Plant signalling in symbiosis and immunity

Nature 543, 328-336 DOI: 10.1038/nature22009

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms and Strategies Shaping Plant Peptide Hormones. Plant and Cell Physiology, 2017, 58, 1313-1318.	1.5	25
2	Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 2017, 38, 68-77.	3.5	105
3	Adaptation, specialization, and coevolution within phytobiomes. Current Opinion in Plant Biology, 2017, 38, 109-116.	3.5	51
4	The Tomato Kinase Pti1 Contributes to Production of Reactive Oxygen Species in Response to Two Flagellin-Derived Peptides and Promotes Resistance to <i>Pseudomonas syringae</i> Infection. Molecular Plant-Microbe Interactions, 2017, 30, 725-738.	1.4	22
5	Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356, .	6.0	333
6	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	4.7	72
7	Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 29, 2319-2335.	3.1	241
8	Membrane nanodomains and microdomains in plant–microbe interactions. Current Opinion in Plant Biology, 2017, 40, 82-88.	3.5	83
9	Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria cubensis FLe9. Chemoecology, 2017, 27, 177-185.	0.6	7
10	A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 2017, 3, 930-936.	4.7	187
11	Calcium signatures and signaling events orchestrate plant–microbe interactions. Current Opinion in Plant Biology, 2017, 38, 173-183.	3.5	140
12	Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping. Genetics, 2017, 206, 2175-2184.	1.2	15
13	Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii. Frontiers in Plant Science, 2017, 8, 1642.	1.7	54
14	Selection Signatures in the First Exon of Paralogous Receptor Kinase Genes from the Sym2 Region of the Pisum sativum L. Genome. Frontiers in Plant Science, 2017, 8, 1957.	1.7	34
15	NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner. Genes, 2017, 8, 387.	1.0	39
16	Genome-Wide Transcriptional Changes and Lipid Profile Modifications Induced by Medicago truncatula N5 Overexpression at an Early Stage of the Symbiotic Interaction with Sinorhizobium meliloti. Genes, 2017, 8, 396.	1.0	13
17	The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity. Frontiers in Immunology, 2017, 8, 1114.	2.2	8
18	Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health. Frontiers in Microbiology, 2017, 8, 1403.	1.5	53

ARTICLE IF CITATIONS # Differential Signaling and Sugar Exchanges in Response to Avirulent Pathogen- and Symbiont-Derived 19 1.5 5 Molecules in Tobacco Cells. Frontiers in Microbiology, 2017, 8, 2228. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?. International Journal 1.8 of Molecular Sciences, 2017, 18, 1164. Signaling through plant lectins: modulation of plant immunity and beyond. Biochemical Society 21 1.6 69 Transactions, 2018, 46, 217-233. Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 666-677. Peeking at a plant through the holes in the wall – exploring the roles of plasmodesmata. New 23 3.5 7 Phytologist, 2018, 218, 1310-1314. Hormone modulation of legumeâ€rhizobial symbiosis. Journal of Integrative Plant Biology, 2018, 60, 4.1 632-648. Proteomic approach to understand the molecular physiology of symbiotic interaction between 25 1.6 36 Piriformospora indica and Brassica napus. Scientific Reports, 2018, 8, 5773. Host―and stageâ€dependent secretome of the arbuscular mycorrhizal fungus <i>Rhizophagus 2.8 26 88 irregularis</i>. Plant Journal, 2018, 94, 411-425. 27 Calcium signaling: decoding mechanism of calcium signatures. New Phytologist, 2018, 217, 1394-1396. 3.5 18 Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology, 2018, 16, 291-303. 13.6 A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Molecular Cell, 2018, 69, 29 4.5161 493-504.e6. A Tyrosine Phosphorylation Cycle Regulates Fungal Activation of a Plant Receptor Ser/Thr Kinase. Cell Host and Microbe, 2018, 23, 241-253.e6. 5.1 Manipulation of Bryophyte Hosts by Pathogenic and Symbiotic Microbes. Plant and Cell Physiology, $\mathbf{31}$ 1.5 29 2018, 59, 656-665. Plant cell wallâ€mediated immunity: cell wall changes trigger disease resistance responses. Plant 2.8 398 Journal, 2018, 93, 614-636. Pattern recognition receptors and signaling in plantâ€"microbe interactions. Plant Journal, 2018, 93, 33 2.8 370 592-613. Venus Flytrap: How an Excitable, Carnivorous Plant Works. Trends in Plant Science, 2018, 23, 220-234. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) 35 170 1.6 roots. Scientific Reports, 2018, 8, 4. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature, 2018, 553, 241 342-346.

ARTICLE IF CITATIONS # Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal 37 2.4 115 symbiosis. Journal of Experimental Botany, 2018, 69, 2175-2188. Jasmonic and salicylic acid response in the fern <scp><i>Azolla filiculoides</i></scp> and its 2.8 cyanobiont. Plant, Cell and Environment, 2018, 41, 2530-2548. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase–Mediated Signaling. 39 8.6 303 Annual Review of Plant Biology, 2018, 69, 267-299. Symbiotic root infections in <i>Medicago truncatula</i> require remorin-mediated receptor stabilization in membrane nanodomains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5289-5294. Learning from CIK plants. Nature Plants, 2018, 4, 195-196. 41 4.7 2 LjCOCH interplays with LjAPP1 to maintain the nodule development in Lotus japonicus. Plant Growth 1.8 Regulation, 2018, 85, 267-279. Azolla: A Model System for Symbiotic Nitrogen Fixation and Evolutionary Developmental Biology., 43 8 2018, , 21-46. Symbiosis genes for immunity and vice versa. Current Opinion in Plant Biology, 2018, 44, 64-71. 44 3.5 Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?. Trends in Plant Science, 2018, 23, 45 4.3 1,256 25-41. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root 3.5 induction in rice. New Phytologist, 2018, 217, 552-557. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium 48 3.5 40 signatures. New Phytologist, 2018, 217, 1598-1609. Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 2018, 93, 637-650. 2.8 28 Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 50 18.7 149 1652-1704. AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 1.3 2018, 102, 36-45. Quorum-Sensing Mechanism in Rhizobium sp.: Revealing Complexity in a Molecular Dialogue., 2018,, 52 1 249-258. Implication of Quorum Sensing System in Biofilm Formation and Virulence., 2018,,. Molecular cloning and functional identification of an apple flagellin receptor MdFLS2 gene. Journal 54 1.7 5 of Integrative Agriculture, 2018, 17, 2694-2703. A structural perspective of plant antimicrobial peptides. Biochemical Journal, 2018, 475, 3359-3375.

