The mystery of membrane organization: composition, r

Nature Reviews Molecular Cell Biology 18, 361-374 DOI: 10.1038/nrm.2017.16

Citation Report

#	Article	IF	CITATIONS
1	Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Molecular Biology of the Cell, 2017, 28, 1507-1518.	0.9	110
2	Super-resolution optical microscopy for studying membrane structure and dynamics. Journal of Physics Condensed Matter, 2017, 29, 273001.	0.7	75
3	Photocontrollable fluorogenic probes for visualising near-membrane copper(<scp>ii</scp>) in live cells. RSC Advances, 2017, 7, 31093-31099.	1.7	11
4	Colocalization of receptors for Shiga toxins with lipid rafts in primary human renal glomerular endothelial cells and influence of D-PDMP on synthesis and distribution of glycosphingolipid receptors. Glycobiology, 2017, 27, 947-965.	1.3	21
5	Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. FEBS Journal, 2017, 284, 2513-2526.	2.2	45
6	Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. Nanoscale, 2017, 9, 17643-17666.	2.8	39
7	Phenylalanine Increases Membrane Permeability. Journal of the American Chemical Society, 2017, 139, 14388-14391.	6.6	55
8	Structural determinants and functional consequences of protein affinity for membrane rafts. Nature Communications, 2017, 8, 1219.	5.8	231
9	Overturning dogma: tolerance of insects to mixed-sterol diets is not universal. Current Opinion in Insect Science, 2017, 23, 89-95.	2.2	26
10	Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides. Biophysical Reviews, 2017, 9, 669-682.	1.5	14
11	Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells. Nano Letters, 2017, 17, 6295-6302.	4.5	43
12	Membrane nanodomains and microdomains in plant–microbe interactions. Current Opinion in Plant Biology, 2017, 40, 82-88.	3.5	83
13	Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biology, 2017, 7, 170069.	1.5	215
14	Illuminating the Cell's Biochemical Activity Architecture. Biochemistry, 2017, 56, 5210-5213.	1.2	10
15	Polarity-Sensitive Probes for Superresolution Stimulated Emission Depletion Microscopy. Biophysical Journal, 2017, 113, 1321-1330.	0.2	63
16	Interaction between C18 fatty acids and DOPE PEG2000 in Langmuir monolayers: effect of degree of unsaturation. Journal of Biological Physics, 2017, 43, 397-414.	0.7	9
17	The biophysical properties of plasmalogens originating from their unique molecular architecture. FEBS Letters, 2017, 591, 2700-2713.	1.3	69
18	Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Science, 2017, 264, 179-187.	1.7	48

#	Article	IF	CITATIONS
19	Identification of Two New Cholesterol Interaction Sites on the A2A Adenosine Receptor. Biophysical Journal, 2017, 113, 2415-2424.	0.2	61
20	Double-stranded DNA-scaffolded fluorescent probes for fluorescence imaging of cell-surface molecules. RSC Advances, 2017, 7, 52581-52587.	1.7	1
21	The lipid raft-dwelling protein US9 can be manipulated to target APP compartmentalization, APP processing, and neurodegenerative disease pathogenesis. Scientific Reports, 2017, 7, 15103.	1.6	7
22	Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium, 2017, 68, 45-61.	1.1	19
23	Assembly of Lyotropic Liquid Crystals with Solid Crystal's Structural Order Translated from the Lipid Rafts in Cell Membranes. Journal of the American Chemical Society, 2017, 139, 17044-17051.	6.6	3
24	Computational Lipidomics of the Neuronal Plasma Membrane. Biophysical Journal, 2017, 113, 2271-2280.	0.2	197
25	ï‰-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Science Advances, 2017, 3, eaao1193.	4.7	105
26	Membrane lipids and cell signaling. Current Opinion in Lipidology, 2017, 28, 408-413.	1.2	171
27	Sphingolipid abnormalities in cancer multidrug resistance: Chicken or egg?. Cellular Signalling, 2017, 38, 134-145.	1.7	33
28	Pattern formation by curvature-inducing proteins on spherical membranes. New Journal of Physics, 2017, 19, 125013.	1.2	9
29	Entropy and Polarity Control the Partition and Transportation of Drug-like Molecules in Biological Membrane. Scientific Reports, 2017, 7, 17749.	1.6	21
30	Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Annals of Botany, 2018, 122, 747-756.	1.4	38
31	Composition Fluctuations in Lipid Bilayers. Biophysical Journal, 2017, 113, 2750-2761.	0.2	42
32	A Synthetic Challenge to the Diversity of Gangliosides for Unveiling Their Biological Significance. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1162-1170.	0.0	4
33	Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene) Cores on Self-Assembly Behavior. Part 2: Domain Formation by Self-Assembly in Lipid Bilayer Membranes. Polymers, 2017, 9, 476.	2.0	2
34	Editorial: Molecular Organization of Membranes: Where Biology Meets Biophysics. Frontiers in Cell and Developmental Biology, 2017, 5, 113.	1.8	2
35	Lamin B Receptor: Interplay between Structure, Function and Localization. Cells, 2017, 6, 28.	1.8	42
36	LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. ELife, 2017, 6, .	2.8	76

#	Article	IF	CITATIONS
37	Lipid-rafts remain stable even after ionizing radiation induced disintegration of β1 integrin containing focal adhesions. BMC Research Notes, 2017, 10, 697.	0.6	4
38	Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Research, 2017, 6, 763.	0.8	20
39	180 Years of the Cell: From Matthias Jakob Schleiden to the Cell Biology of the Twenty-First Century. Plant Cell Monographs, 2018, , 7-37.	0.4	1
40	Computation of a Theoretical Membrane Phase Diagram and the Role of Phase in Lipid-Raft-Mediated Protein Organization. Journal of Physical Chemistry B, 2018, 122, 3500-3513.	1.2	13
41	Active Probes for Imaging Membrane Dynamics of Live Cells with High Spatial and Temporal Resolution over Extended Time Scales and Areas. Journal of the American Chemical Society, 2018, 140, 3505-3509.	6.6	100
42	Molecular Imaging of Cholesterol and Lipid Distributions in Model Membranes. Journal of Physical Chemistry Letters, 2018, 9, 1528-1533.	2.1	30
43	Symbiotic Origin of Eukaryotic Nucleus: From Cell Body to Neo-Energide. Plant Cell Monographs, 2018, , 39-66.	0.4	23
44	Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death and Disease, 2018, 9, 328.	2.7	84
45	Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, 2018, , .	0.4	0
46	Essential Insights into Lipid Membrane Organization from Essential Fatty Acids. Biophysical Journal, 2018, 114, 254-255.	0.2	3
47	Pneumolysin-damaged cells benefit from non-homogeneous toxin binding to cholesterol-rich membrane domains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 795-805.	1.2	11
48	SPT and Imaging FCS Provide Complementary Information on the Dynamics of Plasma Membrane Molecules. Biophysical Journal, 2018, 114, 2432-2443.	0.2	29
49	A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses. Methods, 2018, 140-141, 212-222.	1.9	8
50	Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biological and Pharmaceutical Bulletin, 2018, 41, 303-311.	0.6	13
51	Sphingolipidomics analysis of large clinical cohorts. Part 2: Potential impact and applications. Biochemical and Biophysical Research Communications, 2018, 504, 602-607.	1.0	9
52	Purification of membrane proteins free from conventional detergents: SMA, new polymers, new opportunities and new insights. Methods, 2018, 147, 106-117.	1.9	59
53	An Emerging Group of Membrane Property Sensors Controls the Physical State of Organellar Membranes to Maintain Their Identity. BioEssays, 2018, 40, e1700250.	1.2	30
54	Inhibition of dengue virus infection by mannoside glycolipid conjugates. Antiviral Research, 2018, 154, 116-123.	1.9	3

#	Article	IF	CITATIONS
55	Membrane Deformation Induces Clustering of Norovirus Bound to Glycosphingolipids in a Supported Cell-Membrane Mimic. Journal of Physical Chemistry Letters, 2018, 9, 2278-2284.	2.1	12
56	Lipopeptide daptomycin: Interactions with bacterial and phospholipid membranes, stability of membrane aggregates and micellation in solution. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1949-1954.	1.4	9
57	GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4501-4506.	3.3	55
58	Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170117.	1.8	40
59	The caveolar membrane system in endothelium: From cell signaling to vascular pathology. Journal of Cellular Biochemistry, 2018, 119, 5060-5071.	1.2	17
60	Omega-3 fatty acids, membrane remodeling and cancer prevention. Molecular Aspects of Medicine, 2018, 64, 79-91.	2.7	51
61	Hopanoid lipids: from membranes to plant–bacteria interactions. Nature Reviews Microbiology, 2018, 16, 304-315.	13.6	147
62	A reconstitution method for integral membrane proteins in hybrid lipid-polymer vesicles for enhanced functional durability. Methods, 2018, 147, 142-149.	1.9	30
63	Cytochromeâ€₽450â€Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs. Angewandte Chemie, 2018, 130, 3449-3453.	1.6	5
64	Cytochromeâ€₽450â€Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs. Angewandte Chemie - International Edition, 2018, 57, 3391-3395.	7.2	44
65	Understanding the diversity of membrane lipid composition. Nature Reviews Molecular Cell Biology, 2018, 19, 281-296.	16.1	1,179
66	Lipids in the cell: organisation regulates function. Cellular and Molecular Life Sciences, 2018, 75, 1909-1927.	2.4	81
67	The impact of deuteration on natural and synthetic lipids: A neutron diffraction study. Colloids and Surfaces B: Biointerfaces, 2018, 168, 126-133.	2.5	27
68	HIV antivirals: targeting the functional organization of the lipid envelope. Future Virology, 2018, 13, 129-140.	0.9	6
69	Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands. Physical Review E, 2018, 97, 012405.	0.8	16
70	Prominin-1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection. Stem Cells Translational Medicine, 2018, 7, 155-160.	1.6	16
71	Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell, 2018, 172, 147-161.e12.	13.5	702
72	cAMP: From Long-Range Second Messenger to Nanodomain Signalling. Trends in Pharmacological Sciences, 2018, 39, 209-222.	4.0	95

		CITATION REPORT		
#	Article		IF	CITATIONS
73	Membrane interactions of ionic liquids and imidazolium salts. Biophysical Reviews, 201	.8, 10, 735-746.	1.5	38
74	Adherens junctions influence tight junction formation via changes in membrane lipid c Journal of Cell Biology, 2018, 217, 2373-2381.	omposition.	2.3	53
75	Protein Partitioning into Ordered Membrane Domains: Insights from Simulations. Biop 2018, 114, 1936-1944.	hysical Journal,	0.2	63
76	Real-Time Monitoring of Lipid Exchange via Fusion of Peptide Based Lipid-Nanodiscs. C Materials, 2018, 30, 3204-3207.	hemistry of	3.2	23
77	Membrane properties that shape the evolution of membrane enzymes. Current Opinio Biology, 2018, 51, 80-91.	n in Structural	2.6	17
78	Conformation-dependent partitioning of yeast nutrient transporters into starvation-pro- membrane domains. Proceedings of the National Academy of Sciences of the United S 2018, 115, E3145-E3154.	otective tates of America,	3.3	66
79	Determinants of Raft Partitioning of the Helicobacter pylori Pore-Forming Toxin VacA. I Immunity, 2018, 86, .	nfection and	1.0	15
80	Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes s single particle tracking. Journal of Chemical Physics, 2018, 148, 123333.	studied by	1.2	26
81	Optimized processing and analysis of conventional confocal microscopy generated sca Methods, 2018, 140-141, 62-73.	anning FCS data.	1.9	33
82	Shaping intercellular channels of plasmodesmata: the structure-to-function missing lin Experimental Botany, 2018, 69, 91-103.	k. Journal of	2.4	41
83	Analysis of lipid raft molecules in the living brain slices. Neurochemistry International, 2 140-150.	2018, 119,	1.9	11
84	The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cand and Cellular Endocrinology, 2018, 466, 73-80.	cer. Molecular	1.6	63
85	Differential targeting of membrane lipid domains by caffeic acid and its ester derivative Biology and Medicine, 2018, 115, 232-245.	es. Free Radical	1.3	42
86	Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Biological Membranes. Journal of Physical Chemistry Letters, 2018, 9, 110-119.	Dynamics of	2.1	41
87	Molecular rotors report on changes in live cell plasma membrane microviscosity upon i with beta-amyloid aggregates. Soft Matter, 2018, 14, 9466-9474.	nteraction	1.2	30
88	Pathways for creation and annihilation of nanoscale biomembrane domains reveal alph beta-toxin nanopore formation processes. Physical Chemistry Chemical Physics, 2018,	a and 20, 29116-29130.	1.3	16
89	The Alzheimer's disease amyloid-β peptide affects the size-dynamics of raft-mimicking GM1-containing lipid bilayers. Soft Matter, 2018, 14, 9609-9618.	Lo domains in	1.2	18
90	Role of Membrane Cholesterol in Modulating Actin Architecture and Cellular Contracti	lity. , 2018, , .		2

ARTICLE IF CITATIONS # Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer. Physical 1.3 14 91 Chemistry Chemical Physics, 2018, 20, 28241-28248. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert 1.3 9 Review of Proteomics, 2018, 15, 1053-1063. Docoxahexaenoic Acid Induces Apoptosis of Pancreatic Cancer Cells by Suppressing Activation of 93 1.7 21 STAT3 and NF-Î^oB. Nutrients, 2018, 10, 1621. Short chain ceramides disrupt immunoreceptor signaling by inhibiting segregation of Lo from Ld 94 plasma membrane components. Biology Open, 2018, 7, . Preparation and Characterization of Solid-Supported Lipid Bilayers Formed by Langmuir–Blodgett 95 1.6 68 Deposition: A Tutorial. Langmuir, 2018, 34, 15622-15639. Para-Toluenesulfonamide Induces Anti-tumor Activity Through Akt-Dependent and -Independent mTOR/p70S6K Pathway: Roles of Lipid Raft and Cholesterol Contents. Frontiers in Pharmacology, 2018, 1.6 REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in 97 2.1 73 restricting PVX cell-to-cell movement. PLoS Pathogens, 2018, 14, e1007378. Revisiting the Interaction Force Measurement between Lipid Bilayers Using a Surface Forces Apparatus 0.6 (SFA). Journal of Oleo Science, 2018, 67, 1361-1372. Intramembrane ionic protein–lipid interaction regulates integrin structure and function. PLoS 99 2.6 11 Biology, 2018, 16, e2006525. Erg6 gene is essential for stress adaptation inKluyveromyces lactis. FEMS Microbiology Letters, 2018, 365, . Dynamic lateral organization of opioid receptors (kappa, mu_{wt} and mu_{N40D}) 101 1.3 24 in the plasma membrane at the nanoscale level. Traffic, 2018, 19, 690-709. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling 351 Networks. Chemical Reviews, 2018, 118, 11707-11794. Perspective: Computational modeling of accurate cellular membranes with molecular resolution. 103 1.2 17 Journal of Chemical Physics, 2018, 149, 220901. Molecular Origin of Spatiotemporal Heterogeneity in Biomembranes With Coexisting Liquid Phases: Insights From Topological Rearrangements and Lipid Packing Defects. Advances in Biomembranes and Lipid Self-Assembly, 2018, , 87-114. 104 0.3 A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules, 2018, 8, 104. 105 12 1.8 Helicobacter pylori–binding nonacid glycosphingolipids in the human stomach. Journal of Biological Chemistry, 2018, 293, 17248-17266. Lipid-driven immunometabolic responses in atherosclerosis. Current Opinion in Lipidology, 2018, 29, 107 1.2 33 375-380. Peptideâ€Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Advanced Functional 94 Materials, 2018, 28, 1804492.

		CITATION REPORT		
#	Article		IF	CITATIONS
109	Lipids and lipid domains of the yeast vacuole. Biochemical Society Transactions, 2018,	46, 1047-1054.	1.6	21
110	A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Develop in the Cold. Developmental Cell, 2018, 46, 781-793.e4.	ment and Survival	3.1	61
111	The lipid bilayer membrane and its protein constituents. Journal of General Physiology, 1472-1483.	2018, 150,	0.9	44
112	Soft and dispersed interface-rich aqueous systems that promote and guide chemical re Reviews Chemistry, 2018, 2, 306-327.	eactions. Nature	13.8	92
113	Photoswitchable Glycolipid Mimetics: Synthesis and Photochromic Properties of Glyco Amphiphiles. Chemistry - A European Journal, 2018, 24, 17497-17505.	azobenzene	1.7	13
114	Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grain Journal of Chemical Theory and Computation, 2018, 14, 6050-6062.	ned Force Field.	2.3	63
115	Probing the mechanisms of extracellular vesicle biogenesis and function in cancer. Bio Society Transactions, 2018, 46, 1137-1146.	chemical	1.6	28
116	Stressâ€induced host membrane remodeling protects from infection by nonâ€motile l EMBO Journal, 2018, 37, .	pacterial pathogens.	3.5	17
117	Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Nanoelectrode Arrays. Advanced Science, 2018, 5, 1800560.	Plasmonic	5.6	47
118	AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca2+-Permeable AMPA R Control LTP. Cell Reports, 2018, 25, 974-987.e4.	eceptors to	2.9	51
119	Spin label EPR suggests the presence of cholesterol rich domains in cultured insect cel Biochemical and Biophysical Research Communications, 2018, 505, 1038-1042.	l membranes.	1.0	0
120	Plant Aquaporins. Advances in Botanical Research, 2018, 87, 25-56.		0.5	11
121	Cholesterol-pyrene as a probe for cholesterol distribution on ordered and disordered m Determination of spectral wavelengths. PLoS ONE, 2018, 13, e0201373.	iembranes:	1.1	6
122	Labeled gangliosides: their synthesis and use in biological studies. FEBS Letters, 2018,	592, 3992-4006.	1.3	7
123	Quaternary Amine-Terminated Quantum Dots Induce Structural Changes to Supported Langmuir, 2018, 34, 12369-12378.	l Lipid Bilayers.	1.6	18
124	Interface geometry of binary mixtures on curved substrates. Physical Review E, 2018, 9	98,.	0.8	14
125	Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membr Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules, 20		1.8	13
126	Cholesterol Flip-Flop Impacts Domain Registration in Plasma Membrane Models. Journa Chemistry Letters, 2018, 9, 5527-5533.	al of Physical	2.1	36

