assembly of trastuzumab. BMC Molecular and Cell Biology, 2020, 21, 2.	1.0	5
662	Enhancing the stability of adalimumab by engineering additional glycosylation motifs. International Journal of Biological Macromolecules, 2020, 158, 189-196.	3.6	13
663	Cryptophycin-55/52 based antibody-drug conjugates: Synthesis, efficacy, and mode of action studies. European Journal of Medicinal Chemistry, 2020, 199, 112364.	2.6	15
664	Generation and validation of structurally defined antibody–siRNA conjugates. Nucleic Acids Research, 2020, 48, 5281-5293.	6.5	26
665	Design, Synthesis, and Biological Evaluation of HSP90 Inhibitor–SN38 Conjugates for Targeted Drug Accumulation. Journal of Medicinal Chemistry, 2020, 63, 5421-5441.	2.9	11
666	Recent advances of antibody drug conjugates for clinical applications. Acta Pharmaceutica Sinica B, 2020, 10, 1589-1600.	5.7	102
667	Insight on the Impact of the Reduction Step on the Siteâ€Directed Conjugation of an Antiâ€HER2 Cysteineâ€Engineered Antibody. ChemistrySelect, 2020, 5, 3187-3190.	0.7	0
668	Pharmacokinetics of polatuzumab vedotin in combination with R/G-CHP in patients with B-cell non-Hodgkin lymphoma. Cancer Chemotherapy and Pharmacology, 2020, 85, 831-842.	1.1	12
669	Anti-HER2 Affibody-Conjugated Photosensitizer for Tumor Targeting Photodynamic Therapy. Molecular Pharmaceutics, 2020, 17, 1546-1557.	2.3	13
670	Partially shielded enzymes capable of processing large protein substrates. Chemical Communications, 2020, 56, 5170-5173.	2.2	6
671	How Computational Chemistry and Drug Delivery Techniques Can Support the Development of New Anticancer Drugs. Molecules, 2020, 25, 1756.	1.7	23
672	A Novel Antibody-Drug Conjugate (ADC) Delivering a DNA Mono-Alkylating Payload to Chondroitin Sulfate Proteoglycan (CSPG4)-Expressing Melanoma. Cancers, 2020, 12, 1029.	1.7	22
673	Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol–Thiol Bioconjugations. Journal of the American Chemical Society, 2020, 142, 9544-9552.	6.6	46
674	Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Frontiers in Microbiology, 2020, 11, 563.	1.5	22
675	Introduction of an Aldehyde Handle on Nanobodies by Affinity-Guided Labeling. Bioconjugate Chemistry, 2020, 31, 1295-1300.	1.8	9

#	Article	IF	CITATIONS
676	Applying Antibodies Inside Cells: Principles and Recent Advances in Neurobiology, Virology and Oncology. BioDrugs, 2020, 34, 435-462.	2.2	24
677	Kinetic and structural characterization of therapeutic albumin chemical functionalization using complementary mass spectrometry techniques. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113242.	1.4	4
678	Expanding the Scope of Antibody Rebridging with New Pyridazinedione–TCO Constructs. Bioconjugate Chemistry, 2020, 31, 1616-1623.	1.8	12
679	Synthesis and evaluation of designed PKC modulators for enhanced cancer immunotherapy. Nature Communications, 2020, $11,1879$.	5 . 8	29
680	Multispecific drugs herald a new era of biopharmaceutical innovation. Nature, 2020, 580, 329-338.	13.7	166
681	Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody-drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica, 2020, 50, 1242-1250.	0.5	31
682	Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opinion on Biological Therapy, 2020, 20, 871-885.	1.4	57
683	The Resurgence of Antibody Drug Conjugates in Cancer Therapeutics: Novel Targets and Payloads. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e58-e74.	1.8	36
684	CD13 as a new tumor target for antibody-drug conjugates: validation with the conjugate MI130110. Journal of Hematology and Oncology, 2020, 13, 32.	6.9	13
685	Antibody-Drug Conjugates: Patient and Treatment Selection. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 105-114.	1.8	12
686	The Evolution of Antibody-Drug Conjugates: A Positive Inflexion Point. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 127-134.	1.8	24
687	Antibody-Drug Conjugate Using Ionized Cys-Linker-MMAE as the Potent Payload Shows Optimal Therapeutic Safety. Cancers, 2020, 12, 744.	1.7	22
688	Antibody-Electroactive Probe Conjugates Based Electrochemical Immunosensors. Sensors, 2020, 20, 2014.	2.1	30
689	The promising expedition of the delivery systems for monoclonal antibodies. , 2020, , 69-103.		0
690	Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angewandte Chemie, 2021, 133, 2249-2259.	1.6	16
691	Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 2221-2231.	7.2	221
692	Review: PET imaging with macro- and middle-sized molecular probes. Nuclear Medicine and Biology, 2021, 92, 156-170.	0.3	14
693	A photoactivatable antibody–Chlorin e6 conjugate enabling singlet oxygen production for tumor-targeting photodynamic therapy. Biomedical Materials (Bristol), 2021, 16, 045003.	1.7	7

#	Article	IF	CITATIONS
694	Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 3858-3869.	7.2	113
695	Protein engineering for selective proteomics. Current Opinion in Chemical Biology, 2021, 60, 10-19.	2.8	9
696	Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release, 2021, 329, 676-695.	4.8	111
697	New technologies in developing recombinantâ€attenuated bacteria for cancer therapy. Biotechnology and Bioengineering, 2021, 118, 513-530.	1.7	17
698	Antibody Co-Administration Can Improve Systemic and Local Distribution of Antibody–Drug Conjugates to Increase <i>In Vivo</i> Efficacy. Molecular Cancer Therapeutics, 2021, 20, 203-212.	1.9	19
699	HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1371-1389.	3.3	63
700	The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nature Reviews Urology, 2021, 18, 93-103.	1.9	89
701	A quantitative view on multivalent nanomedicine targeting. Advanced Drug Delivery Reviews, 2021, 169, 1-21.	6.6	52
702	Process economics evaluation of cellâ€free synthesis for the commercial manufacture of antibody drug conjugates. Biotechnology Journal, 2021, 16, 2000238.	1.8	11
703	The Role of ⁸⁹ Zr-Immuno-PET in Navigating and Derisking the Development of Biopharmaceuticals. Journal of Nuclear Medicine, 2021, 62, 438-445.	2.8	39
704	Glycosyl disulfides: importance, synthesis and application to chemical and biological systems. Organic and Biomolecular Chemistry, 2021, 19, 82-100.	1.5	16
705	Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma. Blood, 2021, 137, 2634-2645.	0.6	111
706	A bispecific immunotoxin (IHPP) with a long half-life targeting HER2 and PDGFRÎ ² exhibited improved efficacy against HER2-positive tumors in a mouse xenograft model. International Journal of Pharmaceutics, 2021, 592, 120037.	2.6	7
707	Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Medicinal Chemistry, 2021, 12, 363-369.	1.7	10
708	Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today, 2021, 36, 101045.	6.2	24
709	Site-selective modification strategies in antibody–drug conjugates. Chemical Society Reviews, 2021, 50, 1305-1353.	18.7	207
710	Methods to generate site-specific conjugates of antibody and protein. Bioorganic and Medicinal Chemistry, 2021, 30, 115946.	1.4	11
711	Human immunology and immunotherapy: main achievements and challenges. Cellular and Molecular Immunology, 2021, 18, 805-828.	4.8	96

#	Article	IF	CITATIONS
712	Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angewandte Chemie, 2021, 133, 3902-3913.	1.6	9
713	Bioorthogonal Reactions in Animals. ChemBioChem, 2021, 22, 100-113.	1.3	22
714	Antibody–drug conjugates for lung cancer in the era of personalized oncology. Seminars in Cancer Biology, 2021, 69, 268-278.	4.3	17
715	"One stroke drawing―of poly(ribonucleic acids) with different aptamer functions for sensing probes. Polymer Journal, 2021, 53, 667-675.	1.3	1
716	Chemical technologies for precise protein bioconjugation interfacing biology and medicine. Chemical Communications, 2021, 57, 7083-7095.	2.2	13
717	Synthesis of precision antibody conjugates using proximity-induced chemistry. Theranostics, 2021, 11, 9107-9117.	4.6	19
718	NECTIN4: A Novel Therapeutic Target for Melanoma. International Journal of Molecular Sciences, 2021, 22, 976.	1.8	22
719	Therapeutic antibody developmentâ€"Remington chapter. , 2021, , 437-462.		0
720	N-terminal selective conjugation method widens the therapeutic window of antibody–drug conjugates by improving tolerability and stability. MAbs, 2021, 13, 1914885.	2.6	3
721	A bifunctional molecule-based strategy for the development of theranostic antibody-drug conjugate. Theranostics, 2021, 11, 2550-2563.	4.6	15
722	5-Hydroxy-pyrrolone based building blocks as maleimide alternatives for protein bioconjugation and single-site multi-functionalization. Chemical Science, 2021, 12, 5246-5252.	3.7	10
723	Diverse protein manipulations with genetically encoded glutamic acid benzyl ester. Chemical Science, 2021, 12, 9778-9785.	3.7	12
724	Nanobodyâ€"A versatile tool for cancer diagnosis and therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1697.	3.3	64
725	Mechanisms contributing to ado-trastuzumab emtansine-induced toxicities: a gateway to better understanding of ADC-associated toxicities. Antibody Therapeutics, 2021, 4, 55-59.	1.2	8
726	Translational aspects of biologicals: monoclonal antibodies and antibody-drug conjugates as examples., 2021,, 329-350.		0
727	Dual Site-Specific Chemoenzymatic Antibody Fragment Conjugation Using CRISPR-Based Hybridoma Engineering. Bioconjugate Chemistry, 2021, 32, 301-310.	1.8	19
728	Guanidinoneomycin-maleimide molecular transporter: synthesis, chemistry and cellular uptake. Organic and Biomolecular Chemistry, 2021, 19, 6513-6520.	1.5	2
729	Therapeutic Approaches to Employ Monoclonal Antibody for Cancer Treatment. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 42-88.	0.1	0

#	Article	IF	Citations
731	Structure determination, correction, and disproof of marine macrolide natural products by chemical synthesis. Organic Chemistry Frontiers, 2021, 8, 3990-4023.	2.3	15
732	Light-induced efficient and residue-selective bioconjugation of native proteins via indazolone formation. RSC Advances, 2021, 11, 2235-2241.	1.7	1
733	Single chain variable fragment fused to maltose binding protein: a modular nanocarrier platform for the targeted delivery of antitumorals. Biomaterials Science, 2021, 9, 1728-1738.	2.6	3
734	Novel immunotherapy strategies involving matrix metalloproteinase (MMP) family., 2021,, 227-251.		0
735	Antibody-drug combination therapy in cancer treatment. , 2021, , 227-253.		0
736	Therapeutic antibody discovery. , 2021, , 417-436.		2
737	Quantitative Determination of Intracellular Bond Cleavage. Methods in Pharmacology and Toxicology, 2021, , 305-330.	0.1	1
738	Development and Application of a Single Cell-Level PK-PD Model for ADCs. Methods in Pharmacology and Toxicology, 2021, , 331-355.	0.1	0
739	Natural Products in Cancer Therapy: Past, Present and Future. Natural Products and Bioprospecting, 2021, 11, 5-13.	2.0	237
740	Antibody–drug conjugates in solid tumors: a look into novel targets. Journal of Hematology and Oncology, 2021, 14, 20.	6.9	129
741	Role of macrophage in nanomedicine-based disease treatment. Drug Delivery, 2021, 28, 752-766.	2.5	5
742	The Current Landscape of Antibody-based Therapies in Solid Malignancies. Theranostics, 2021, 11, 1493-1512.	4.6	20
743	Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs, 2021, 13, 1951427.	2.6	91
744	The Development of Antibody-Drug Conjugates for Urothelial Carcinoma Treatment. The Korean Journal of Urological Oncology, 2021, 19, 30-39.	0.1	0
745	Multilevel Characterization of Antibody-Ligand Conjugates by CESI-MS. Current Molecular Medicine, 2021, 20, 789-797.	0.6	2
746	Novel method for screening functional antibody with comprehensive analysis of its immunoliposome. Scientific Reports, 2021, 11, 4625.	1.6	4
747	Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. Journal of Clinical Medicine, 2021, 10, 838.	1.0	46
748	PEG Linker Improves Antitumor Efficacy and Safety of Affibody-Based Drug Conjugates. International Journal of Molecular Sciences, 2021, 22, 1540.	1.8	7