#	Article	IF	CITATIONS
56	Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. Current Biology, 2018, 28, 3562-3577.e6.	1.8	41
57	APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling. Plant Physiology and Biochemistry, 2018, 133, 92-99.	2.8	10
58	A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nature Communications, 2018, 9, 4677.	5.8	45
59	Calcium Signaling-Mediated Plant Response to Cold Stress. International Journal of Molecular Sciences, 2018, 19, 3896.	1.8	141
60	Water-Soluble Humic Materials Regulate Quorum Sensing in Sinorhizobium meliloti Through a Novel Repressor of expR. Frontiers in Microbiology, 2018, 9, 3194.	1.5	10
61	Evolutionary Roots of Plant Microbiomes and Biogeochemical Impacts of Nonvascular Autotroph-Microbiome Systems over Deep Time. International Journal of Plant Sciences, 2018, 179, 505-522.	0.6	10
62	Tomato LysM Receptor-Like Kinase SILYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2018, 9, 1004.	1.7	42
63	Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1473.	1.7	1,088
64	Simultaneous inoculation with beneficial and pathogenic microorganisms modifies peanut plant responses triggered by each microorganism. Plant and Soil, 2018, 433, 353-361.	1.8	4
65	The Hydrophobin HYTLO1 Secreted by the Biocontrol Fungus Trichoderma longibrachiatum Triggers a NAADP-Mediated Calcium Signalling Pathway in Lotus japonicus. International Journal of Molecular Sciences, 2018, 19, 2596.	1.8	33
66	Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Reports, 2018, 37, 1599-1609.	2.8	123
67	The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytologist, 2018, 220, 982-995.	3.5	53
68	Mycorrhizal Markets, Firms, and Co-ops. Trends in Ecology and Evolution, 2018, 33, 777-789.	4.2	40
69	Ureide metabolism in plant-associated bacteria: purine plant-bacteria interactive scenarios under nitrogen deficiency. Plant and Soil, 2018, 428, 1-34.	1.8	29
70	Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environmental and Experimental Botany, 2018, 153, 108-119.	2.0	15
71	Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 2018, 220, 1031-1046.	3.5	188
72	â€~Slipped Sandwich' Model for Chitin and Chitosan Perception in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2018, 31, 1145-1153.	1.4	66
73	Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 2018, 56, 135-160.	3.5	116

#	Article	IF	CITATIONS
74	Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Current Opinion in Plant Biology, 2018, 45, 162-170.	3.5	43
75	The role of chloroplasts in plant pathology. Essays in Biochemistry, 2018, 62, 21-39.	2.1	43
76	Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. Frontiers in Plant Science, 2018, 9, 245.	1.7	42
77	Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science, 2018, 9, 313.	1.7	191
78	Structural Insight Into the Role of Mutual Polymorphism and Conservatism in the Contact Zone of the NFR5–K1 Heterodimer With the Nod Factor. Frontiers in Plant Science, 2018, 9, 344.	1.7	10
79	Glycans as Modulators of Plant Defense Against Filamentous Pathogens. Frontiers in Plant Science, 2018, 9, 928.	1.7	50
80	Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia. Frontiers in Microbiology, 2018, 9, 738.	1.5	29
81	Calcium Signalling in Plant Biotic Interactions. International Journal of Molecular Sciences, 2018, 19, 665.	1.8	224
82	Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes, 2018, 9, 125.	1.0	93
83	Sensing environmental and developmental signals via cellooligomers. Journal of Plant Physiology, 2018, 229, 1-6.	1.6	17
84	Transcriptome Profiles of Nod Factor-independent Symbiosis in the Tropical Legume Aeschynomene evenia. Scientific Reports, 2018, 8, 10934.	1.6	23
85	Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops. Agronomy, 2018, 8, 134.	1.3	26
86	Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology, 2018, 9, 1596.	1.5	26
87	Suppression of innate immunity mediated by the CDPKâ€Rboh complex is required for rhizobial colonization in <i>Medicago truncatula</i> nodules. New Phytologist, 2018, 220, 425-434.	3.5	53
88	Legume nodulation: The host controls the party. Plant, Cell and Environment, 2019, 42, 41-51.	2.8	267
89	Expression of the <i>Arabidopsis thaliana</i> immune receptor <i><scp>EFR</scp></i> in <i>Medicago truncatula</i> reduces infection by a root pathogenic bacterium, but not nitrogenâ€fixing rhizobial symbiosis. Plant Biotechnology Journal, 2019, 17, 569-579.	4.1	42
90	Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with <i>s</i> -Triazinyl Glycosides. Bioconjugate Chemistry, 2019, 30, 2332-2339.	1.8	3
91	Plant-Microbe Interactions Facing Environmental Challenge. Cell Host and Microbe, 2019, 26, 183-192.	5.1	206

#	Article	IF	CITATIONS
92	PUB4, a CERK1-Interacting Ubiquitin Ligase, Positively Regulates MAMP-Triggered Immunity in Arabidopsis. Plant and Cell Physiology, 2019, 60, 2573-2583.	1.5	33
93	Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants. Applied and Environmental Microbiology, 2019, 85, .	1.4	23
94	Plant-Mycorrhizal and Plant-Rhizobial Interfaces: Underlying Mechanisms and Their Roles in Sustainable Agroecosystems. , 2019, , 27-67.		3
95	Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Scientific Reports, 2019, 9, 11186.	1.6	20
96	A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 2019, 572, 131-135.	13.7	320
97	Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heat- and Metallo-Resistant PGPR. Microorganisms, 2019, 7, 212.	1.6	61
98	Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572, 341-346.	13.7	341
99	Beneficial microbes going underground of root immunity. Plant, Cell and Environment, 2019, 42, 2860-2870.	2.8	133
100	Interactions and Coadaptation in Plant Metaorganisms. Annual Review of Phytopathology, 2019, 57, 483-503.	3.5	28
101	Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Current Biology, 2019, 29, 3913-3920.e4.	1.8	112
102	A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10, 5047.	5.8	129
103	Molecular Weapons Contribute to Intracellular Rhizobia Accommodation Within Legume Host Cell. Frontiers in Plant Science, 2019, 10, 1496.	1.7	12
104	Microbial associations enabling nitrogen acquisition in plants. Current Opinion in Microbiology, 2019, 49, 83-89.	2.3	34
106	Calcium-signaling proteins mediate the plant transcriptomic response during a well-established Xanthomonas campestris pv. campestris infection. Horticulture Research, 2019, 6, 103.	2.9	23
107	Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Scientific Reports, 2019, 9, 13907.	1.6	8
108	Molecular Characterization of the Transcription Factors in Susceptible Poplar Infected with Virulent Melampsora larici-populina. International Journal of Molecular Sciences, 2019, 20, 4806.	1.8	5
109	LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Current Biology, 2019, 29, 3256-3265.e5.	1.8	87
110	GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17. Plant Molecular Biology, 2019, 99, 379-393.	2.0	18