#	Article	IF	CITATIONS
127	Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1441-1448.	1.2	11
128	Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chemistry and Physics of Lipids, 2018, 216, 114-131.	1.5	157
129	Conjugated Polyimine Dynamers as Phase-Sensitive Membrane Probes. Journal of the American Chemical Society, 2018, 140, 11438-11443.	6.6	29
130	Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Reports, 2018, 23, 2667-2677.	2.9	51
131	The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Progress in Lipid Research, 2018, 71, 43-53.	5.3	78
132	Long-Chain n-3 Fatty Acids Attenuate Oncogenic KRas-Driven Proliferation by Altering Plasma Membrane Nanoscale Proteolipid Composition. Cancer Research, 2018, 78, 3899-3912.	0.4	29
133	Cellular mechanisms of physicochemical membrane homeostasis. Current Opinion in Cell Biology, 2018, 53, 44-51.	2.6	79
134	Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chemical Biology, 2018, 25, 952-961.e12.	2.5	22
135	Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chemical Reviews, 2018, 118, 5392-5487.	23.0	61
136	Monoclonal Antibody DL11C8 Identifies ADAM23 as a Component of Lipid Raft Microdomains. Neuroscience, 2018, 384, 165-177.	1.1	2
138	Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer and Metastasis Reviews, 2018, 37, 519-544.	2.7	33
139	Single molecule fluorescence for membrane proteins. Methods, 2018, 147, 221-228.	1.9	13
140	DNA nanomachines: monitoring molecular encounter dynamics in live cell membranes. National Science Review, 2018, 5, 300-301.	4.6	2
141	A mixed alchemical and equilibrium dynamics to simulate heterogeneous dense fluids: Illustrations for Lennard-Jones mixtures and phospholipid membranes. Journal of Chemical Physics, 2018, 149, 072325.	1.2	15
142	Fluid Phase Coexistence in Biological Membrane: Insights from Local Nonaffine Deformation of Lipids. Biophysical Journal, 2018, 115, 117-128.	0.2	16
143	Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets. Scientific Reports, 2018, 8, 9987.	1.6	63
144	Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle, 2018, 17, 1649-1666.	1.3	24
145	Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst, The, 2018, 143, 3990-4008.	1.7	120

#	Article	IF	CITATIONS
146	From Dynamics to Membrane Organization: Experimental Breakthroughs Occasion a "Modeling Manifesto― Biophysical Journal, 2018, 115, 595-604.	0.2	25
147	Strategies to Tackle Radiation Resistance by Penetrating Cancer Stem Cell Line of Scrimmage. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 18-39.	0.8	4
148	Super-resolution fluorescence microscopy studies of human immunodeficiency virus. Retrovirology, 2018, 15, 41.	0.9	37
149	Transmembrane Peptides as Sensors of the Membrane Physical State. Frontiers in Physics, 2018, 6, .	1.0	10
150	Advances in Membrane Proteins. , 2018, , .		0
151	Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiological Reviews, 2018, 98, 1627-1738.	13.1	673
152	Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chemical Reviews, 2018, 118, 8188-8241.	23.0	34
153	Ligand Access Channels in Cytochrome P450 Enzymes: A Review. International Journal of Molecular Sciences, 2018, 19, 1617.	1.8	59
154	Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. International Journal of Molecular Sciences, 2018, 19, 1811.	1.8	7
155	Mechanism for Decreased Gene Expression of β4-Galactosyltransferase 5 upon Differentiation of 3T3-L1 Mouse Preadipocytes to Adipocytes. Biological and Pharmaceutical Bulletin, 2018, 41, 1463-1470.	0.6	3
156	Picturing the Membraneâ€assisted Choreography of Cytochrome P450 with Lipid Nanodiscs. ChemPhysChem, 2018, 19, 2603-2613.	1.0	28
157	Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. Langmuir, 2018, 34, 8983-8993.	1.6	3
158	Reactionâ€based AlEâ€active Fluorescent Probes for Selective Detection and Imaging. Israel Journal of Chemistry, 2018, 58, 845-859.	1.0	33
159	How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2436-2445.	1.4	31
160	Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie, 2018, 153, 150-161.	1.3	26
161	Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clinical and Translational Medicine, 2018, 7, 4.	1.7	106
162	Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular Architecture. Langmuir, 2018, 34, 5454-5463.	1.6	18
163	Dynamic pattern generation in cell membranes: Current insights into membrane organization. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2018-2031.	1.4	39

#	Article	IF	CITATIONS
164	Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis. Journal of Lipids, 2018, 2018, 1-22.	1.9	73
165	A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes. Scientific Reports, 2018, 8, 12508.	1.6	31
166	Amphipathic CRAC-Containing Peptides Derived from the Influenza Virus A M1 Protein Modulate Cholesterol-Dependent Activity of Cultured IC-21 Macrophages. Biochemistry (Moscow), 2018, 83, 982-991.	0.7	5
167	Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chemical Reviews, 2018, 118, 8598-8654.	23.0	112
168	Cholesterol is the main regulator of the carbon dioxide permeability of biological membranes. American Journal of Physiology - Cell Physiology, 2018, 315, C137-C140.	2.1	10
169	The hallmarks of living systems: towards creating artificial cells. Interface Focus, 2018, 8, 20180023.	1.5	111
170	Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1041-1056.	1.2	56
171	Shearlet-based measures of entropy and complexity for two-dimensional patterns. Physical Review E, 2018, 97, 061301.	0.8	18
172	Models for randomly distributed nanoscopic domains on spherical vesicles. Physical Review E, 2018, 97, 062405.	0.8	10
173	Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging. Nano Letters, 2018, 18, 4233-4240.	4.5	28
174	E-cadherin-deficient cells have synthetic lethal vulnerabilities in plasma membrane organisation, dynamics and function. Gastric Cancer, 2019, 22, 273-286.	2.7	24
175	Sphingolipids and neuronal degeneration in lysosomal storage disorders. Journal of Neurochemistry, 2019, 148, 600-611.	2.1	37
176	Calcium enhances binding of Clostridium perfringens epsilon toxin to sulfatide. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 161-169.	1.4	2
177	The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 130-141.	1.4	16
178	Polysialic acid chains exhibit enhanced affinity for ordered regions of membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 245-255.	1.4	13
179	Switchable Solvatochromic Probes for Liveâ€Cell Superâ€resolution Imaging of Plasma Membrane Organization. Angewandte Chemie - International Edition, 2019, 58, 14920-14924.	7.2	110
180	Structural and signaling role of lipids in plasma membrane repair. Current Topics in Membranes, 2019, 84, 67-98.	0.5	34
181	Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. Langmuir, 2019, 35, 11902-11911.	1.6	10

	CITATION R	EPORT	
#	Article	IF	CITATIONS
182	Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 2019, 9, 800.	1.3	123
183	Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. International Journal of Molecular Sciences, 2019, 20, 3904.	1.8	6
184	Switchable Solvatochromic Probes for Liveâ€Cell Superâ€resolution Imaging of Plasma Membrane Organization. Angewandte Chemie, 2019, 131, 15062-15066.	1.6	31
185	Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports on Progress in Physics, 2019, 82, 116601.	8.1	39
186	Syntaxin 17 Recruits ACSL3 to Lipid Microdomains in Lipid Droplet Biogenesis. Contact (Thousand Oaks) Tj ETQ	q0 8.9 rgE	BT /gverlock 1
187	How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage: an experimental and computational study. Physical Chemistry Chemical Physics, 2019, 21, 19327-19341.	1.3	28
188	Tying lipid rafts to oncogenic signalling. Nature Reviews Molecular Cell Biology, 2019, 20, 513-513.	16.1	5
189	Nanoscale dynamics of cholesterol in the cell membrane. Journal of Biological Chemistry, 2019, 294, 12599-12609.	1.6	44
190	Caveolin-1 Endows Order in Cholesterol-Rich Detergent Resistant Membranes. Biomolecules, 2019, 9, 287.	1.8	12
191	Characterization of Single-Protein Dynamics in Polymer-Cushioned Lipid Bilayers Derived from Cell Plasma Membranes. Journal of Physical Chemistry B, 2019, 123, 6492-6504.	1.2	12
192	Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metabolism, 2019, 30, 525-538.e8.	7.2	130
193	Monolayers of Carbohydrate-Containing Lipids at the Water- Air Interface. , 2019, , .		1
194	Role of Transmembrane Proteins for Phase Separation and Domain Registration in Asymmetric Lipid Bilayers. Biomolecules, 2019, 9, 303.	1.8	6
195	Guiding Drugs to Targetâ€Harboring Organelles: Stretching Drugâ€Đelivery to a Higher Level of Resolution. Angewandte Chemie, 2019, 131, 15730-15740.	1.6	10
196	The plasma membrane as a mechanochemical transducer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180221.	1.8	134
197	Multimerization and Retention of the Scavenger Receptor SR-B1 in the Plasma Membrane. Developmental Cell, 2019, 50, 283-295.e5.	3.1	33
198	Metal Ion Size-Dependent Effects on Lipid Transmembrane Flip-Flop. Journal of Physical Chemistry C, 2019, 123, 17899-17907.	1.5	10

199	Nanodomain Clustering of the Plant Protein Remorin by Solid-State NMR. Frontiers in Molecular Biosciences, 2019, 6, 107.	1.6	22

#	Article	IF	Citations
200	Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21274-21284.	3.3	102
201	Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Communication and Signaling, 2019, 17, 126.	2.7	85
202	The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Molecular Cell, 2019, 76, 295-305.	4.5	223
203	Improvement of multiplex semi-nested PCR system for screening of rare mutations by high-throughput sequencing. BioTechniques, 2019, 67, 294-298.	0.8	1
204	Barcoding Biological Reactions with DNAâ€Functionalized Vesicles. Angewandte Chemie, 2019, 131, 18856-18863.	1.6	15
205	Protein-driven lipid domain nucleation in biological membranes. Physical Review E, 2019, 100, 042410.	0.8	8
206	Validation of Human Sterol 14α-Demethylase (CYP51) Druggability: Structure-Guided Design, Synthesis, and Evaluation of Stoichiometric, Functionally Irreversible Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 10391-10401.	2.9	21
207	Regulation of glucose and lipid metabolism in health and disease. Science China Life Sciences, 2019, 62, 1420-1458.	2.3	134
208	Shaping membranes with disordered proteins. Archives of Biochemistry and Biophysics, 2019, 677, 108163.	1.4	29
209	Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Progress in Lipid Research, 2019, 76, 101010.	5.3	32
210	Label-Free Non-linear Multimodal Optical Microscopy—Basics, Development, and Applications. Frontiers in Physics, 2019, 7, .	1.0	34
211	Plasma membrane imaging with a fluorescent benzothiadiazole derivative. Beilstein Journal of Organic Chemistry, 2019, 15, 2644-2654.	1.3	10
212	Alterations to the contents of plasma membrane structural lipids are associated with structural changes and compartmentalization in platelets in hypertension. Experimental Cell Research, 2019, 385, 111692.	1.2	10
213	GM1 Ganglioside role in the interaction of Alpha-synuclein with lipid membranes: Morphology and structure. Biophysical Chemistry, 2019, 255, 106272.	1.5	38
214	Nanoscale Substrate Roughness Hinders Domain Formation in Supported Lipid Bilayers. Langmuir, 2019, 35, 15352-15363.	1.6	25
215	Barcoding Biological Reactions with DNAâ€Functionalized Vesicles. Angewandte Chemie - International Edition, 2019, 58, 18683-18690.	7.2	26
216	Measuring molecular order for lipid membrane phase studies: Linear relationship between Laurdan generalized polarization and deuterium NMR order parameter. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183053.	1.4	25
217	The Endless Saga of Monocyte Diversity. Frontiers in Immunology, 2019, 10, 1786.	2.2	67

#	Article	IF	CITATIONS
218	Fungal plasma membrane domains. FEMS Microbiology Reviews, 2019, 43, 642-673.	3.9	46
219	Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans. Progress in Lipid Research, 2019, 76, 100996.	5.3	48
220	Non-localized Increase in Lipid Content and Striation Pattern Formation Characterize the Sonoporated Plasma Membrane. Ultrasound in Medicine and Biology, 2019, 45, 3005-3017.	0.7	3
221	Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers. Langmuir, 2019, 35, 12071-12078.	1.6	2
222	Dynamic Remodeling of the Host Cell Membrane by Virulent Mycobacterial Sulfoglycolipid-1. Scientific Reports, 2019, 9, 12844.	1.6	30
223	Different spatiotemporal organization of GPI-anchored T-cadherin in response to low-density lipoprotein and adiponectin. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129414.	1.1	10
224	Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Scientific Reports, 2019, 9, 12530.	1.6	14
225	Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophysical Chemistry, 2019, 254, 106263.	1.5	43
226	Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophysical Journal, 2019, 117, 1037-1050.	0.2	44
227	Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. Frontiers in Plant Science, 2019, 10, 1022.	1.7	46
228	Flow-induced mechanotransduction in skeletal cells. Biophysical Reviews, 2019, 11, 729-743.	1.5	33
229	Relationship between structure and molecular interactions in monolayers of specially designed aminolipids. Nanoscale Advances, 2019, 1, 3529-3536.	2.2	4
230	Targeting of host cell receptor tyrosine kinases by intracellular pathogens. Science Signaling, 2019, 12, .	1.6	31
231	The role of cholesterol and cholesterol-driven membrane raft domains in prostate cancer. Experimental Biology and Medicine, 2019, 244, 1053-1061.	1.1	28
233	Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Reports, 2019, 29, 1-12.	2.9	154
234	Broadening and Enhancing Functions of Antibodies by Self-Assembling Multimerization at Cell Surface. ACS Nano, 2019, 13, 11422-11432.	7.3	24
235	Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates. Archives of Biochemistry and Biophysics, 2019, 675, 108111.	1.4	11
236	Syndecan-1 Mediates Sorting of Soluble Lipoprotein Lipase with Sphingomyelin-Rich Membrane in the Golgi Apparatus. Developmental Cell, 2019, 51, 387-398.e4.	3.1	37

#	Article	IF	CITATIONS
237	A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science, 2019, 366, 128-132.	6.0	84
239	Tracking Single Molecules in Biomembranes: Is Seeing Always Believing?. ACS Nano, 2019, 13, 10860-10868.	7.3	18
240	Mechanisms governing subcompartmentalization of biological membranes. Current Opinion in Plant Biology, 2019, 52, 114-123.	3.5	18
241	Lipid Acyl Chain <i>cis</i> Double Bond Position Modulates Membrane Domain Registration/Anti-Registration. Journal of the American Chemical Society, 2019, 141, 15884-15890.	6.6	36
242	Strong dependence of the nano-bio interactions on core morphology and layer composition of ultrasmall nanostructures. Journal of Chemical Physics, 2019, 151, 105102.	1.2	7
243	Membrane Fluidity of Saccharomyces cerevisiae from <i>Huangjiu</i> (Chinese Rice Wine) Is Variably Regulated by <i>OLE1</i> To Offset the Disruptive Effect of Ethanol. Applied and Environmental Microbiology, 2019, 85, .	1.4	22
244	Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers. Nanoscale, 2019, 11, 2767-2778.	2.8	33
245	Direct manipulation of liquid ordered lipid membrane domains using optical traps. Communications Chemistry, 2019, 2, .	2.0	15
246	Generation of the heterogeneity of extracellular vesicles by membrane organization and sorting machineries. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 681-691.	1.1	20
247	Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes. Cell, 2019, 176, 1040-1053.e17.	13.5	109
248	Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Progress in Lipid Research, 2019, 74, 18-30.	5.3	67
249	Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. Frontiers in Endocrinology, 2018, 9, 807.	1.5	114
250	Understanding Membrane Domain-Partitioning Thermodynamics of Transmembrane Domains with Potential of Mean Force Calculations. Journal of Physical Chemistry B, 2019, 123, 1009-1016.	1.2	15
251	Exploring membrane organization at varying spatiotemporal resolutions utilizing fluorescence-based approaches: implications in membrane biology. Physical Chemistry Chemical Physics, 2019, 21, 11554-11563.	1.3	13
252	Lipid-DNA conjugates for cell membrane modification, analysis, and regulation. Supramolecular Chemistry, 2019, 31, 532-544.	1.5	13
253	Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. Journal of Physical Chemistry B, 2019, 123, 5814-5821.	1.2	27
254	The role of PS 18:0/18:1 in membrane function. Nature Communications, 2019, 10, 2752.	5.8	65
255	Depletion of the cellular cholesterol content reduces the dynamics of desmosomal cadherins and interferes with desmosomal strength. Histochemistry and Cell Biology, 2019, 152, 195-206.	0.8	5

#	Article	IF	Citations
256	Guiding Drugs to Targetâ€Harboring Organelles: Stretching Drugâ€Delivery to a Higher Level of Resolution. Angewandte Chemie - International Edition, 2019, 58, 15584-15594.	7.2	40
257	Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule. ACS Nano, 2019, 13, 10918-10928.	7.3	31
258	Low-diluted Phenacetinum disrupted the melanoma cancer cell migration. Scientific Reports, 2019, 9, 9109.	1.6	4
259	Synthesis of ganglioside analogs containing fluorescently labeled GalNAc for single-molecule imaging. Journal of Carbohydrate Chemistry, 2019, 38, 509-527.	0.4	6
260	Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Progress in Lipid Research, 2019, 75, 100988.	5.3	24
261	Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS Applied Materials & Interfaces, 2019, 11, 21372-21380.	4.0	8
262	LION/web: a web-based ontology enrichment tool for lipidomic data analysis. GigaScience, 2019, 8, .	3.3	128
263	Examination of the association states of dehydroergosterol towards understanding the association structures of sterols in a membrane. Biochemical and Biophysical Research Communications, 2019, 515, 228-233.	1.0	1
264	Rapid diffusion of cholesterol along polyunsaturated membranes <i>via</i> deep dives. Physical Chemistry Chemical Physics, 2019, 21, 11660-11669.	1.3	21
265	Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Computational Biology, 2019, 15, e1007033.	1.5	25
266	GPAA1 promotes gastric cancer progression via upregulation of GPI-anchored protein and enhancement of ERBB signalling pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 214.	3.5	15
267	Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses, 2019, 11, 438.	1.5	16
268	Lipid Rafts in Bacteria: Structure and Function. , 2019, , 1-30.		2
269	Gangliosides Contribute to Vascular Insulin Resistance. International Journal of Molecular Sciences, 2019, 20, 1819.	1.8	13
270	Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. , 2019, , .		3
271	Cholesterol 24-Hydroxylation by CYP46A1: Benefits of Modulation for Brain Diseases. Neurotherapeutics, 2019, 16, 635-648.	2.1	61
272	Molecular Dynamics Studies of Nanoparticle Transport Through Model Lipid Membranes. , 2019, , 109-165.		4
273	Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1284-1292.	1.4	55