#	Article	IF	CITATIONS
749	Recent progress in immunotherapy of breast cancer targeting the human epidermal growth factor receptor 2 (HER2). Journal of Oncology Pharmacy Practice, 2021, 27, 1235-1244.	0.5	6
750	Extracellular vesicles as modifiers of antibodyâ€drug conjugate efficacy. Journal of Extracellular Vesicles, 2021, 10, e12070.	5.5	17
751	Selenomethionine as an expressible handle for bioconjugations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	4
752	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. Journal of Medicinal Chemistry, 2021, 64, 2576-2607.	2.9	91
753	Unlocking the potential of antibody–drug conjugates for cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 327-344.	12.5	498
754	Development of a Single-Step Antibody–Drug Conjugate Purification Process with Membrane Chromatography. Journal of Clinical Medicine, 2021, 10, 552.	1.0	6
755	Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomedical Materials (Bristol), 2021, 16, 022011.	1.7	6
756	Innovative Bioconjugation Technology for Antibody–Drug Conjugates: Proof of Concept in a CD30-Positive Lymphoma Mouse Model. Bioconjugate Chemistry, 2021, 32, 595-606.	1.8	13
758	Glucagon Like Peptide 1 Receptor Agonists for Targeted Delivery of Antisense Oligonucleotides to Pancreatic Beta Cell. Journal of the American Chemical Society, 2021, 143, 3416-3429.	6.6	39
759	Improving Antibodyâ€Tubulysin Conjugates through Linker Chemistry and Siteâ€Specific Conjugation. ChemMedChem, 2021, 16, 1077-1081.	1.6	7
760	s-Triazine: A Privileged Structure for Drug Discovery and Bioconjugation. Molecules, 2021, 26, 864.	1.7	31
761	Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations. Cancers, 2021, 13, 669.	1.7	57
762	A "ligand-targeting―peptide-drug conjugate: Targeted intracellular drug delivery by VEGF-binding helix-loop-helix peptides via receptor-mediated endocytosis. PLoS ONE, 2021, 16, e0247045.	1.1	8
763	Guanylyl cyclase C as a biomarker for immunotherapies for the treatment of gastrointestinal malignancies. Biomarkers in Medicine, 2021, 15, 201-217.	0.6	1
764	Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia, 2021, 23, 210-221.	2.3	29
765	Identification and Therapeutic Targeting of GPR20, Selectively Expressed in Gastrointestinal Stromal Tumors, with DS-6157a, a First-in-Class Antibody–Drug Conjugate. Cancer Discovery, 2021, 11, 1508-1523.	7.7	20
766	Targeted immunotherapy for HER2-low breast cancer with 17p loss. Science Translational Medicine, 2021, 13, .	5.8	14
767	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. Journal of Medicinal Chemistry, 2021, 64, 2534-2575.	2.9	79

#	Article	IF	CITATIONS
768	Nanoâ€Oncologicals: A Tortoise Trail Reaching New Avenues. Advanced Functional Materials, 2021, 31, 2009860.	7.8	13
769	Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview. Journal of the Egyptian National Cancer Institute, 2021, 33, 4.	0.6	12
770	Glossary and tutorial of xenobiotic metabolism terms used during small molecule drug discovery and development (IUPAC Technical Report). Pure and Applied Chemistry, 2021, 93, 273-403.	0.9	3
771	What makes a good antibody–drug conjugate?. Expert Opinion on Biological Therapy, 2021, 21, 841-847.	1.4	22
772	The B7-H3–Targeting Antibody–Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clinical Cancer Research, 2021, 27, 2938-2946.	3.2	55
773	Reversible HER2 antibody-drug conjugate–induced ocular toxicity. Canadian Journal of Ophthalmology, 2021, , .	0.4	7
774	Tandem-Cleavage Linkers Improve the In Vivo Stability and Tolerability of Antibody–Drug Conjugates. Bioconjugate Chemistry, 2021, 32, 746-754.	1.8	23
775	Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnology Advances, 2021, 47, 107683.	6.0	20
776	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
777	An Engineered Arginine Residue of Unusual pH-Sensitive Reactivity Facilitates Site-Selective Antibody Conjugation. Biochemistry, 2021, 60, 1080-1087.	1.2	5
778	Stability of antibody drug conjugate formulations evaluated using solid-state hydrogen-deuterium exchange mass spectrometry. Journal of Pharmaceutical Sciences, 2021, 110, 2379-2385.	1.6	5
779	Harnessing molecular recognition for localized drug delivery. Advanced Drug Delivery Reviews, 2021, 170, 238-260.	6.6	15
780	Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies, 2021, 10, 13.	1.2	21
781	DYRK1A Inhibitors as Potential Therapeutics for \hat{I}^2 -Cell Regeneration for Diabetes. Journal of Medicinal Chemistry, 2021, 64, 2901-2922.	2.9	38
782	Endoglin in the Spotlight to Treat Cancer. International Journal of Molecular Sciences, 2021, 22, 3186.	1.8	15
783	Functionalized Biodegradable Polymers via Termination of Ring-Opening Polymerization by Acyl Chlorides. Polymers, 2021, 13, 868.	2.0	3
784	The Dolaflexin-based Antibody–Drug Conjugate XMT-1536 Targets the Solid Tumor Lineage Antigen SLC34A2/NaPi2b. Molecular Cancer Therapeutics, 2021, 20, 896-905.	1.9	25
785	Exatecan Antibody Drug Conjugates Based on a Hydrophilic Polysarcosine Drug-Linker Platform. Pharmaceuticals, 2021, 14, 247.	1.7	27

#	Article	IF	Citations
786	Automated and Faster Affinity Capture Method for Biotransformation Assessment of Site-Specific Antibody Drug Conjugates. Analytical Chemistry, 2021, 93, 5371-5376.	3.2	9
787	Calicheamicin Antibody–Drug Conjugates with Improved Properties. Molecular Cancer Therapeutics, 2021, 20, 1112-1120.	1.9	15
788	Monomethyl Auristatin E Grafted-Liposomes to Target Prostate Tumor Cell Lines. International Journal of Molecular Sciences, 2021, 22, 4103.	1.8	5
789	Antibody Glycoengineering and Homogeneous Antibodyâ€Drug Conjugate Preparation. Chemical Record, 2021, 21, 3005-3014.	2.9	12
790	Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Advanced Drug Delivery Reviews, 2021, 171, 77-93.	6.6	6
791	Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. Journal of the American Society for Mass Spectrometry, 2021, 32, 1861-1885.	1.2	27
792	Unleashing the Power of Bond Cleavage Chemistry in Living Systems. ACS Central Science, 2021, 7, 929-943.	5.3	112
793	The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021, 5, 951-967.	11.6	539
794	Toward Homogenous Antibody Drug Conjugates Using Enzyme-Based Conjugation Approaches. Pharmaceuticals, 2021, 14, 343.	1.7	16
795	Combretastatin A4-derived payloads for antibody-drug conjugates. European Journal of Medicinal Chemistry, 2021, 216, 113355.	2.6	7
796	Antibody–drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Scientific Reports, 2021, 11, 7347.	1.6	23
797	PdCl ₂ /DMSO-Catalyzed Thiol–Disulfide Exchange: Synthesis of Unsymmetrical Disulfide. Organic Letters, 2021, 23, 3167-3172.	2.4	24
798	JAC1 suppresses proliferation of breast cancer through the JWA/p38/SMURF1/HER2 signaling. Cell Death Discovery, 2021, 7, 85.	2.0	12
799	The Masking Game: Design of Activatable Antibodies and Mimetics for Selective Therapeutics and Cell Control. ACS Central Science, 2021, 7, 724-738.	5.3	41
800	Switchable CAR-T Cells Outperformed Traditional Antibody-Redirected Therapeutics Targeting Breast Cancers. ACS Synthetic Biology, 2021, 10, 1176-1183.	1.9	15
801	Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Frontiers in Chemistry, 2021, 9, 659845.	1.8	24
802	Synthesis and Study Antibacterial Activity of Some New Polymers Containing Maleimide Group. Journal of Physics: Conference Series, 2021, 1879, 022070.	0.3	0
803	The cytotoxic conjugate of highly internalizing tetravalent antibody for targeting FGFR1-overproducing cancer cells. Molecular Medicine, 2021, 27, 46.	1.9	14

#	Article	IF	CITATIONS
804	Protein–Antibody Conjugates (PACs): A Plugâ€andâ€Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angewandte Chemie, 2021, 133, 12923-12928.	1.6	1
805	Spliceostatins and Derivatives: Chemical Syntheses and Biological Properties of Potent Splicing Inhibitors. Journal of Natural Products, 2021, 84, 1681-1706.	1.5	13
806	Antibodyâ€drug conjugate MORAbâ€202 exhibits longâ€lasting antitumor efficacy in TNBC PDx models. Cancer Science, 2021, 112, 2467-2480.	1.7	16
807	Antibodyâ€Drugâ€Conjugate Therapy for Hematological Cancers: Matching Cell Biology with Clinical Benefit. Advanced Functional Materials, 2021, 31, 2100032.	7.8	2
808	ASN004, A 5T4-targeting scFv-Fc Antibody–Drug Conjugate with High Drug-to-Antibody Ratio, Induces Complete and Durable Tumor Regressions in Preclinical Models. Molecular Cancer Therapeutics, 2021, 20, 1327-1337.	1.9	7
809	Protein–Antibody Conjugates (PACs): A Plugâ€andâ€Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angewandte Chemie - International Edition, 2021, 60, 12813-12818.	7.2	14
810	Site-Specific Conjugation of Metal-Chelating Polymers to Anti-Frizzled-2 Antibodies via Microbial Transglutaminase. Biomacromolecules, 2021, 22, 2491-2504.	2.6	0
811	Design considerations of an IL13Rα2 antibody–drug conjugate for diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 2021, 9, 88.	2.4	13
812	Visualization of Intratumor Pharmacokinetics of [fam-] Trastuzumab Deruxtecan (DS-8201a) in HER2 Heterogeneous Model Using Phosphor-integrated Dots Imaging Analysis. Clinical Cancer Research, 2021, 27, 3970-3979.	3.2	15
813	The Expanding Role of Chemistry in Optimizing Proteins for Human Health Applications. Journal of Medicinal Chemistry, 2021, 64, 7179-7188.	2.9	8
814	CD147 Monoclonal Antibody Targeted Reduction-Responsive Camptothecin Polyphosphoester Nanomedicine for Drug Delivery in Hepatocellular Carcinoma Cells. ACS Applied Bio Materials, 2021, 4, 4422-4431.	2.3	17
815	Antibody-based cancer therapy. Oncogene, 2021, 40, 3655-3664.	2.6	42
816	An anti‑TROP2 monoclonal antibody TrMab‑6 exerts antitumor activity in breast cancer mouse xenograft models. Oncology Reports, 2021, 46, .	1,2	18
817	Antibody–Drug Conjugates—A Tutorial Review. Molecules, 2021, 26, 2943.	1.7	96
818	A Simple and Efficient Method to Generate Dual Site-Specific Conjugation ADCs with Cysteine Residue and an Unnatural Amino Acid. Bioconjugate Chemistry, 2021, 32, 1094-1104.	1.8	12
819	State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals, 2021, 14, 498.	1.7	16
820	Target-responsive subcellular catabolism analysis for early-stage antibody–drug conjugates screening and assessment. Acta Pharmaceutica Sinica B, 2021, 11, 4020-4031.	5.7	3
821	Immunoconjugates for Cancer Targeting: A Review of Antibody-Drug Conjugates and Antibody-Functionalized Nanoparticles. Current Medicinal Chemistry, 2021, 28, 2485-2520.	1,2	18

