Strongly baryon-dominated disk galaxies at the peak of ago

Nature 543, 397-401 DOI: 10.1038/nature21685

Citation Report

#	ARTICLE	IF	CITATIONS
1	Galaxy rotation curves and the deceleration parameter in weak gravity. Modern Physics Letters A, 2017, 32, 1730019.	0.5	2
2	The Evolution of the Tully–Fisher Relation between z â^¼ 2.3 and z â^¼ 0.9 with KMOS ^{3D} ^{â^—} . Astrophysical Journal, 2017, 842, 121.	1.6	73
3	Falling Outer Rotation Curves of Star-forming Galaxies at 0.6Â≲ÂzÂ≲Â2.6 Probed with KMOS ^{3Dand SINS/zC-SINF. Astrophysical Journal, 2017, 840, 92.}	^{µp չ} 1.6	64
4	Distant galaxies lack dark matter. Nature, 2017, 543, 318-319.	13.7	5
5	Evidence for Galaxy Dynamics Tracing Background Cosmology Below the de Sitter Scale of Acceleration. Astrophysical Journal, 2017, 848, 28.	1.6	19
6	Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. Astrophysical Journal, 2017, 847, 13.	1.6	18
7	Galaxy rotations from quantised inertia and visible matter only. Astrophysics and Space Science, 2017, 362, 1.	0.5	9
8	The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field. Astrophysical Journal, 2017, 850, 61.	1.6	24
9	Can the $\hat{\mathbf{b}}$ CDM model reproduce MOND-like behavior?. Physical Review D, 2017, 96, .	1.6	5
10	A Spatially Resolved Study of Cold Dust, Molecular Gas, H ii Regions, and Stars in the zÂ=Â2.12 Submillimeter Galaxy ALESS67.1. Astrophysical Journal, 2017, 846, 108.	1.6	71
11	Dynamical Effects of the Scale Invariance of the Empty Space: The Fall of Dark Matter?. Astrophysical Journal, 2017, 849, 158.	1.6	20
12	Addressing the missing matter problem in galaxies through a new fundamental gravitational radius. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 044-044.	1.9	37
13	zÂâ^¼Â2: An Epoch of Disk Assembly. Astrophysical Journal, 2017, 843, 46.	1.6	89
14	The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially resolved local star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4573-4582.	1.6	37
15	Dynamical Characterization of Galaxies at zÂâ^¼Â4–6 via Tilted Ring Fitting to ALMA [C ii] Observations. Astrophysical Journal, 2017, 850, 180.	1.6	44
16	Molecular Gas in Three zÂâ^¼Â7 Quasar Host Galaxies. Astrophysical Journal, 2017, 845, 154.	1.6	74
17	The KMOS Deep Survey (KDS) – I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1280-1320.	1.6	71
18	On the possibility that ultra-light boson haloes host and form supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3257-3272.	1.6	16

#	Article	IF	CITATIONS
19	Declining Rotation Curves at zÂ=Â2 in ĥCDM Galaxy Formation Simulations. Astrophysical Journal Letters, 2018, 854, L28.	3.0	22
20	First results from the IllustrisTNG simulations: matter and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 475, 676-698.	1.6	1,035
21	The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. Astrophysical Journal, 2018, 857, 22.	1.6	57
22	Kinematics, turbulence, and star formation of zÂâ^¼Â1 strongly lensed galaxies seen with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 477, 18-44.	1.6	34
23	The dynamics of stellar discs in live dark-matter haloes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1451-1471.	1.6	24
24	Ionized and Molecular Gas Kinematics in a zÂ=Â1.4 Star-forming Galaxy*. Astrophysical Journal Letters, 2018, 854, L24.	3.0	43
25	The continuous rise of bulges out of galactic disks. Astronomy and Astrophysics, 2018, 614, A48.	2.1	22
26	A novel 3D technique to study the kinematics of lensed galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5606-5629.	1.6	21
27	The fraction of dark matter within galaxies from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1950-1975.	1.6	97
28	Model of the Galaxy with Hot Dark Matter. Open Astronomy, 2018, 27, 294-302.	0.2	2
29	Concurrent Starbursts in Molecular Gas Disks within a Pair of Colliding Galaxies at zÂ=Â1.52. Astrophysical Journal, 2018, 868, 75.	1.6	11
30	Evidence of a Flat Outer Rotation Curve in a Star-bursting Disk Galaxy at zÂ=Â1.6. Astrophysical Journal, 2018, 869, 58.	1.6	17
31	Astrophysics with Weyl gravity. International Journal of Modern Physics A, 2018, 33, 1845011.	0.5	0
32	ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3956-3963.	1.6	50
33	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at <i>z</i> Â≳ 6 studied with ALMA. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	42
34	KMOS LENsing Survey (KLENS): Morpho-kinematic analysis of star-forming galaxies at z ~ 2. Astronomy and Astrophysics, 2018, 613, A72.	2.1	25
35	Active galactic nucleus outflows in galaxy discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2288-2307.	1.6	16
36	Cosmic rays and galactic rotation curves. Astrophysics and Space Science, 2018, 363, 1.	0.5	0