#	Article	IF	CITATIONS
274	Hydration-mediated stiffening of collective membrane dynamics by cholesterol. Physical Chemistry Chemical Physics, 2019, 21, 10370-10376.	1.3	9
275	T cell metabolism in chronic viral infection. Clinical and Experimental Immunology, 2019, 197, 143-152.	1.1	39
276	The Lateral Organization and Mobility of Plasma Membrane Components. Cell, 2019, 177, 806-819.	13.5	183
277	Structural and Mechanical Characterization of Supported Model Membranes by AFM. , 2019, , 1-27.		0
278	Solvatochromic Near-Infrared Probe for Polarity Mapping of Biomembranes and Lipid Droplets in Cells under Stress. Journal of Physical Chemistry Letters, 2019, 10, 2414-2421.	2.1	95
279	Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie - International Edition, 2019, 58, 10423-10432.	7.2	99
280	Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nature Protocols, 2019, 14, 1054-1083.	5.5	76
281	Visualizing Biological Membrane Organization and Dynamics. Journal of Molecular Biology, 2019, 431, 1889-1919.	2.0	18
282	Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie, 2019, 131, 10532-10541.	1.6	24
283	Mercury leads to abnormal red blood cell adhesion to laminin mediated by membrane sulfatides. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1162-1171.	1.4	12
284	Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2019, 267, 47-61.	7.0	286
285	Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chemical Reviews, 2019, 119, 5607-5774.	23.0	209
286	Effects of artepillin C on model membranes displaying liquid immiscibility. Brazilian Journal of Medical and Biological Research, 2019, 52, e8281.	0.7	2
287	Real-time observation of dynamic heterogeneity of gold nanorods on plasma membrane with darkfield microscopy. Science China Chemistry, 2019, 62, 1072-1081.	4.2	14
288	Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. Advances in Experimental Medicine and Biology, 2019, 1117, 93-109.	0.8	30
289	Antimicrobial Peptides. Advances in Experimental Medicine and Biology, 2019, , .	0.8	26
290	GLUT1 is associated with sphingolipid-organized, cholesterol-independent domains in L929 mouse fibroblast cells. Biochimie, 2019, 162, 88-96.	1.3	1
291	Essay on Biomembrane Structure. Journal of Membrane Biology, 2019, 252, 115-130.	1.0	11

#	Article	IF	CITATIONS
292	Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. Langmuir, 2019, 35, 5305-5315.	1.6	14
293	Mixed Fluorinated/Hydrogenated Selfâ€Assembled Monolayerâ€Protected Gold Nanoparticles: In Silico and In Vitro Behavior. Small, 2019, 15, e1900323.	5.2	18
294	The desmosome is a mesoscale lipid raft–like membrane domain. Molecular Biology of the Cell, 2019, 30, 1390-1405.	0.9	26
295	Regulation of Transmembrane Signaling by Phase Separation. Annual Review of Biophysics, 2019, 48, 465-494.	4.5	213
296	Epidermal growth factor-nanoparticle conjugates change the activity from anti-apoptotic to pro-apoptotic at membrane rafts. Acta Biomaterialia, 2019, 88, 383-391.	4.1	15
297	Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation. PLoS ONE, 2019, 14, e0210985.	1.1	11
298	Structural and Functional Determinants of AC8 Trafficking, Targeting and Responsiveness in Lipid Raft Microdomains. Journal of Membrane Biology, 2019, 252, 159-172.	1.0	6
299	Pro-metastatic functions of lipoproteins and extracellular vesicles in the acidic tumor microenvironment. Cancer and Metastasis Reviews, 2019, 38, 79-92.	2.7	17
300	Biological Membrane Organization and Cellular Signaling. Chemical Reviews, 2019, 119, 5849-5880.	23.0	112
301	Encoding biological recognition in a bicomponent cell-membrane mimic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5376-5382.	3.3	51
302	Lipids or Proteins: Who Is Leading the Dance at Membrane Contact Sites?. Frontiers in Plant Science, 2019, 10, 198.	1.7	16
303	Myosin IIA drives membrane bleb retraction. Molecular Biology of the Cell, 2019, 30, 1051-1059.	0.9	21
304	The Effect of Transmembrane Protein Shape on Surrounding Lipid Domain Formation by Wetting. Biomolecules, 2019, 9, 729.	1.8	9
305	Membrane domain modulation of Aβ _{1–42} oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation. Nanoscale, 2019, 11, 20857-20867.	2.8	34
306	Ganglioside GM2, highly expressed in the MIA PaCa-2 pancreatic ductal adenocarcinoma cell line, is correlated with growth, invasion, and advanced stage. Scientific Reports, 2019, 9, 19369.	1.6	19
307	Interaction of the mononucleotide UMP with a fluid phospholipid bilayer. Soft Matter, 2019, 15, 8129-8136.	1.2	6
308	Ionic protein-lipid interactions at the plasma membrane regulate the structure and function of immunoreceptors. Advances in Immunology, 2019, 144, 65-85.	1.1	6
309	Vascular Diseases and Gangliosides. International Journal of Molecular Sciences, 2019, 20, 6362.	1.8	10

ARTICLE IF CITATIONS # Deletion of Atg22 gene contributes to reduce programmed cell death induced by acetic acid stress in 310 6.2 20 Saccharomyces cerevisiae. Biotechnology for Biofuels, 2019, 12, 298. The Fusion of Lipid and DNA Nanotechnology. Genes, 2019, 10, 1001. 1.0 Drastically modulating the structure, fluorescence, and functionality of doxorubicin in lipid 312 1.2 12 membrane by interfacial density control. Journal of Chemical Physics, 2019, 151, 224706. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: the 1.2 role of HDL. Current Opinion in Lipidology, 2019, 30, 462-469. More Favorable Palmitic Acid Over Palmitoleic Acid Modification of Wnt3 Ensures Its Localization and 314 1.8 10 Activity in Plasma Membrane Domains. Frontiers in Cell and Developmental Biology, 2019, 7, 281. CD157: From Myeloid Cell Differentiation Marker to Therapeutic Target in Acute Myeloid Leukemia. 1.8 Cells, 2019, 8, 1580. Permeability of membranes in the liquid ordered and liquid disordered phases. Nature 316 5.8 78 Communications, 2019, 10, 5616. A quantitative assessment of the dynamic modification of lipidâ \in DNA probes on live cell membranes. 317 3.7 46 Chemical Science, 2019, 10, 11030-11040. 318 10. Cholesterol in model membranes., 2019, , 325-364. 1 Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae. Biochimica Et 1.2 Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 290-303. Determining the target of membrane sterols on voltage-gated potassium channels. Biochimica Et 320 1.2 13 Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 312-325. Contrasting roles of oxidized lipids in modulating membrane microdomains. Biochimica Et Biophysica 1.4 46 Acta - Biomembranes, 2019, 1861, 660-669. Engineering microbial membranes to increase stress tolerance of industrial strains. Metabolic 322 3.6 94 Engineering, 2019, 53, 24-34. BODIPY with Tuned Amphiphilicity as a Fluorogenic Plasma Membrane Probe. Bioconjugate Chemistry, 2019, 30, 192-199. 1.8 Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and 324 1.4 11 cytoskeleton-disrupted cells. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 26-33. "Raftsâ€: A nickname for putative transient nanodomains. Chemistry and Physics of Lipids, 2019, 218, 34-39. Plant lipids: Key players of plasma membrane organization and function. Progress in Lipid Research, 326 5.3167 2019, 73, 1-27. Probing the effect of a room temperature ionic liquid on phospholipid membranes in multilamellar 1.2 19 vesicles. European Biophysics Journal, 2019, 48, 119-129.

ARTICLE IF CITATIONS # Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to 328 23.0 184 Cellular Proteostasis. Chemical Reviews, 2019, 119, 5537-5606. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses, 2019, 11, 46. 1.5 Acetyl-CoA Metabolism Supports Multistep Pancreatic Tumorigenesis. Cancer Discovery, 2019, 9, 330 7.7 184 416-435. Computational Modeling of Realistic Cell Membranes. Chemical Reviews, 2019, 119, 6184-6226. 331 Cholesterol Flip-Flop in Heterogeneous Membranes. Journal of Chemical Theory and Computation, 332 2.3 62 2019, 15, 2064-2070. Screening Libraries of Amphiphilic Janus Dendrimers Based on Natural Phenolic Acids to Discover 2.6 Monodisperse Unilamellar Dendrimersomes. Biomacromolecules, 2019, 20, 712-727 CHARMM-GUI <i>Membrane Builder</i> for Complex Biological Membrane Simulations with Glycolipids 334 2.3 388 and Lipoglycans. Journal of Chemical Theory and Computation, 2019, 15, 775-786. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. Journal of Chemical 2.3 Theory and Computation, 2019, 15, 762-774. Expanding neuropeptide signalling by multiplying receptor functional states and sub-cellular locations. Cell and Tissue Research, 2019, 375, 49-56. 336 1.5 4 Differential effects of membrane sphingomyelin and cholesterol on agonist-induced bitter taste 1.4 receptor T2R14 signaling. Molecular and Cellular Biochemistry, 2020, 463, 57-66. Biology of Lipid Rafts: Introduction to the Thematic Review Series. Journal of Lipid Research, 2020, 61, 338 2.0 14 598-600. Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane. Molecular Biology of the Cell, 2020, 31, 561-579. 339 38 Two-dimensional Ostwald ripening with irreversible absorption or reaction on boundaries. Physica A: 340 1.2 1 Statistical Mechanics and Its Applications, 2020, 537, 122405. AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophysical Journal, 2020, 118, 885-897. 341 0.2 The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. 342 4.3 90 Seminars in Cancer Biology, 2020, 60, 57-71. Organization and dynamics of functional plant membrane microdomains. Cellular and Molecular Life 343 2.4 Sciences, 2020, 77, 275-287. Statins interfere with the attachment of <i>S. cerevisiae</i> mtDNA to the inner mitochondrial 344 2.59 membrane. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 129-138. Selfâ€assembly of lipid rafts revealed by fluorescence correlation spectroscopy in living breast cancer 345 1.1 cells. Journal of Biophotonics, 2020, 13, e201900214.

#	Article	IF	CITATIONS
346	Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183091.	1.4	26
347	Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expression and Purification, 2020, 167, 105524.	0.6	38
348	Phosphatidylserine is critical for vesicle fission during clathrinâ€mediated endocytosis. Journal of Neurochemistry, 2020, 152, 48-60.	2.1	14
349	New portraits of the Denisovans. Science Bulletin, 2020, 65, 1-3.	4.3	4
350	Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution. Environmental Science: Nano, 2020, 7, 149-161.	2.2	12
351	The Lipid Composition of Platelets and the Impact of Storage: An Overview. Transfusion Medicine Reviews, 2020, 34, 108-116.	0.9	15
352	Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Molecular Biology of the Cell, 2020, 31, 709-723.	0.9	16
353	Principles and Applications of Biological Membrane Organization. Annual Review of Biophysics, 2020, 49, 19-39.	4.5	24
354	CAPRYDAA, an anthracene dye analog to LAURDAN: a comparative study using cuvette and microscopy. Journal of Materials Chemistry B, 2020, 8, 88-99.	2.9	18
355	Intercellular Receptor–Ligand Binding and Thermal Fluctuations Facilitate Receptor Aggregation in Adhering Membranes. Nano Letters, 2020, 20, 722-728.	4.5	21
356	Mechanisms and regulation ofÂcholesterol homeostasis. Nature Reviews Molecular Cell Biology, 2020, 21, 225-245.	16.1	899
357	Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes. Biophysical Journal, 2020, 118, 624-642.	0.2	125
358	Surface Activities of a Lipid Analogue Room-Temperature Ionic Liquid and Its Effects on Phospholipid Membrane. Langmuir, 2020, 36, 328-339.	1.6	25
359	Hierarchy of interactions dictating the thermodynamics of real cell membranes: Following the insulin secretory granules paradigm up to fifteen-components vesicles. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110715.	2.5	2
360	Cholesterol mediates spontaneous insertion of Lycium barbarum polysaccharides in biomembrane model. Adsorption, 2020, 26, 855-862.	1.4	1
361	Defining raft domains in the plasma membrane. Traffic, 2020, 21, 106-137.	1.3	94
362	Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 2020, 31, 62-76.	7.2	493
363	Lipid rafts in glial cells: role in neuroinflammation and pain processing. Journal of Lipid Research, 2020, 61, 655-666.	2.0	55

#	Article	IF	CITATIONS
364	Rafting Down the Metastatic Cascade: The Role of Lipid Rafts in Cancer Metastasis, Cell Death, and Clinical Outcomes. Cancer Research, 2021, 81, 5-17.	0.4	78
365	Multifunctional peptides for tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 36-51.	6.6	40
366	Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chemistry and Physics of Lipids, 2020, 232, 104971.	1.5	20
367	Resolving Modifications on Sphingoid Base and <i>N</i> -Acyl Chain of Sphingomyelin Lipids in Complex Lipid Extracts. Analytical Chemistry, 2020, 92, 14775-14782.	3.2	24
368	Lipid Membranes as Key Targets for the Pharmacological Actions of Ginsenosides. Frontiers in Pharmacology, 2020, 11, 576887.	1.6	10
369	Structural and Functional Insights into an Archaeal Lipid Synthase. Cell Reports, 2020, 33, 108294.	2.9	11
370	Cholesterol Effect on the Specific Capacitance of Submicrometric DOPC Bilayer Patches Measured by in-Liquid Scanning Dielectric Microscopy. Langmuir, 2020, 36, 12963-12972.	1.6	7
371	Selective Blockade of TNFR1 Improves Clinical Disease and Bronchoconstriction in Experimental RSV Infection. Viruses, 2020, 12, 1176.	1.5	12
372	Quantitative Label-Free Imaging of Lipid Domains in Single Bilayers by Hyperspectral Coherent Raman Scattering. Analytical Chemistry, 2020, 92, 14657-14666.	3.2	19
373	Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes. Analytical Chemistry, 2020, 92, 14798-14805.	3.2	45
374	Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Frontiers in Neuroscience, 2020, 14, 572965.	1.4	150
375	The silence of the fats: A MAM's story about Alzheimer. Neurobiology of Disease, 2020, 145, 105062.	2.1	18
376	Computer simulations of a heterogeneous membrane with enhanced sampling techniques. Journal of Chemical Physics, 2020, 153, 144110.	1.2	10
377	Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins. Journal of Physical Chemistry B, 2020, 124, 7574-7585.	1.2	11
378	Cholesterol-modifying drugs in COVID-19. Oxford Open Immunology, 2020, 1, iqaa001.	1.2	27
379	Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Advances in Biological Regulation, 2020, 78, 100740.	1.4	6
380	Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains. Scientific Reports, 2020, 10, 11794.	1.6	9
381	Domain formation in bicomponent vesicles induced by composition-curvature coupling. Journal of Chemical Physics, 2020, 152, 244705.	1.2	5

#	Article	IF	CITATIONS
382	Binding of RNA Aptamers to Membrane Lipid Rafts: Implications for Exosomal miRNAs Transfer from Cancer to Immune Cells. International Journal of Molecular Sciences, 2020, 21, 8503.	1.8	15
383	Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Frontiers in Cell and Developmental Biology, 2020, 8, 589799.	1.8	13
384	Fluidity and Lipid Composition of Membranes of Peroxisomes, Mitochondria and the ER From Oleic Acid-Induced Saccharomyces cerevisiae. Frontiers in Cell and Developmental Biology, 2020, 8, 574363.	1.8	10
385	Sigma-2 Receptor—A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules, 2020, 25, 5439.	1.7	21
386	Preferred Endocytosis of Amyloid Precursor Protein from Cholesterol-Enriched Lipid Raft Microdomains. Molecules, 2020, 25, 5490.	1.7	22
387	Lateral heterogeneity and domain formation in cellular membranes. Chemistry and Physics of Lipids, 2020, 232, 104976.	1.5	16
388	High-Precision Protein-Tracking With Interferometric Scattering Microscopy. Frontiers in Cell and Developmental Biology, 2020, 8, 590158.	1.8	7
389	Laurdan and Di-4-ANEPPDHQ Influence the Properties of Lipid Membranes: A Classical Molecular Dynamics and Fluorescence Study. Journal of Physical Chemistry B, 2020, 124, 11419-11430.	1.2	20
390	Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Molecular Biology of the Cell, 2020, 31, 2826-2840.	0.9	15
391	Modulation of the Cholesterol-Dependent Activity of Macrophages IC-21 by CRAC Peptides with Substituted Motif-Forming Amino Acids. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2020, 14, 331-343.	0.3	5
392	Computational and Experimental Advances in Biomembranes: Resolving Their Complexity. Journal of Physical Chemistry B, 2020, 124, 9975-9976.	1.2	3
393	Sphingolipidâ€enriched domains in fungi. FEBS Letters, 2020, 594, 3698-3718.	1.3	19
394	Tricalbins Are Required for Non-vesicular Ceramide Transport at ER-Golgi Contacts and Modulate Lipid Droplet Biogenesis. IScience, 2020, 23, 101603.	1.9	20
395	Mapping bilayer thickness in the ER membrane. Science Advances, 2020, 6, .	4.7	26
396	Not So Slim Anymore—Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules, 2020, 10, 1154.	1.8	7
397	Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nature Communications, 2020, 11, 3914.	5.8	58
398	Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. International Journal of Molecular Sciences, 2020, 21, 5531.	1.8	31
400	A Quantitative Analysis of Cellular Lipid Compositions During Acute Proteotoxic ER Stress Reveals Specificity in the Production of Asymmetric Lipids. Frontiers in Cell and Developmental Biology, 2020, 8, 756.	1.8	22

#	Article	IF	CITATIONS
401	Triacylglycerols sequester monotopic membrane proteins to lipid droplets. Nature Communications, 2020, 11, 3944.	5.8	46
402	Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced Drug Delivery Reviews, 2020, 159, 245-293.	6.6	316
403	Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation. Frontiers in Cell and Developmental Biology, 2020, 8, 539.	1.8	24
404	Lipid composition of the cancer cell membrane. Journal of Bioenergetics and Biomembranes, 2020, 52, 321-342.	1.0	190
405	High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. Biotechnology for Biofuels, 2020, 13, 133.	6.2	40
406	Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Frontiers in Immunology, 2020, 11, 1635.	2.2	20
407	Mycobacterium Lipids Modulate Host Cell Membrane Mechanics, Lipid Diffusivity, and Cytoskeleton in a Virulence-Selective Manner. ACS Infectious Diseases, 2020, 6, 2386-2399.	1.8	14
408	Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. International Journal of Molecular Sciences, 2020, 21, 5505.	1.8	35
409	Direct imaging of rippled structures of lipid–cholesterol membranes using cryo-SEM and AFM. Bulletin of Materials Science, 2020, 43, 1.	0.8	0
410	Liposome-Based Study Provides Insight into Cellular Internalization Mechanism of Mosquito-Larvicidal BinAB Toxin. Journal of Membrane Biology, 2020, 253, 331-342.	1.0	3
411	Singleâ€Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes. Angewandte Chemie, 2020, 132, 17725-17732.	1.6	2
412	Computational design of Janus polymersomes with controllable fission from double emulsions. Physical Chemistry Chemical Physics, 2020, 22, 24934-24942.	1.3	5
413	Dual-Product Synergistically Enhanced Colorimetric Assay for Sensitive Detection of Lipid Transferase Activity. Analytical Chemistry, 2020, 92, 15236-15243.	3.2	4
414	Lipidomics Issues on Human Positive ssRNA Virus Infection: An Update. Metabolites, 2020, 10, 356.	1.3	9
415	Choosing who can ride the raft. Nature Reviews Molecular Cell Biology, 2020, 21, 566-567.	16.1	2
416	Inducible intracellular membranes: molecular aspects and emerging applications. Microbial Cell Factories, 2020, 19, 176.	1.9	9
417	Domain formation via phase separation for spherical biomembranes with small deformations. European Journal of Applied Mathematics, 2021, 32, 1127-1152.	1.4	4
418	Active cholesterol 20 years on. Traffic, 2020, 21, 662-674.	1.3	24