#	Article	IF	CITATIONS
822	Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chemical Reviews, 2021, 121, 6802-6849.	23.0	42
824	Cysteine-Based Coupling: Challenges and Solutions. Bioconjugate Chemistry, 2021, 32, 1525-1534.	1.8	18
825	Antibody–Drug Conjugates for the Treatment of Breast Cancer. Cancers, 2021, 13, 2898.	1.7	34
827	The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Medicine, 2021, 10, 4677-4696.	1.3	25
828	New Therapeutic Strategies in Advanced Nonoperable or Metastatic HER2-positive Breast Cancer. Geburtshilfe Und Frauenheilkunde, 2021, 81, 666-678.	0.8	1
829	Internalization of Foldamer-Based DNA Mimics through a Site-Specific Antibody Conjugate to Target HER2-Positive Cancer Cells. Pharmaceuticals, 2021, 14, 624.	1.7	6
830	Monoclonal Antibodies, Small Molecule Inhibitors and Antibody-drug Conjugates as HER2 Inhibitors. Current Medicinal Chemistry, 2021, 28, 3339-3360.	1.2	5
831	Regulating the Anticancer Efficacy of Sgc8–Combretastatin A4 Conjugates: A Case of Recognizing the Significance of Linker Chemistry for the Design of Aptamer-Based Targeted Drug Delivery Strategies. Journal of the American Chemical Society, 2021, 143, 8559-8564.	6.6	27
832	The Evolving Landscape of Antibody–Drug Conjugates for Urothelial Carcinoma. Clinical Genitourinary Cancer, 2021, 19, 183-193.	0.9	6
834	Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. Journal of Hematology and Oncology, 2021, 14, 88.	6.9	41
835	Monoclonal Antibody-conjugated Polyphosphoester-hyd-DOX Prodrug Nanoparticles for Targeted Chemotherapy of Liver Cancer Cells. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1392-1402.	2.0	14
836	Antibody-Drug Conjugates Used in Breast Cancers. Journal of Oncology, 2021, 2021, 1-7.	0.6	3
837	Preclinical evaluation of a novel antibody-drug conjugate targeting DR5 for lymphoblastic leukemia therapy. Molecular Therapy - Oncolytics, 2021, 21, 329-339.	2.0	6
838	Recent Advances in Single-Cell Profiling and Multispecific Therapeutics: Paving the Way for a New Era of Precision Medicine Targeting Cardiac Fibroblasts. Current Cardiology Reports, 2021, 23, 82.	1.3	3
839	Site-Specifically-Labeled Antibodies for Super-Resolution Microscopy Reveal <i>In Situ</i> Linkage Errors. ACS Nano, 2021, 15, 12161-12170.	7.3	38
840	Predictive Platforms of Bond Cleavage and Drug Release Kinetics for Macromolecule–Drug Conjugates. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 241-261.	3.3	7
841	Advances and Limitations of Antibody Drug Conjugates for Cancer. Biomedicines, 2021, 9, 872.	1.4	63
842	Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)—A Necessity for Future ADC Research and Development. Pharmaceuticals, 2021, 14, 674.	1.7	26

#	Article	IF	CITATIONS
843	Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorganic Chemistry, 2021, 112, 104946.	2.0	33
844	Antibody Drug Conjugates in Lung Cancer: State of the Current Therapeutic Landscape and Future Developments. Clinical Lung Cancer, 2021, 22, 483-499.	1.1	11
845	Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angewandte Chemie, 2021, 133, 19957-19965.	1.6	2
846	Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies, 2021, 10, 30.	1.2	13
847	Sterically Bulky Caging of Transferrin for Photoactivatable Intracellular Delivery. Bioconjugate Chemistry, 2021, 32, 1535-1540.	1.8	4
848	Eradicating mesothelin-positive human gastric and pancreatic tumors in xenograft models with optimized anti-mesothelin antibody–drug conjugates from synthetic antibody libraries. Scientific Reports, 2021, 11, 15430.	1.6	5
849	A new immunochemical strategy for triple-negative breast cancer therapy. Scientific Reports, 2021, 11, 14875.	1.6	6
850	Site-Specific Quantitation of Drug Conjugations on Antibody–Drug Conjugates (ADCs) Using a Protease-Assisted Drug Deconjugation and Linker-like Labeling (PADDLL) Method. Analytical Chemistry, 2021, 93, 9549-9558.	3.2	3
851	Preclinical evaluation of MRG002, a novel HER2-targeting antibody-drug conjugate with potent antitumor activity against HER2-positive solid tumors. Antibody Therapeutics, 2021, 4, 175-184.	1.2	14
852	Incorporating PSMA-Targeting Theranostics Into Personalized Prostate Cancer Treatment: a Multidisciplinary Perspective. Frontiers in Oncology, 2021, 11, 722277.	1.3	5
853	Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angewandte Chemie - International Edition, 2021, 60, 19804-19812.	7.2	21
854	Preferential light-chain labeling of native monoclonal antibodies improves the properties of fluorophore conjugates. Tetrahedron Letters, 2021, 75, 153211.	0.7	3
855	Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Delivery and Translational Research, 2022, 12, 1293-1305.	3.0	11
856	Emerging therapies for relapsed/refractory multiple myeloma: CAR-T and beyond. Journal of Hematology and Oncology, 2021, 14, 115.	6.9	13
857	Site-Specific Antibody Conjugation to Engineered Double Cysteine Residues. Pharmaceuticals, 2021, 14, 672.	1.7	10
858	Rational Design of Programmable Monodisperse Semiâ€Synthetic Protein Nanomaterials Containing Engineered Disulfide Functionality**. ChemBioChem, 2021, 22, 2966-2972.	1.3	3
859	Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. International Journal of Molecular Sciences, 2021, 22, 9451.	1.8	67
860	Protease-Activation of Fc-Masked Therapeutic Antibodies to Alleviate Off-Tumor Cytotoxicity. Frontiers in Immunology, 2021, 12, 715719.	2.2	7

#	Article	IF	CITATIONS
861	One-Pot Conversion of Free Sialoglycans to Functionalized Glycan Oxazolines and Efficient Synthesis of Homogeneous Antibody–Drug Conjugates through Site-Specific Chemoenzymatic Glycan Remodeling. Bioconjugate Chemistry, 2021, 32, 1888-1897.	1.8	18
862	Aptamerâ€PROTAC Conjugates (APCs) for Tumorâ€Specific Targeting in Breast Cancer. Angewandte Chemie - International Edition, 2021, 60, 23299-23305.	7.2	117
863	Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 12341-12354.	3.2	17
864	An Ionic Liquid Medium Enables Development of a Phosphine-Mediated Amine–Azide Bioconjugation Method. Journal of the American Chemical Society, 2021, 143, 12974-12979.	6.6	9
865	Antibody–Drug Conjugates for the Treatment of Acute Pediatric Leukemia. Journal of Clinical Medicine, 2021, 10, 3556.	1.0	14
866	In-situ Reverse Phased HPLC Analysis of Intact Antibody-Drug Conjugates. Analytical Sciences, 2021, 37, 1171-1176.	0.8	16
867	Aptamerâ€PROTAC Conjugates (APCs) for Tumorâ€Specific Targeting in Breast Cancer. Angewandte Chemie, 2021, 133, 23487-23493.	1.6	10
868	Supramolecular "Click Chemistry―for Targeting in the Body. Bioconjugate Chemistry, 2021, 32, 1935-1946.	1.8	20
869	Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Frontiers in Pharmacology, 2021, 12, 702611.	1.6	33
870	Genetic Code Expansion in the Engineered Organism Vmax X2: High Yield and Exceptional Fidelity. ACS Central Science, 2021, 7, 1500-1507.	5.3	9
871	Recent Advances in the Delivery Carriers and Chemical Conjugation Strategies for Nucleic Acid Drugs. Cancers, 2021, 13, 3881.	1.7	10
872	Attaching palladium catalysts to antibodies. Bioorganic and Medicinal Chemistry, 2021, 44, 116298.	1.4	4
873	Interconversion of Unexpected Thiol States Affects the Stability, Structure, and Dynamics of Antibody Engineered for Site-Specific Conjugation. Bioconjugate Chemistry, 2021, 32, 1834-1844.	1.8	3
874	A Deep Eutectic Solventâ€Based Approach to Intravenous Formulation. Advanced Healthcare Materials, 2021, 10, e2100585.	3.9	13
875	Dendrimers for cancer immunotherapy: Avidityâ€based drug delivery vehicles for effective antiâ€tumor immune response. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1752.	3.3	13
876	Biotin as a Reactive Handle to Selectively Label Proteins and DNA with Small Molecules. ACS Chemical Biology, 2021, , .	1.6	5
877	Sequence-Defined Synthetic Polymers for New-Generation Functional Biomaterials., 2021, 3, 1339-1356.		28
878	Daratumumab Immunopolymersomeâ€Enabled Safe and CD38‶argeted Chemotherapy and Depletion of Multiple Myeloma. Advanced Materials, 2021, 33, e2007787.	11.1	25

#	Article	IF	CITATIONS
879	Improving Tumor Penetration of Antibodies and Antibody–Drug Conjugates: Taking Away the Barriers for Trojan Horses. Cancer Research, 2021, 81, 3956-3957.	0.4	4
880	Using multimodal chromatography for post-conjugation antibody-drug conjugate purification: A methodology from high throughput screening to in-silico process development. Journal of Chromatography A, 2021, 1653, 462378.	1.8	4
882	Generation of Antibody-Drug Conjugate Resistant Models. Cancers, 2021, 13, 4631.	1.7	6
883	Dichloro Butenediamides as Irreversible Siteâ€Selective Protein Conjugation Reagent. Angewandte Chemie, 2021, 133, 23943.	1.6	2
884	An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules, 2021, 26, 5847.	1.7	158
885	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	5.2	31
886	Pyrimidyn based dynamin inhibitors as novel cytotoxic agents. ChemMedChem, 2021, , .	1.6	1
887	Antibody nanocarriers for cancer management. Current Opinion in Biomedical Engineering, 2021, 19, 100295.	1.8	1
888	Adcitmer [®] , a new CD56â€targeting monomethyl auristatin Eâ€conjugated antibody, is a potential therapeutic approach in Merkel cell carcinoma*. British Journal of Dermatology, 2022, 186, 295-306.	1.4	9
889	Polyethylene glycol-based linkers as hydrophilicity reservoir for antibody-drug conjugates. Journal of Controlled Release, 2021, 337, 431-447.	4.8	15
890	Factors influencing the choice of monoclonal antibodies for antibody–drug conjugates. Drug Discovery Today, 2022, 27, 354-361.	3.2	13
891	Drug-to-Antibody Ratio Estimation via Proteoform Peak Integration in the Analysis of Antibody–Oligonucleotide Conjugates with Orbitrap Fourier Transform Mass Spectrometry. Analytical Chemistry, 2021, 93, 12930-12937.	3.2	15
892	Antibody–drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clinical and Translational Oncology, 2022, 24, 407-431.	1.2	6
893	General and Robust Chemoenzymatic Method for Glycan-Mediated Site-Specific Labeling and Conjugation of Antibodies: Facile Synthesis of Homogeneous Antibody–Drug Conjugates. ACS Chemical Biology, 2021, 16, 2502-2514.	1.6	24
894	Insights into Comparative Modeling of VHH Domains. International Journal of Molecular Sciences, 2021, 22, 9771.	1.8	3
895	Dichloro Butenediamides as Irreversible Siteâ€Selective Protein Conjugation Reagent. Angewandte Chemie - International Edition, 2021, 60, 23750-23755.	7.2	15
896	Comparison of analytical methods for antibody conjugates with application in nuclear imaging – Report from the trenches. Nuclear Medicine and Biology, 2021, 102-103, 24-33.	0.3	1
897	Immune Therapies for Hematologic Malignancies. Cancers, 2021, 13, 295.	1.7	0