#	Article	IF	CITATIONS
111	Integrative Analysis of the Wheat PHT1 Gene Family Reveals A Novel Member Involved in Arbuscular Mycorrhizal Phosphate Transport and Immunity. Cells, 2019, 8, 490.	1.8	20
112	Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2019, 50, 132-139.	3.5	70
113	The Novel Cerato-Platanin-Like Protein FocCP1 from Fusarium oxysporum Triggers an Immune Response in Plants. International Journal of Molecular Sciences, 2019, 20, 2849.	1.8	30
114	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	3.3	28
115	Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. Algal Research, 2019, 41, 101554.	2.4	12
116	Plant Immunity: Thinking Outside and Inside the Box. Trends in Plant Science, 2019, 24, 587-601.	4.3	111
117	Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation. Viruses, 2019, 11, 534.	1.5	38
118	Nitric oxide in plant–fungal interactions. Journal of Experimental Botany, 2019, 70, 4489-4503.	2.4	42
119	Immune Responses of Mammals and Plants to Chitin-Containing Pathogens. Advances in Experimental Medicine and Biology, 2019, 1142, 61-81.	0.8	10
120	The <scp>LYSIN MOTIF</scp> â€ <scp>CONTAINING RECEPTOR</scp> â€ <scp>LIKE KINASE</scp> 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytologist, 2019, 223, 1530-1546.	3.5	27
121	PP2C phosphatase Pic1 negatively regulates the phosphorylation status of Pti1b kinase, a regulator of flagellin-triggered immunity in tomato. Biochemical Journal, 2019, 476, 1621-1635.	1.7	13
122	Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the <i>Solanum lycopersicum</i> – <i>Rhizophagus irregularis</i> mycorrhizal symbiosis. New Phytologist, 2019, 223, 1560-1574.	3.5	39
123	The inconspicuous gatekeeper: endophytic <i>Serendipita vermifera</i> acts as extended plant protection barrier in the rhizosphere. New Phytologist, 2019, 224, 886-901.	3.5	52
124	Structural Variations in LysM Domains of LysM-RLK PsK1 May Result in a Different Effect on Pea–Rhizobial Symbiosis Development. International Journal of Molecular Sciences, 2019, 20, 1624.	1.8	12
125	The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant–Microbe Interactions. Genes, 2019, 10, 310.	1.0	13
126	Interplay of plant glycan hydrolases and LysM proteins in plant—Bacteria interactions. International Journal of Medical Microbiology, 2019, 309, 252-257.	1.5	7
127	Overexpression of Arabidopsis Nucleotide-Binding and Leucine-Rich Repeat Genes RPS2 and RPM1(D505V) Confers Broad-Spectrum Disease Resistance in Rice. Frontiers in Plant Science, 2019, 10, 417.	1.7	35
128	Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen. Plant Physiology, 2019, 180, 1598-1613.	2.3	17

#	Article	IF	CITATIONS
129	Nodulation Induces Systemic Resistance of <i>Medicago truncatula</i> and <i>Pisum sativum</i> Against <i>Erysiphe pisi</i> and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1243-1255.	1.4	25
130	Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. International Journal of Molecular Sciences, 2019, 20, 1403.	1.8	39
131	Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180310.	1.8	18
132	Transcriptomic Profiling of Rice Seedlings Inoculated with the Symbiotic Fungus Trichoderma asperellum SL2. Journal of Plant Growth Regulation, 2019, 38, 1507-1515.	2.8	35
133	Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, 2019, 103, 3327-3340.	1.7	157
134	Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223, 1127-1142.	3.5	237
135	The Role of Gibberellins and Brassinosteroids in Nodulation and Arbuscular Mycorrhizal Associations. Frontiers in Plant Science, 2019, 10, 269.	1.7	44
136	Plant cell surface immune receptor complex signaling. Current Opinion in Plant Biology, 2019, 50, 18-28.	3.5	75
137	Osmotic stress activates nif and fix genes and induces the Rhizobium tropici CIAT 899 Nod factor production via NodD2 by up-regulation of the nodA2 operon and the nodA3 gene. PLoS ONE, 2019, 14, e0213298.	1.1	19
138	The Pathway to Intelligence: Using Stimuliâ€Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 2019, 31, e1804540.	11.1	169
139	Redox Systemic Signaling and Induced Tolerance Responses During Soybean–Bradyrhizobium japonicum Interaction: Involvement of Nod Factor Receptor and Autoregulation of Nodulation. Frontiers in Plant Science, 2019, 10, 141.	1.7	25
140	Messages From the Past: New Insights in Plant Lectin Evolution. Frontiers in Plant Science, 2019, 10, 36.	1.7	35
141	Immune Signaling Pathway during Terminal Bacteroid Differentiation in Nodules. Trends in Plant Science, 2019, 24, 299-302.	4.3	11
142	The Infection Unit: An Overlooked Conceptual Unit for Arbuscular Mycorrhizal Function. , 2019, , .		3
143	Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species. PLoS ONE, 2019, 14, e0223149.	1.1	2
144	Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. PLoS ONE, 2019, 14, e0213230.	1.1	57
145	Clycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nature Communications, 2019, 10, 5303.	5.8	31
146	Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods, 2019, 15, 135.	1.9	92

#	Article	IF	CITATIONS
147	Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytologist, 2019, 221, 1036-1048.	3.5	38
148	Dynamic genomic architecture of mutualistic cooperation in a wild population of <i>Mesorhizobium</i> . ISME Journal, 2019, 13, 301-315.	4.4	34
149	Fungal resistance mediated by maize wallâ€associated kinase Zm <scp>WAK</scp> â€ <scp>RLK</scp> 1 correlates with reduced benzoxazinoid content. New Phytologist, 2019, 221, 976-987.	3.5	71
150	Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 2019, 103, 1155-1166.	1.7	250
151	Origin and evolution of the plant immune system. New Phytologist, 2019, 222, 70-83.	3.5	146
152	MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. Journal of General Plant Pathology, 2019, 85, 1-11.	0.6	15
153	Plant lipids: Key players of plasma membrane organization and function. Progress in Lipid Research, 2019, 73, 1-27.	5.3	167
154	Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. Phytopathology, 2019, 109, 332-346.	1.1	35
155	Uncovering Bax inhibitor-1 dual role in the legume–rhizobia symbiosis in common bean roots. Journal of Experimental Botany, 2019, 70, 1049-1061.	2.4	12
156	Dissection of Ramularia Leaf Spot Disease by Integrated Analysis of Barley and Ramularia collo-cygni Transcriptome Responses. Molecular Plant-Microbe Interactions, 2019, 32, 176-193.	1.4	21
157	Comparative transcriptomic analysis reveals different responses of Arabidopsis thaliana roots and shoots to infection by Agrobacterium tumefaciens in a hydroponic co-cultivation system. Physiological and Molecular Plant Pathology, 2019, 106, 109-119.	1.3	4
158	Lipoâ€chitooligosaccharide signalling blocks a rapid pathogenâ€induced <scp>ROS</scp> burst without impeding immunity. New Phytologist, 2019, 221, 743-749.	3.5	24
159	Regulation of Plant Immune Signaling by Calcium-Dependent Protein Kinases. Molecular Plant-Microbe Interactions, 2019, 32, 6-19.	1.4	62
160	Natural variation at <i>Os<scp>CERK</scp>1</i> regulates arbuscular mycorrhizal symbiosis in rice. New Phytologist, 2020, 225, 1762-1776.	3.5	43
161	Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydrate Polymers, 2020, 229, 115505.	5.1	22
162	Vascular bundle sheath and mesophyll cells modulate leaf water balance in response to chitin. Plant Journal, 2020, 101, 1368-1377.	2.8	18
163	Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell, 2020, 32, 15-41.	3.1	416
164	At the nexus of three kingdoms: the genome of the mycorrhizal fungus <i>Gigaspora margarita</i> provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22, 122-141.	1.8	84

