Impact of Parameterized Boundary Layer Structure on Intensification Forecasts in HWRF

Monthly Weather Review 145, 1413-1426 DOI: 10.1175/mwr-d-16-0129.1

Citation Report

#	Article	IF	CITATIONS
1	Doppler Radar Analysis of the Rapid Intensification of Typhoon Goni (2015) after Eyewall Replacement. Journals of the Atmospheric Sciences, 2018, 75, 143-162.	1.7	13
2	The Relationship between Spatial Variations in the Structure of Convective Bursts and Tropical Cyclone Intensification as Determined by Airborne Doppler Radar. Monthly Weather Review, 2018, 146, 761-780.	1.4	39
3	Evaluation of Tropical Cyclone Structure Forecasts in a High-Resolution Version of the Multiscale GFDL fvGFS Model. Weather and Forecasting, 2018, 33, 419-442.	1.4	33
4	A Topâ€Down Pathway to Secondary Eyewall Formation in Simulated Tropical Cyclones. Journal of Geophysical Research D: Atmospheres, 2018, 123, 174-197.	3.3	24
5	Evaluating the Impact of Improvement in the Horizontal Diffusion Parameterization on Hurricane Prediction in the Operational Hurricane Weather Research and Forecast (HWRF) Model. Weather and Forecasting, 2018, 33, 317-329.	1.4	31
6	Azimuthal Distribution of Deep Convection, Environmental Factors, and Tropical Cyclone Rapid Intensification: A Perspective from HWRF Ensemble Forecasts of Hurricane Edouard (2014). Journals of the Atmospheric Sciences, 2018, 75, 275-295.	1.7	38
7	2017 Atlantic Hurricane Forecasts from a High-Resolution Version of the GFDL fvGFS Model: Evaluation of Track, Intensity, and Structure. Weather and Forecasting, 2018, 33, 1317-1337.	1.4	25
8	Sensitivity of the Simulated Tropical Cyclone Intensification to the Boundaryâ€Layer Height Based on a <i>Kâ€Profile</i> Boundaryâ€Layer Parameterization Scheme. Journal of Advances in Modeling Earth Systems, 2018, 10, 2912-2932.	3.8	10
9	Multilevel Tower Observations of Vertical Eddy Diffusivity and Mixing Length in the Tropical Cyclone Boundary Layer during Landfalls. Journals of the Atmospheric Sciences, 2018, 75, 3159-3168.	1.7	16
11	Observed Kinematic and Thermodynamic Structure in the Hurricane Boundary Layer during Intensity Change. Monthly Weather Review, 2019, 147, 2765-2785.	1.4	16
12	Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bulletin of the American Meteorological Society, 2019, 100, ES447-ES472.	3.3	20
13	Simulation of Chemical Transport by Typhoon Mireille (1991). Journal of Geophysical Research D: Atmospheres, 2019, 124, 11614-11639.	3.3	2
14	Aircraft Observations of Tropical Cyclone Boundary Layer Turbulence over the South China Sea. Journals of the Atmospheric Sciences, 2019, 76, 3773-3783.	1.7	17
15	Effects of Parameterized Boundary Layer Structure on Hurricane Rapid Intensification in Shear. Monthly Weather Review, 2019, 147, 853-871.	1.4	48
16	Aircraft Observations of Turbulence Characteristics in the Tropical Cyclone Boundary Layer. Boundary-Layer Meteorology, 2020, 174, 493-511.	2.3	23
17	Examination of WRF-ARW Experiments Using Different Planetary Boundary Layer Parameterizations to Study the Rapid Intensification and Trajectory of Hurricane Otto (2016). Atmosphere, 2020, 11, 1317.	2.3	2
18	A Review and Evaluation of Planetary Boundary Layer Parameterizations in Hurricane Weather Research and Forecasting Model Using Idealized Simulations and Observations. Atmosphere, 2020, 11, 1091.	2.3	26
19	The generalized Ekman model for the tropical cyclone boundary layer revisited: The myth of inertial stability as a restoring force. Quarterly Journal of the Royal Meteorological Society, 2020, 146,	2.7	8