#	Article	IF	CITATIONS
898	A dual-enzyme cleavable linker for antibody–drug conjugates. Chemical Communications, 2021, 57, 3457-3460.	2.2	16
899	A short PEG linker alters the <i>in vivo</i> pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. Journal of Materials Chemistry B, 2021, 9, 2993-2997.	2.9	8
900	Research Progress of Antibody-Drug Conjugate. Advances in Clinical Medicine, 2021, 11, 4135-4143.	0.0	2
901	Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics, 2021, 11, 5525-5538.	4.6	33
902	Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20, 200-216.	21.5	1,990
903	Antitumour immunity regulated by aberrant ERBB family signalling. Nature Reviews Cancer, 2021, 21, 181-197.	12.8	141
904	Late-stage modification of peptides and proteins at cysteine with diaryliodonium salts. Chemical Science, 2021, 12, 14159-14166.	3.7	10
905	A New Target for Hodgkin Lymphoma - Camidanlumab Tesirine. Current Hematologic Malignancy Reports, 2021, 16, 19-24.	1.2	5
906	Homing Peptides for Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 29-48.	0.8	21
907	Immunoconjugates as immune canoes to kill breast cancer cells. , 2021, , 11-31.		1
908	Preparation of an antigen-responsive fluorogenic immunosensor by tyrosine chemical modification of the antibody complementarity determining region. Chemical Communications, 2021, 57, 9760-9763.	2.2	7
909	Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles. Materials Advances, 2021, 2, 7101-7117.	2.6	4
910	Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Organic and Biomolecular Chemistry, 2021, 19, 7737-7753.	1.5	32
911	Bio onjugated Advanced Materials for Targeted Disease Theranostics. Advanced Functional Materials, 2020, 30, 1907906.	7.8	51
912	Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angewandte Chemie, 2017, 129, 12655-12659.	1.6	71
913	Site-Specific Conjugation of Thiol-Reactive Cytotoxic Agents to Nonnative Cysteines of Engineered Monoclonal Antibodies. Methods in Molecular Biology, 2019, 2033, 1-14.	0.4	5
914	Site-Specific Bioconjugation Using SMARTag® Technology: A Practical and Effective Chemoenzymatic Approach to Generate Antibody–Drug Conjugates. Methods in Molecular Biology, 2019, 2033, 131-147.	0.4	5
915	Homogeneous Antibody–Drug Conjugates via Glycoengineering. Methods in Molecular Biology, 2019, 2033, 221-238.	0.4	4

#	Article	IF	CITATIONS
916	Site-Specific Photocrosslinking to Immunoglobulin G Using Photoreactive Antibody-Binding Domains. Methods in Molecular Biology, 2019, 2033, 275-286.	0.4	5
917	Engineering Dual Variable Domains for the Generation of Site-Specific Antibody–Drug Conjugates. Methods in Molecular Biology, 2019, 2033, 39-52.	0.4	8
918	Drug Loading and Distribution of ADCs After Reduction or IdeS Digestion and Reduction. Methods in Molecular Biology, 2020, 2078, 187-195.	0.4	2
919	Characterization of the Primary Structure of Cysteine-Linked Antibody-Drug Conjugates Using Capillary Electrophoresis with Mass Spectrometry. Methods in Molecular Biology, 2020, 2078, 263-272.	0.4	3
920	Click Chemistry Conjugations. Methods in Molecular Biology, 2020, 2078, 83-97.	0.4	14
921	Antibody Conjugations via Glycosyl Remodeling. Methods in Molecular Biology, 2020, 2078, 131-145.	0.4	11
922	Resistance to Antibody-Drug Conjugate. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 57-69.	0.1	2
923	Structure-Based Antibody Paratope Prediction with 3D Zernike Descriptors and SVM. Lecture Notes in Computer Science, 2020, , 27-49.	1.0	3
924	Antibody–Drug Conjugates. Learning Materials in Biosciences, 2021, , 189-214.	0.2	1
925	HER2-positive advanced breast cancer treatment in 2020. Cancer Treatment Reviews, 2020, 88, 102033.	3.4	70
926	Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. Journal of Pharmaceutical Analysis, 2020, 10, 209-220.	2.4	39
927	The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation., 2020, 212, 107574.		19
928	Development of Anti-CD74 Antibody–Drug Conjugates to Target Glucocorticoids to Immune Cells. Bioconjugate Chemistry, 2018, 29, 2357-2369.	1.8	38
929	Nanomedicine-mediated alteration of the pharmacokinetic profile of small molecule cancer immunotherapeutics. Acta Pharmacologica Sinica, 2020, 41, 881-894.	2.8	19
930	Pyrrolobenzodiazepine Dimers as Antibody–Drug Conjugate (ADC) Payloads. RSC Drug Discovery Series, 2019, , 296-331.	0.2	4
931	Occupational Health and Safety Considerations for the Handling and Manufacture of Antibody–Drug Conjugate (ADC) Payloads. RSC Drug Discovery Series, 2019, , 439-460.	0.2	1
932	One-pot thiol–amine bioconjugation to maleimides: simultaneous stabilisation and dual functionalisation. Chemical Science, 2020, 11, 11455-11460.	3.7	15
933	Identification and characterization of adipose surface epitopes. Biochemical Journal, 2020, 477, 2509-2541.	1.7	9

#	Article	IF	Citations
938	Immunotherapy with Immunocytokines and PD-1 Blockade Enhances the Anticancer Activity of Small Molecule-Drug Conjugates Targeting Carbonic Anhydrase IX. Molecular Cancer Therapeutics, 2021, 20, 512-522.	1.9	7
939	Tofacitinib enhances delivery of antibody-based therapeutics to tumor cells through modulation of inflammatory cells. JCI Insight, 2019, 4, .	2.3	17
940	Deadly DAaRTS destroy cancer cells via a tumor microenvironment–mediated trigger. Journal of Clinical Investigation, 2018, 128, 2750-2753.	3.9	8
941	Enfortumab Vedotin in urothelial cancer. Therapeutic Advances in Urology, 2020, 12, 175628722098019.	0.9	24
942	Indium-111-labeled CD166-targeted peptide as a potential nuclear imaging agent for detecting colorectal cancer stem-like cells in a xenograft mouse model. EJNMMI Research, 2020, 10, 13.	1.1	5
943	Polatuzumab vedotin to treat relapsed or refractory diffuse large B-cell lymphoma, in combination with bendamustine plus rituximab. Drugs of Today, 2020, 56, 287.	0.7	5
944	Targeting CD74 in multiple myeloma with the novel, site-specific antibody-drug conjugate STRO-001. Oncotarget, 2018, 9, 37700-37714.	0.8	39
945	Biodistribution and efficacy of an anti-TENB2 antibody-drug conjugate in a patient-derived model of prostate cancer. Oncotarget, 2019, 10, 6234-6244.	0.8	11
946	Antibody-drug conjugate targeting protein tyrosine kinase 7, a receptor tyrosine kinase-like molecule involved in WNT and vascular endothelial growth factor signaling: effects on cancer stem cells, tumor microenvironment and whole-body homeostasis. Annals of Translational Medicine, 2017, 5, 462-462.	0.7	24
947	Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Current Medicinal Chemistry, 2019, 26, 5664-5683.	1.2	11
948	ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Current Drug Delivery, 2020, 17, 23-51.	0.8	16
949	Bioorthogonal Prodrug–Antibody Conjugates for On-Target and On-Demand Chemotherapy. CCS Chemistry, 2019, 1, 226-236.	4.6	22
950	Next-generation Antibody-drug Conjugates (ADCs): Exploring New Frontiers with Chemical Approaches. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 503-515.	0.0	1
951	Activation of a G protein-coupled receptor through indirect antibody-mediated tethering of ligands. RSC Chemical Biology, 2021, 2, 1692-1700.	2.0	13
952	The Hallmarks of Ovarian Cancer: Actionable Genetics, Targetable Pathways, and Predictive Biomarkers., 2021,, 59-133.		0
954	Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines, 2021, 9, 1111.	2.1	22
955	Lateâ€Stage Amination of Drugâ€Like Benzoic Acids: Access to Anilines and Drug Conjugates through Directed Iridiumâ€Catalyzed Câ°'H Activation. Chemistry - A European Journal, 2021, 27, 18188-18200.	1.7	22
956	Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Scientific Reports, 2021, 11, 20358.	1.6	45

#	Article	IF	CITATIONS
957	Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules, 2021, 26, 6042.	1.7	40
958	Brain Cancer Drug Discovery: Clinical Trials, Drug Classes, Targets, and Combinatorial Therapies. Pharmacological Reviews, 2021, 73, 1172-1203.	7.1	13
959	Selective and predicable amine conjugation sites by kinetic characterization under excess reagents. Scientific Reports, 2021, 11, 21222.	1.6	2
960	Dualâ€ŧargeting Circular Aptamer Strategy Enabled Recognition of Different Leukemia Cells with Enhanced Binding Ability. Angewandte Chemie, 0, , .	1.6	0
961	Tackling metastatic triple-negative breast cancer with sacituzumab govitecan. Expert Review of Anticancer Therapy, 2021, 21, 1303-1311.	1.1	8
962	A Dualâ€Targeting Circular Aptamer Strategy Enables the Recognition of Different Leukemia Cells with Enhanced Binding Ability. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
963	Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics, 2021, 13, 1705.	2.0	11
964	Discovery of targeted expression data for novel antibody-based and chimeric antigen receptor-based therapeutics in soft tissue sarcomas using RNA-sequencing: clinical implications. Current Problems in Cancer, 2021, 45, 100794.	1.0	4
965	Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. Journal of Controlled Release, 2021, 340, 1-34.	4.8	11
967	One-Step Fluorescent Protein Labeling by Tubulin Tyrosine Ligase. Methods in Molecular Biology, 2019, 2033, 167-189.	0.4	2
968	Splicing Inhibitors as Antibody–Drug Conjugate (ADC) Payloads. RSC Drug Discovery Series, 2019, , 364-379.	0.2	0
969	Traditional Cytotoxic Agents as Antibody–Drug Conjugate (ADC) Payloads. RSC Drug Discovery Series, 2019, , 137-165.	0.2	0
970	Indolinobenzodiazepine Dimers (IGNs) as Antibody–Drug Conjugate (ADC) Payloads. RSC Drug Discovery Series, 2019, , 332-348.	0.2	0
972	Design Factors Important for Antibody–Drug Conjugate (ADC) Payloads. RSC Drug Discovery Series, 2019, , 31-56.	0.2	0
978	Two-Dimensional Liquid Chromatography Coupled to High-Resolution Mass Spectrometry for the Analysis of ADCs. Methods in Molecular Biology, 2020, 2078, 163-185.	0.4	1
979	Discovery and Chemical Development of Tesirine: An Antitumor Pyrrolobenzodiazepine Antibody-Drug Conjugate Drug-Linker. ACS Symposium Series, 2020, , 215-252.	0.5	1
980	AJICAPâ,,¢: Development of a Chemical Site-Specific Conjugation Technology for Antibody-Drug Conjugates. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 495-502.	0.0	0
981	Anti-Tumour Drugs: Planning Preclinical Efficacy and Safety Studies. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products, 2020, 10, 96-110.	0.1	3