#	Article	IF	CITATIONS
419	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. Nanoscale, 2020, 12, 19746-19759.	2.8	23
420	Double membrane formation in heterogeneous vesicles. Soft Matter, 2020, 16, 8806-8817.	1.2	3
421	Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Critical Reviews in Food Science and Nutrition, 2020, , 1-14.	5.4	9
422	Bilayerâ€mediated assembly of cationic nanoparticles adsorbed to lipid bilayers: Insights from molecular simulations. AICHE Journal, 2020, 66, e16993.	1.8	1
423	Development of Fluorescent Ganglioside GD3 and GQ1b Analogs for Elucidation of Raft-Associated Interactions. Journal of Organic Chemistry, 2020, 85, 15998-16013.	1.7	14
424	Fluid–fluid coexistence in phospholipid membranes induced by decanol. Soft Matter, 2020, 16, 9002-9005.	1.2	2
425	New Insights Into Targeting Membrane Lipids for Cancer Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 571237.	1.8	58
426	Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Developmental Neurobiology, 2020, 80, 277-301.	1.5	16
427	APOL1 polymorphism modulates sphingolipid profile of human podocytes. Glycoconjugate Journal, 2020, 37, 729-744.	1.4	3
428	Molecular dynamics study of lipid bilayers modeling outer and inner leaflets of plasma membranes of mouse hepatocytes. I. Differences in physicochemical properties between the two leaflets. Journal of Chemical Physics, 2020, 153, 035105.	1.2	2
429	Artificial neural networks for the inverse design of nanoparticles with preferential nano-bio behaviors. Journal of Chemical Physics, 2020, 153, 054102.	1.2	10
430	Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions. Biomolecules, 2020, 10, 1218.	1.8	30
431	Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition. Frontiers in Immunology, 2020, 11, 590121.	2.2	24
432	Switching between blebbing and lamellipodia depends on the degree of Nonmuscle Myosin II activity. Journal of Cell Science, 2021, 134, .	1.2	6
433	Spontaneous Membrane Nanodomain Formation in the Absence or Presence of the Neurotransmitter Serotonin. Frontiers in Cell and Developmental Biology, 2020, 8, 601145.	1.8	17
434	Aegerolysins from the fungal genus Pleurotus – Bioinsecticidal proteins with multiple potential applications. Journal of Invertebrate Pathology, 2021, 186, 107474.	1.5	17
435	Pulsatilla saponin E suppresses viability, migration, invasion and promotes apoptosis of NSCLC cells through negatively regulating Akt/FASN pathway <i>via</i> inhibition of flotillin-2 in lipid raft. Journal of Receptor and Signal Transduction Research, 2022, 42, 23-33.	1.3	6
436	Regulation of membrane proteins through local heterogeneity in lipid bilayer thickness. Physical Review E, 2020, 102, 060401.	0.8	7

#	Article	IF	CITATIONS
437	Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules, 2020, 25, 5710.	1.7	4
438	Revealing Plasma Membrane Nano-Domains with Diffusion Analysis Methods. Membranes, 2020, 10, 314.	1.4	13
439	Bis(monoacylglycero)phosphate, an important actor in the host endocytic machinery hijacked by SARS-CoV-2 and related viruses. Biochimie, 2020, 179, 247-256.	1.3	21
440	Structure, Formation, and Biological Interactions of Supported Lipid Bilayers (SLB) Incorporating Lipopolysaccharide. Coatings, 2020, 10, 981.	1.2	7
441	Detergent Resistant Membrane Domains in Broccoli Plasma Membrane Associated to the Response to Salinity Stress. International Journal of Molecular Sciences, 2020, 21, 7694.	1.8	10
442	Lipid rafts come of age. Nature Reviews Molecular Cell Biology, 2020, 21, 420-420.	16.1	21
443	Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11931-11939.	3.3	37
444	Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioengineering, 2020, 4, 020901.	3.3	24
445	Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation. Journal of Microscopy, 2020, 280, 194-203.	0.8	25
446	Glycosylation and raft endocytosis in cancer. Cancer and Metastasis Reviews, 2020, 39, 375-396.	2.7	31
447	Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega, 2020, 5, 11248-11261.	1.6	78
448	Fam70A binds Wnt5a to regulate meiosis and quality of mouse oocytes. Cell Proliferation, 2020, 53, e12825.	2.4	6
449	Lipid-Raft-Mediated Direct Cytosolic Delivery of Polymer-Coated Soft Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 5323-5333.	1.2	21
450	Correlation between Single-Molecule Dynamics and Biological Functions of Antimicrobial Peptide Melittin. Journal of Physical Chemistry Letters, 2020, 11, 4834-4841.	2.1	24
451	Membrane Binding Promotes Annexin A2 Oligomerization. Cells, 2020, 9, 1169.	1.8	10
452	Tembusu virus enters BHK-21Âcells through a cholesterol-dependent and clathrin-mediated endocytosis pathway. Microbial Pathogenesis, 2020, 147, 104242.	1.3	8
453	Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Frontiers in Cell and Developmental Biology, 2020, 8, 285.	1.8	3
454	Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183365.	1.4	8

#	Article	IF	Citations
455	pH induced reorganization of protein-protein interface in liposome encapsulated Ferritin at air/fluid and fluid/solid interfaces. Journal of Molecular Liquids, 2020, 312, 113422.	2.3	1
456	Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders. Talanta, 2020, 219, 121184.	2.9	11
457	Phase separation behavior of binary mixture of photopolymerizable diacetylene and unsaturated phospholipids in liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183377.	1.4	4
458	Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains. Journal of Physical Chemistry B, 2020, 124, 5930-5939.	1.2	21
459	Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chemical Science, 2020, 11, 5637-5649.	3.7	21
460	Studies on the mechanism of general anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13757-13766.	3.3	140
461	The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS Journal, 2020, 287, 5039-5067.	2.2	48
462	Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models. Biomolecules, 2020, 10, 802.	1.8	11
463	Pivotal Role of Interdigitation in Interleaflet Interactions: Implications from Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2020, 11, 5171-5176.	2.1	17
464	Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Molecular Biology of the Cell, 2020, 31, 1380-1391.	0.9	3
465	Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Frontiers in Cell and Developmental Biology, 2020, 8, 337.	1.8	20
466	Phase Transition in a Heterogeneous Membrane: Atomically Detailed Picture. Journal of Physical Chemistry Letters, 2020, 11, 5263-5267.	2.1	5
467	Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Current Opinion in Biotechnology, 2020, 66, 18-26.	3.3	26
468	Peripheral myelin protein 22 preferentially partitions into ordered phase membrane domains. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14168-14177.	3.3	29
469	Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. Journal of the American Chemical Society, 2020, 142, 12715-12729.	6.6	29
470	Roles of Lipids in Cancer. , 0, , .		5
471	Molecular interactions between Vitamin B12 and membrane models: A biophysical study for new insights into the bioavailability of Vitamin. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111187.	2.5	12
472	Control of Lipid Bilayer Phases of Cell-Sized Liposomes by Surface-Engineered Plasmonic Nanoparticles. Langmuir, 2020, 36, 7741-7746.	1.6	7

#	ARTICLE	IF	CITATIONS
473	ER membranes exhibit phase behavior at sites of organelle contact. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7225-7235.	3.3	117
474	ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory Molecules on Microvilli prior to Activation. Cell Reports, 2020, 30, 3434-3447.e6.	2.9	58
475	A Model of Differential Mammary Growth Initiation by Stat3 and Asymmetric Integrin-α6 Inheritance. Cell Reports, 2020, 30, 3605-3615.e5.	2.9	7
476	An emerging focus on lipids in extracellular vesicles. Advanced Drug Delivery Reviews, 2020, 159, 308-321.	6.6	289
477	Polarity Mapping of Cells and Embryos by Improved Fluorescent Solvatochromic Pyrene Probe. Analytical Chemistry, 2020, 92, 6512-6520.	3.2	56
478	Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus. Journal of Physical Chemistry Letters, 2020, 11, 2363-2368.	2.1	26
479	The Urothelium: Life in a Liquid Environment. Physiological Reviews, 2020, 100, 1621-1705.	13.1	92
480	Comprehensive Characterization of Lipid-Guided G Protein-Coupled Receptor Dimerization. Journal of Physical Chemistry B, 2020, 124, 2823-2834.	1.2	24
481	Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes. Molecules, 2020, 25, 1398.	1.7	5
482	Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nature Communications, 2020, 11, 1339.	5.8	126
483	ABCA12 regulates insulin secretion from $\hat{I}^2 \hat{a} \in \mathfrak{e}$ ells. EMBO Reports, 2020, 21, e48692.	2.0	13
484	The fat brain. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 68-75.	1.3	17
485	<i>In Situ</i> DESI-MSI Lipidomic Profiles of Breast Cancer Molecular Subtypes and Precursor Lesions. Cancer Research, 2020, 80, 1246-1257.	0.4	61
486	An association between niacin skin flush response and plasma triglyceride levels in patients with schizophrenia. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 155, 102084.	1.0	6
487	Organization of gangliosides into membrane nanodomains. FEBS Letters, 2020, 594, 3668-3697.	1.3	23
488	Docosahexaenoic Acid Incorporation Is Not Affected by Doxorubicin Chemotherapy in either Whole Cell or Lipid Raft Phospholipids of Breast Cancer Cellsin vitroand Tumor Phospholipidsin vivo. Lipids, 2020, 55, 549-565.	0.7	8
489	Host Lipid Rafts as the Gates for Listeria monocytogenes Infection: A Mini-Review. Frontiers in Immunology, 2020, 11, 1666.	2.2	10
490	Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Frontiers in Immunology, 2020, 11, 1320.	2.2	18

#	Article	IF	CITATIONS
491	Artificial Signal Transduction. ChemistryOpen, 2020, 9, 667-682.	0.9	8
492	Singleâ€Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes. Angewandte Chemie - International Edition, 2020, 59, 17572-17579.	7.2	36
493	Integrated metabolomics and lipidomics reveals high accumulation of polyunsaturated lysoglycerophospholipids in human lung fibroblasts exposed to fine particulate matter. Ecotoxicology and Environmental Safety, 2020, 202, 110896.	2.9	10
494	Assessing the DOPC-cholesterol interactions and their influence on fullerene C60 partitioning in lipid bilayers. Journal of Molecular Liquids, 2020, 315, 113698.	2.3	15
495	Degeneracy in molecular scale organization of biological membranes. Soft Matter, 2020, 16, 6752-6764.	1.2	8
496	Regulation of lipid saturation without sensing membrane fluidity. Nature Communications, 2020, 11, 756.	5.8	105
497	Role of Gangliosides in Peripheral Pain Mechanisms. International Journal of Molecular Sciences, 2020, 21, 1005.	1.8	21
498	Shaping Giant Membrane Vesicles in 3Dâ€Printed Protein Hydrogel Cages. Small, 2020, 16, e1906259.	5.2	12
499	Origin and Evolution of Polycyclic Triterpene Synthesis. Molecular Biology and Evolution, 2020, 37, 1925-1941.	3.5	38
500	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
501	Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nature Communications, 2020, 11, 860.	5.8	38
502	Functional lipid pairs as building blocks of phase-separated membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4749-4757.	3.3	20
503	Biosynthesis of the antiâ€lipidâ€microdomain sphingoid base 4,14â€sphingadiene by the ceramide desaturase FADS3. FASEB Journal, 2020, 34, 3318-3335.	0.2	38
504	Impact of Nanoscale Hindrances on the Relationship between Lipid Packing and Diffusion in Model Membranes. Journal of Physical Chemistry B, 2020, 124, 1487-1494.	1.2	23
505	Nanoscale quantification of longitudinal and transverse mechanics of bacterial bodies. Applied Physics Letters, 2020, 116, .	1.5	1
506	Inserting Small Molecules across Membrane Mixtures: Insight from the Potential of Mean Force. Biophysical Journal, 2020, 118, 1321-1332.	0.2	15
507	Lipid Rafts in Exosome Biogenesis. Biochemistry (Moscow), 2020, 85, 177-191.	0.7	56
508	Computer simulations of protein–membrane systems. Progress in Molecular Biology and Translational Science, 2020, 170, 273-403.	0.9	31

#	Article	IF	CITATIONS
509	Miscibility of hBest1 and sphingomyelin in surface films – A prerequisite for interaction with membrane domains. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110893.	2.5	4
510	The immunomodulatory effect of docosahexaenoic acid (DHA) on the RAW264.7 cells by modification of the membrane structure and function. Food and Function, 2020, 11, 2603-2616.	2.1	17
511	Molecular Tuning of Styryl Dyes Leads to Versatile and Efficient Plasma Membrane Probes for Cell and Tissue Imaging. Bioconjugate Chemistry, 2020, 31, 875-883.	1.8	32
512	DNA nanotweezers for stabilizing and dynamically lighting up a lipid raft on living cell membranes and the activation of T cells. Chemical Science, 2020, 11, 1581-1586.	3.7	16
513	Distinct Influence of Saturated Fatty Acids on Malignant and Nonmalignant Human Lung Epithelial Cells. Lipids, 2020, 55, 117-126.	0.7	6
514	Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome. Current Biology, 2020, 30, 367-380.e8.	1.8	36
515	Lipoprotein Lipase Sorting: Sphingomyelin and a Proteoglycan Show the Way. Trends in Cell Biology, 2020, 30, 170-172.	3.6	3
516	Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. International Journal of Molecular Sciences, 2020, 21, 515.	1.8	49
517	Phase Separation in Atomistic Simulations of Model Membranes. Journal of the American Chemical Society, 2020, 142, 2844-2856.	6.6	57
518	Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. Nanoscale, 2020, 12, 4101-4109.	2.8	23
519	Dynamical Organization of Compositionally Distinct Inner and Outer Membrane Lipids of Mycobacteria. Biophysical Journal, 2020, 118, 1279-1291.	0.2	23
520	Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy. Journal of Lipid Research, 2020, 61, 611-635.	2.0	150
521	Nanoarchitectonics from Atom to Life. Chemistry - an Asian Journal, 2020, 15, 718-728.	1.7	66
522	Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. Langmuir, 2020, 36, 1387-1400.	1.6	94
523	Sixth-Order Accurate Schemes for Reinitialization and Extrapolation in the Level Set Framework. Journal of Scientific Computing, 2020, 83, 1.	1.1	4
524	Flotillin membrane domains in cancer. Cancer and Metastasis Reviews, 2020, 39, 361-374.	2.7	32
525	Bringing light to ER contacts and a new phase in organelle communication. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9668-9670.	3.3	4
526	Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158706.	1.2	50

#	Article	IF	CITATIONS
527	Precise Tuning of Cortical Contractility Regulates Cell Shape during Cytokinesis. Cell Reports, 2020, 31, 107477.	2.9	39
528	Improved Characterization of Raft-Mimicking Phase-Separation Phenomena in Lipid Bilayers Using Laurdan Fluorescence with Log-Normal Multipeak Analysis. Langmuir, 2020, 36, 4347-4356.	1.6	5
529	The role of lipid species in membranes and cancer-related changes. Cancer and Metastasis Reviews, 2020, 39, 343-360.	2.7	34
530	Sphingomyelins Prevent Propagation of Lipid Peroxidation—LC-MS/MS Evaluation of Inhibition Mechanisms. Molecules, 2020, 25, 1925.	1.7	17
531	Proximity Enzymatic Glyco-Remodeling Enables Direct and Highly Efficient Lipid Raft Imaging on Live Cells. Analytical Chemistry, 2020, 92, 7232-7239.	3.2	10
532	Phase separation in pore-spanning membranes induced by differences in surface adhesion. Physical Chemistry Chemical Physics, 2020, 22, 9308-9315.	1.3	11
533	The effect of neuroleptic drugs on DPPC/sphingomyelin/cholesterol membranes. Chemistry and Physics of Lipids, 2020, 229, 104913.	1.5	12
534	Modulation of Plasma Membrane Composition and Microdomain Organization Impairs Heat Shock Protein Expression in B16-F10 Mouse Melanoma Cells. Cells, 2020, 9, 951.	1.8	6
535	Toward a new picture of the living plasma membrane. Protein Science, 2020, 29, 1355-1365.	3.1	48
536	Presence or Absence of Ras Dimerization Shows Distinct Kinetic Signature in Ras-Raf Interaction. Biophysical Journal, 2020, 118, 1799-1810.	0.2	8
537	z-STED Imaging and Spectroscopy to Investigate Nanoscale Membrane Structure and Dynamics. Biophysical Journal, 2020, 118, 2448-2457.	0.2	22
538	Coping with Starvation: Contrasting Lipidomic Dynamics in the Cells of Two Sacoglossan Sea Slugs Incorporating Stolen Plastids from the Same Macroalga. Integrative and Comparative Biology, 2020, 60, 43-56.	0.9	9
539	Fluorescence Microscopy of the HIV-1 Envelope. Viruses, 2020, 12, 348.	1.5	7
540	Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cellular and Molecular Neurobiology, 2021, 41, 525-536.	1.7	11
541	Single Quantum Dot Tracking Unravels Agonist Effects on the Dopamine Receptor Dynamics. Biochemistry, 2021, 60, 1031-1043.	1.2	6
542	Redistribution of gangliosides accompanies thermally induced Na+, K+-ATPase activity alternation and submembrane localisation in mouse brain. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183475.	1.4	4
543	Cellular compartments challenged by membrane photo-oxidation. Archives of Biochemistry and Biophysics, 2021, 697, 108665.	1.4	8
544	Unraveling topology-induced shape transformations in dendrimersomes. Soft Matter, 2021, 17, 254-267.	1.2	18