#	Article	IF	CITATIONS
165	AM fungal diversity and its impact across three types of mid-temperate steppe in Inner Mongolia, China. Mycorrhiza, 2020, 30, 97-108.	1.3	7
169	Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. International Journal of Biological Macromolecules, 2020, 151, 984-992.	3.6	77
170	The genomes of rhizobia. Advances in Botanical Research, 2020, , 213-249.	0.5	17
171	Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 2020, 62, 2-24.	4.1	152
172	Suppression of <scp><i>NB‣RR</i></scp> genes by miRNAs promotes nitrogenâ€fixing nodule development in <scp><i>Medicago truncatula</i></scp> . Plant, Cell and Environment, 2020, 43, 1117-1129.	2.8	14
173	Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 2020, 13, 1314-1335.	2.0	227
174	Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. Plant Physiology, 2020, 184, 27-38.	2.3	55
175	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	5.8	36
176	Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. Journal of Agricultural and Food Chemistry, 2020, 68, 12203-12211.	2.4	74
177	Protein Phosphatase Mediated Responses in Plant Host-Pathogen Interactions. , 2020, , 289-330.		1
178	Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, 2020, 13, 1358-1378.	3.9	82
179	Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18, 649-660.	13.6	277
180	Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes, 2020, 11, 793.	1.0	16
181	Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100013.	1.6	11
183	Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3. International Journal of Molecular Sciences, 2020, 21, 8163.	1.8	13
184	Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nature Communications, 2020, 11, 3797.	5.8	31
185	ROS-Responsive Polymeric Micelle for Improving Pesticides Efficiency and Intelligent Release. Journal of Agricultural and Food Chemistry, 2020, 68, 9052-9060.	2.4	22
186	Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nature Communications, 2020, 11, 3897.	5.8	65

# 187	ARTICLE Specificity in legume nodule symbiosis. Science, 2020, 369, 620-621.	IF 6.0	CITATIONS 9
188	Niche Specialization and Functional Overlap of Bamboo Leaf and Root Microbiota. Frontiers in Microbiology, 2020, 11, 571159.	1.5	12
189	Identification of Robinia pseudoacacia target proteins responsive to Mesorhizobium amphore CCNWGS0123 effector protein NopT. Journal of Experimental Botany, 2020, 71, 7347-7363.	2.4	10
190	New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants. Frontiers in Plant Science, 2020, 11, 1236.	1.7	16
191	Metabolomic analysis of night-released soybean root exudates under high- and low-K conditions. Plant and Soil, 2020, 456, 259-276.	1.8	10
193	Regulation and Functions of ROP GTPases in Plant–Microbe Interactions. Cells, 2020, 9, 2016.	1.8	13
194	A molecular roadmap to the plant immune system. Journal of Biological Chemistry, 2020, 295, 14916-14935.	1.6	86
195	Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. Journal of Applied Microbiology, 2021, 131, 553-563.	1.4	29
196	Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. International Journal of Molecular Sciences, 2020, 21, 9294.	1.8	10
197	Transcriptome Analysis of Alternative Splicing Events Induced by Arbuscular Mycorrhizal Fungi (Rhizophagus irregularis) in Pea (Pisum sativum L.) Roots. Plants, 2020, 9, 1700.	1.6	10
198	Epigenetic and Metabolic Changes in Root-Knot Nematode-Plant Interactions. International Journal of Molecular Sciences, 2020, 21, 7759.	1.8	13
199	Elicitors of Plant Immunity Triggered by Beneficial Bacteria. Frontiers in Plant Science, 2020, 11, 594530.	1.7	77
200	Plant Growth-Promoting Bacillus sp. Cahoots Moisture Stress Alleviation in Rice Genotypes by Triggering Antioxidant Defense System. Microbiological Research, 2020, 239, 126518.	2.5	40
202	Arbuscular mycorrhiza, a fungal perspective. , 2020, , 241-258.		1
203	Agriculture and the Disruption of Plant–Microbial Symbiosis. Trends in Ecology and Evolution, 2020, 35, 426-439.	4.2	81
204	<i>Burkholderia insecticola</i> triggers midgut closure in the bean bug <i>Riptortus pedestris</i> to prevent secondary bacterial infections of midgut crypts. ISME Journal, 2020, 14, 1627-1638.	4.4	50
205	A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. Horticulture Research, 2020, 7, 23.	2.9	23
206	Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants, 2020, 6, 750-759.	4.7	188

#	Article	IF	CITATIONS
207	Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes. Journal of Experimental Botany, 2020, 71, 5689-5704.	2.4	19
208	Core microbiomes: Characterization and identification. , 2020, , 43-84.		0
210	Tyrosine phosphorylation of the lectin receptorâ€like kinase LORE regulates plant immunity. EMBO Journal, 2020, 39, e102856.	3.5	66
211	Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME Journal, 2020, 14, 1015-1029.	4.4	55
212	Harnessing symbiotic plant–fungus interactions to unleash hidden forces from extreme plant ecosystems. Journal of Experimental Botany, 2020, 71, 3865-3877.	2.4	17
213	Nod factor signaling in symbiotic nodulation. Advances in Botanical Research, 2020, 94, 1-39.	0.5	17
214	Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza, 2020, 30, 5-22.	1.3	57
215	An endophytic <i>Fusarium</i> –legume association is partially dependent on the common symbiotic signalling pathway. New Phytologist, 2020, 226, 1429-1444.	3.5	23
216	A Rice Receptor for Mycorrhizal Fungal Signals Opens New Opportunities for the Development of Sustainable Agricultural Practices. Molecular Plant, 2020, 13, 181-183.	3.9	1
217	Plant speciesâ€specific recognition of long and short βâ€1,3â€linked glucans is mediated by different receptor systems. Plant Journal, 2020, 102, 1142-1156.	2.8	50
218	Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Plant Science, 2020, 293, 110421.	1.7	25
219	A method for functional testing constitutive and ligand-induced interactions of lysin motif receptor proteins. Plant Methods, 2020, 16, 3.	1.9	6
220	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 2020, 11, 2114.	5.8	101
221	Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. Plant Communications, 2020, 1, 100041.	3.6	49
222	Root exudates, a key factor in the plant-bacteria interaction mechanisms. , 2020, , 111-121.		5
223	A holistic view on plant effector-triggered immunity presented as an iceberg model. Cellular and Molecular Life Sciences, 2020, 77, 3963-3976.	2.4	58
224	Insights to plant immunity: Defense signaling to epigenetics. Physiological and Molecular Plant Pathology, 2021, 113, 101568.	1.3	12
225	A transcriptional response atlas of Chrysanthemum morifolium to dodder invasion. Environmental and Experimental Botany, 2021, 181, 104272.	2.0	3

#	Article	IF	CITATIONS
226	Roots drive oligogalacturonideâ€induced systemic immunity in tomato. Plant, Cell and Environment, 2021, 44, 275-289.	2.8	35
227	VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of <i>Petunia hybrida</i> . New Phytologist, 2021, 229, 3481-3496.	3.5	18
228	Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2021, 72, 1546-1557.	2.4	9
229	A Nod factor- and type III secretion system-dependent manner for <i>Robinia pseudoacacia</i> to establish symbiosis with <i>Mesorhizobium amorphae</i> CCNWGS0123. Tree Physiology, 2021, 41, 817-835.	1.4	3
230	Native plant Maireana brevifolia drives prokaryotic microbial community development in alkaline Fe ore tailings under semi-arid climatic conditions. Science of the Total Environment, 2021, 760, 144019.	3.9	15
231	30 years of freeâ€air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?. Clobal Change Biology, 2021, 27, 27-49.	4.2	240
232	Unraveling the sugar code: the role of microbial extracellular glycans in plant–microbe interactions. Journal of Experimental Botany, 2021, 72, 15-35.	2.4	37
234	Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nature Plants, 2021, 7, 73-86.	4.7	50
236	Omics to Understand Drought Tolerance in Plants: An Update. , 2021, , 69-93.		0
237	Quorum Quenching Activity of the PGPR Bacillus subtilis UD1022 Alters Nodulation Efficiency of Sinorhizobium meliloti on Medicago truncatula. Frontiers in Microbiology, 2020, 11, 596299.	1.5	18
238	Nod factor signaling in legume-Rhizobium symbiosis: Specificity and molecular genetics of nod factor signaling. , 2021, , 33-67.		0
239	Multiâ€omic dissection of the drought resistance traits of soybean landrace LX. Plant, Cell and Environment, 2021, 44, 1379-1398.	2.8	15
240	Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Scientific Reports, 2021, 11, 3798.	1.6	11
242	GSK3-mediated stress signaling inhibits legume–rhizobium symbiosis by phosphorylating GmNSP1 in soybean. Molecular Plant, 2021, 14, 488-502.	3.9	44
243	Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiology, 2021, 187, 1940-1972.	2.3	47
244	Maize Ethylene Response Factor ZmERF061 Is Required for Resistance to Exserohilum turcicum. Frontiers in Plant Science, 2021, 12, 630413.	1.7	12
245	Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. Theoretical and Applied Genetics, 2021, 134, 2035-2050.	1.8	5
246	Inorganic Chemical Fertilizer Application to Wheat Reduces the Abundance of Putative Plant Growth-Promoting Rhizobacteria. Frontiers in Microbiology, 2021, 12, 642587.	1.5	23