#	Article	IF	CITATIONS
982	Attempts to synthesize homogeneous glycan-conjugated antibody-drug conjugates. Translational and Regulatory Sciences, 2020, 2, 84-89.	0.2	0
984	Targeting Fibroblasts in Fibrosis and Cancer. RSC Drug Discovery Series, 2020, , 307-339.	0.2	0
985	Macromolecules and Antibody-Based Drugs. Advances in Experimental Medicine and Biology, 2020, 1248, 485-530.	0.8	3
986	Role of Her-2 in Gastrointestinal Tumours beyond Gastric Cancer: A Tool for Precision Medicine. Gastrointestinal Disorders, 2021, 3, 1-22.	0.4	7
989	Cancer Treatment Modalities Systemic and Locoregional Approaches: Challenges and Opportunities of Multidisciplinary Approaches. , 2021, , 17-37.		1
990	RECEPTOR-MEDIATED ENDOCYTOSIS MODELING OF ANTIBODY-DRUG CONJUGATES TO THE RELEASED PAYLOAD WITHIN THE INTRACELLULAR SPACE CONSIDERING TARGET ANTIGEN EXPRESSION LEVELS. Journal of Applied Analysis and Computation, 2020, 10, 1848-1868.	0.2	0
991	Characterization of ADCs by Capillary Electrophoresis. Methods in Molecular Biology, 2020, 2078, 251-262.	0.4	1
992	Emerging biotechnological approaches with respect to tissue regeneration: from improving biomaterial incorporation to comprehensive omics monitoring., 2020,, 83-112.		1
993	Adsorption of terbium ion on Fc/dymethylacrylamide: application of Monte Carlo simulation. Polimeros, 2020, 30, .	0.2	0
994	Eco-compatible Single Format Nanobioantibody. , 2020, , 113-125.		0
995	Chemische Biologie – Adressierung neuer Wirkstoffziele. , 2020, , 211-231.		0
996	Antibody–drug conjugates, cancer immunotherapy, and metronomic chemotherapy as novel approaches in cancer management. Indian Journal of Pharmacology, 2020, 52, 402.	0.4	2
997	Targeting HER2 Expressing Tumors with a Potent Drug Conjugate Based on an Albumin Binding Domain-Derived Affinity Protein. Pharmaceutics, 2021, 13, 1847.	2.0	4
998	Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjugate Chemistry, 2021, 32, 2397-2406.	1.8	4
999	Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics, 2021, 13, 1890.	2.0	13
1001	Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Research, 2021, 31, 1-17.	0.6	4
1002	Antibody DDS therapeutics against cancer, inflammatory autoimmune and infectious disease. Drug Delivery System, 2020, 35, 356-366.	0.0	0
1003	Macropinocytosis: mechanism and targeted therapy in cancers. American Journal of Cancer Research, 2021, 11, 14-30.	1.4	3

#	ARTICLE	IF	CITATIONS
1004	Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. Ca-A Cancer Journal for Clinicians, 2022, 72, 165-182.	157.7	132
1005	Engineering a Minimal Leucine-rich Repeat IgG-binding Module. Applied Biochemistry and Biotechnology, 2021, , 1.	1.4	3
1006	Bioorthogonal Chemistry and Its Applications. Bioconjugate Chemistry, 2021, 32, 2457-2479.	1.8	121
1007	Clathrin light <scp>chainâ€conjugated</scp> drug delivery for cancer. Bioengineering and Translational Medicine, 2023, 8, e10273.	3.9	2
1008	Proteolysis-targeting chimeras and their implications in breast cancer. Exploration of Targeted Anti-tumor Therapy, 2021, 2, .	0.5	3
1009	Radiolabeled Antibodies for Cancer Radioimmunotherapy. , 2022, , 297-345.		0
1010	Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. Cell Chemical Biology, 2022, 29, 451-462.e8.	2.5	14
1012	An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. Journal of Controlled Release, 2021, 340, 331-341.	4.8	19
1013	Physicochemical and Functional Characterization of HS016, a Biosimilar of Adalimumab (Humira). Journal of Pharmaceutical Sciences, 2022, 111, 1142-1151.	1.6	5
1014	Site-specific construction of triptolide-based antibody-drug conjugates. Bioorganic and Medicinal Chemistry, 2021, 51, 116497.	1.4	5
1015	A branched small molecule-drug conjugate nanomedicine strategy for the targeted HCC chemotherapy. European Journal of Medicinal Chemistry, 2022, 228, 114037.	2.6	6
1016	Communication pathways bridge local and global conformations in an IgG4 antibody. Scientific Reports, 2021, 11, 23197.	1.6	5
1017	Perfluoroaryl and Perfluoroheteroaryl Reagents as Emerging New Tools for Peptide Synthesis, Modification and Bioconjugation. Chemistry - A European Journal, 2022, 28, .	1.7	14
1018	Rapid structural discrimination of IgG antibodies by multicharge-state collision-induced unfolding. RSC Advances, 2021, 11, 36502-36510.	1.7	1
1019	Antibody Conjugation Technologies. RSC Drug Discovery Series, 2021, , 32-70.	0.2	0
1020	Introduction to Antibody–Drug Conjugates. RSC Drug Discovery Series, 2021, , 1-31.	0.2	2
1021	Linker Design and Impact on ADC Properties. RSC Drug Discovery Series, 2021, , 71-135.	0.2	0
1022	Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential., 2022, 236, 108106.		16

#	Article	IF	CITATIONS
1023	Dual intra- and extracellular release of monomethyl auristatin E from a neutrophil elastase-sensitive antibody-drug conjugate. European Journal of Medicinal Chemistry, 2022, 229, 114063.	2.6	7
1024	Development of a sub-hour on-line comprehensive cation exchange chromatography x RPLC method hyphenated to HRMS for the characterization of lysine-linked antibody-drug conjugates. Talanta, 2022, 240, 123174.	2.9	2
1025	Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. Journal of Controlled Release, 2022, 341, 555-565.	4.8	20
1026	Molecular Aspects of Resistance to Immunotherapies—Advances in Understanding and Management of Diffuse Large B-Cell Lymphoma. International Journal of Molecular Sciences, 2022, 23, 1501.	1.8	13
1028	An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. Royal Society Open Science, 2022, 9, 211563.	1.1	25
1029	Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). International Journal of Oncology, 2022, 60, .	1.4	7
1030	Divinylpyrimidine reagents generate antibody–drug conjugates with excellent <i>in vivo</i> efficacy and tolerability. Chemical Communications, 2022, 58, 1962-1965.	2.2	10
1031	The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuliâ€Responsive Drug Delivery Systems. Small Methods, 2022, 6, e2101437.	4.6	63
1032	Novel development strategies and challenges for anti-Her2 antibody-drug conjugates. Antibody Therapeutics, 2022, 5, 18-29.	1.2	8
1033	Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chemical and Pharmaceutical Bulletin, 2022, 70, 95-105.	0.6	3
1034	Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers, 2022, 14, 778.	1.7	13
1035	Development of a DNA aptamer that binds to the complementarity-determining region of therapeutic monoclonal antibody and affinity improvement induced by pH-change for sensitive detection. Biosensors and Bioelectronics, 2022, 203, 114027.	5.3	13
1036	Engineering Enzymeâ€Cleavable Oligonucleotides by Automated Solidâ€Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
1037	Design and Development of Glucocorticoid Receptor Modulators as Immunology Antibody–Drug Conjugate Payloads. Journal of Medicinal Chemistry, 2022, 65, 4500-4533.	2.9	19
1038	Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics, 2022, 14, 396.	2.0	48
1039	Liquid phase separation techniques for the characterization of monoclonal antibodies and bioconjugates. Journal of Chromatography Open, 2022, , 100034.	0.8	2
1040	Engineering Enzymeâ€Cleavable Oligonucleotides by Automated Solidâ€Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angewandte Chemie, 2022, 134, .	1.6	2
1041	Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics, 2022, 11, 200.	1.5	101

#	Article	IF	CITATIONS
1042	Antibody–Pattern Recognition Receptor Agonist Conjugates: A Promising Therapeutic Strategy for Cancer. Advanced Biology, 2022, , 2101065.	1.4	4
1043	CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 49.	3.5	24
1044	Reduced cytotoxicity by mutation of lysine 590 of <i>Pseudomonas</i> exotoxin can be restored in an optimized, lysine-free immunotoxin. Immunotherapy Advances, 2022, 2, .	1.2	0
1045	Rabbit IgG-imprinted nanoMIPs by solid phase synthesis: the effect of cross-linkers on their affinity and selectivity. Journal of Materials Chemistry B, 2022, 10, 6724-6731.	2.9	4
1046	Significance of immunotherapy for human bacterial diseases and antibacterial drug discovery. , 2022, , 129-161.		3
1047	A low molecular weight multifunctional theranostic molecule for the treatment of prostate cancer. Theranostics, 2022, 12, 2335-2350.	4.6	7
1048	Delivery strategies in treatments of leukemia. Chemical Society Reviews, 2022, 51, 2121-2144.	18.7	17
1049	Effect of Inter-Domain Linker Composition on Biodistribution of ABD-Fused Affibody-Drug Conjugates Targeting HER2. Pharmaceutics, 2022, 14, 522.	2.0	2
1050	Antibody-drug Conjugate Targets, Drugs, and Linkers. Current Cancer Drug Targets, 2022, 22, 463-529.	0.8	9
1051	Mini-review: The market growth of diagnostic and therapeutic monoclonal antibodies – SARS CoV-2 as an example. Human Antibodies, 2022, 30, 15-24.	0.6	10
1052	Characteristics, Clinical Differences and Outcomes of Breast Cancer Patients with Negative or Low HER2 Expression. Clinical Breast Cancer, 2022, 22, 391-397.	1.1	34
1053	Antibody-Drug Conjugates in Urothelial Carcinoma: A New Therapeutic Opportunity Moves from Bench to Bedside. Cells, 2022, 11, 803.	1.8	19
1054	Proteolysis-Targeting Chimera (PROTAC): Is the Technology Looking at the Treatment of Brain Tumors?. Frontiers in Cell and Developmental Biology, 2022, 10, 854352.	1.8	9
1055	Bivalent EGFR-Targeting DARPin-MMAE Conjugates. International Journal of Molecular Sciences, 2022, 23, 2468.	1.8	8
1056	Asymmetric, amphiphilic RGD conjugated phthalocyanine for targeted photodynamic therapy of triple negative breast cancer. Signal Transduction and Targeted Therapy, 2022, 7, 64.	7.1	12
1057	Landscape of surfaceome and endocytome in human glioma is divergent and depends on cellular spatial organization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
1058	Site-Selective Antibody–Drug Conjugation by a Proximity-Driven S to N Acyl Transfer Reaction on a Therapeutic Antibody. Journal of Medicinal Chemistry, 2022, 65, 5751-5759.	2.9	8
1059	Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life, 2022, 12, 363.	1.1	1

#	Article	IF	CITATIONS
1060	A Cross Company Perspective on the Assessment of Therapeutic Protein Biotransformation. Drug Metabolism and Disposition, 2022, 50, 846-857.	1.7	8
1061	Current and emerging role of sacituzumab govitecan in the management of urothelial carcinoma. Expert Review of Anticancer Therapy, 2022, 22, 335-341.	1.1	8
1062	Site-Specific Chemoenzymatic Conjugation of High-Affinity M6P Glycan Ligands to Antibodies for Targeted Protein Degradation. ACS Chemical Biology, 2022, 17, 3013-3023.	1.6	23
1063	Antibody mutations favoring <scp>pH</scp> â€dependent binding in solid tumor microenvironments: Insights from largeâ€scale structureâ€based calculations. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1538-1546.	1.5	4
1064	Bioanalytical Methods and Strategic Perspectives Addressing the Rising Complexity of Novel Bioconjugates and Delivery Routes for Biotherapeutics. BioDrugs, 2022, 36, 181-196.	2.2	8
1065	The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections. Frontiers in Microbiology, 2022, 13, 835677.	1,5	25
1066	Liposome-Encapsulated Tiancimycin A Is Active against Melanoma and Metastatic Breast Tumors: The Effect of cRGD Modification of the Liposomal Carrier and Tiancimycin A Dose on Drug Activity and Toxicity. Molecular Pharmaceutics, 2022, 19, 1078-1090.	2.3	9
1067	Antibody drug conjugate: the "biological missile―for targeted cancer therapy. Signal Transduction and Targeted Therapy, 2022, 7, 93.	7.1	361
1068	Engineered protein nanodrug as an emerging therapeutic tool. Nano Research, 2022, 15, 5161-5172.	5.8	19
1069	Development of applicable thiol-linked antibody–drug conjugates with improved stability and therapeutic index. Drug Delivery, 2022, 29, 754-766.	2.5	2
1070	Exploiting Radiation Induction of Antigens in Cancer: Targeted Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 3041.	1.8	2
1071	An Innovative Site-Specific Anti-HER2 Antibody-Drug Conjugate with High Homogeneity and Improved Therapeutic Index. OncoTargets and Therapy, 2022, Volume 15, 331-343.	1.0	4
1072	Advances in tethered photopharmacology for precise optical control of signaling proteins. Current Opinion in Pharmacology, 2022, 63, 102196.	1.7	7
1073	Design, synthesis and biological evaluation of novel nitric oxide donors with antioxidative activity. European Journal of Medicinal Chemistry, 2022, 236, 114331.	2.6	2
1074	Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles. Chemistry of Materials, 2022, 34, 3694-3704.	3.2	4
1075	A Patent Review on FDAâ€Approved Antibodyâ€Drug Conjugates, Their Linkers and Drug Payloads. ChemMedChem, 2022, 17, e202200032.	1.6	29
1076	Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Letters, 2022, 536, 215645.	3.2	7
1077	Targeted Fluorogenic Cyanine Carbamates Enable <i>In Vivo</i> Analysis of Antibody–Drug Conjugate Linker Chemistry. Journal of the American Chemical Society, 2021, 143, 21667-21675.	6.6	15