#	ARTICLE	IF	Citations
546	Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: a Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovascular Drugs and Therapy, 2021, 35, 113-123.	1.3	8
547	Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183472.	1.4	2
548	Lipid raft-associated PI3K/Akt/SREBP1 signaling regulates coxsackievirus A16 (CA16) replication. Veterinary Microbiology, 2021, 252, 108921.	0.8	9
549	Membrane nanodomains homeostasis during propofol anesthesia as function of dosage and temperature. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183511.	1.4	6
550	Dynamic Plasma Membrane Organization: A Complex Symphony. Trends in Cell Biology, 2021, 31, 119-129.	3.6	56
551	The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity, 2021, 54, 132-150.e9.	6.6	52
552	Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microbial Biotechnology, 2021, 14, 147-170.	2.0	61
553	The intriguing role of rhamnolipids on plasma membrane remodelling: From lipid rafts to membrane budding. Journal of Colloid and Interface Science, 2021, 582, 669-677.	5.0	16
554	The Role of Cholesterol in <scp>α‧ynuclein</scp> and Lewy Body Pathology in <scp><i>GBA1</i></scp> Parkinson's Disease. Movement Disorders, 2021, 36, 1070-1085.	2.2	59
555	AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis. Current Atherosclerosis Reports, 2021, 23, 1.	2.0	8
556	Critical Phenomena in Plasma Membrane Organization and Function. Annual Review of Physical Chemistry, 2021, 72, 51-72.	4.8	42
557	Multivesicular Vesicles: Preparation and Applications. ChemSystemsChem, 2021, 3, e2000049.	1.1	19
558	RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Research, 2021, 31, 157-177.	5.7	212
559	Structural Cues for Understanding eEF1A2 Moonlighting. ChemBioChem, 2021, 22, 374-391.	1.3	8
560	Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience, 2021, 454, 116-139.	1.1	14
561	Breakdown of the Stokes–Einstein relation in supercooled water: the jump-diffusion perspective. Physical Chemistry Chemical Physics, 2021, 23, 19964-19986.	1.3	16
562	Membrane-coated 3D architectures for bottom-up synthetic biology. Soft Matter, 2021, 17, 5456-5466.	1.2	11
563	Long chain sphingomyelin depletes cholesterol from the cytoplasmic leaflet in asymmetric lipid membranes. RSC Advances, 2021, 11, 22677-22682.	1.7	5

#	Article	IF	CITATIONS
564	Dynamic lipid aptamers: non-polymeric chemical path to early life. Chemical Society Reviews, 2021, 50, 11741-11746.	18.7	7
565	Recent Advances of AlEgens for Targeted Imaging of Subcellular Organelles. Chemical Research in Chinese Universities, 2021, 37, 52-65.	1.3	12
566	Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 631623.	1.8	44
567	Lipid modification of proteins. , 2021, , 429-456.		1
568	Super resolution microscopy reveals DHA-dependent alterations in glioblastoma membrane remodelling and cell migration. Nanoscale, 2021, 13, 9706-9722.	2.8	9
569	The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. Journal of Biological Chemistry, 2021, 296, 100652.	1.6	9
570	Interplay between cooperativity of intercellular receptor–ligand binding and coalescence of nanoscale lipid clusters in adhering membranes. Soft Matter, 2021, 17, 1912-1920.	1.2	19
571	Possible mechanisms of cholesterol elevation aggravating COVID-19. International Journal of Medical Sciences, 2021, 18, 3533-3543.	1.1	17
572	Targeted Solvatochromic Fluorescent Probes for Imaging Lipid Order in Organelles under Oxidative and Mechanical Stress. Journal of the American Chemical Society, 2021, 143, 912-924.	6.6	160
573	Influence of Antiplatelet Agents on the Lipid Composition of Platelet Plasma Membrane: A Lipidomics Approach with Ticagrelor and Its Active Metabolite. International Journal of Molecular Sciences, 2021, 22, 1432.	1.8	10
574	Quantitative Bio-Imaging Tools to Dissect the Interplay of Membrane and Cytoskeletal Actin Dynamics in Immunology, 2020, 11, 612542.	2.2	4
575	Surface ligand rigidity modulates lipid raft affinity of ultra-small hydrophobic nanoparticles: insights from molecular dynamics simulations. Nanoscale, 2021, 13, 9825-9833.	2.8	3
576	Chain ordering of phospholipids in membranes containing cholesterol: what matters?. Soft Matter, 2021, 17, 6098-6108.	1.2	4
577	Imaging therapeutic peptide transport across intestinal barriers. RSC Chemical Biology, 2021, 2, 1115-1143.	2.0	10
578	Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors. Annual Review of Pharmacology and Toxicology, 2021, 61, 587-608.	4.2	21
579	Concepts No Membrane, No Problem: Cellular Organization by Biomolecular Condensates. , 2021, , 113-133.		0
580	Extracellular Vesicle Transportation and Uptake by Recipient Cells: A Critical Process to Regulate Human Diseases. Processes, 2021, 9, 273.	1.3	53
581	Electron Paramagnetic Resonance Gives Evidence for the Presence of Type 1 Gonadotropin-Releasing Hormone Receptor (GnRH-R) in Subdomains of Lipid Rafts. Molecules, 2021, 26, 973.	1.7	1

#	Article	IF	CITATIONS
582	Labelâ€Free Phase Change Detection of Lipid Bilayers Using Nanoscale Diamond Magnetometry. Advanced Quantum Technologies, 2021, 4, 2000106.	1.8	7
583	Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species. Plant Physiology, 2021, 186, 624-639.	2.3	15
584	Membrane Rafts: Portals for Viral Entry. Frontiers in Microbiology, 2021, 12, 631274.	1.5	64
585	Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflugers Archiv European Journal of Physiology, 2021, 473, 1361-1376.	1.3	4
586	Oestrogen replacement fails to fully revert ovariectomy-induced changes in adipose tissue monoglycerides, diglycerides and cholesteryl esters of rats fed a lard-enriched diet. Scientific Reports, 2021, 11, 3841.	1.6	2
587	Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
588	Targeting Lipid Rafts as a Strategy Against Coronavirus. Frontiers in Cell and Developmental Biology, 2020, 8, 618296.	1.8	43
589	Low temperatures induce physiological changes in lipids, fatty acids and hydrocarbons, in two rare winter scorpions of genus Urophonius (Scorpiones, Bothriuridae). Journal of Thermal Biology, 2021, 96, 102841.	1.1	3
590	Innate immune receptor clustering and its role in immune regulation. Journal of Cell Science, 2021, 134, .	1.2	15
591	Disruption of morphogenic and growth pathways in lysosomal storage diseases. WIREs Mechanisms of Disease, 2021, 13, e1521.	1.5	1
592	The role of prolines and glycine in the transmembrane domain of LAT. FEBS Journal, 2021, 288, 4039-4052.	2.2	6
593	The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Frontiers in Oncology, 2021, 11, 626971.	1.3	64
594	Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Frontiers in Molecular Neuroscience, 2021, 14, 619496.	1.4	12
596	Plasma Membrane Integrates Biophysical and Biochemical Regulation to Trigger Immune Receptor Functions. Frontiers in Immunology, 2021, 12, 613185.	2.2	13
597	Mass spectrometry imaging of untreated wet cell membranes in solution using single-layer graphene. Nature Methods, 2021, 18, 316-320.	9.0	20
598	Early events in endothelial flow sensing. Cytoskeleton, 2021, 78, 217-231.	1.0	30
599	Cholesterol Activates Cyclic AMP Signaling in Metaplastic Acinar Cells. Metabolites, 2021, 11, 141.	1.3	4
600	Membrane-associated phase separation: organization and function emerge from a two-dimensional milieu. Journal of Molecular Cell Biology, 2021, 13, 319-324.	1.5	37

#	Article	IF	CITATIONS
601	RAS Nanoclusters: Dynamic Signaling Platforms Amenable to Therapeutic Intervention. Biomolecules, 2021, 11, 377.	1.8	19
602	A Modular, Dynamic, DNA-Based Platform for Regulating Cargo Distribution and Transport between Lipid Domains. Nano Letters, 2021, 21, 2800-2808.	4.5	27
603	The physics of plasma membrane photostimulation. APL Materials, 2021, 9, 030901.	2.2	10
605	Nile Red-Based GPCR Ligands as Ultrasensitive Probes of the Local Lipid Microenvironment of the Receptor. ACS Chemical Biology, 2021, 16, 651-660.	1.6	12
606	Participación de rafts en enfermedades neurológicas. NeurologÃa, 2021, , .	0.3	0
607	Novel Virulence Role of Pneumococcal NanA in Host Inflammation and Cell Death Through the Activation of Inflammasome and the Caspase Pathway. Frontiers in Cellular and Infection Microbiology, 2021, 11, 613195.	1.8	5
608	On Qualitative Composition of Membrane Lipids in Plant Cells. Russian Journal of Plant Physiology, 2021, 68, 367-383.	0.5	5
609	The Role of Protein and Lipid Clustering in Lymphocyte Activation. Frontiers in Immunology, 2021, 12, 600961.	2.2	13
610	The fineâ€ŧuning of cell membrane lipid bilayers accentuates their compositional complexity. BioEssays, 2021, 43, e2100021.	1.2	15
611	Design decisions for incorporating spatial and mechanical aspects in models of signaling networks. Current Opinion in Systems Biology, 2021, 25, 70-77.	1.3	1
612	Structural Domains of the Herpes Simplex Virus 1 gD Protein That Restrict Human Immunodeficiency Virus Particle Infectivity. Journal of Virology, 2021, 95, .	1.5	2
614	Recent Progress of DNA Nanostructures on Amphiphilic Membranes. Macromolecular Bioscience, 2021, 21, e2000440.	2.1	7
615	Presence of Clustered GM1 Ganglioside in the Membrane of Endometrial Mesenchymal Stem Cells is Dependent on Cell Cycle Stage. Cell and Tissue Biology, 2021, 15, 120-126.	0.2	1
616	Polyunsaturated fatty acid status of leukocyte membranes in COPD patients. Medical Immunology (Russia), 2021, 23, 157-162.	0.1	1
618	The role of molecular diffusion within dendritic spines in synaptic function. Journal of General Physiology, 2021, 153, .	0.9	15
619	Protein Sâ€Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS Journal, 2022, 289, 861-882.	2.2	52
620	Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria–ER Contacts: A Cancer Perspective. Frontiers in Cell and Developmental Biology, 2021, 9, 641194.	1.8	11
621	Review: Membrane tethers control plasmodesmal function and formation. Plant Science, 2021, 304, 110800.	1.7	4

#	Article	IF	CITATIONS
622	Perspective: The Saturated Fat–Unsaturated Oil Dilemma: Relations of Dietary Fatty Acids and Serum Cholesterol, Atherosclerosis, Inflammation, Cancer, and All-Cause Mortality. Advances in Nutrition, 2021, 12, 647-656.	2.9	33
623	Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. Langmuir, 2021, 37, 3550-3562.	1.6	3
624	Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Reports, 2021, 34, 108817.	2.9	27
626	Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Molecular Pharmaceutics, 2021, 18, 2122-2141.	2.3	22
627	Resolving cargo-motor-track interactions with bifocal parallax single-particle tracking. Biophysical Journal, 2021, 120, 1378-1386.	0.2	8
628	The effects of the lipid type on the spatial arrangement and dynamics of cholesterol in binary component lipid membranes. Journal of Chemical Physics, 2021, 154, 135101.	1.2	6
629	Examining the Underappreciated Role of S-Acylated Proteins as Critical Regulators of Phagocytosis and Phagosome Maturation in Macrophages. Frontiers in Immunology, 2021, 12, 659533.	2.2	6
630	Role of Membrane Lipid Rafts in MRP4 (ABCC4) Dependent Regulation of the cAMP Pathway in Blood Platelets. Thrombosis and Haemostasis, 2021, 121, 1628-1636.	1.8	3
631	Sigma-1 Receptor (S1R) Interaction with Cholesterol: Mechanisms of S1R Activation and Its Role in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 4082.	1.8	24
632	Endoplasmic Reticulumâ€Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. International Journal of Molecular Sciences, 2021, 22, 4703.	1.8	12
633	Dynamic interplay between cell membrane tension and clathrinâ€mediated endocytosis. Biology of the Cell, 2021, 113, 344-373.	0.7	33
635	Interplay Between Receptor-Ligand Binding and Lipid Domain Formation Depends on the Mobility of Ligands in Cell-Substrate Adhesion. Frontiers in Molecular Biosciences, 2021, 8, 655662.	1.6	9
636	Super-Resolution STED Microscopy-Based Mobility Studies of the Viral Env Protein at HIV-1 Assembly Sites of Fully Infected T-Cells. Viruses, 2021, 13, 608.	1.5	3
637	How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity?. Membranes, 2021, 11, 323.	1.4	32
638	Self-assembly in soft matter with multiple length scales. Physical Review Research, 2021, 3, .	1.3	7
639	Group 14 Metallafluorenes as Sensitive Luminescent Probes of Surfactants in Aqueous Solution. Journal of Fluorescence, 2021, 31, 961-969.	1.3	5
640	Lipid Phase Influences the Dynamic Interactions between Graphene Oxide Nanosheets and a Phospholipid Membrane. Journal of Physical Chemistry B, 2021, 125, 3589-3597.	1.2	6
642	What Can Mushroom Proteins Teach Us about Lipid Rafts?. Membranes, 2021, 11, 264.	1.4	10

#	Article	IF	CITATIONS
643	Biomolecular condensates in membrane receptor signaling. Current Opinion in Cell Biology, 2021, 69, 48-54.	2.6	33
644	Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles. ACS Applied Materials & Interfaces, 2021, 13, 25805-25812.	4.0	8
645	LXR directly regulates glycosphingolipid synthesis and affects human CD4+ T cell function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
646	Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Frontiers in Oncology, 2021, 11, 682911.	1.3	56
647	Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and TÂcell metabolic checkpoint. Nature Communications, 2021, 12, 2814.	5.8	54
648	One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. International Journal of Molecular Sciences, 2021, 22, 5009.	1.8	4
649	The role of alpha-helix on the structure-targeting drug design of amyloidogenic proteins. Chemistry and Physics of Lipids, 2021, 236, 105061.	1.5	7
650	Lycopene Inhibits Toll-Like Receptor 4-Mediated Expression of Inflammatory Cytokines in House Dust Mite-Stimulated Respiratory Epithelial Cells. Molecules, 2021, 26, 3127.	1.7	13
651	Advanced Chemical Methods for Stereoselective Sialylation and Their Applications in Sialoglycan Syntheses. Chemical Record, 2021, 21, 3194-3223.	2.9	22
652	Persistent collective motion of a dispersing membrane domain. Biophysical Journal, 2021, 120, 2030-2039.	0.2	2
653	Neurotrophins as Key Regulators of Cell Metabolism: Implications for Cholesterol Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5692.	1.8	22
654	Our evolving understanding of how 27-hydroxycholesterol influences cancer. Biochemical Pharmacology, 2022, 196, 114621.	2.0	21
655	Ciliary Ca2+ pumps regulate intraciliary Ca2+ from the action potential and may co-localize with ciliary voltage-gated Ca2+ channels. Journal of Experimental Biology, 2021, 224, .	0.8	7
656	Differences in the properties of porcine cortical and nuclear fiber cell plasma membranes revealed by saturation recovery EPR spin labeling measurements. Experimental Eye Research, 2021, 206, 108536.	1.2	5
658	Mechanisms and functions of membrane lipid remodeling in plants. Plant Journal, 2021, 107, 37-53.	2.8	78
659	Expression of a membrane-targeted fluorescent reporter disrupts auditory hair cell mechanoelectrical transduction and causes profound deafness. Hearing Research, 2021, 404, 108212.	0.9	4
660	LipidSig: a web-based tool for lipidomic data analysis. Nucleic Acids Research, 2021, 49, W336-W345.	6.5	38
661	Gangliosides as Signaling Regulators in Cancer. International Journal of Molecular Sciences, 2021, 22, 5076.	1.8	36

#	Article	IF	Citations
	The role of sigma 1 receptor in organization of endoplasmic reticulum signaling microdomains. ELife,		CHAHONS
662	2021, 10, .	2.8	40
664	Lipid metabolism in cancer: New perspectives and emerging mechanisms. Developmental Cell, 2021, 56, 1363-1393.	3.1	207
665	The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery—The GL–Lect Hypothesis. Molecules, 2021, 26, 3299.	1.7	8
666	SERS Imaging of Mesenchymal Stromal Cell Differentiation. ACS Applied Bio Materials, 2021, 4, 4999-5007.	2.3	7
667	On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. International Journal of Molecular Sciences, 2021, 22, 6973.	1.8	15
668	Molecular Diffusion of ABCA1 at the Cell Surface of Living Cells Assessed by svFCS. Membranes, 2021, 11, 498.	1.4	5
669	Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: a review. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1743-1765.	0.8	21
671	Who's in, who's out? Reâ€evaluation of lipid raft residents. Journal of Neurochemistry, 2021, 158, 657-672.	2.1	8
673	Finite-size transitions in complex membranes. Biophysical Journal, 2021, 120, 2436-2443.	0.2	3
674	Understanding the Dynamics of a Lipid Monolayer on a Water Surface under a Marangoni Flow. Colloids and Interfaces, 2021, 5, 31.	0.9	2
675	Elovl5 is required for proper action potential conduction along peripheral myelinated fibers. Clia, 2021, 69, 2419-2428.	2.5	8
676	PI(4,5)P ₂ Clustering and Its Impact on Biological Functions. Annual Review of Biochemistry, 2021, 90, 681-707.	5.0	22
677	Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Communications Biology, 2021, 4, 653.	2.0	19
678	Apoptosis-inducing anti-HER2 agents operate through oligomerization-induced receptor immobilization. Communications Biology, 2021, 4, 762.	2.0	12
680	Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
681	Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nature Communications, 2021, 12, 3675.	5.8	27
682	Determination of the size of lipid rafts studied through single-molecule FRET simulations. Biophysical Journal, 2021, 120, 2287-2295.	0.2	4
683	Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process. Biophysical Journal, 2021, 120, 2532-2542.	0.2	4

#	Article	IF	Citations
684	ApoA1 Neutralizes Proinflammatory Effects of Dengue Virus NS1 Protein and Modulates Viral Immune Evasion. Journal of Virology, 2021, 95, e0197420.	1.5	17
685	The Role of Amyloid βâ€Biomembrane Interactions in the Pathogenesis of Alzheimer's Disease: Insights from Liposomes as Membrane Models. ChemPhysChem, 2021, 22, 1547-1565.	1.0	13
686	Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2021, 22, 7634.	1.8	17
687	Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nature Communications, 2021, 12, 4565.	5.8	25
688	Lipid Transporters Beam Signals from Cell Membranes. Membranes, 2021, 11, 562.	1.4	9
689	Plasmalogens - Ubiquitous molecules occurring widely, from anaerobic bacteria to humans. Progress in Lipid Research, 2021, 83, 101111.	5.3	14
690	Influence of Substrate Hydrophilicity on Structural Properties of Supported Lipid Systems on Graphene, Graphene Oxides, and Silica. Journal of Physical Chemistry B, 2021, 125, 8060-8074.	1.2	1
692	Superâ€Resolution Microscopy Using a Bioorthogonalâ€Based Cholesterol Probe Provides Unprecedented Capabilities for Imaging Nanoscale Lipid Heterogeneity in Living Cells. Small Methods, 2021, 5, e2100430.	4.6	15
693	Emerging solvatochromic push–pull dyes for monitoring the lipid order of biomembranes in live cells. Journal of Biochemistry, 2021, 170, 163-174.	0.9	24
694	Stearic acid blunts growth-factor signaling via oleoylation of GNAI proteins. Nature Communications, 2021, 12, 4590.	5.8	18
695	Molecular characterization of direct interactions between MPP1 and flotillins. Scientific Reports, 2021, 11, 14751.	1.6	6
696	Nanoparticle Size Effects in Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 6471-6496.	2.4	90
697	α-Synuclein: An All-Inclusive Trip Around its Structure, Influencing Factors and Applied Techniques. Frontiers in Chemistry, 2021, 9, 666585.	1.8	30
698	Dynamic regulation of membrane integrity to enhance <scp>l</scp> â€malate stress tolerance in <i>Candida glabrata</i> . Biotechnology and Bioengineering, 2021, 118, 4347-4359.	1.7	10
699	Cholesterol Recognition Motifs (CRAC) in the S Protein of Coronavirus: A Possible Target for Antiviral Therapy?. , 0, , .		1
700	Aggregation and mobility of membrane proteins interplay with local lipid order in the plasma membrane of T cells. FEBS Letters, 2021, 595, 2127-2146.	1.3	25
701	Effect of Cholesterol Versus Ergosterol on DPPC Bilayer Properties: Insights from Atomistic Simulations. Journal of Physical Chemistry B, 2021, 125, 7679-7690.	1.2	8
702	Exact non-Markovian permeability from rare event simulations. Physical Review Research, 2021, 3, .	1.3	12