#	Article	IF	CITATIONS
37	The SINS/zC-SINF Survey of zÂâ^¼Â2 Galaxy Kinematics: SINFONI Adaptive Optics–assisted Data and Kiloparsec-scale Emission-line Properties ^{â^—} . Astrophysical Journal, Supplement Series, 2018, 238, 21.	3.0	143
38	The WISSH quasars project. Astronomy and Astrophysics, 2018, 617, A82.	2.1	19
39	Resolving the ISM at the Peak of Cosmic Star Formation with ALMA: The Distribution of CO and Dust Continuum in zÂâ^1⁄4Â2.5 Submillimeter Galaxies. Astrophysical Journal, 2018, 863, 56.	1.6	92
40	Seven hints for primordial black hole dark matter. Physics of the Dark Universe, 2018, 22, 137-146.	1.8	131
41	Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1442-1458.	1.6	23
42	Are Dark Energy and Dark Matter Different Aspects of the Same Physical Process?. Frontiers in Physics, 2018, 6, .	1.0	9
43	The VIMOS Ultra Deep Survey. Astronomy and Astrophysics, 2018, 612, A42.	2.1	23
44	Merger driven star-formation activity in ClÂJ1449+0856 at z=1.99 as seen by ALMA and JVLA. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	31
45	Flat Rotation Curves Found in Merging Dusty Starbursts at zÂ=Â2.3 through Tilted-ring Modeling. Astrophysical Journal Letters, 2018, 864, L11.	3.0	7
46	Is Dark Matter Needed in Galaxies?. Astronomy Reports, 2018, 62, 551-556.	0.2	2
47	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	1.6	131
48	Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3466-3487.	1.6	23
49	Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z $3\% f$ 1.5. Monthly Notices of the Royal Astronomical Society, 2018, 476, 804-813.	1.6	13
50	Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics. Physics-Uspekhi, 2018, 61, 115-132.	0.8	30
51	Self-similar galaxy dynamics below the de Sitter scale of acceleration. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L26-L29.	1.2	3
52	The "Cosmic Seagull― A Highly Magnified Disk-like Galaxy at zÂ≃Â2.8 behind the Bullet Cluster. Astrophysical Journal Letters, 2018, 863, L16.	3.0	9
53	Is the Hubble Constant Scale-Dependent?. Gravitation and Cosmology, 2018, 24, 171-172.	0.3	1
54	Scalar modes and the linearized Schwarzschild solution on a quantized FLRW space-time in Yang–Mills matrix models. Classical and Quantum Gravity, 2019, 36, 205005	1.5	7