#	ARTICLE	IF	CITATIONS
1078	Landscape of HER2-low metastatic breast cancer (MBC): results from the Austrian AGMT_MBC-Registry. Breast Cancer Research, 2021, 23, 112.	2.2	75
1080	Pdâ€Catalyzed Atropselective Câ°'H Olefination Promoted by a Transient Directing Group. Advanced Synthesis and Catalysis, 2022, 364, 897-908.	2.1	8
1081	Cetuximab–Polymersome–Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules, 2022, 23, 100-111.	2.6	12
1082	Novel ADCs and Strategies to Overcome Resistance to Anti-HER2 ADCs. Cancers, 2022, 14, 154.	1.7	30
1083	Not your usual drugâ€drug interactions: Monoclonal antibody–based therapeutics may interact with antiseizure medications. Epilepsia, 2022, 63, 271-289.	2.6	6
1085	One-step synthesis of site-specific antibody–drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates. Acta Pharmaceutica Sinica B, 2022, 12, 2417-2428.	5.7	24
1086	PARP inhibitors as single agents and in combination therapy: the most promising treatment strategies in clinical trials for BRCA-mutant ovarian and triple-negative breast cancers. Expert Opinion on Investigational Drugs, 2022, 31, 607-631.	1.9	20
1087	TOP1-DNA Trapping by Exatecan and Combination Therapy with ATR Inhibitor. Molecular Cancer Therapeutics, 2022, 21, 1090-1102.	1.9	13
1088	In Situ Prodrug Activation by an Affibodyâ€Ruthenium Catalyst Hybrid for HER2â€Targeted Chemotherapy. Angewandte Chemie, 2022, 134, .	1.6	4
1089	In Situ Prodrug Activation by an Affibodyâ€Ruthenium Catalyst Hybrid for HER2â€Targeted Chemotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1090	A comprehensive review on antibody-drug conjugates (ADCs) in the treatment landscape of non-small cell lung cancer (NSCLC). Cancer Treatment Reviews, 2022, 106, 102393.	3.4	18
1091	Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [⁸⁹ Zr]Zr-DFO-PEG ₅ -Tz. Bioconjugate Chemistry, 2022, 33, 956-968.	1.8	2
1113	Efficient spontaneous site-selective cysteine-mediated toxin attachment within a structural loop of antibodies. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130155.	1,1	1
1114	Clinical development of antibody-drug conjugates in triple negative breast cancer: can we jump higher?. Expert Opinion on Investigational Drugs, 2022, 31, 633-644.	1.9	2
1115	Development of Cancer Immunotherapies. Cancer Treatment and Research, 2022, 183, 1-48.	0.2	4
1116	Molecular Engineering of Surface Functional Groups Enabling Clinical Translation of Nanoparticle–Drug Conjugates. Chemistry of Materials, 2022, 34, 5344-5355.	3.2	8
1117	Rapid, site-specific labeling of "off-the-shelf―and native serum autoantibodies with T cell–redirecting domains. Science Advances, 2022, 8, eabn4613.	4.7	2
1118	Monitoring In Vivo Performances of Protein–Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging. Journal of Medicinal Chemistry, 2022, 65, 6953-6968.	2.9	6

#	Article	IF	CITATIONS
1119	Contextâ€Dependence of the Reactivity of Cysteine and Lysine Residues. ChemBioChem, 2022, 23, .	1.3	8
1120	The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Advanced Drug Delivery Reviews, 2022, 186, 114316.	6.6	17
1121	Synthesis and Evaluation of Three Azide-Modified Disaccharide Oxazolines as Enzyme Substrates for Single-Step Fc Glycan-Mediated Antibody-Drug Conjugation. Bioconjugate Chemistry, 2022, 33, 1179-1191.	1.8	9
1122	Cysteine metabolic engineering and selective disulfide reduction produce superior antibody-drug-conjugates. Scientific Reports, 2022, 12, 7262.	1.6	4
1123	Spatially resolved cell tagging and surfaceome labeling via targeted photocatalytic decaging. CheM, 2022, 8, 2179-2191.	5.8	19
1124	Rational Design and Systemic Appraisal of an EGFR-Targeting Antibody–Drug Conjugate LR-DM1 for Pancreatic Cancer. Journal of Medicinal Chemistry, 2022, 65, 7141-7153.	2.9	3
1125	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
1126	Pancreatic Cancer: Nucleic Acid Drug Discovery and Targeted Therapy. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
1127	Sculpting a Uniquely Reactive Cysteine Residue for Site-Specific Antibody Conjugation. Bioconjugate Chemistry, 2022, 33, 1192-1200.	1.8	3
1128	A \hat{l}^2 -Cyclodextrin-Albumin Conjugate for Enhancing Therapeutic Efficacy of Cytotoxic Drugs. Bioconjugate Chemistry, 2022, 33, 1138-1144.	1.8	0
1129	A novel strategy for treatment of bladder cancer: Antibody-drug conjugates. Investigative and Clinical Urology, 2022, 63, 373.	1.0	5
1130	Current innovative engineered antibodies. International Review of Cell and Molecular Biology, 2022, , 1-43.	1.6	3
1131	Selection of Payloads for Antibody–Drug Conjugates Targeting Ubiquitously Expressed Tumor-Associated Antigens: a Case Study. AAPS Journal, 2022, 24, .	2.2	2
1132	Highâ€throughput membraneâ€anchored proteome screening reveals <scp>PIEZO1</scp> as a promising antibodyâ€drug target for human esophageal squamous cell carcinoma. Cancer Medicine, 2022, 11, 3700-3713.	1.3	3
1133	Development of Photoremovable Linkers as a Novel Strategy to Improve the Pharmacokinetics of Drug Conjugates and Their Potential Application in Antibody–Drug Conjugates for Cancer Therapy. Pharmaceuticals, 2022, 15, 655.	1.7	1
1134	Substrate Specificity of the Flavoenzyme BhaC ₁ That Converts a C-Terminal Trp to a Hydroxyquinone. Biochemistry, 2023, 62, 378-387.	1.2	3
1135	Research Progress of Antibody–Drug Conjugate Therapy for Advanced Gastric Cancer. Frontiers in Oncology, 0, 12, .	1.3	4
1136	ABBV-011, A Novel, Calicheamicin-Based Antibody–Drug Conjugate, Targets SEZ6 to Eradicate Small Cell Lung Cancer Tumors. Molecular Cancer Therapeutics, 2022, 21, 986-998.	1.9	7

#	Article	IF	CITATIONS
1137	Platform for Orthogonal <i>N</i> -Cysteine-Specific Protein Modification Enabled by Cyclopropenone Reagents. Journal of the American Chemical Society, 2022, 144, 10396-10406.	6.6	33
1138	Efficient synthesis of artificial pharmaceutical solid-phase modules for constructing aptamer-drug conjugates. Bioorganic Chemistry, 2022, 126, 105919.	2.0	2
1139	Research Trend of Publications Concerning Antibody-Drug Conjugate in Solid Cancer: A Bibliometric Study. Frontiers in Pharmacology, 0, 13 , .	1.6	4
1140	A Traceless Siteâ€Specific Conjugation on Native Antibodies Enables Efficient Oneâ€Step Payload Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
1142	Development of and insights from systems pharmacology models of <scp>antibodyâ€drug</scp> conjugates. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 967-990.	1.3	5
1143	Development of disulfide-stabilized Fabs for targeting of antibody-directed nanotherapeutics. MAbs, 2022, 14, .	2.6	2
1144	New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacological Reviews, 2022, 74, 680-713.	7.1	14
1145	A Traceless Siteâ€Specific Conjugation on Native Antibodies Enables Efficient Oneâ€Step Payload Assembly. Angewandte Chemie, 0, , .	1.6	0
1146	Proflavine-Catalysed Trifluoromethylation of \hat{l}',\hat{l}' -Unsaturated Carbonyls. SSRN Electronic Journal, 0, , .	0.4	0
1147	Controlled masking and targeted release of redox-cycling ortho-quinones via a C–C bond-cleaving 1,6-elimination. Nature Chemistry, 2022, 14, 754-765.	6.6	18
1148	Preferential Antibody and Drug Conjugate Targeting of the ADAM10 Metalloprotease in Tumours. Cancers, 2022, 14, 3171.	1.7	2
1149	Generating a Bispecific Antibody Drug Conjugate Targeting PRLR and HER2 with Improving the Internalization. Pharmaceutical Fronts, 2022, 04, e113-e120.	0.4	4
1150	Advances in Diagnosis and Therapy for Bladder Cancer. Cancers, 2022, 14, 3181.	1.7	16
1151	Structure–Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjugate Chemistry, 2022, 33, 1241-1253.	1.8	13
1152	DFTâ€Guided Discovery of Ethynylâ€Triazolylâ€Phosphinates as Modular Electrophiles for Chemoselective Cysteine Bioconjugation and Profiling. Angewandte Chemie, 0, , .	1.6	0
1153	Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release. Bioconjugate Chemistry, 2022, 33, 1474-1484.	1.8	7
1154	Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. Journal of Medicinal Chemistry, 2022, 65, 9507-9530.	2.9	14
1155	Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. ChemBioChem, 2022, 23, .	1.3	23

#	Article	IF	Citations
1157	Antibody–drug conjugates: What drives their progress?. Drug Discovery Today, 2022, 27, 103311.	3.2	9
1158	Preparation of Maleimide-Modified Oligonucleotides from the Corresponding Amines Using <i>N</i> -Methoxycarbonylmaleimide. Bioconjugate Chemistry, 2022, 33, 1254-1260.	1.8	2
1160	DFTâ€Guided Discovery of Ethynylâ€Triazolylâ€Phosphinates as Modular Electrophiles for Chemoselective Cysteine Bioconjugation and Profiling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1161	An Enzymatically Cleavable Tripeptide Linker for Maximizing the Therapeutic Index of Antibody–Drug Conjugates. Molecular Cancer Therapeutics, 2022, 21, 1449-1461.	1.9	11
1162	CD155 in tumor progression and targeted therapy. Cancer Letters, 2022, 545, 215830.	3.2	11
1163	Is antibody-drug conjugate a rising star for clinical treatment of solid tumors? A systematic review and meta-analysis. Critical Reviews in Oncology/Hematology, 2022, 177, 103758.	2.0	2
1164	Nonclinical Efficacy and Safety of CX-2029, an Anti-CD71 Probody–Drug Conjugate. Molecular Cancer Therapeutics, 2022, 21, 1326-1336.	1.9	6
1165	Antibody-Drug Conjugates Containing Payloads from Marine Origin. Marine Drugs, 2022, 20, 494.	2.2	7
1166	Structure-guided and phage-assisted evolution of a therapeutic anti-EGFR antibody to reverse acquired resistance. Nature Communications, 2022, 13, .	5.8	10
1167	Conditionally active T cell engagers for the treatment of solid tumors: rationale and clinical development. Expert Opinion on Biological Therapy, 2022, 22, 955-963.	1.4	3
1168	Intra-Domain Cysteines (IDC), a New Strategy for the Development of Original Antibody Fragment–Drug Conjugates (FDCs). Pharmaceutics, 2022, 14, 1524.	2.0	4
1169	Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics, 2022, 14, 1522.	2.0	11
1170	Switching positions: Assessing the dynamics of conjugational heterogeneity in antibody–drug conjugates using CEâ€SDS. Electrophoresis, 0, , .	1.3	1
1172	Manipulating Cell Fates with Protein Conjugates. Bioconjugate Chemistry, 2022, 33, 1771-1784.	1.8	3
1173	A Bright Horizon: Immunotherapy for Pediatric T-Cell Malignancies. International Journal of Molecular Sciences, 2022, 23, 8600.	1.8	6
1174	The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates. Pharmaceutics, 2022, 14, 1707.	2.0	12
1175	An update on antibody–drug conjugates in urothelial carcinoma: state of the art strategies and what comes next. Cancer Chemotherapy and Pharmacology, 2022, 90, 191-205.	1.1	4
1176	Targeting FLT3 with a new-generation antibody-drug conjugate in combination with kinase inhibitors for treatment of AML. Blood, 2023, 141, 1023-1035.	0.6	4