CITATION REPORT

#	Article	IF	CITATIONS
20	An Observational Study of the Symmetric Boundary Layer Structure and Tropical Cyclone Intensity. Atmosphere, 2020, 11, 158.	2.3	9
21	The Hurricane Harvey (2017) Texas Rainstorm: Synoptic Analysis and Sensitivity to Soil Moisture. Monthly Weather Review, 2020, 148, 2479-2502.	1.4	6
22	On the distribution of helicity in the tropical cyclone boundary layer from dropsonde composites. Atmospheric Research, 2021, 249, 105298.	4.1	7
23	Projected changes of typhoon intensity in a regional climate model: Development of a machine learning bias correction scheme. International Journal of Climatology, 2021, 41, 2749-2764.	3.5	4
24	Sensitivity of an Idealized Tropical Cyclone to the Configuration of the Global Forecast System–Eddy Diffusivity Mass Flux Planetary Boundary Layer Scheme. Atmosphere, 2021, 12, 284.	2.3	5
25	The generalized Ekman model for the tropical cyclone boundary layer revisited: Addendum. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1471-1476.	2.7	6
26	Improving Hurricane Boundary Layer Parameterization Scheme Based on Observations. Earth and Space Science, 2021, 8, e2020EA001422.	2.6	12
27	Validation of Ensemble-Based Probabilistic Tropical Cyclone Intensity Change. Atmosphere, 2021, 12, 373.	2.3	4
28	Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds. Geophysical Research Letters, 2021, 48, e2020GL091695.	4.0	9
29	Drastic change in dynamics as Typhoon Lekima experiences an eyewall replacement cycle. Frontiers of Earth Science, 0, , 1.	2.1	2
30	Improving the Analysis and Forecast of Hurricane Dorian (2019) with Simultaneous Assimilation of GOES-16 All-Sky Infrared Brightness Temperatures and Tail Doppler Radar Radial Velocities. Monthly Weather Review, 2021, , .	1.4	5
31	Recent Advances in Our Understanding of Tropical Cyclone Intensity Change Processes from Airborne Observations. Atmosphere, 2021, 12, 650.	2.3	11
32	Sensitivity of Fine-Scale Structure in Tropical Cyclone Boundary Layer to Model Horizontal Resolution at Sub-Kilometer Grid Spacing. Frontiers in Earth Science, 2021, 9, .	1.8	9
33	Effects of local and non-local closure PBL schemes on the simulation of Super Typhoon Mangkhut (2018). Frontiers of Earth Science, 2022, 16, 277-290.	2.1	3
34	Accomplishments of NOAA's Airborne Hurricane Field Program and a Broader Future Approach to Forecast Improvement. Bulletin of the American Meteorological Society, 2022, 103, E311-E338.	3.3	12
35	Asymmetric Hurricane Boundary Layer Structure during Storm Decay. Part I: Formation of Descending Inflow. Monthly Weather Review, 2021, 149, 3851-3874.	1.4	7
36	A direct aircraft observation of helical rolls in the tropical cyclone boundary layer. Scientific Reports, 2021, 11, 18771.	3.3	10
37	Effect of the Vertical Diffusion of Moisture in the Planetary Boundary Layer on an Idealized Tropical Cyclone. Advances in Atmospheric Sciences, 2021, 38, 1889-1904.	4.3	4