#	Article	IF	CITATIONS
55	Spatially Resolved Interstellar Medium and Highly Excited Dense Molecular Gas in the Most Luminous Quasar at zÂ=Â6.327. Astrophysical Journal, 2019, 880, 2.	1.6	54
56	The kiloparsec-scale gas kinematics in two star-forming galaxies at z â^1⁄4 1.47 seen with ALMA and VLT-SINFONI. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4856-4869.	1.6	25
57	The Evolution and Origin of Ionized Gas Velocity Dispersion from zÂâ^¼Â2.6 to zÂâ^¼Â0.6 with KMOS ^{3D} ^{â^—} . Astrophysical Journal, 2019, 880, 48.	1.6	84
58	A multiwavelength study of a massive, active galaxy at z â^1⁄4 2: coupling the kinematics of the ionized and molecular gas. Monthly Notices of the Royal Astronomical Society, 2019, 489, 681-698.	1.6	9
59	Anomaly of dark matter. Modern Physics Letters A, 2019, 34, 1950143.	0.5	1
60	Revisiting long-standing puzzles of the Milky Way: the Sun and its vicinity as typical outer disk chemical evolution. Astronomy and Astrophysics, 2019, 625, A105.	2.1	46
61	The distribution of dark matter in galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	155
62	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. Astrophysical Journal, 2019, 877, 140.	1.6	156
63	Gravity Beyond Einstein? Part II: Fundamental Physical Principles, Number Systems, Novel Groups, Dark Energy, and Dark Matter, MOND. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 387-446.	0.7	2
64	De Sitter-Invariant Special Relativity and Galaxy Rotation Curves. Gravitation and Cosmology, 2019, 25, 157-163.	0.3	3
65	Inferences on the timeline of reionization at z â ^{-1,} 4 8 from the KMOS Lens-Amplified Spectroscopic Survey. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3947-3969.	1.6	142
66	Conformal gravity and the radial acceleration relation. Astronomische Nachrichten, 2019, 340, 95-99.	0.6	1
67	The ISM Properties and Gas Kinematics of a Redshift 3 Massive Dusty Star-forming Galaxy. Astrophysical Journal, 2019, 871, 85.	1.6	19
68	The KMOS ^{3D} Survey: Demographics and Properties of Galactic Outflows at zÂ=Â0.6–2.7*. Astrophysical Journal, 2019, 875, 21.	1.6	118
69	A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves. Astrophysical Journal, 2019, 871, 218.	1.6	9
70	The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. Astrophysical Journal, 2019, 871, 120.	1.6	232
71	Modelling turbulent effects of stellar feedback in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4654-4672.	1.6	0
72	The shapes of the rotation curves of star-forming galaxies over the last â‰^10ÂGyr. Monthly Notices of the Royal Astronomical Society, 2019, 485, 934-960.	1.6	37

#	Article	IF	CITATIONS
73	Structure and dynamics of high-z galaxies. Proceedings of the International Astronomical Union, 2019, 14, 271-278.	0.0	0
74	Resolved views on early galaxy evolution. Proceedings of the International Astronomical Union, 2019, 15, 253-265.	0.0	0
75	Deciphering an evolutionary sequence of merger stages in infrared-luminous starburst galaxies at <i>z</i> â^¼ 0.7. Astronomy and Astrophysics, 2019, 623, A64.	2.1	15
76	Anomalously Narrow Line Widths of Compact Massive Star-forming Galaxies at zÂâ^¼Â2.3: A Possible Inclination Bias in the Size–Mass Plane. Astrophysical Journal Letters, 2019, 886, L28.	3.0	4
77	The KMOS ^{3D} Survey: Data Release and Final Survey Paper*. Astrophysical Journal, 2019, 886, 124.	1.6	79
78	Testing MOND on two nearby elliptical galaxies: the cases of NGC 4473 and NGC 4697. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2471-2483.	1.6	1
79	Dark matter density distributions and dark energy constraints on structure formation including MOND. Indian Journal of Physics, 2020, 94, 1491-1494.	0.9	6
80	On the Dark Matter Profile Mass Dependence. Astronomy Reports, 2020, 64, 547-555.	0.2	1
81	Star-Forming Galaxies at Cosmic Noon. Annual Review of Astronomy and Astrophysics, 2020, 58, 661-725.	8.1	98
82	Warm dust in high-z galaxies: origin and implications. Monthly Notices of the Royal Astronomical Society, 2020, 497, 956-968.	1.6	47
83	A mass threshold for galactic gas discs by spin flips. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4126-4142.	1.6	39
84	Origin of star-forming rings around massive centres in massive galaxies at <i>z</i> < 4. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5372-5398.	1.6	29
85	Simulating gas kinematic studies of high-redshift galaxies with the HARMONI integral field spectrograph. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1891-1904.	1.6	4
86	Measuring dynamical masses from gas kinematics in simulated high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4051-4065.	1.6	28
87	The KMOS Lens-Amplified Spectroscopic Survey (KLASS): kinematics and clumpiness of low-mass galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2020, 497, 173-191.	1.6	2
88	The MOSDEF Survey: Kinematic and Structural Evolution of Star-forming Galaxies at 1.4Ââ‰ÂzÂâ‰Â3.8. Astrophysical Journal, 2020, 894, 91.	1.6	34
89	A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature, 2020, 581, 269-272.	13.7	71
90	How primordial magnetic fields shrink galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4475-4495.	1.6	24