#	Article	IF	CITATIONS
247	Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells, 2021, 10, 1050.	1.8	40
248	The signatures of organellar calcium. Plant Physiology, 2021, 187, 1985-2004.	2.3	33
249	Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 2021, 139, 110691.	8.2	319
250	Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nature Communications, 2021, 12, 2178.	5.8	67
251	Lineage-Specific Rewiring of Core Pathways Predating Innovation of Legume Nodules Shapes Symbiotic Efficiency. MSystems, 2021, 6, .	1.7	11
253	CmMLO17 and its partner CmKIC potentially support Alternaria alternata growth in Chrysanthemum morifolium. Horticulture Research, 2021, 8, 101.	2.9	13
254	Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?. Molecular Plant-Microbe Interactions, 2021, 34, 462-469.	1.4	52
255	Chitin Deacetylases Are Required for <i>Epichloë festucae</i> Endophytic Cell Wall Remodeling During Establishment of a Mutualistic Symbiotic Interaction with <i>Lolium perenne</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1181-1192.	1.4	12
256	Towards Understanding Afghanistan Pea Symbiotic Phenotype Through the Molecular Modeling of the Interaction Between LykX-Sym10 Receptor Heterodimer and Nod Factors. Frontiers in Plant Science, 2021, 12, 642591.	1.7	6
257	Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants, 2021, 10, 880.	2.2	15
258	Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 567548.	2.0	16
259	The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms, 2021, 9, 1036.	1.6	36
260	Genetic diversity of Fusarium endophytes strains from sorghum (Sorghum bicolor L.) tissues in Burkina Faso. International Journal for Biotechnology and Molecular Biology Research, 2021, 11, 1-9.	0.3	3
261	Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. Molecular Plant-Microbe Interactions, 2021, 34, 470-490.	1.4	17
262	Genome-Wide Identification and Characterization of Small Peptides in Maize. Frontiers in Plant Science, 2021, 12, 695439.	1.7	16
263	MicroRNA-Mediated Regulation of Initial Host Responses in a Symbiotic Organ. MSystems, 2021, 6, .	1.7	3
264	Mixed Linkage β-1,3/1,4-Glucan Oligosaccharides Induce Defense Responses in Hordeum vulgare and Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 682439.	1.7	27
265	Rhizobial Volatiles: Potential New Players in the Complex Interkingdom Signaling With Legumes. Frontiers in Plant Science, 2021, 12, 698912.	1.7	4

#	Article	IF	CITATIONS
266	Endophytic Bacillus altitudinis Strain Uses Different Novelty Molecular Pathways to Enhance Plant Growth. Frontiers in Microbiology, 2021, 12, 692313.	1.5	20
267	Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. Plant Physiology, 2021, 187, 2017-2031.	2.3	10
268	Plant–Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. International Journal of Molecular Sciences, 2021, 22, 6852.	1.8	44
269	Translational regulation in pathogenic and beneficial plant–microbe interactions. Biochemical Journal, 2021, 478, 2775-2788.	1.7	1
270	Suppression of LjBAK1-mediated immunity by SymRK promotes rhizobial infection in Lotus japonicus. Molecular Plant, 2021, 14, 1935-1950.	3.9	22
271	Recent Developments in the Study of Plant Microbiomes. Microorganisms, 2021, 9, 1533.	1.6	84
272	PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	120
273	Can current science research in the biological sciences be used in primary school children's scientific enquiry?. Journal of Biological Education, 2023, 57, 455-468.	0.8	1
274	Phosphorylation of MtRopGEF2 by LYK3 mediates MtROP activity to regulate rhizobial infection in <i>Medicago truncatula</i> . Journal of Integrative Plant Biology, 2021, 63, 1787-1800.	4.1	10
275	Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Current Biology, 2021, 31, 3538-3550.e5.	1.8	22
276	Community structure and associated networks of endophytic bacteria in pea roots throughout plant life cycle. Plant and Soil, 2021, 468, 225-238.	1.8	7
277	Plant Communication. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 1-24.	3.8	43
278	Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. Annual Review of Phytopathology, 2021, 59, 239-263.	3.5	26
279	Calcium Signaling Mechanisms Across Kingdoms. Annual Review of Cell and Developmental Biology, 2021, 37, 311-340.	4.0	98
280	Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. Current Opinion in Plant Biology, 2021, 62, 102026.	3.5	15
281	Soil Microbial Community Based on PLFA Profiles in an Age Sequence of Pomegranate Plantation in the Middle Yellow River Floodplain. Diversity, 2021, 13, 408.	0.7	10
282	Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virology Journal, 2021, 18, 194.	1.4	14
283	Salt Stress Enhances Early Symbiotic Gene Expression in <i>Medicago truncatula</i> and Induces a Stress-Specific Set of Rhizobium-Responsive Genes. Molecular Plant-Microbe Interactions, 2021, 34, 904-921.	1.4	19