#	Article	IF	Citations
1177	A Hoechst Reporter Enables Visualization of Drug Engagement <i>In Vitro</i> and <i>In Vivo</i> Toward Safe and Effective Nanodrug Delivery. ACS Nano, 2022, 16, 12290-12304.	7.3	9
1178	Nearâ€infraredâ€induced drug release from antibody–drug double conjugates exerts a cytotoxic photoâ€bystander effect. Bioengineering and Translational Medicine, 2022, 7, .	3.9	5
1179	Design, Synthesis, and Bioevaluation of a Novel Hybrid Molecular Pyrrolobenzodiazepine–Anthracenecarboxyimide as a Payload for Antibody–Drug Conjugate. Journal of Medicinal Chemistry, 2022, 65, 11679-11702.	2.9	4
1180	Potential of antibody–drug conjugates (ADCs) for cancer therapy. Cancer Cell International, 2022, 22,	1.8	36
1181	Modular Smart Molecules for PSMA-Targeted Chemotherapy. Molecular Cancer Therapeutics, 2022, 21, 1701-1709.	1.9	9
1182	Proflavine-catalysed trifluoromethylation of \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyls. Molecular Catalysis, 2022, 530, 112587.	1.0	1
1183	Perspectives on using bacteriophages in biogerontology research and interventions. Chemico-Biological Interactions, 2022, 366, 110098.	1.7	3
1184	Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Molecular Immunology, 2022, 150, 47-57.	1.0	2
1185	Recent advances in combretastatin A-4 codrugs for cancer therapy. European Journal of Medicinal Chemistry, 2022, 241, 114660.	2.6	14
1186	Sacituzumab govitecan: past, present and future of a new antibody–drug conjugate and future horizon. Future Oncology, 2022, 18, 3199-3215.	1.1	10
1188	Targeted delivery strategy: A beneficial partner for emerging senotherapy. Biomedicine and Pharmacotherapy, 2022, 155, 113737.	2.5	3
1189	Nanoarchitectonics beyond perfect order – not quite perfect but quite useful. Nanoscale, 2022, 14, 15964-16002.	2.8	21
1190	A pH-responsive crosslinker platform for antibody-drug conjugate (ADC) targeting delivery. Chemical Communications, 2022, 58, 10532-10535.	2.2	8
1191	Polypharmacology in Drug Design and Discovery—Basis for Rational Design of Multitarget Drugs. , 2022, , 397-533.		1
1192	Nanotechnological application of peptide- and protein-based therapeutics., 2022,, 205-238.		3
1193	All-in-one disulfide bridging enables the generation of antibody conjugates with modular cargo loading. Chemical Science, 2022, 13, 8781-8790.	3.7	10
1194	An Introduction to Bioanalysis of Antibody-Drug Conjugates. AAPS Advances in the Pharmaceutical Sciences Series, 2022, , 49-74.	0.2	0
1195	Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. European Polymer Journal, 2022, 177, 111471.	2.6	39

#	Article	IF	Citations
1197	Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Frontiers in Oncology, $0,12,.$	1.3	9
1199	Chemistries and applications of DNA-natural product conjugate. Frontiers in Chemistry, 0, 10, .	1.8	0
1200	A heterobifunctional molecule recruits cereblon to an RNA scaffold and activates its PROTAC function. Cell Reports Physical Science, 2022, 3, 101064.	2.8	4
1201	Recent Development of Photofunctional Transition Metal–Peptide Conjugates for Bioimaging and Therapeutic Applications. European Journal of Inorganic Chemistry, 0, , .	1.0	2
1202	Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies. Current Treatment Options in Oncology, 2022, 23, 1428-1442.	1.3	1
1203	Addition of Lauryldimethylamine <i>N</i> -Oxide (LDAO) to a Copper-Free Click Chemistry Reaction Improves the Conjugation Efficiency of a Cell-Free Generated CRM197 Variant to Clinically Important <i>Streptococcus pneumoniae</i>	1.6	3
1204	Enzymatic Construction of DARPin-Based Targeted Delivery Systems Using Protein Farnesyltransferase and a Capture and Release Strategy. International Journal of Molecular Sciences, 2022, 23, 11537.	1.8	1
1205	Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization. Biomacromolecules, 2022, 23, 4241-4253.	2.6	6
1206	Antibody–Drug Conjugate Sacituzumab Govitecan Drives Efficient Tissue Penetration and Rapid Intracellular Drug Release. Molecular Cancer Therapeutics, 2023, 22, 102-111.	1.9	13
1208	Targeting to Tumor-Harbored Bacteria for Precision Tumor Therapy. ACS Nano, 2022, 16, 17402-17413.	7. 3	18
1209	Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: Emergence of a Novel Therapeutic Class. Current Oncology Reports, 2022, 24, 1829-1841.	1.8	2
1210	A preliminary study for the development of cleavable linkers using activatable fluorescent probes targeting leucine aminopeptidase. Analyst, The, 2022, 147, 5386-5394.	1.7	3
1211	Antibody–Antimicrobial Conjugates for Combating Antibiotic Resistance. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1212	Ultrasmall Folate Receptor Alpha Targeted Enzymatically Cleavable Silica Nanoparticle Drug Conjugates Augment Penetration and Therapeutic Efficacy in Models of Cancer. ACS Nano, 2022, 16, 20021-20033.	7.3	8
1213	Plasma Exchange May Enhance Antitumor Effects by Removal of Soluble Programmed Death-Ligand 1 and Extracellular Vesicles: Preliminary Study. Biomedicines, 2022, 10, 2483.	1.4	1
1214	Natural products as a source of cytotoxic warheads in antibody-drug conjugates. Natural Product Research, 2023, 37, 2973-2985.	1.0	1
1215	Mechanism and treatment of α-amanitin poisoning. Archives of Toxicology, 2023, 97, 121-131.	1.9	6
1217	TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Frontiers in Oncology, $0,12,.$	1.3	3

#	Article	IF	CITATIONS
1218	Dissecting Immunotherapy Strategies for Small Cell Lung Cancer: Antibodies, Ionizing Radiation and CAR-T. International Journal of Molecular Sciences, 2022, 23, 12728.	1.8	2
1219	Cysteine cathepsins: A long and winding road towards clinics. Molecular Aspects of Medicine, 2022, 88, 101150.	2.7	10
1220	Recombinant protein polymer-antibody conjugates for applications in nanotechnology and biomedicine. Advanced Drug Delivery Reviews, 2022, 191, 114570.	6.6	2
1221	Antibody drug conjugates targeting HER2: Clinical development in metastatic breast cancer. Breast, 2022, 66, 217-226.	0.9	17
1222	Drug conjugate-based anticancer therapy - Current status and perspectives. Cancer Letters, 2023, 552, 215969.	3.2	23
1223	Learn from antibody–drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Experimental Hematology and Oncology, 2022, 11, .	2.0	12
1224	Resistance to antibodyâ€drug conjugates in breast cancer: mechanisms and solutions. Cancer Communications, 2023, 43, 297-337.	3.7	18
1225	Antibody-Drug Conjugates in Breast Cancer: What Is Beyond HER2?. Cancer Journal (Sudbury, Mass), 2022, 28, 436-445.	1.0	6
1226	Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine. Nature Communications, 2022, 13, .	5.8	11
1227	Evolving Landscape of Antibody Drug Conjugates in Lymphoma. Cancer Journal (Sudbury, Mass), 2022, 28, 479-487.	1.0	2
1228	Targeting HER2-positive breast cancer: advances and future directions. Nature Reviews Drug Discovery, 2023, 22, 101-126.	21.5	140
1229	PTN-PTPRZ1 signaling axis blocking mediates tumor microenvironment remodeling for enhanced glioblastoma treatment. Journal of Controlled Release, 2023, 353, 63-76.	4.8	8
1230	Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Advanced Drug Delivery Reviews, 2023, 192, 114624.	6.6	10
1231	Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer's disease. Cellular Signalling, 2023, 102, 110539.	1.7	5
1232	Chemoselective methionine labelling of recombinant Trastuzumab shows high in vitro and in vivo tumour targeting. Chemistry - A European Journal, 0, , .	1.7	2
1233	Treatmentâ€related adverse events of antibody–drug conjugates in clinical trials: A systematic review and metaâ€analysis. Cancer, 2023, 129, 283-295.	2.0	27
1234	Staudinger Ligation and Reactions – From Bioorthogonal Labeling to Nextâ€Generation Biopharmaceuticals. Israel Journal of Chemistry, 2023, 63, .	1.0	7
1235	Pan-Cancer Analysis Identifies Tumor Cell Surface Targets for CAR-T Cell Therapies and Antibody Drug Conjugates. Cancers, 2022, 14, 5674.	1.7	2

#	Article	IF	CITATIONS
1236	Readily Accessible Strained Difunctionalized <i>trans</i> ê€Cyclooctenes with Fast Click and Release Capabilities**. Chemistry - A European Journal, 2023, 29, .	1.7	3
1237	Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next?. Cancers, 2022, 14, 6026.	1.7	4
1238	Unveiling the antibody–drug conjugates portfolio in battling Triple-negative breast cancer: Therapeutic trends and Future horizon. , 2023, 40, .		8
1239	HER3 Alterations in Cancer and Potential Clinical Implications. Cancers, 2022, 14, 6174.	1.7	4
1240	A review of recent advances on single use of antibody-drug conjugates or combination with tumor immunology therapy for gynecologic cancer. Frontiers in Pharmacology, $0,13,1$	1.6	2
1241	GPC2 antibody–drug conjugate reprograms the neuroblastoma immune milieu to enhance macrophage-driven therapies. , 2022, 10, e004704.		2
1242	ez-ADiCon: A novel glyco-remodeling based strategy that enables preparation of homogenous antibody-drug conjugates via one-step enzymatic transglycosylation with payload-preloaded bi-antennary glycan complexes. Bioorganic and Medicinal Chemistry Letters, 2023, 80, 129117.	1.0	3
1243	Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab., 2022, 10, e005660.		6
1244	Approaches to expand the conventional toolbox for discovery and selection of antibodies with drug-like physicochemical properties. MAbs, 2023, 15, .	2.6	11
1245	Precision medicine revolutionizes cancer diagnosis and treatment. Medical Review, 2023, .	0.3	0
1246	Peptide Drug Conjugates and Their Role in Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 829.	1.8	18
1247	Facile repurposing of peptide–MHC-restricted antibodies for cancer immunotherapy. Nature Biotechnology, 2023, 41, 932-943.	9.4	14
1248	Knowledge atlas of antibody-drug conjugates on CiteSpace and clinical trial visualization analysis. Frontiers in Oncology, 0, 12, .	1.3	6
1250	Effect of a MUC5AC Antibody (NPC-1C) Administered With Second-Line Gemcitabine and Nab-Paclitaxel on the Survival of Patients With Advanced Pancreatic Ductal Adenocarcinoma. JAMA Network Open, 2023, 6, e2249720.	2.8	5
1252	Antibody-drug conjugates in lung cancer: dawn of a new era?. Npj Precision Oncology, 2023, 7, .	2.3	21
1253	Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules, 2023, 28, 927.	1.7	19
1254	Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules, 2023, 28, 917.	1.7	12
1255	Targeted Drug Delivery Using a Plug-to-Direct Antibody–Nanogel Conjugate. Biomacromolecules, 2023, 24, 849-857.	2.6	6