#	Article	IF	CITATIONS
91	Growth of Supermassive Black Hole Seeds in ETG Star-forming Progenitors: Multiple Merging of Stellar Compact Remnants via Gaseous Dynamical Friction and Gravitational-wave Emission. Astrophysical Journal, 2020, 891, 94.	1.6	22
92	ALMA Reveals the Molecular Gas Properties of Five Star-forming Galaxies across the Main Sequence at 3. Astrophysical Journal, 2020, 891, 83.	1.6	15
93	The Formation History of Subhalos and the Evolution of Satellite Galaxies. Astrophysical Journal, 2020, 893, 139.	1.6	14
94	On the radial acceleration of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4015-4025.	1.6	2
95	A generalized Higgs potential with two degenerate minima for a dark QCD matter scenario. European Physical Journal C, 2020, 80, 1.	1.4	1
96	A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4. Nature Astronomy, 2021, 5, 319-330.	4.2	8
97	Age dissection of the Milky Way discs: Red giants in the <i>Kepler</i> field. Astronomy and Astrophysics, 2021, 645, A85.	2.1	85
98	Redshift evolution of the H2/H <scp>i</scp> mass ratio in galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 502, L85-L89.	1.2	6
99	Observational Signatures of Dark Matter. Radiophysics and Quantum Electronics, 2021, 63, 643-655.	0.1	0
100	Flat rotation curves of z â^1⁄4 1 star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1753-1772.	1.6	10
101	The Nature of the Milky Way's Stellar Halo Revealed by the Three Integrals of Motion. Astrophysical Journal, 2021, 908, 191.	1.6	20
102	A massive stellar bulge in a regularly rotating galaxy 1.2 billion years after the Big Bang. Science, 2021, 371, 713-716.	6.0	53
103	Integral field spectroscopy of luminous infrared main-sequence galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5329-5350.	1.6	4
104	The KMOS ^{3D} Survey: Investigating the Origin of the Elevated Electron Densities in Star-forming Galaxies at 1 ≲ z ≲ 3. Astrophysical Journal, 2021, 909, 78.	1.6	19
105	Evaluating galaxy dynamical masses from kinematics and jeans equilibrium in simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5238-5253.	1.6	13
106	The Kinematics of z ≳ 6 Quasar Host Galaxies. Astrophysical Journal, 2021, 911, 141.	1.6	62
107	Spiral morphology in an intensely star-forming disk galaxy more than 12 billion years ago. Science, 2021, 372, 1201-1205.	6.0	28
108	Stellar kinematics in the nuclear regions of nearby LIRGs with VLT-SINFONI. Astronomy and Astrophysics, 2021, 650, A149.	2.1	7