#	Article	IF	Citations
284	Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 2021, 184, 5391-5404.e17.	13.5	117
285	Role of ethylene in effective establishment of the peanut–bradyrhizobia symbiotic interaction. Plant Biology, 2021, 23, 1141-1148.	1.8	2
286	Quantification of The Expression Level of Some Drought Stress-Related Genes in Wheat (Triticum) Tj ETQq0 0 0 r and Technology, 0, , 2357-2370.	gBT /Over 0.3	lock 10 Tf 50 0
288	Antagonism to Plant Pathogens by Epichloë Fungal Endophytes—A Review. Plants, 2021, 10, 1997.	1.6	23
289	A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. Journal of Fungi (Basel, Switzerland), 2021, 7, 719.	1.5	85
290	Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374, 65-71.	6.0	70
291	Field tests of crop growth using hydrothermal and spray-dried cephalosporin mycelia dregs as amendments: Utilization of nutrient and soil antibiotic resistome. Environmental Research, 2021, 202, 111638.	3.7	5
292	Multifunctional efficacy of the nodule endophyte Pseudomonas fragi in stimulating tomato immune response against Meloidogyne incognita. Biological Control, 2021, 164, 104773.	1.4	4
293	Endophytic fungi: understanding complex cross-talks. Symbiosis, 2021, 83, 237-264.	1.2	27
294	Candidate Effectors from Botryosphaeria dothidea Suppress Plant Immunity and Contribute to Virulence. International Journal of Molecular Sciences, 2021, 22, 552.	1.8	9
295	Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role in Agricultural Sustainability. Fungal Biology, 2021, , 45-67.	0.3	0
296	Inter-Organismal Signaling in the Rhizosphere. Rhizosphere Biology, 2021, , 255-293.	0.4	12
297	An Arabidopsis DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 is required for resistance against various phytopathogens and tolerance to salt stress. Gene, 2020, 753, 144802.	1.0	24
298	Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research, 2020, 238, 126486.	2.5	92
299	Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 2020, 578, 577-581.	13.7	334
304	Seed-Derived Microbial Colonization of Wild Emmer and Domesticated Bread Wheat (<i>Triticum) Tj ETQq1 1 0. and Composition. MBio, 2020, 11, .</i>	784314 rg 1.8	gBT /Overlack 40
305	Rhizobacteriumâ€derived diacetyl modulates plant immunity in a phosphateâ€dependent manner. EMBO Journal, 2020, 39, e102602.	3.5	66
306	The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors. Biological Communications, 2020, 65, .	0.4	5

#	Article	IF	CITATIONS
307	The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. ELife, 2020, 9, .	2.8	24
308	New sources of <i>Sym2^A</i> allele in the pea (<i>Pisum sativum</i> L.) carry the unique variant of candidate LysM-RLK gene <i>LykX</i> . PeerJ, 2019, 7, e8070.	0.9	15
309	Nodulation Process, Nitrogen Fixation, and Diversity of Fenugreek Rhizobia. , 2021, , 265-281.		1
310	Effects of Arbuscular Mycorrhizal Fungi on Rice Growth Under Different Flooding and Shading Regimes. Frontiers in Microbiology, 2021, 12, 756752.	1.5	14
311	Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. Frontiers in Plant Science, 2021, 12, 749581.	1.7	12
312	Divide and Be Conquered—Cell Cycle Reactivation in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2021, 12, 753265.	1.7	7
313	Sizeâ€Controlled Synthesis of β(1→4)â€GlcNAc Oligosaccharides Using an Endoâ€Glycosynthase. Chemistry - A European Journal, 2021, 27, 17637-17646.	1.7	2
314	The Zygotic Division Regulator ZAR1 Plays a Negative Role in Defense Against Botrytis cinerea in Arabidopsis. Frontiers in Plant Science, 2021, 12, 736560.	1.7	0
317	Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. SSRN Electronic Journal, 0, , .	0.4	0
318	A Tyrosine Phosphorylation Cycle of a Plant Receptor Ser/Thr Kinase Controls the on and Off of Chitin Signaling. SSRN Electronic Journal, 0, , .	0.4	0
320	Biotic Influences: Symbiotic Associations. , 2019, , 487-540.		3
322	RALF34 is a Paracrine Signal to Trigger Pollen Tubes Burst and Sperm Release. Springer Theses, 2020, , 59-71.	0.0	0
323	The role of heterotrimeric G proteins in the control of symbiosis development in legume plants. BIO Web of Conferences, 2020, 23, 03004.	0.1	1
324	Glycans as Plant Defense Priming Agents Against Filamentous Pathogens. Progress in Biological Control, 2020, , 99-118.	0.5	2
328	Global Transcriptional Repression of Diguanylate Cyclases by MucR1 Is Essential for <i>Sinorhizobium</i> -Soybean Symbiosis. MBio, 2021, 12, e0119221.	1.8	5
330	RALF4/19 are Autocrine Signals to Maintain Pollen Tubes Integrity. Springer Theses, 2020, , 37-57.	0.0	0
331	Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. International Journal of Molecular Sciences, 2021, 22, 313.	1.8	11
332	Receptor-Like Kinases BUPS1/2 are Involved in Pollen Tubes Integrity Maintenance in Arabidopsis. Springer Theses, 2020, , 15-36.	0.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
333	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas. , 2020, , 14	3-172.		0
334	Legume Symbiotic Interaction from Gene to Whole Plant. Sustainable Agriculture Reviews 137-157.	s, 2020, ,	0.6	1
335	Deciphering Molecular Host-Pathogen Interactions During Ramularia Collo-Cygni Infectior Frontiers in Plant Science, 2021, 12, 747661.	ı on Barley.	1.7	4
336	Surfactin Stimulated by Pectin Molecular Patterns and Root Exudates Acts as a Key Driver <i>Bacillus</i> -Plant Mutualistic Interaction. MBio, 2021, 12, e0177421.	of the	1.8	25
338	Colonization, diversity, and distribution of endophytic microbial communities in different plants. , 2022, , 1-30.	parts of		0
340	Transcriptomic analysis of sym28 and sym29mutants of pea (Pisum sativum L.) under complex inoculation with microorganisms. Biological Communications, 2021, 66, .	; supernodulating beneficial	0.4	2
341	Plasma-Activated Water Triggers Rapid and Sustained Cytosolic Ca2+ Elevations in Arabid thaliana. Plants, 2021, 10, 2516.	opsis	1.6	10
342	Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in <i>Arabido roots. Proceedings of the National Academy of Sciences of the United States of America,</i>		3.3	38
343	Role of QseG membrane protein in beneficial enterobacterial interactions with plants and <i>Mesorhizobia</i> . Journal of Plant Interactions, 2021, 16, 510-521.		1.0	2
344	Food systems at a watershed: Unlocking the benefits of technology and ecosystem symb Reviews in Food Science and Nutrition, 2023, 63, 5680-5697.	oses. Critical	5.4	7
346	Microbial mutualism promoting the coexistence of competing species: Double-layer mode competing hosts and one microbial species. BioSystems, 2022, 211, 104589.	l for two:	0.9	1
347	The Rhizobium-Legume Symbiosis: Co-opting Successful Stress Management. Frontiers in 2021, 12, 796045.	Plant Science,	1.7	32
348	Evolution of manipulative microbial behaviors in the rhizosphere. Evolutionary Application 1521-1536.	s, 2022, 15,	1.5	15
349	Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustaina Current Research in Microbial Sciences, 2022, 3, 100094.	bility.	1.4	105
350	Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA i guard cells. Journal of Plant Physiology, 2022, 268, 153585.	esponses in	1.6	12
351	Utilization of beneficial fungal strain/bacterial strains in climate-resilient agriculture. , 202	2, , 313-331.		0
352	Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. 2022, 27, 372.	Molecules,	1.7	14
353	Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants,	2022, 11, 386.	1.6	115