#	Article	IF	CITATIONS
1256	New Life of Topoisomerase I Inhibitors as Antibody–Drug Conjugate Warheads. Clinical Cancer Research, 2023, 29, 991-993.	3.2	8
1257	Payload diversification: a key step in the development of antibody–drug conjugates. Journal of Hematology and Oncology, 2023, 16, .	6.9	42
1258	Building bioorthogonal click-release capable artificial receptors on cancer cell surface for imaging, drug targeting and delivery. Acta Pharmaceutica Sinica B, 2023, 13, 2736-2746.	5.7	8
1259	Degrader–Antibody Conjugates: Emerging New Modality. Journal of Medicinal Chemistry, 2023, 66, 140-148.	2.9	11
1260	Dosimetry Effects Due to the Presence of Fe Nanoparticles for Potential Combination of Hyperthermic Cancer Treatment with MRI-Based Image-Guided Radiotherapy. International Journal of Molecular Sciences, 2023, 24, 514.	1.8	3
1261	Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. Journal of Medicinal Chemistry, 2023, 66, 32-70.	2.9	6
1262	Hiding Payload Inside the IgG Fc Cavity Significantly Enhances the Therapeutic Index of Antibody–Drug Conjugates. Journal of Medicinal Chemistry, 2023, 66, 1011-1026.	2.9	4
1263	D is in tegrate (DIN) Theory Enabling Precision Engineering of Proteins. ACS Central Science, 2023, 9, 137-150.	5. 3	2
1264	Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411.	2.0	7
1265	Resistance-resistant antibacterial treatment strategies. , 0, 2, .		4
1266	Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers, 2023, 15, 713.	1.7	25
1267	Peroxide-cleavable linkers for antibody–drug conjugates. Chemical Communications, 2023, 59, 1841-1844.	2.2	5
1268	Chem-map profiles drug binding to chromatin in cells. Nature Biotechnology, 2023, 41, 1265-1271.	9.4	10
1269	Exploration of ⁶⁸ Ga-DOTA-MAL as a Versatile Vehicle for Facile Labeling of a Variety of Thiol-Containing Bioactive Molecules. ACS Omega, 2023, 8, 4747-4755.	1.6	0
1270	Antibody Engineering and Immunotherapeutics., 2021,, 226-257.		0
1271	Development of Next-Generation Antibody Therapeutics Using DDS and Molecular Imaging., 2023,, 1-31.		0
1272	Antibody-drug conjugates for cancer therapy: An up-to-date review on the chemistry and pharmacology. Comprehensive Analytical Chemistry, 2023, , .	0.7	0
1273	Current Treatment Approaches to Breast Cancer. , 2023, , 23-51.		0

#	Article	IF	CITATIONS
1274	Resistance to Antibody-Drug Conjugates Targeting HER2 in Breast Cancer: Molecular Landscape and Future Challenges. Cancers, 2023, 15, 1130.	1.7	7
1275	Enhancing Protein Crystal Nucleation Using In Situ Templating on Bioconjugate-Functionalized Nanoparticles and Machine Learning. ACS Applied Materials & Samp; Interfaces, 2023, 15, 12622-12630.	4.0	1
1276	Development, Validation and Application of a Bridging ELISA for Detection of Antibodies against GQ1001 in Cynomolgus Monkey Serum. Molecules, 2023, 28, 1684.	1.7	1
1277	New Therapies on the Horizon. Hematology/Oncology Clinics of North America, 2023, , .	0.9	1
1278	Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics, 2023, 15, 1242.	2.0	5
1279	A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomedicine and Pharmacotherapy, 2023, 161, 114408.	2.5	22
1280	Phenyldivinylsulfonamides for the construction of antibody–drug conjugates with controlled four payloads. Bioorganic Chemistry, 2023, 134, 106463.	2.0	3
1281	Current Updates in Management of HER2-Positive and HER2-Low Breast Cancer. Current Breast Cancer Reports, 2023, 15, 135-141.	0.5	1
1282	Monoclonal antibodies in breast cancer: A critical appraisal. Critical Reviews in Oncology/Hematology, 2023, 183, 103915.	2.0	5
1283	Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. Nanoscale, 2023, 15, 3780-3795.	2.8	3
1284	Antibody–drug conjugates: in search of partners of choice. Trends in Cancer, 2023, 9, 339-354.	3.8	44
1285	Antibody-Based Therapeutics for the Treatment of Renal Cell Carcinoma: Challenges and Opportunities. Oncologist, 2023, 28, 297-308.	1.9	1
1286	ROCKETS $\hat{a}\in$ a novel one-for-all toolbox for light sheet microscopy in drug discovery. Frontiers in Immunology, 0, 14, .	2.2	1
1287	An antibody–drug conjugate targeting GPR56 demonstrates efficacy in preclinical models of colorectal cancer. British Journal of Cancer, 2023, 128, 1592-1602.	2.9	4
1289	Advances in antibody-based therapy in oncology. Nature Cancer, 2023, 4, 165-180.	5 . 7	32
1290	Delivering on the promise of protein degraders. Nature Reviews Drug Discovery, 2023, 22, 410-427.	21.5	16
1291	Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. Journal of Medicinal Chemistry, 2023, 66, 3135-3172.	2.9	6
1292	Operating Parameters Optimization for the Production of Liposomes Loaded with Antibodies Using a Supercritical Fluid-Assisted Process. Processes, 2023, 11, 663.	1.3	1

#	ARTICLE	IF	Citations
1293	A Novel Homodimer Peptide–Drug Conjugate Improves the Efficacy of HER2-Positive Breast Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 4590.	1.8	4
1294	An Integrated In Vivo/In Vitro Protein Production Platform for Site-Specific Antibody Drug Conjugates. Bioengineering, 2023, 10, 304.	1.6	2
1295	Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. Journal of Medicinal Chemistry, 2023, 66, 3250-3261.	2.9	4
1296	<i>N</i> â€(Morpholineâ€4â€dithio)phthalimide: A Shelfâ€Stable, Bilateral Platform Molecule Enabling Access to Diverse Unsymmetrical Disulfides**. Angewandte Chemie, 2023, 135, .	1.6	0
1297	<i>N</i> â€(Morpholineâ€4â€dithio)phthalimide: A Shelfâ€6table, Bilateral Platform Molecule Enabling Access to Diverse Unsymmetrical Disulfides**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1298	Biosimilar, Biobetter, and Biosuperior Therapeutic Proteins., 2023,, 325-353.		0
1299	A singleâ€chain variable fragmentâ€anticancer lytic peptide (<scp>scFvâ€ACLP</scp>) fusion protein for targeted cancer treatment. Chemical Biology and Drug Design, 2023, 101, 1406-1415.	1.5	1
1300	Antibody–drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Archives of Pharmacal Research, 2023, 46, 131-148.	2.7	18
1301	Discovery of a Non-competitive TNFR1 Antagonist Affibody with Picomolar Monovalent Potency That Does Not Affect TNFR2 Function. Molecular Pharmaceutics, 2023, 20, 1884-1897.	2.3	0
1302	Antibody conjugates for targeted delivery of Toll-like receptor 9 agonist to the tumor tissue. PLoS ONE, 2023, 18, e0282831.	1.1	2
1303	Analogues of Anticancer Natural Products: Chiral Aspects. International Journal of Molecular Sciences, 2023, 24, 5679.	1.8	5
1304	Multifunctional bioconjugates and their utilities. Comprehensive Analytical Chemistry, 2023, , .	0.7	O
1305	Selfâ€AssembledÂLâ€DNA Linkers for Rapid Construction of Multiâ€Specific Antibodyâ€Drug ConjugatesÂLibrary. Angewandte Chemie, 0, , .	1.6	0
1306	Selfâ∈Assembled Lâ∈"DNA Linkers for Rapid Construction of Multiâ∈Specific Antibodyâ∈Drug Conjugates Library. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1307	Rabbit derived VL single-domains as promising scaffolds to generate antibody–drug conjugates. Scientific Reports, 2023, 13, .	1.6	1
1308	Optimizing Conjugation Chemistry, Antibody Conjugation Site, and Surface Density in Antibody〓Nanogel Conjugates (ANCs) for Cell-Specific Drug Delivery. Bioconjugate Chemistry, 0, , .	1.8	O
1309	Antibody Drug Conjugates., 0,,.		0
1310	Induced-volatolomics for the design of tumour activated therapy. Chemical Science, 2023, 14, 4697-4703.	3.7	2

#	Article	IF	Citations
1311	Targeting BCMA in Multiple Myeloma: Advances in Antibody-Drug Conjugate Therapy. Cancers, 2023, 15, 2240.	1.7	3
1312	An Aptamer That Rapidly Internalizes into Cancer Cells Utilizes the Transferrin Receptor Pathway. Cancers, 2023, 15, 2301.	1.7	0
1313	Dynamic covalent nano-networks comprising antibiotics and polyphenols orchestrate bacterial drug resistance reversal and inflammation alleviation. Bioactive Materials, 2023, 27, 288-302.	8.6	6
1315	Characterization and treatment of gemcitabine―and cisplatin―esistant bladder cancer cells with a <scp>panâ€RAS</scp> inhibitor. FEBS Open Bio, 0, , .	1.0	0
1316	Light Chain Q166C Mutation Permits Oneâ€step Site Specific Conjugation on Monoclonal Antibodies. ChemBioChem, 0, , .	1.3	0
1317	Advancing outcomes of metastatic HER2-positive breast cancer. Lancet, The, 2023, 401, 1746-1747.	6.3	0
1318	Immunotherapy for Metastatic Triple Negative Breast Cancer: Current Paradigm and Future Approaches. Current Treatment Options in Oncology, 2023, 24, 628-643.	1.3	15
1319	Can Patients with HER2-Low Breast Cancer Benefit from Anti-HER2 Therapies? A Review. Breast Cancer: Targets and Therapy, 0, Volume 15, 281-294.	1.0	1
1320	Engineering precise sequence-defined polymers for advanced functions. Progress in Polymer Science, 2023, 141, 101677.	11.8	12
1330	The Biocatalysis in Cancer Therapy. ACS Catalysis, 2023, 13, 7730-7755.	5.5	2
1338	Outils du ciblage thérapeutique. , 2023, , 167-179.		0
1341	Discovery and development of ADCs: obstacles and opportunities. , 2023, , 75-106.		0
1342	Antibody–drug conjugates come of age in oncology. Nature Reviews Drug Discovery, 2023, 22, 641-661.	21.5	82
1344	Scalable production of microscopic particles for biological delivery. Materials Advances, 2023, 4, 2885-2908.	2.6	1
1357	Analysis of pharmaceutically and biologically relevant protein variants. , 2023, , 891-911.		0
1363	The Dawn of a New Era: Targeting the "Undruggables―with Antibody-Based Therapeutics. Chemical Reviews, 2023, 123, 7782-7853.	23.0	13
1365	HER-2-targeted boron neutron capture therapy using an antibody-conjugated boron nitride nanotube/l²-1,3-glucan complex. Nanoscale Advances, 2023, 5, 3857-3861.	2.2	2
1373	Antibody–drug conjugate: Emerging trend for targeted treatment. , 2023, , 347-387.		0

#	ARTICLE	IF	CITATIONS
1388	Site-specific drug delivery utilizing monoclonal antibodies. , 2023, , 649-681.		0
1403	The potential of monoclonal antibodies for colorectal cancer therapy. , 2023, 40, .		0
1434	Monoclonal antibodies: recent development in drug delivery. , 2024, , 79-102.		0
1436	Bioorthogonal chemistry for prodrug activation <i>in vivo</i> . Chemical Society Reviews, 2023, 52, 7737-7772.	18.7	3
1448	Exploring the therapeutic potential of ADC combination for triple-negative breast cancer. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	0
1458	Drug from Marine Sampling to Factory. Marine Ecology, 2023, , 355-393.	0.1	0
1479	Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Archives of Pharmacal Research, 2024, 47, 40-65.	2.7	1
1481	Therapeutic synthetic and natural materials for immunoengineering. Chemical Society Reviews, 2024, 53, 1789-1822.	18.7	0
1483	Exploring the next generation of antibody–drug conjugates. Nature Reviews Clinical Oncology, 2024, 21, 203-223.	12.5	5
1484	Antibodies, repertoires and microdevices in antibody discovery and characterization. Lab on A Chip, 2024, 24, 1207-1225.	3.1	0
1514	Unleashing the power of antibodies: Engineering for tomorrow's therapy. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	0