#	Article	IF	CITATIONS
109	MUSE-ALMA haloes VI: coupling atomic, ionized, and molecular gas kinematics of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4746-4761.	1.6	11
110	The MUSE Hubble Ultra Deep Field Survey. XVI. The angular momentum of low-mass star-forming galaxies: A cautionary tale and insights from TNG50. Astronomy and Astrophysics, 0, , .	2.1	9
111	Stellar-to-Halo Mass Ratio and Dark Matter Profiles. Astronomy Reports, 2021, 65, 529-542.	0.2	0
112	Universe hypothesis of the quantum eleven-dimensional space-time. Journal of Physics: Conference Series, 2021, 1980, 012014.	0.3	0
113	The role of gas kinematics in setting metallicity gradients at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1295-1308.	1.6	7
114	A universal relationship between stellar masses and binding energies of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2423-2431.	1.6	4
115	The ALPINE-ALMA [C <scp>ii</scp>] Survey: kinematic diversity and rotation in massive star-forming galaxies at <i>z</i> ~ 4.4–5.9. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3540-3563.	1.6	29
116	Core formation in high-z massive haloes: heating by post-compaction satellites and response to AGN outflows. Monthly Notices of the Royal Astronomical Society, 2021, 508, 999-1019.	1.6	10
117	MOND-like behavior in the Dirac–Milne universe. Astronomy and Astrophysics, 2021, 652, A91.	2.1	5
118	Dark matter fraction in <i>z</i> â^¼â€" 1 star-forming galaxies. Astronomy and Astrophysics, 2021, 65	3, 2 A20.	4
119	The kinematics and dark matter fractions of TNG50 galaxies at <i>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619.	1.6	17
119 120	The kinematics and dark matter fractions of TNG50 galaxies at <i>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619. Simulating surveys for ELT-MOSAIC: status of the MOSAIC science case after phase A. , 2018, , .	1.6	17 2
119 120 121	The kinematics and dark matter fractions of TNG50 galaxies at <i>>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619. Simulating surveys for ELT-MOSAIC: status of the MOSAIC science case after phase A., 2018, , . A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4CÂ23.56 at zÂ=Â2.5: Clobal and Local Gas Kinematics. Astrophysical Journal, 2019, 883, 92.	1.6	17 2 8
119 120 121 122	The kinematics and dark matter fractions of TNG50 galaxies at <i>>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619. Simulating surveys for ELT-MOSAIC: status of the MOSAIC science case after phase A. , 2018, , . A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4CÂ23.56 at zÂ=Â2.5: Global and Local Gas Kinematics. Astrophysical Journal, 2019, 883, 92. MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23.	1.6 1.6 1.6	17 2 8 5
 119 120 121 122 123 	The kinematics and dark matter fractions of TNG50 galaxies at <i>>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619.Simulating surveys for ELT-MOSAIC: status of the MOSAIC science case after phase A. , 2018, , .A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4CÂ23.56 at zÂ=Â2.5: Global and Local Gas Kinematics. Astrophysical Journal, 2019, 883, 92.MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23.The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87.	1.6 1.6 1.6	17 2 8 5 19
 119 120 121 122 123 124 	The kinematics and dark matter fractions of TNG50 galaxies at <i>>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619. Simulating surveys for ELT-MOSAIC: status of the MOSAIC science case after phase A., 2018,,. A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4CÂ23.56 at zÂ=Â2.5: Global and Local Gas Kinematics. Astrophysical Journal, 2019, 883, 92. MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23. The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87. Rotation Curves in z â ¹ /4 1âC ⁴² 2 Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophysical Journal, 2020, 902, 98.	1.6 1.6 1.6 1.6	17 2 8 5 19 55
 119 120 121 122 123 124 125 	The kinematics and dark matter fractions of TNG50 galaxies at <i>≥</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619. Simulating surveys for ELT-MOSAIC: status of the MOSAIC science case after phase A., 2018, ,. A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4CÂ23.56 at zÂ=Â2.5: Clobal and Local Gas Kinematics. Astrophysical Journal, 2019, 883, 92. MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23. The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87. Rotation Curves in z â ² ¼ 1â€ ⁴² Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophysical Journal, 2020, 902, 98. High Molecular Gas Masses in Absorption-selected Galaxies at zÂ&‰^Â2. Astrophysical Journal Letters, 2020, 901, L5.	1.6 1.6 1.6 1.6 3.0	17 2 8 5 19 55 14