#	Article	IF	CITATIONS
38	The Role of Boundary Layer Dynamics in Tropical Cyclone Intensification. Part I: Sensitivity to Surface Drag Coefficient. Journal of the Meteorological Society of Japan, 2021, 99, 537-554.	1.8	13
39	The Impact of Outer-Core Surface Heat Fluxes on the Convective Activities and Rapid Intensification of Tropical Cyclones. Journals of the Atmospheric Sciences, 2020, 77, 3907-3927.	1.7	6
40	Evaluation of the Grell–Freitas Convective Scheme in the Hurricane Weather Research and Forecasting (HWRF) Model. Weather and Forecasting, 2020, 35, 1017-1033.	1.4	3
42	Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model. Geoscientific Model Development, 2021, 14, 6113-6133.	3.6	17
43	Observation of vertical eddy diffusivity and mixing length during landfalling Super Typhoons. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 219, 104816.	3.9	1
44	Tropical Cyclones and Hurricanes: Observations. , 2019, , .		4
45	Performance of 2020 Real-Time Atlantic Hurricane Forecasts from High-Resolution Global-Nested Hurricane Models: HAFS-globalnest and GFDL T-SHiELD. Weather and Forecasting, 2022, 37, 143-161.	1.4	7
46	Study of the Boundary Layer Structure of a Landfalling Typhoon Based on the Observation from Multiple Ground-Based Doppler Wind Lidars. Remote Sensing, 2021, 13, 4810.	4.0	3
47	Impacts of planetary boundary layer parameterization in RegCM4.7 on the intensity and structure of simulated tropical cyclones over the Philippines. Climate Dynamics, 2022, 59, 2915-2928.	3.8	2
48	Sensitivity of the Tropical Cyclone Boundary Layer to Vertical Diffusion in a Turbulent Kinetic Energyâ€Based Boundary Layer Parameterization Scheme at Grayâ€Zone Resolution. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
49	Vertical Eddy Diffusivity in the Tropical Cyclone Boundary Layer during Landfall. Atmosphere, 2022, 13, 982.	2.3	1
50	Observations of boundary layer wind and turbulence of a landfalling tropical cyclone. Scientific Reports, 2022, 12, .	3.3	0
51	Evaluation of Independent Stochastically Perturbed Parameterization Tendency (iSPPT) Scheme on HWRF-based Ensemble Tropical Cyclone Intensity Forecasts. Monthly Weather Review, 2022, , .	1.4	0
52	Comparison of the Performance of the Observation-Based Hybrid EDMF and EDMF-TKE PBL Schemes in 2020 Tropical Cyclone Forecasts from the Global-Nested Hurricane Analysis and Forecast System. Weather and Forecasting, 2022, 37, 457-476.	1.4	3
53	Impacts of wave feedbacks and planetary boundary layer parameterization schemes on air-sea coupled simulations: A case study for Typhoon Maria in 2018. Atmospheric Research, 2022, 278, 106344.	4.1	5
54	The Shearâ€Relative Variation of Inflow Angle and Its Relationship to Tropical Cyclone Intensification. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
55	Characterizing the Impacts of Turbulence Closures on Real Hurricane Forecasts: A Comprehensive Joint Assessment of Grid Resolution, Horizontal Turbulence Models, and Horizontal Mixing Length. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	4
56	Characteristics of tropical cyclones through remote sensing-based observational platforms. , 2023, , 325-354.		2

CITATION REPORT

#	Article	IF	CITATIONS
57	The Effects of Ocean Surface Waves on Tropical Cyclone Intensity: Numerical Simulations Using a Regional Atmosphereâ€Oceanâ€Wave Coupled Model. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	4
58	Assimilation of Clear-sky FY-4A AGRI radiances within the WRFDA system for the prediction of a landfalling Typhoon Hagupit (2020). Atmospheric Research, 2023, 283, 106556.	4.1	10
59	Tropical Cyclone Planetary Boundary Layer Heights Derived from GPS Radio Occultation over the Western Pacific Ocean. Remote Sensing, 2022, 14, 6110.	4.0	0
60	The Effect of Advection on the Three Dimensional Distribution of Turbulent Kinetic Energy and Its Generation in Idealized Tropical Cyclone Simulations. Journal of Advances in Modeling Earth Systems, 2023, 15, .	3.8	1
61	The Role of Vertical Diffusion Parameterizations in the Dynamics and Accuracy of Simulated Intensifying Hurricanes. Boundary-Layer Meteorology, 2023, 188, 389-418.	2.3	1
62	Observational Estimates of Turbulence Parameters in the Atmospheric Surface Layer of Landfalling Tropical Cyclones. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	2
63	The effects of boundary layer vertical turbulent diffusivity on the tropical cyclone intensity. Atmospheric Research, 2023, 295, 106994.	4.1	0
64	Airborne Doppler Radar Observations of Tropical Cyclone Boundary Layer Kinematic Structure and Evolution During Landfall, Geophysical Research Letters, 2023, 50, .	4.0	0