#	Article	IF	CITATIONS
703	Ligand binding at the protein–lipid interface: strategic considerations for drug design. Nature Reviews Drug Discovery, 2021, 20, 710-722.	21.5	59
704	Self-assembly of binary solutions to complex structures. Journal of Chemical Physics, 2021, 155, 014904.	1.2	3
705	Chemically Designed Nanoscale Materials for Controlling Cellular Processes. Accounts of Chemical Research, 2021, 54, 2916-2927.	7.6	24
706	Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nature Communications, 2021, 12, 4064.	5.8	34
707	Integratomics of Human Dermal Fibroblasts Treated with Low Molecular Weight Hyaluronic Acid. Molecules, 2021, 26, 5096.	1.7	2
708	Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations. Journal of Physical Chemistry B, 2021, 125, 9537-9546.	1.2	28
709	Double Electron–Electron Resonance of Spin-Labeled Cholestane in Model Membranes: Evidence for Substructures inside the Lipid Rafts. Journal of Physical Chemistry B, 2021, 125, 9557-9563.	1.2	10
710	Primary cilia and lipid raft dynamics. Open Biology, 2021, 11, 210130.	1.5	7
711	Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C. elegans. Nature Communications, 2021, 12, 5073.	5.8	13
712	Role of RNA Motifs in RNA Interaction with Membrane Lipid Rafts: Implications for Therapeutic Applications of Exosomal RNAs. International Journal of Molecular Sciences, 2021, 22, 9416.	1.8	13
713	Mammalian lipids: structure, synthesis and function. Essays in Biochemistry, 2021, 65, 813-845.	2.1	46
714	Human milk sphingomyelins and metabolomics: an enigma to be discovered. Journal of Maternal-Fetal and Neonatal Medicine, 2024, 35, 7649-7661.	0.7	1
715	Receptor/Raft Ratio Is a Determinant for LRP6 Phosphorylation and WNT/β-Catenin Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 706731.	1.8	7
716	The Role of the Membrane in Transporter Folding and Activity. Journal of Molecular Biology, 2021, 433, 167103.	2.0	14
717	Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
718	Biophysical impact of sphingosine and other abnormal lipid accumulation in Niemann-Pick disease type C cell models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158944.	1.2	1
719	Relationship between Viscosity and Acyl Tail Dynamics in Lipid Bilayers. Physical Review Letters, 2021, 127, 078102.	2.9	22
720	Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 723236.	1.1	17

#	Article	IF	Citations
721	Cholera Toxin as a Probe for Membrane Biology. Toxins, 2021, 13, 543.	1.5	30
722	Pathogenic Variants in ABHD16A Cause a Novel Psychomotor Developmental Disorder With Spastic Paraplegia. Frontiers in Neurology, 2021, 12, 720201.	1.1	5
723	Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proceedings of the United States of America, 2021, 118, .	3.3	138
724	Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. Journal of Investigative Dermatology, 2022, 142, 323-332.e8.	0.3	8
725	Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes. Biochemical Society Transactions, 2021, 49, 2357-2369.	1.6	3
726	Purification and erythrocyte-membrane perturbing activity of a ketose-specific lectin from Moringa oleifera seeds. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00650.	2.1	3
728	How Do Urea and Trimethylamine <i>N</i> -Oxide Influence the Dehydration-Induced Phase Transition of a Lipid Membrane?. Journal of Physical Chemistry B, 2021, 125, 10149-10165.	1.2	10
729	c-MYC Triggers Lipid Remodelling During Early Somatic Cell Reprogramming to Pluripotency. Stem Cell Reviews and Reports, 2021, 17, 2245-2261.	1.7	6
730	Polymers for Biomedical Applications: The Importance of Hydrophobicity in Directing Biological Interactions and Application Efficacy. Biomacromolecules, 2021, 22, 4459-4469.	2.6	45
731	Lipid Profile Features of Detergent-Resistant Membranes of Mitochondria and Chloroplasts from Euhalophyte Halocnemum strobilaceum. Chemistry of Natural Compounds, 2021, 57, 811-814.	0.2	0
732	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	2.2	22
733	Membrane hydrophobicity determines the activation free energy of passive lipid transport. Biophysical Journal, 2021, 120, 3718-3731.	0.2	13
734	The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers, 2021, 13, 4721.	1.7	27
735	G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). , 2022, 231, 107977.		28
736	A palmitoylation code controls PI4KIIIα complex formation and PI(4,5)P2 homeostasis at the plasma membrane. Journal of Cell Science, 2022, 135, .	1.2	9
737	Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Frontiers in Cell and Developmental Biology, 2021, 9, 714330.	1.8	18
738	Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface. Journal of Physical Chemistry B, 2021, 125, 10748-10758.	1.2	10
739	The Revolving Door of Adenovirus Cell Entry: Not All Pathways Are Equal. Pharmaceutics, 2021, 13, 1585.	2.0	12

#	Article	IF	CITATIONS
740	High-Level Expression of Palmitoylated MPP1 Recombinant Protein in Mammalian Cells. Membranes, 2021, 11, 715.	1.4	4
741	Stress Induces Release of Extracellular Vesicles by Trypanosoma cruzi Trypomastigotes. Journal of Immunology Research, 2021, 2021, 1-12.	0.9	10
742	Cytokine receptor cluster size impacts its endocytosis and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
743	Effect of tertiary amine local anesthetics on G protein-coupled receptor lateral diffusion and actin cytoskeletal reorganization. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183547.	1.4	3
744	Durotaxis of Passive Nanoparticles on Elastic Membranes. ACS Nano, 2021, 15, 15794-15802.	7.3	7
745	Probing Physical Properties of the Cellular Membrane in Senescent Cells by Fluorescence Imaging. Journal of Physical Chemistry B, 2021, 125, 10182-10194.	1.2	4
746	Role of ERLINs in the Control of Cell Fate through Lipid Rafts. Cells, 2021, 10, 2408.	1.8	14
748	Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126984.	2.3	6
749	Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119102.	1.9	55
750	Composition, functionality and structural correlates of mixed lipid monolayers at air-water interface. Jcis Open, 2021, 3, 100022.	1.5	1
751	ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183689.	1.4	7
752	Molecular dynamics study of water transport through AQP5-R188C mutant causing palmoplantar keratoderma (PPK) using the gating mechanism concept. Biophysical Chemistry, 2021, 277, 106655.	1.5	8
753	Surfactin cyclic lipopeptides change the plasma membrane composition and lateral organization in mammalian cells. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183730.	1.4	11
754	Solving the enigma: Mass spectrometry and small molecule probes to study sphingolipid function. Current Opinion in Chemical Biology, 2021, 65, 49-56.	2.8	2
755	Long-term STED imaging of membrane packing and dynamics by exchangeable polarity-sensitive dyes. Biophysical Reports, 2021, 1, 100023.	0.7	19
756	Challenges and recent trends with the development of hydrogel fiber for biomedical applications. Chemosphere, 2022, 287, 131956.	4.2	18
757	Role of polyunsaturated phospholipids in liquid-ordered and liquid-disordered phases. RSC Advances, 2021, 11, 27115-27120.	1.7	2
758	The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Methods in Enzymology, 2021, 649, 219-251.	0.4	6

ARTICLE IF CITATIONS # Isolation of Mitochondria-Associated ER Membranes (MAMs), Synaptic MAMs, and Glycosphingolipid Enriched Microdomains (GEMs) from Brain Tissues and Neuronal Cells. Methods in Molecular 759 0.4 4 Biology, 2021, 2277, 357-370. Cholesterol activates BK channels by increasing KCNMB1 protein levels in the plasmalemma. Journal of 1.6 Biological Chemistry, 2021, 296, 100381. Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting 761 2.0 5 nanocluster formation. Journal of Lipid Research, 2021, 62, 100026. Naphthalimide-based probe with strong two-photon excited fluorescence and high specificity to cell 0.9 membranes. Results in Chemistry, 2021, 3, 100100. Lipids | Cholesterol Synthesis and Regulation., 2021, , 732-738. 763 3 Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chemical Society Reviews, 2021, 50, 12098-12150. 764 18.7 Assessment of Plasma Membrane Fatty Acid Composition and Fluidity Using Imaging Flow Cytometry. 765 0.4 3 Methods in Molecular Biology, 2021, 2262, 251-258. Gr1 makes an unexpected cameo appearance in eosinophils. Journal of Leukocyte Biology, 2020, 107, 1.5 363-365. 767 Lipid metabolism in cancer progression and therapeutic strategies. MedComm, 2021, 2, 27-59. 3.1 101 Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence 768 0.4 Spectroscopy. Methods in Molecular Biology, 2021, 2187, 247-269. Association of Glycolipids and Growth Factor Receptors in Lipid Rafts. Methods in Molecular Biology, 769 4 0.4 2021, 2187, 131-145. Interferometric Scattering (ISCAT) Microscopy and Related Techniques. Biological and Medical Physics 770 0.3 Series, 2019, , 25-65. Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in 771 0.8 10 the living zebrafish embryo. Histochemistry and Cell Biology, 2020, 154, 507-519. The desmosome as a model for lipid raft driven membrane domain organization. Biochimica Et 1.4 Biophysica Acta - Biomembranes, 2020, 1862, 183329. Multiparametric Atomic Force Microscopy Identifies Multiple Structural and Physical Heterogeneities 773 2 1.6 on the Surface of <i>Trypanosoma brucei</i>. ACS Omega, 2020, 5, 20953-20959. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell 774 membrane. Natural Product Reports, 2020, 37, 677-702. 775 Cell-penetrating peptides: two faces of the same coin. Biochemical Journal, 2020, 477, 1363-1366. 1.7 2 Live-cell monitoring of protein localization to membrane rafts using protein-fragment 776 1.1 19 complementation. Bioscience Reports, 2020, 40, .

#	Article	IF	CITATIONS
777	Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling?. Biochemical Society Transactions, 2020, 48, 2669-2689.	1.6	36
778	Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane. Essays in Biochemistry, 2020, 64, 513-531.	2.1	82
779	Physicochemical considerations for bottom-up synthetic biology. Emerging Topics in Life Sciences, 2019, 3, 445-458.	1.1	15
780	The Fats of Life: Using Computational Chemistry to Characterise the Eukaryotic Cell Membrane. Australian Journal of Chemistry, 2020, 73, 85.	0.5	7
781	Post-translational control of the long and winding road to cholesterol. Journal of Biological Chemistry, 2020, 295, 17549-17559.	1.6	31
782	Sterol biosensor reveals LAM-family Ltc1-dependent sterol flow to endosomes upon Arp2/3 inhibition. Journal of Cell Biology, 2020, 219, .	2.3	32
783	High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. Journal Physics D: Applied Physics, 2020, 53, 164003.	1.3	15
784	Tail-structure regulated phase behaviors of a lipid bilayer*. Chinese Physics B, 2020, 29, 128701.	0.7	6
785	Gb3 Src complex in glycosphingolipidâ€enriched microdomains contributes to the expression of p53 mutant protein and cancer drug resistance via βâ€catenin–activated RNA methylation. FASEB BioAdvances, 2020, 2, 653-667.	1.3	12
806	Retinal de novo lipogenesis coordinates neurotrophic signaling to maintain vision. JCI Insight, 2018, 3, .	2.3	18
807	Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Research, 2017, 6, 763.	0.8	18
808	Recent innovations in membrane-protein structural biology. F1000Research, 2019, 8, 211.	0.8	15
809	Cold nanoisland substrates for SERS characterization of cultured cells. Biomedical Optics Express, 2019, 10, 6172.	1.5	15
810	The potent effect of mycolactone on lipid membranes. PLoS Pathogens, 2018, 14, e1006814.	2.1	36
811	VEGFâ€B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content. EMBO Reports, 2020, 21, e49343.	2.0	25
812	Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: opportunities to overcome a difficult problem. , 2020, 3, 179-198.		11
813	The bacterial quorum sensing signal DSF hijacks <i>Arabidopsis thaliana</i> sterol biosynthesis to suppress plant innate immunity. Life Science Alliance, 2020, 3, e202000720.	1.3	23
814	Current Methods for Detecting Cell Membrane Transient Interactions. Frontiers in Chemistry, 2020, 8, 603259.	1.8	25

#	Article	IF	CITATIONS
815	How membrane lipids control the 3D structure and function of receptors. AIMS Biophysics, 2018, 5, 22-35.	0.3	6
816	Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity <i>via</i> molecular dynamics simulation. Biomaterials Science, 2021, 9, 8249-8258.	2.6	1
817	Heterogeneity of cell membrane structure studied by single molecule tracking. Faraday Discussions, 2021, 232, 358-374.	1.6	7
818	Extracellular Vesicles from Human Teeth Stem Cells Trigger ATP Release and Promote Migration of Human Microglia through P2X4 Receptor/MFG-E8-Dependent Mechanisms. International Journal of Molecular Sciences, 2021, 22, 10970.	1.8	5
819	Hierarchical Fluorescence Imaging Strategy for Assessment of the Sialylation Level of Lipid Rafts on the Cell Membrane. Analytical Chemistry, 2021, 93, 14643-14650.	3.2	10
820	Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. Journal of Lipid Research, 2021, 62, 100145.	2.0	21
821	Lipid Nanodiscs for High-Resolution NMR Studies of Membrane Proteins. Chemical Reviews, 2022, 122, 9395-9421.	23.0	30
823	Cholesterol-enriched membrane micro-domain deficiency induces doxorubicin resistance via promoting autophagy in breast cancer. Molecular Therapy - Oncolytics, 2021, 23, 311-329.	2.0	6
824	Interdomain exchange and the flip-flop of cholesterol in ternary component lipid membranes and their effects on heterogeneous cholesterol diffusion. Physical Review E, 2021, 104, 044402.	0.8	8
826	ARPC1B binds WASP to control actin polymerization and curtail tonic signaling in B cells. JCI Insight, 2021, 6, .	2.3	13
828	Membrane lipid raft homeostasis is directly linked to neurodegeneration. Essays in Biochemistry, 2021, 65, 999-1011.	2.1	15
829	Structure-Activity Relationships of Holothuroid's Triterpene Glycosides and Some In Silico Insights Obtained by Molecular Dynamics Study on the Mechanisms of Their Membranolytic Action. Marine Drugs, 2021, 19, 604.	2.2	12
832	Membrane Lipid Domains. , 2018, , 1-11.		1
833	Membrane Asymmetry and Phospholipid Translocases in Eukaryotic Cells. , 2018, , 47-76.		0
840	Blood Type Diets (BTD) and Aging: An Overview. , 2019, 07, .		0
841	Biomoleculen. , 2019, , 1-41.		0
843	Lipid Homeostasis on Cell Membrane. , 2019, , 1-30.		1
844	Measuring sub-nanometre thickness changes during phase transitions of supported lipid bilayers with quantitative differential interference contrast microscopy. , 2019, , .		0

#	Article	IF	CITATIONS
859	Phospholipid synthetic and turnover pathways elicited upon exposure to different xenobiotics. AIMS Molecular Science, 2020, 7, 211-228.	0.3	0
860	Use of Streptolysin O (SLO) to Study the Function of Lipid Rafts. Methods in Molecular Biology, 2020, 2136, 367-375.	0.4	Ο
867	Biophysical Analysis of Lipid Domains by Fluorescence Microscopy. Methods in Molecular Biology, 2021, 2187, 223-245.	0.4	2
869	Protein induced lipid demixing in homogeneous membranes. Physical Review Research, 2021, 3, .	1.3	7
871	Role of the IgG4-related cholangitis autoantigen annexin A11 in cholangiocyte protection. Journal of Hepatology, 2022, 76, 319-331.	1.8	9
872	Lipidomic landscape in cancer: Actionable insights for membraneâ€based therapy and diagnoses. Medicinal Research Reviews, 2022, 42, 983-1018.	5.0	22
873	Cellular transformers for targeted therapy. Advanced Drug Delivery Reviews, 2021, 179, 114032.	6.6	8
877	The Ca2+- and phospholipid-binding protein Annexin A2 is able to increase and decrease plasma membrane order. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183810.	1.4	1
878	Shedding light on membrane rafts structure and dynamics in living cells. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183813.	1.4	9
881	Uncoupling between the lipid membrane dynamics of differing hierarchical levels. Physical Review E, 2020, 101, 012416.	0.8	8
882	Lipid Rafts in Bacteria: Structure and Function. , 2020, , 3-32.		0
886	Regulatory TÂcell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Reports, 2021, 37, 109911.	2.9	39
887	Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Reports, 2021, 37, 109957.	2.9	38
888	Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell, 2022, 34, 374-394.	3.1	31
889	Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers. Journal of Molecular Biology, 2022, 434, 167345.	2.0	4
897	Fabrication of dual-sensitive heterogeneity organohydrogel with temperature/surrounding-phase regulatory superomniphobic surface for on-demand oil/water separation. Materials Chemistry and Physics, 2022, 276, 125447.	2.0	4
898	Show your true color: Mammalian cell surface staining for tracking cellular identity in multiplexing and beyond. Current Opinion in Chemical Biology, 2022, 66, 102102.	2.8	4
899	Axonal plasma membrane-mediated toxicity of cholesterol in Alzheimer's disease: A microsecond molecular dynamics study. Biophysical Chemistry, 2022, 281, 106718.	1.5	7