#	Article	IF	CITATIONS
127	Agency of Life, Entropic Gravity and Phenomena Attributed to "Dark Matter― Journal of Quantum Information Science, 2017, 07, 67-75.	0.2	3
128	Dark Matter without New Matter Is Compliant with General Relativity. Open Access Library Journal (oalib), 2017, 04, 1-12.	0.1	1
129	A Potentially Useful Galactic Dark Matter Index. Journal of Modern Physics, 2018, 09, 1564-1567.	0.3	3
130	Cosmic Time as an Emergent Property of Cosmic Thermodynamics. Journal of Modern Physics, 2018, 09, 1941-1945.	0.3	0
131	Dark Energy and Cosmological Model. IARS International Research Journal, 2020, 10, .	0.1	0
132	Inertial and Gravitational Mass in General Relativity and Their Cosmological Consequences. Journal of Modern Physics, 2021, 12, 1729-1748.	0.3	3
133	The MUSE Extremely Deep Field: Evidence for SFR-induced cores in dark-matter dominated galaxies at <i>z</i> â‰f 1. Astronomy and Astrophysics, 2022, 658, A76.	2.1	14
134	Dark Matter Anomaly. , 2021, , 77-83.		0
135	Rotation Curves in z â^1⁄4 1–2 Star-forming Disks: Comparison of Dark Matter Fractions and Disk Properties for Different Fitting Methods. Astrophysical Journal, 2021, 922, 143.	1.6	19
136	Driving Galactic Outflows with Magnetic Fields at Low and High Redshift. Astrophysical Journal, 2022, 924, 26.	1.6	4
137	Temporal No-Linearity: An Alternative to Dark Energy. Journal of Modern Physics, 2022, 13, 323-335.	0.3	0
138	3D hydrodynamic simulations for the formation of the Local Group satellite planes. Monthly Notices of the Royal Astronomical Society, 2022, 513, 129-158.	1.6	17
139	Eigenmode analysis of perturbations in the primordial medium at and before recombination. Astronomy and Astrophysics, 0, , .	2.1	1
140	A New Method for the Reconstruction of Strongly Lensed Galaxies with Resolved Kinematics. Astrophysical Journal, 2022, 929, 6.	1.6	1
141	A high-resolution investigation of the multiphase ISM in a galaxy during the first two billion years. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3734-3757.	1.6	18
142	Dark matter cores in massive high- <i>z</i> galaxies formed by baryonic clumps. Monthly Notices of the Royal Astronomical Society, 2022, 514, 555-568.	1.6	4
143	On the Connection between Supermassive Black Holes and Galaxy Growth in the Reionization Epoch. Astrophysical Journal Letters, 2022, 931, L11.	3.0	7
144	Kiloparsec view of a typical star-forming galaxy when the Universe was â^¼1 Gyr old. Astronomy and Astrophysics, 2022, 665, L8.	2.1	11

	Статю	CITATION REPORT	
		15	0
#	ARTICLE	IF	CITATIONS
145	Kinematics and mass distributions for non-spherical deprojected Sérsic density profiles and applications to multi-component galactic systems. Astronomy and Astrophysics, 0, , .	2.1	0
146	Reconstructing the Assembly of Massive Galaxies. I. The Importance of the Progenitor Effect in the Observed Properties of Quiescent Galaxies at z â‰^ 2. Astrophysical Journal, 2022, 935, 120.	1.6	15
147	CO Emission, Molecular Gas, and Metallicity in Main-sequence Star-forming Galaxies at z â^1⁄4 2.3*. Astrophysical Journal, 2023, 942, 24.	1.6	13
148	Morpheus Reveals Distant Disk Galaxy Morphologies with JWST: The First AI/ML Analysis of JWST Images. Astrophysical Journal Letters, 2023, 942, L42.	3.0	23
149	An â^1⁄4600 pc View of the Strongly Lensed, Massive Main-sequence Galaxy J0901: A Baryon-dominated, Thicl Turbulent Rotating Disk with a Clumpy Cold Gas Ring at z = 2.259. Astrophysical Journal, 2023, 942, 98.	k 1.6	6
150	Spiral light beams inspired by galaxies with dark matter. Physica Scripta, 2023, 98, 035008.	1.2	0
151	Cold gas disks in main-sequence galaxies at cosmic noon: Low turbulence, flat rotation curves, and disk-halo degeneracy. Astronomy and Astrophysics, 2023, 672, A106.	2.1	7
152	RC100: Rotation Curves of 100 Massive Star-forming Galaxies at z = 0.6–2.5 Reveal Little Dark Matter on Galactic Scales. Astrophysical Journal, 2023, 944, 78.	1.6	8
153	Baryonic Matter Abundance in the Framework of MONG. , 0, , .		0
154	The Differential Assembly History of the Centers and Outskirts of Main-sequence Galaxies at z â^1⁄4 2.3. Astrophysical Journal, 2023, 945, 97.	1.6	4
155	ALMA hints at the presence of turbulent disk galaxies at <i>z</i> > 5. Astronomy and Astrophysics, 2023, 673, A153.	2.1	1
156	Stability of galaxies across morphological sequence. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0