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
354	Phosphorus Limitation of Trees Influences Forest Soil Fungal Diversity in China. Forests, 2022, 13, 223.	0.9	11
355	Plant–microbe interactions in the apoplast: Communication at the plant cell wall. Plant Cell, 2022, 34, 1532-1550.	3.1	28
356	Plant immunity suppression via PHR1â€RALFâ€FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO Journal, 2022, 41, e109102.	3.5	58
357	RUSSELL REVIEW Are plant roots only "in―soil or are they "of―it? Roots, soil formation and function. European Journal of Soil Science, 2022, 73, .	1.8	19
358	Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods in Molecular Biology, 2022, 2457, 23-54.	0.4	8
359	Recent insights on gene expression studies on Hevea Brasiliensis fatal leaf fall diseases. Physiology and Molecular Biology of Plants, 2022, 28, 471-484.	1.4	0
360	Taxonomical and functional composition of strawberry microbiome is genotype-dependent. Journal of Advanced Research, 2022, 42, 189-204.	4.4	12
361	Environmental stress determines the colonization and impact of an endophytic fungus on invasive knotweed. Biological Invasions, 2022, 24, 1785-1795.	1.2	8
362	Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food and Energy Security, 2022, 11, .	2.0	13
363	Interplay between Ca2+/Calmodulin-Mediated Signaling and AtSR1/CAMTA3 during Increased Temperature Resulting in Compromised Immune Response in Plants. International Journal of Molecular Sciences, 2022, 23, 2175.	1.8	12
365	Potential Applications of Rhizobacteria as Eco-Friendly Biological Control, Plant Growth Promotion and Soil Metal Bioremediation. , 0, , .		1
366	Colonization of Mutualistic Mycorrhizal and Parasitic Blast Fungi Requires OsRAM2-Regulated Fatty Acid Biosynthesis in Rice. Molecular Plant-Microbe Interactions, 2022, 35, 178-186.	1.4	10
367	Essential Oils Prime Epigenetic and Metabolomic Changes in Tomato Defense Against Fusarium oxysporum. Frontiers in Plant Science, 2022, 13, 804104.	1.7	6
369	At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. Molecular Plant-Microbe Interactions, 2022, 35, 540-553.	1.4	10
370	High Ambient Temperature Regulated the Plant Systemic Response to the Beneficial Endophytic Fungus Serendipita indica. Frontiers in Plant Science, 2022, 13, 844572.	1.7	4
371	Effects of <i>Achnatherum inebrians</i> ecotypes and endophyte status on plant growth, plant nutrient, soil fertility and soil microbial community. Soil Science Society of America Journal, 0, , .	1.2	1
373	Structure-activity relationships of oomycete elicitins uncover the role of reactive oxygen and nitrogen species in triggering plant defense responses. Plant Science, 2022, 319, 111239.	1.7	2
374	5- <i>n</i> -alkylresorcinol-based metabolic response of rice to the interaction with <i>Burkholderia glumae</i> : a chemical characterization of the temporal and spatial variations depending on environmental conditions. Journal of Plant Interactions, 2022, 17, 127-139.	1.0	3

#	Article	IF	CITATIONS
375	Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology, 2022, 64, 244-267.	4.1	92
430	Beneficial Rhizobacteria Unveiling Plant Fitness Under Climate Change. , 2022, , 281-321.		0
431	Use of microbial inoculants against biotic stress in vegetable crops: physiological and molecular aspect. , 2022, , 263-332.		2
432	Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. International Journal of Molecular Sciences, 2022, 23, 4860.	1.8	4
433	Rhizosphere Signaling: Insights into Plant–Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms, 2022, 10, 899.	1.6	31
434	Plant immunity. International Journal of Health Sciences, 0, , 3652-3663.	0.0	0
436	Generalist endophyte Phomopsis liquidambaris colonization of Oryza sativa L. promotes plant growth under nitrogen starvation. Plant Molecular Biology, 2022, 109, 703-715.	2.0	4
438	OSCA1 is an osmotic specific sensor: a method to distinguish Ca ²⁺ â€mediated osmotic and ionic perception. New Phytologist, 2022, 235, 1665-1678.	3.5	10
439	Environmental Cues Contribute to Dynamic Plasma Membrane Organization of Nanodomains Containing Flotillin-1 and Hypersensitive Induced Reaction-1 Proteins in Arabidopsis thaliana. Frontiers in Plant Science, 2022, 13, .	1.7	5
440	The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiological Research, 2022, 261, 127056.	2.5	7
441	Sinorhizobium meliloti AS A PERSPECTIVE OBJECT FOR MODERN BIOTECHNOLOGY. Biotechnologia Acta, 2021, 14, 23-36.	0.3	0
442	Ambiguities of PGPR-Induced Plant Signaling and Stress Management. Frontiers in Microbiology, 2022, 13, .	1.5	13
443	Detection and Identification of Novel Intracellular Bacteria Hosted in Strains CBS 648.67 and CFCC 80795 of Biocontrol Fungi <i>Metarhizium</i> . Microbes and Environments, 2022, 37, n/a.	0.7	0
444	An integrated approach reveals how lipoâ€chitooligosaccharides interact with the lysin motif receptorâ€like kinase <scp>MtLYR3</scp> . Protein Science, 2022, 31, .	3.1	5
445	Distinguishing Allies from Enemies—A Way for a New Green Revolution. Microorganisms, 2022, 10, 1048.	1.6	1
447	The Role of Phytohormones in Cross-communication Between Plants and Rhizo-Microbes. Rhizosphere Biology, 2022, , 59-97.	0.4	1
448	Ectomycorrhizal Symbiosis: From Genomics to Trans-Kingdom Molecular Communication and Signaling. Rhizosphere Biology, 2022, , 273-296.	0.4	2
449	Transgenic fiber crops in phytoremediation. , 2022, , 157-180.		0

#	Article	IF	CITATIONS
450	The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses. Planta, 2022, 256, .	1.6	3
451	A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance. Cell Reports, 2022, 39, 110941.	2.9	11
453	Concerted actions of PRR- and NLR-mediated immunity. Essays in Biochemistry, 2022, 66, 501-511.	2.1	16
454	A lineage-specific Exo70 is required for receptor kinase–mediated immunity in barley. Science Advances, 2022, 8, .	4.7	13
455	<i>Valsa mali</i> secretes an effector protein VmEP1 to target a K homology domainâ€containing protein for virulence in apple. Molecular Plant Pathology, 2022, 23, 1577-1591.	2.0	7
457	TOUCH 3 and CALMODULIN 1/4/6 cooperate with calcium-dependent protein kinases to trigger calcium-dependent activation of CAM-BINDING PROTEIN 60-LIKE G and regulate fungal resistance in plants. Plant Cell, 2022, 34, 4088-4104.	3.1	12
458	Secondary Metabolites Produced by Trees and Fungi: Achievements So Far and Challenges Remaining. Forests, 2022, 13, 1338.	0.9	6
459	Nitric oxide generated by <i>Piriformospora indica</i> -induced nitrate reductase promotes tobacco growth by regulating root architecture and ammonium and nitrate transporter gene expression. Journal of Plant Interactions, 2022, 17, 861-872.	1.0	3
460	Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. Frontiers in Plant Science, 0, 13, .	1.7	14
462	Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application. Journal of Plant Interactions, 2022, 17, 824-839.	1.0	7
463	Tomato Root Colonization by Exogenously Inoculated Arbuscular Mycorrhizal Fungi Induces Resistance against Root-Knot Nematodes in a Dose-Dependent Manner. International Journal of Molecular Sciences, 2022, 23, 8920.	1.8	7
464	Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. Plants, 2022, 11, 2141.	1.6	18
465	Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Journal of Plant Physiology, 2022, 276, 153765.	1.6	35
466	Beauty and the pathogens: A leaf-less control presents a better image of Cymbidium orchids defense strategy. Frontiers in Plant Science, 0, 13, .	1.7	2
467	Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiological Research, 2022, 265, 127180.	2.5	11
468	Insights into the Modulation of Immune Response, Chemistry, and Mechanisms of Action of Immunomodulatory Phytomolecules. , 2022, , 33-51.		Ο
469	Evolutionary history of plant receptor-like kinases. , 2023, , 25-37.		0
470	The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. International Journal of Molecular Sciences, 2022, 23, 11089.	1.8	17