#	Article	IF	CITATIONS
900	O-GlcNAcylation Inhibits Endocytosis of Amyloid Precursor Protein by Decreasing Its Localization in Lipid Raft Microdomains. Membranes, 2021, 11, 909.	1.4	2
901	Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Current Neuropharmacology, 2022, 20, 1400-1412.	1.4	6
902	Lipid phase transitions in cat oocytes supplemented with deuterated fatty acids. Biophysical Journal, 2021, 120, 5619-5630.	0.2	5
903	Single-Molecule Localization Microscopy of 3D Orientation and Anisotropic Wobble Using a Polarized Vortex Point Spread Function. Journal of Physical Chemistry B, 2021, 125, 12718-12729.	1.2	26
904	Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. Membranes, 2021, 11, 944.	1.4	9
905	Treatment and outcomes of dogs with hepatocutaneous syndrome or hepatocutaneousâ€associated hepatopathy. Journal of Veterinary Internal Medicine, 2021, , .	0.6	3
907	Manipulation of Ion Types via Gas-Phase Ion/Ion Chemistry for the Structural Characterization of the Glycan Moiety on Gangliosides. Analytical Chemistry, 2021, 93, 15752-15760.	3.2	8
908	The Crucial Roles of Phospholipids in Aging and Lifespan Regulation. Frontiers in Physiology, 2021, 12, 775648.	1.3	24
910	A Brief Introduction to Some Aspects of the Fluid–Mosaic Model of Cell Membrane Structure and Its Importance in Membrane Lipid Replacement. Membranes, 2021, 11, 947.	1.4	25
911	Molecular Organization of a Raft-like Domain in a Polyunsaturated Phospholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2021, 125, 13158-13167.	1.2	8
912	Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angewandte Chemie, 2022, 134, .	1.6	4
913	Lipidomics Reveals Cisplatin-Induced Renal Lipid Alterations during Acute Kidney Injury and Their Attenuation by Cilastatin. International Journal of Molecular Sciences, 2021, 22, 12521.	1.8	4
915	Dynamic response on a nanometer scale of binary phospholipid-cholesterol vesicles: Low-frequency Raman scattering insight. Physical Review E, 2021, 104, 054406.	0.8	4
916	Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 1561-1598.	0.8	7
917	Contribution of Membrane Lipids to Postsynaptic Protein Organization. Frontiers in Synaptic Neuroscience, 2021, 13, 790773.	1.3	7
918	Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation. Journal of Lipid Research, 2022, 63, 100155.	2.0	9
919	Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angewandte Chemie - International Edition, 2022, 61, e202112033.	7.2	22
920	Membrane composition and organization of Bacillus subtilis 168 and its genomeâ€reduced derivative mini Bacillus PG10. Microbial Biotechnology, 2021, , .	2.0	4

#	Article	IF	CITATIONS
921	Membrane tension. Current Topics in Membranes, 2021, 88, 189-203.	0.5	1
922	The study of the functional state of lipid rafts in the cytoplasmic membrane of Pisum Sativum seedlings under clinorotation. KosmìÄna Nauka ì Tehnologìâ, 2021, 27, 35-46.	0.1	2
923	Phase separation in biological membranes: An overview with focus on experimental effects of illumination and osmotic pressure changes. Advances in Biomembranes and Lipid Self-Assembly, 2021, , 31-66.	0.3	1
924	Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs —advancements, challenges, and possibilities. Current Research in Insect Science, 2022, 2, 100028.	0.8	5
925	Lipid–Protein Interactions in Plasma Membrane Organization and Function. Annual Review of Biophysics, 2022, 51, 135-156.	4.5	30
927	Impact of lipid rafts on transient receptor potential channel activities. Journal of Cellular Physiology, 2022, 237, 2034-2044.	2.0	6
928	Fluorescence sensors for imaging membrane lipid domains and cholesterol. Current Topics in Membranes, 2021, 88, 257-314.	0.5	7
929	Plasma Membrane Calcium ATPase-Neuroplastin Complexes Are Selectively Stabilized in GM1-Containing Lipid Rafts. International Journal of Molecular Sciences, 2021, 22, 13590.	1.8	15
930	Lipid-driven CFTR clustering is impaired in cystic fibrosis and restored by corrector drugs. Journal of Cell Science, 2022, 135, .	1.2	9
931	Impaired Membrane Lipid Homeostasis in Schizophrenia. Schizophrenia Bulletin, 2022, 48, 1125-1135.	2.3	10
932	Generating Membrane Curvature at the Nuclear Pore: A Lipid Point of View. Cells, 2022, 11, 469.	1.8	16
933	PyLipID: A Python Package for Analysis of Protein–Lipid Interactions from Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2022, 18, 1188-1201.	2.3	69
934	Structural advances in sterol-sensing domain-containing proteins. Trends in Biochemical Sciences, 2022, 47, 289-300.	3.7	13
935	Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. Journal of Cell Science, 2022, 135, .	1.2	31
936	Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS Journal, 2023, 290, 1420-1453.	2.2	61
937	The role of membranes in function and dysfunction of intrinsically disordered amyloidogenic proteins. Advances in Protein Chemistry and Structural Biology, 2022, 128, 397-434.	1.0	1
938	Regulatory Role of Phospholipids in Hepatitis C Virus Replication and Protein Function. Pathogens, 2022, 11, 102.	1.2	1
939	Role of LipidÂRafts in Pathogen-Host Interaction -ÂA Mini Review. Frontiers in Immunology, 2021, 12, 815020.	2.2	20

#	Article	IF	CITATIONS
940	Structure and transport mechanism of the human cholesterol transporter ABCG1. Cell Reports, 2022, 38, 110298.	2.9	18
942	Hidden Beauty, Assembling Lipids: Modular Hands-On Outreach Experiments Showcasing Lipid Assembly Chemistry. Journal of Chemical Education, 2022, 99, 1087-1094.	1.1	0
943	Cholesterol in the Cell Membrane—An Emerging Player in Atherogenesis. International Journal of Molecular Sciences, 2022, 23, 533.	1.8	17
944	Targeted disruption of mitochondria potently reverses multidrug resistance in cancer therapy. British Journal of Pharmacology, 2022, 179, 3346-3362.	2.7	5
945	Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
946	Direct Cellular Delivery of Exogenous Genetic Material and Protein via Colloidal Nano-Assemblies with Biopolymer. ACS Applied Materials & amp; Interfaces, 2022, 14, 3199-3206.	4.0	10
947	A Theoretical Basis for Nanodomains. Journal of Membrane Biology, 2022, 255, 451-460.	1.0	3
948	Structural insights into the membrane microdomain organization by SPFH family proteins. Cell Research, 2022, 32, 176-189.	5.7	24
950	Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Delivery and Translational Research, 2022, 12, 2303-2334.	3.0	7
951	MPP1 Determines the Mobility of Flotillins and Controls the Confinement of Raft-Associated Molecules. Cells, 2022, 11, 311.	1.8	5
952	Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes, 2022, 13, 219.	1.0	7
953	Real-time monitoring the staged interactions between cationic surfactants and a phospholipid bilayer membrane. Physical Chemistry Chemical Physics, 2022, 24, 5360-5370.	1.3	0
954	Phase behavior and miscibility in lipid monolayers containing glycolipids. Journal of Colloid and Interface Science, 2022, 615, 786-796.	5.0	11
955	The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors. Acta Histochemica, 2022, 124, 151859.	0.9	3
956	Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study. Archives of Biochemistry and Biophysics, 2022, 717, 109136.	1.4	2
957	Photosensitized Lipid Oxidation: Mechanisms and Consequences to Health Sciences. , 2022, , 305-337.		2
958	Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. Journal of Medicinal Chemistry, 2022, 65, 3026-3045.	2.9	15
959	Development of a novel spatiotemporal depletion system for cellular cholesterol. Journal of Lipid Research, 2022, , 100178.	2.0	3

#	Article	IF	CITATIONS
960	Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. Journal of Medicinal Chemistry, 2022, 65, 3046-3065.	2.9	14
961	Mechanisms of hypericin incorporation to explain the photooxidation outcomes in phospholipid biomembrane models. Chemistry and Physics of Lipids, 2022, 244, 105181.	1.5	5
962	Role of Protein–Lipid Interactions in Viral Entry. Advanced Biology, 2022, 6, e2101264.	1.4	5
963	Platelet Membrane: An Outstanding Factor in Cancer Metastasis. Membranes, 2022, 12, 182.	1.4	6
964	Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Frontiers in Immunology, 2021, 12, 796855.	2.2	63
965	The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chemical Society Reviews, 2022, 51, 1983-2030.	18.7	168
966	Computational development of a phase-sensitive membrane raft probe. Physical Chemistry Chemical Physics, 2022, 24, 8260-8268.	1.3	1
968	Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Frontiers in Immunology, 2022, 13, 820131.	2.2	29
969	Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes, 2022, 14, 2039048.	4.3	28
970	Identification of a New Cholesterolâ€Binding Site within the IFNâ€ <i>γ</i> Receptor that is Required for Signal Transduction. Advanced Science, 2022, 9, e2105170.	5.6	9
971	High-Content Imaging Platform to Discover Chemical Modulators of Plasma Membrane Rafts. ACS Central Science, 2022, 8, 370-378.	5.3	10
972	Core Fucosylation Regulates the Function of Pre-BCR, BCR and IgG in Humoral Immunity. Frontiers in Immunology, 2022, 13, 844427.	2.2	8
973	Lipid Phase Separation in Vesicles Enhances TRAIL-Mediated Cytotoxicity. Nano Letters, 2022, 22, 26, 2627-2634.	4.5	12
974	Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort. PLoS Biology, 2022, 20, e3001561.	2.6	22
975	Approach to map nanotopography of cell surface receptors. Communications Biology, 2022, 5, 218.	2.0	6
976	Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Molecular Cancer, 2022, 21, 77.	7.9	40
977	Arabidopsis Tetraspanins Facilitate Virus Infection via Membrane-Recognition GCCK/RP Motif and Cysteine Residues. Frontiers in Plant Science, 2022, 13, 805633.	1.7	6
978	Role of lipid rafts in persistent Helicobacter pylori infection: a narrative review. Annals of Translational Medicine, 2022, 10, 376-376.	0.7	3

#	Article	IF	Citations
	Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation		
979	Spectroscopy. Journal of Physical Chemistry B, 2022, 126, 2325-2336.	1.2	3
980	Lipid Homeostasis and Its Links With Protein Misfolding Diseases. Frontiers in Molecular Neuroscience, 2022, 15, 829291.	1.4	11
981	Simvastatin and Muscle: Zebrafish and Chicken Show that the Benefits are not Worth the Damage. Frontiers in Cell and Developmental Biology, 2022, 10, 778901.	1.8	2
982	Membrane Phase Drives the Assembly of Gold Nanoparticles on Biomimetic Lipid Bilayers. Journal of Physical Chemistry C, 2022, 126, 4483-4494.	1.5	15
983	Targeting Lipid Rafts as a Rapid Screening Strategy for Potential Antiadipogenic Polyphenols along with the Structure–Activity Relationship and Mechanism Elucidation. Journal of Agricultural and Food Chemistry, 2022, 70, 3872-3885.	2.4	4
984	Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Frontiers in Cardiovascular Medicine, 2022, 9, 869481.	1.1	5
985	Interplay between mechanics and signalling in regulating cell fate. Nature Reviews Molecular Cell Biology, 2022, 23, 465-480.	16.1	68
986	Spontaneous evolution of equilibrium morphology in phospholipid-cholesterol monolayers. Science Advances, 2022, 8, eabl9152.	4.7	3
987	Self-organization and surface properties of hBest1 in models of biological membranes. Advances in Colloid and Interface Science, 2022, 302, 102619.	7.0	2
989	Need for more focus on lipid species in studies of biological and model membranes. Progress in Lipid Research, 2022, 86, 101160.	5.3	7
990	Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. Journal of Lipid Research, 2022, 63, 100206.	2.0	10
991	Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159140.	1.2	10
992	Interaction of triblock copolymers (Pluronic®) with DMPC vesicles: a photophysical and computational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121178.	2.0	3
993	Nucleofection of Adipose Mesenchymal Stem/Stromal Cells: Improved Transfection Efficiency for GMP Grade Applications. Cells, 2021, 10, 3412.	1.8	2
994	Partitioning of a Hybrid Lipid in Domains of Saturated and Unsaturated Lipids in a Model Cellular Membrane. ACS Omega, 2021, 6, 34546-34554.	1.6	7
995	Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells, 2021, 10, 3602.	1.8	7
997	Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 399-417.	1.0	9
998	Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes. Nature Structural and Molecular Biology, 2021, 28, 972-981.	3.6	10

#	Article	IF	CITATIONS
999	Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. Membranes, 2021, 11, 978.	1.4	1
1000	A Role for Lipids in Protein Sorting?. Chimia, 2021, 75, 1026.	0.3	1
1001	Polymersomes Based Versatile Nanoplatforms for Controlled Drug Delivery and Imaging. Advanced Pharmaceutical Bulletin, 2023, 13, 218-232.	0.6	3
1002	Anchoring a Xenogeneic Antigenâ€Guided Immune Activation System to Tumor Cell Membrane for Solid Tumor Treatment. Advanced Functional Materials, 0, , 2111499.	7.8	5
1003	Uniting diversity to create a more inclusive academic environment. Journal of Cell Science, 2022, 135, .	1.2	0
1004	Wheat Gluten Peptides Enhance Ethanol Stress Tolerance by Regulating the Membrane Lipid Composition in Yeast. Journal of Agricultural and Food Chemistry, 2022, 70, 5057-5065.	2.4	13
1005	Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Science Alliance, 2022, 5, e202201430.	1.3	9
1007	Serotonergic drugs modulate the phase behavior of complex lipid bilayers. Biochimie, 2022, 203, 40-50.	1.3	11
1008	Interleukinâ€6 signaling requires EHD1â€mediated alteration of membrane rafts. FEBS Journal, 2022, 289, 5914-5932.	2.2	3
1027	Sphingolipids and Cholesterol. Advances in Experimental Medicine and Biology, 2022, 1372, 1-14.	0.8	7
1027 1028	Sphingolipids and Cholesterol. Advances in Experimental Medicine and Biology, 2022, 1372, 1-14. Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes. , 2022, , 205-225.	0.8	7 0
	Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in	0.8	
1028	Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes. , 2022, , 205-225. Molecular evolution of cholesterol and other higher sterols in relation to membrane structure. ,	0.8	0
1028 1029	 Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes. , 2022, , 205-225. Molecular evolution of cholesterol and other higher sterols in relation to membrane structure. , 2022, , 25-40. Nanoscale Structure and Dynamics of Model Membrane Lipid Raft Systems, Studied by Neutron 		0
1028 1029 1030	 Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes., 2022, , 205-225. Molecular evolution of cholesterol and other higher sterols in relation to membrane structure., 2022, , 25-40. Nanoscale Structure and Dynamics of Model Membrane Lipid Raft Systems, Studied by Neutron Scattering Methods. Frontiers in Physics, 2022, 10, . 	1.0	0 0 5
1028 1029 1030 1031	 Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes., 2022, , 205-225. Molecular evolution of cholesterol and other higher sterols in relation to membrane structure., 2022, , 25-40. Nanoscale Structure and Dynamics of Model Membrane Lipid Raft Systems, Studied by Neutron Scattering Methods. Frontiers in Physics, 2022, 10, . Roles of Extracellular Vesicles in Cancer Metastasis. Physiology, 0, , . Order vs. Disorder: Cholesterol and Omega-3 Phospholipids Determine Biomembrane Organization. 	1.0	0 0 5 0
1028 1029 1030 1031	 Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes. , 2022, , 205-225. Molecular evolution of cholesterol and other higher sterols in relation to membrane structure. , 2022, , 25-40. Nanoscale Structure and Dynamics of Model Membrane Lipid Raft Systems, Studied by Neutron Scattering Methods. Frontiers in Physics, 2022, 10, . Roles of Extracellular Vesicles in Cancer Metastasis. Physiology, 0, , . Order vs. Disorder: Cholesterol and Omega-3 Phospholipids Determine Biomembrane Organization. International Journal of Molecular Sciences, 2022, 23, 5322. How Does the Spatial Confinement of FtsZ to a Membrane Surface Affect Its Polymerization Properties 	1.0 4.0 1.8	0 0 5 0 5

#	Article	IF	CITATIONS
1038	Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 3131-3148.	1.0	8
1039	Nanozyme-natural enzymes cascade catalyze cholesterol consumption and reverse cancer multidrug resistance. Journal of Nanobiotechnology, 2022, 20, 209.	4.2	6
1040	Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis?. Trends in Endocrinology and Metabolism, 2022, , .	3.1	4
1041	Dioscin Ameliorates Hyperuricemia-Induced Atherosclerosis by Modulating of Cholesterol Metabolism through FXR-Signaling Pathway. Nutrients, 2022, 14, 1983.	1.7	4
1042	The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Progress in Lipid Research, 2022, 87, 101166.	5.3	10
1043	OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183951.	1.4	6
1044	Crosstalk of Autophagy and Apoptosis. Cells, 2022, 11, 1479.	1.8	46
1045	On the sharp interface limit of a phase field model for near spherical two phase biomembranes. Interfaces and Free Boundaries, 2022, 24, 263-286.	0.2	2
1046	The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chemical Society Reviews, 2022, 51, 4537-4582.	18.7	70
1047	Digging into the biophysical features of cell membranes with lipid-DNA conjugates. Quarterly Reviews of Biophysics, 2022, , 1-21.	2.4	2
1048	Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Molecular and Cellular Biochemistry, 2022, 477, 2507-2528.	1.4	5
1049	Mechanochemical coupling of lipid organization and protein function through membrane thickness deformations. Physical Review E, 2022, 105, .	0.8	1
1050	GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/l²-catenin signalling pathway. Cell Death and Disease, 2022, 13, .	2.7	7
1055	Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells, 2022, 11, 1838.	1.8	11
1056	Advanced functional fluorescent probes for cell plasma membranes. Current Opinion in Chemical Biology, 2022, 69, 102161.	2.8	21
1057	Phase separation in high/low viscosity phospholipid membranes based on single domain characterization. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 188702.	0.2	1
1058	Two decades of Martini: Better beads, broader scope. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	58
1059	Dynamic Reconfiguration of Subcompartment Architectures in Artificial Cells. ACS Nano, 2022, 16, 9389-9400.	7.3	8