#	Article	IF	CITATIONS
471	New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Frontiers in Plant Science, 0, 13, .	1.7	56
472	Distinct Responses to Pathogenic and Symbionic Microorganisms: The Role of Plant Immunity. International Journal of Molecular Sciences, 2022, 23, 10427.	1.8	4
473	NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2022, 35, 845-856.	1.4	2
474	Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
475	Quantitative Analysis of Plant Cytosolic Calcium Signals in Response to Water Activated by Low-Power Non-Thermal Plasma. International Journal of Molecular Sciences, 2022, 23, 10752.	1.8	1
476	Potential and fungicidal compatibility of antagonist endophytic Trichoderma spp. from rice leaves in controlling dirty panicle disease in intensive rice farming. BioControl, 2023, 68, 61-73.	0.9	7
477	Barley endosomal MONENSIN SENSITIVITY1 is a target of the powdery mildew effector CSEP0162 and plays a role in plant immunity. Journal of Experimental Botany, 2023, 74, 118-129.	2.4	9
478	Evolution of LysM-RLK Gene Family in Wild and Cultivated Peanut Species. Horticulturae, 2022, 8, 1000.	1.2	0
479	Fine-Tuned Immune Antagonism and Nodule-Specific Cysteine-Rich Peptides Govern the Symbiotic Specificity Between Alfalfa Cultivars and Ensifer meliloti. Journal of Plant Growth Regulation, 0, , .	2.8	0
480	Sequence of introduction determines the success of contrasting root symbionts and their host. Applied Soil Ecology, 2023, 182, 104733.	2.1	2
481	Physiology and Molecular Breeding in Sustaining Wheat Grain Setting and Quality under Spring Cold Stress. International Journal of Molecular Sciences, 2022, 23, 14099.	1.8	6
482	A New Classification of Lysin Motif Receptor-Like Kinases in <i>Lotus japonicus</i> . Plant and Cell Physiology, 2023, 64, 176-190.	1.5	1
483	Root exudates and microorganisms. , 2023, , 343-356.		0
484	Longâ€lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in <i>Medicago truncatula</i> . New Phytologist, 2023, 237, 2316-2331.	3.5	14
485	Plant Microbiome Engineering: Hopes or Hypes. Biology, 2022, 11, 1782.	1.3	37
486	The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola (Brassica, napus L.) germination and vegetative growth under stressful temperatures. Frontiers in Plant Science, 0, 13, .	1.7	3
488	Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 2022, 10, .	4.9	49
489	A Germin-Like Protein GLP1 of Legumes Mediates Symbiotic Nodulation by Interacting with an Outer Membrane Protein of Rhizobia. Microbiology Spectrum, 2023, 11, .	1.2	2

		IION REPORT	
#	Article	IF	CITATIONS
490	Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Wheat. , 2023, , 287-320.		3
492	Exploring the role of plant lysin motif receptor-like kinases in regulating plant-microbe interactions in the bioenergy crop Populus. Computational and Structural Biotechnology Journal, 2023, 21, 1122-1139.	1.9	1
493	Paired <i>Medicago</i> receptors mediate broad-spectrum resistance to nodulation by <i>Sinorhizobium meliloti</i> carrying a species-specific gene. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
494	Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science, 2023, 379, 272-277.	6.0	13
495	Role of beneficial microbes in biotic and abiotic stress. , 2023, , 243-259.		0
496	What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions?. Symbiosis, 2023, 89, 27-52.	1.2	1
497	Compartmentalisation: A strategy for optimising symbiosis and tradeoff management. Plant, Cell and Environment, 2023, 46, 2998-3011.	2.8	5
498	Transcriptome analysis provides insights into the response of Lotus corniculatus roots to low-phosphorus stress. Frontiers in Plant Science, 0, 14, .	1.7	1
499	A Rice Receptor-like Protein Negatively Regulates Rice Resistance to Southern Rice Black-Streaked Dwarf Virus Infection. Viruses, 2023, 15, 973.	1.5	0
500	Microbial Elicitors for Priming Plant Defense Mechanisms. Sustainable Agriculture Reviews, 2023, , 175-196.	0.6	2
501	Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Frontiers in Microbiology, 0, 14, .	1.5	1
502	Dancing to a different tune, can we switch from chemical to biological nitrogen fixation for sustainable food security?. PLoS Biology, 2023, 21, e3001982.	2.6	15
503	Do all fungi have ancestors with endophytic lifestyles?. Fungal Diversity, 2024, 125, 73-98.	4.7	11
504	Acetylation of <scp>GhCaM7</scp> enhances cotton resistance to <i>Verticillium dahliae</i> . Plant Journal, 2023, 114, 1405-1424.	2.8	2
505	Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells. Planta, 2023, 257, .	1.6	0
506	Plant latent defense response against compatibility. ISME Journal, 2023, 17, 787-791.	4.4	3
507	Symbiosis between <i>Dendrobium catenatum</i> protocorms and <i>Serendipita indica</i> involves the plant hypoxia response pathway. Plant Physiology, 2023, 192, 2554-2568.	2.3	5
508	Lectin Receptor-like Kinase Signaling during Engineered Ectomycorrhiza Colonization. Cells, 2023, 12, 1082.	1.8	2

#	Article	IF	CITATIONS
509	Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity. Frontiers in Plant Science, 0, 14, .	1.7	6
510	Mechanistic basis of the symbiotic signaling pathway between the host and the pathogen. , 2023, , 375-387.		0
511	Rhizobium as Biotechnological Tools for Green Solutions: An Environment-Friendly Approach for Sustainable Crop Production in the Modern Era of Climate Change. Current Microbiology, 2023, 80, .	1.0	5
515	Plant–Endophyte Interactions: A Driving Phenomenon for Boosting Plant Health under Climate Change Conditions. Rhizosphere Biology, 2023, , 233-263.	0.4	1
526	An Overview of the Multifaceted Role of Plant Growth-Promoting Microorganisms and Endophytes in Sustainable Agriculture: Developments and Prospects. Rhizosphere Biology, 2023, , 179-208.	0.4	0
528	Editorial: Exploring complex biosphere molecular signaling networks: plant-microbes symbiosis at microscopic to macroscopic levels. Frontiers in Plant Science, 0, 14, .	1.7	0
532	Molecular genetics of arbuscular mycorrhizal symbiosis. , 2023, , 67-97.		0
533	Signaling in mycorrhizal symbioses. , 2023, , 117-126.		0
534	The chemical dialogue between plants and beneficial arbuscular fungi in disease resistance. , 2023, , 99-115.		0
543	Production of phenolic secondary metabolites by fungal endophytes: importance and implication. , 2024, , 537-556.		0
554	Plant Adaptation to Salinity Stress: Significance of Major Metabolites. , 0, , .		0
559	Molecular Events and Defence Mechanism Against Biotic Stress Induced by Bio-Priming of Beneficial Microbes. Microorganisms for Sustainability, 2023, , 61-87.	0.4	0
568	Exploring Plant-Pathogen Interactions through Subcellular Proteomics: Insights and Challenges. , 2023, , 287-310.		0