#	Article	IF	CITATIONS
1060	Dysregulated Brain Protein Phosphorylation Linked to Increased Human Tau Expression in the hTau Transgenic Mouse Model. International Journal of Molecular Sciences, 2022, 23, 6427.	1.8	1
1061	Regulation of the lysosome by sphingolipids: Potential role in aging. Journal of Biological Chemistry, 2022, 298, 102118.	1.6	10
1062	Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane. Analytical and Bioanalytical Chemistry, 0, , .	1.9	3
1063	Monounsaturated Fatty Acids: Key Regulators of Cell Viability and Intracellular Signaling in Cancer. Molecular Cancer Research, 2022, 20, 1354-1364.	1.5	12
1065	Insights into intercellular receptor-ligand binding kinetics in cell communication. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1066	Tumor metabolic reprogramming in lung cancer progression (Review). Oncology Letters, 2022, 24, .	0.8	13
1067	The Impacts of Climate Change on the Potential Distribution of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in China. Insects, 2022, 13, 636.	1.0	5
1068	Decreased GM3 correlates with proteinuria inÂminimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clinical and Experimental Nephrology, 2022, 26, 1078-1085.	0.7	3
1069	Trained Immunity and HIV Infection. Frontiers in Immunology, 0, 13, .	2.2	6
1070	Structural basis for acyl chain control over glycosphingolipid sorting and vesicular trafficking. Cell Reports, 2022, 40, 111063.	2.9	4
1071	Fifty Years of the Fluid–Mosaic Model of Biomembrane Structure and Organization and Its Importance in Biomedicine with Particular Emphasis on Membrane Lipid Replacement. Biomedicines, 2022, 10, 1711.	1.4	12
1072	Ezetimibe and Cancer: Is There a Connection?. Frontiers in Pharmacology, 0, 13, .	1.6	7
1073	Heterogeneous nanoscopic lipid diffusion in the live cell membrane and its dependency on cholesterol. Biophysical Journal, 2022, 121, 3146-3161.	0.2	4
1074	Molecular condensation and mechanoregulation of plant class I formin, an integrinâ€like actin nucleator. FEBS Journal, 2023, 290, 3336-3354.	2.2	3
1075	Production of cholesterol-like molecules impacts Escherichia coli robustness, production capacity, and vesicle trafficking. Metabolic Engineering, 2022, 73, 134-143.	3.6	5
1076	Cholesterol crystals and atherosclerotic plaque instability: Therapeutic potential of Eicosapentaenoic acid. , 2022, 240, 108237.		8
1077	Enhancing and inhibitory motifs regulate CD4 activity. ELife, 0, 11, .	2.8	3
1078	Active emulsions in living cell membranes driven by contractile stresses and transbilayer coupling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15

#	Article	IF	CITATIONS
1079	Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural–glial coupling in <i>Drosophila</i> . National Science Review, 2022, 9, .	4.6	6
1082	An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis. Nature Communications, 2022, 13, .	5.8	5
1083	New Antimicrobial Peptide with Two CRAC Motifs: Activity against Escherichia coli and Bacillus subtilis. Microorganisms, 2022, 10, 1538.	1.6	1
1084	ELF4 is a critical component of a miRNA-transcription factor network and is a bridge regulator of glioblastoma receptor signaling and lipid dynamics. Neuro-Oncology, 2023, 25, 459-470.	0.6	4
1086	Polarity-Sensitive Cell Membrane Probe Reveals Lower Polarity of Tumor Cell Membrane and Its Application for Tumor Diagnosis. Analytical Chemistry, 2022, 94, 11089-11095.	3.2	32
1090	Tailoring Butyl Methacrylate/Methacrylic Acid Copolymers for the Solubilization of Membrane Proteins: The Influence of Composition and Molecular Weight. Macromolecular Bioscience, 2022, 22, .	2.1	3
1092	Phase Behavior and Miscibility in Two-Component Glycolipid Monolayers. Journal of Physical Chemistry B, 0, , .	1.2	0
1093	Thermodynamic stability and critical points in multicomponent mixtures with structured interactions. Physical Review Research, 2022, 4, .	1.3	9
1094	Cholesterol-Dependent Dynamics of the Serotonin _{1A} Receptor Utilizing Single Particle Tracking: Analysis of Diffusion Modes. Journal of Physical Chemistry B, 0, , .	1.2	2
1096	Exploring the binding kinetics and behaviors of self-aggregated beta-amyloid oligomers to phase-separated lipid rafts with or without ganglioside-clusters. Biophysical Chemistry, 2022, 290, 106874.	1.5	15
1097	Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. Journal of Molecular Biology, 2022, , 167787.	2.0	13
1098	Regulation of membrane fluidity by <scp>RNF145</scp> â€triggered degradation of the lipid hydrolase <scp>ADIPOR2</scp> . EMBO Journal, 2022, 41, .	3.5	11
1099	Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Reviews and Reports, 2023, 19, 2-25.	1.7	8
1100	Formation of lipid raft nanodomains in homogeneous ternary lipid mixture of POPC/DPSM/cholesterol: Theoretical insights. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 184027.	1.4	7
1101	Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. International Journal of Molecular Sciences, 2022, 23, 10435.	1.8	1
1102	Influence of the extracellular domain size on the dynamic behavior of membrane proteins. Biophysical Journal, 2022, 121, 3826-3836.	0.2	14
1103	Integrating a Farâ€Red Fluorescent Probe with a Microfluidic Platform for Superâ€Resolution Imaging of Live Erythrocyte Membrane Dynamics. Angewandte Chemie, 0, , .	1.6	0
1105	Differential distribution of cholesterol pools across arteries under high-cholesterol diet. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159235.	1.2	3

#	Article	IF	CITATIONS
1106	Soybean meal peptides regulated membrane phase of giant unilamellar vesicles: A key role for bilayer amphipathic region localization. Food Research International, 2022, 162, 111924.	2.9	0
1107	Impact of sphingomyelin acyl chain heterogeneity upon properties of raft-like membranes. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 184036.	1.4	4
1108	Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biology Plus, 2022, 16, 100121.	1.9	12
1109	Membrane lipid compositions and their difference between subcellular structures. , 2023, , 7-26.		0
1110	Diffusion Measurements at the Nanoscale with STED-FCS. Springer Series on Fluorescence, 2022, , .	0.8	0
1111	Statin-induced increase in actin polymerization modulates GPCR dynamics andÂcompartmentalization. Biophysical Journal, 2023, 122, 1938-1955.	0.2	4
1112	Mechanism of Leakage in Phosphatidylserine-Containing Membranes by Melittin. Molecular Biology, 0, ,	0.4	0
1115	Potential Distribution across Model Membranes. Journal of Physical Chemistry B, 2022, 126, 7664-7675.	1.2	5
1116	Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains. Nano Letters, 2022, 22, 7579-7587.	4.5	4
1117	Inhibition of EGFR Overcomes Acquired Lenvatinib Resistance Driven by STAT3–ABCB1 Signaling in Hepatocellular Carcinoma. Cancer Research, 2022, 82, 3845-3857.	0.4	26
1118	Integrating a Farâ€Red Fluorescent Probe with a Microfluidic Platform for Superâ€Resolution Imaging of Live Erythrocyte Membrane Dynamics**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1119	Regulation of membrane protein structure and function by their lipid nano-environment. Nature Reviews Molecular Cell Biology, 2023, 24, 107-122.	16.1	134
1120	Proteomic Profiling and Stress Response in <i>Pediococcus acidilactici</i> under Acetic Acid. Journal of Agricultural and Food Chemistry, 2022, 70, 12708-12721.	2.4	3
1121	Interplay of receptor-ligand binding and lipid domain formation during cell adhesion. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
1122	Fluorogenic Dimers as Bright Switchable Probes for Enhanced Super-Resolution Imaging of Cell Membranes. Journal of the American Chemical Society, 2022, 144, 18043-18053.	6.6	10
1123	Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid. Biochimie, 2022, 203, 77-92.	1.3	9
1125	Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophysical Journal, 2022, 121, 4205-4220.	0.2	4
1126	Cholesterol Distribution in Small Unilamellar Vesicles. Journal of Physical Chemistry B, 2022, 126, 7135-7142.	1.2	1

#	Article	IF	CITATIONS
1127	Rhomboid-catalyzed intramembrane proteolysis requires hydrophobic matching with the surrounding lipid bilayer. Science Advances, 2022, 8, .	4.7	13
1128	Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture. Communications Biology, 2022, 5, .	2.0	22
1129	Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. Journal of Cell Biology, 2022, 221, .	2.3	7
1130	Dissecting the mechanisms of environment sensitivity of smart probes for quantitative assessment of membrane properties. Open Biology, 2022, 12, .	1.5	8
1131	Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nature Reviews Molecular Cell Biology, 2023, 24, 142-161.	16.1	91
1133	Dynamics of asymmetric membranes and interleaflet coupling as intermediates in membrane fusion. Biophysical Journal, 2023, 122, 1985-1995.	0.2	2
1134	Chemical synthesis of sialoglyco-architectures. Advances in Carbohydrate Chemistry and Biochemistry, 2022, , .	0.4	1
1135	Possible Role of Bent Structure of Methylated Lithocholic Acid on Artificial and Plasma Membranes. Membranes, 2022, 12, 997.	1.4	0
1136	Herpes simplex virus 1 protein pUL21 alters ceramide metabolism by activating the interorganelle transport protein CERT. Journal of Biological Chemistry, 2022, 298, 102589.	1.6	10
1137	Phosphacan acts as a repulsive cue in murine and rat cerebellar granule cells in a TAGâ€1/GD3 raftsâ€dependent manner. Journal of Neurochemistry, 2022, 163, 375-390.	2.1	2
1138	Enhanced CHOLESTEROL biosynthesis promotes breast cancer metastasis via modulating CCDC25 expression and neutrophil extracellular traps formation. Scientific Reports, 2022, 12, .	1.6	7
1139	PRC2-dependent regulation of ganglioside expression during dedifferentiation contributes to the proliferation and migration of vascular smooth muscle cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
1140	A cell free biomembrane platform for multimodal study of influenza virus hemagglutinin and for evaluation of entry-inhibitors against hemagglutinin. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
1141	Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS Journal, 0, , .	2.2	6
1142	Cholesterol Stiffening of Lipid Membranes. Journal of Membrane Biology, 2022, 255, 385-405.	1.0	21
1143	Stearoyl CoA Desaturase-1 Silencing in Glioblastoma Cells: Phospholipid Remodeling and Cytotoxicity Enhanced upon Autophagy Inhibition. International Journal of Molecular Sciences, 2022, 23, 13014.	1.8	2
1145	Design Strategies for and Stability of mRNA–Lipid Nanoparticle COVID-19 Vaccines. Polymers, 2022, 14, 4195.	2.0	13
1146	The Importance of the Plasma Membrane in Atherogenesis. Membranes, 2022, 12, 1036.	1.4	2

#	Article	IF	CITATIONS
1148	Optical Manipulation of Gb ₃ Enriched Lipid Domains: Impact of Isomerization on Gb ₃ â€Shiga Toxin B Interaction. Chemistry - A European Journal, 2023, 29, .	1.7	4
1149	Rationally designed near-infrared AIEgens photosensitizer for cell membrane-targeted photo-driven theranostics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 122013.	2.0	4
1150	The eisosomes contribute to acid tolerance of yeast by maintaining cell membrane integrity. Food Microbiology, 2023, 110, 104157.	2.1	4
1151	LLPS and regulation of transmembrane signaling. , 2023, , 447-460.		0
1152	Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. MBio, 2022, 13, .	1.8	7
1153	Exploring Membrane Binding Targets of Disordered Human Tau Aggregates on Lipid Rafts Using Multiscale Molecular Dynamics Simulations. Membranes, 2022, 12, 1098.	1.4	8
1154	Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 13729.	1.8	7
1156	Mesoscience in cell biology and cancer research. , 2022, 1, 271-284.		0
1158	The dependence of EGFR oligomerization on environment and structure: A camera-based N&B study. Biophysical Journal, 2022, 121, 4452-4466.	0.2	8
1159	Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Frontiers in Physiology, 0, 13, .	1.3	5
1160	Artificial Cell Membrane Platforms by Solvent-Assisted Lipid Bilayer (SALB) Formation. Accounts of Materials Research, 2022, 3, 1272-1284.	5.9	5
1162	Recent advances in gas-phase ion/ion chemistry for lipid analysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116852.	5.8	4
1163	The biomedical potential of tardigrade proteins: A review. Biomedicine and Pharmacotherapy, 2023, 158, 114063.	2.5	9
1164	Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184093.	1.4	19
1165	Optimization of cryo-electron microscopy for quantitative analysis of lipid bilayers. Biophysical Reports, 2023, 3, 100090.	0.7	2
1166	Refining sugar's involvement in cholesterol synthesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2023, 1868, 159266.	1.2	0
1170	Association between lipid metabolism and cognitive function in patients with schizophrenia. Frontiers in Psychiatry, 0, 13, .	1.3	6
1171	Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates?. Pharmaceutics, 2022, 14, 2559.	2.0	11

#	Article	IF	CITATIONS
1172	Pro-inflammatory protein S100A9 alters membrane organization by dispersing ordered domains. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184113.	1.4	3
1173	Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease. Nature Communications, 2022, 13, .	5.8	4
1174	Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1176	Differential Expression of Inflammarafts in Macrophage Foam Cells and in Nonfoamy Macrophages in Atherosclerotic Lesions—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 323-329.	1.1	6
1177	CAR modulates plasma membrane nanoâ€organization and immune signaling downstream of RALF1â€FERONIA signaling pathway. New Phytologist, 2023, 237, 2148-2162.	3.5	5
1178	The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 268-281.	0.3	1
1179	Lipid Alterations in Glioma: A Systematic Review. Metabolites, 2022, 12, 1280.	1.3	6
1180	A covalently linked probe to monitor local membrane properties surrounding plasma membrane proteins. Journal of Cell Biology, 2023, 222, .	2.3	3
1181	Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles. Accounts of Chemical Research, 2023, 56, 1-12.	7.6	32
1182	Lipid Polarization during Cytokinesis. Cells, 2022, 11, 3977.	1.8	3
1182 1183	Lipid Polarization during Cytokinesis. Cells, 2022, 11, 3977. Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adhesion and Migration, 2023, 17, 1-13.	1.8 1.1	3
	Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and		
1183	Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adhesion and Migration, 2023, 17, 1-13.	1.1	1
1183 1184	Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adhesion and Migration, 2023, 17, 1-13. Lifetime of actin-dependent protein nanoclusters. Biophysical Journal, 2023, 122, 290-300. Protein overexpression can induce the elongation of cell membrane nanodomains. Biophysical	1.1 0.2	1
1183 1184 1186	Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adhesion and Migration, 2023, 17, 1-13. Lifetime of actin-dependent protein nanoclusters. Biophysical Journal, 2023, 122, 290-300. Protein overexpression can induce the elongation of cell membrane nanodomains. Biophysical Journal, 2023, 122, 2112-2124. Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods in	1.1 0.2 0.2	1 1 2
1183 1184 1186 1187	Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adhesion and Migration, 2023, 17, 1-13. Lifetime of actin-dependent protein nanoclusters. Biophysical Journal, 2023, 122, 290-300. Protein overexpression can induce the elongation of cell membrane nanodomains. Biophysical Journal, 2023, 122, 2112-2124. Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods in Molecular Biology, 2023, , 215-227. Assessing the role of membrane lipids in the action of ruthenium(III) anticancer compounds. Frontiers	1.1 0.2 0.2 0.4	1 1 2 0
1183 1184 1186 1187 1189	Dynamized ultra-low dilution of <i>Ruta graveolens</i> disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adhesion and Migration, 2023, 17, 1-13. Lifetime of actin-dependent protein nanoclusters. Biophysical Journal, 2023, 122, 290-300. Protein overexpression can induce the elongation of cell membrane nanodomains. Biophysical Journal, 2023, 122, 2112-2124. Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods in Molecular Biology, 2023, , 215-227. Assessing the role of membrane lipids in the action of ruthenium(III) anticancer compounds. Frontiers in Molecular Biosciences, 0, 9, . Real-time detection of T cell activation by visualizing TCR nanoclusters with a cholesterol derived	1.1 0.2 0.2 0.4 1.6	1 1 2 0 3

#	Article	IF	CITATIONS
1193	Temporal changes in plasma membrane lipid content induce endocytosis to regulate developmental epithelial-to-mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
1194	Long-term spatiotemporal and highly specific imaging of the plasma membrane of diverse plant cells using a near-infrared AIE probe. Chemical Science, 2023, 14, 2139-2148.	3.7	5
1196	Steering self-organisation through confinement. Soft Matter, 2023, 19, 1695-1704.	1.2	15
1198	Actin-Cytoskeleton Drives Caveolae Signaling to Mitochondria during Postconditioning. Cells, 2023, 12, 492.	1.8	0
1199	Heterogeneity of Extracellular Vesicles and Particles: Molecular Voxels in the Blood Borne "Hologram―of Organ Function, Dysfunction and Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2023, 71, .	1.0	3
1200	Phenalenone derivatives: The voyage from photosensitizers to push-pull fluorescent molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114587.	2.0	1
1201	The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: An in silico study. Frontiers in Chemistry, 0, 11, .	1.8	3
1203	Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist, 2024, 30, 199-213.	2.6	0
1204	Characterization of Non-Cholesterol Sterols in Microglia Cell Membranes Using Targeted Mass Spectrometry. Cells, 2023, 12, 974.	1.8	0
1205	In silico design of photoresponsive peptide-based hydrogel with controllable structural and rheological properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131020.	2.3	4
1206	Laurdan Discerns Lipid Membrane Hydration and Cholesterol Content. Journal of Physical Chemistry B, 2023, 127, 3382-3391.	1.2	7
1207	Veklury®Â(remdesivir) formulations inhibit initial membraneâ€coupled events of SARSâ€CoVâ€2 infection due to their sulfobutyletherâ€Î²â€cyclodextrin content. British Journal of Pharmacology, 2023, 180, 2064-2084.	2.7	6
1208	Cholesterol- and actin-centered view of the plasma membrane: updating the Singer–Nicolson fluid mosaic model to commemorate its 50th anniversary ^{â€} . Molecular Biology of the Cell, 2023, 34, .	0.9	10
1209	Composition of raft-like cell membrane microdomains resistant to styrene-maleic acid copolymer (SMA) solubilization. Biophysical Chemistry, 2023, 296, 106989.	1.5	3
1210	Decrease in cholesterol in the cell membrane is essential for Nrf2 activation by quercetin. Journal of Nutritional Biochemistry, 2023, 116, 109329.	1.9	1
1211	Discovery of endosomalytic cell-penetrating peptides based on bacterial membrane-targeting sequences. Bioorganic Chemistry, 2023, 134, 106424.	2.0	4
1214	The Fluid–Mosaic model of cell membranes: A brief introduction, historical features, some general principles, and its adaptation to current information. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184135.	1.4	7
1215	Dependence of protein-induced lipid bilayer deformations on protein shape. Physical Review E, 2023, 107, .	0.8	2

#	Article	IF	CITATIONS
1216	Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging. Membranes, 2023, 13, 250.	1.4	10
1217	Interaction of Amphipathic Peptide from Influenza Virus M1 Protein with Mitochondrial Cytochrome Oxidase. International Journal of Molecular Sciences, 2023, 24, 4119.	1.8	2
1218	Mesoscale simulations: An indispensable approach to understand biomembranes. Biophysical Journal, 2023, 122, 1883-1889.	0.2	5
1220	Red-Emitting Dithienothiophene S,S-Dioxide Dyes for Cellular Membrane Staining. Materials, 2023, 16, 1806.	1.3	1
1222	High-resolution imaging and force spectroscopy of single membrane proteins by atomic force microscopy. , 2023, , 75-103.		0
1223	Solvatochromic Behavior of 2,7-Disubstituted Sila- and Germafluorenes. Chemosensors, 2023, 11, 160.	1.8	3
1224	The recent advance of precisely designed membranes for sieving. Nanotechnology, 2023, 34, 232003.	1.3	1
1225	Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. International Journal of Molecular Sciences, 2023, 24, 4747.	1.8	1
1226	Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains. Biophysical Journal, 2023, 122, 2325-2341.	0.2	8
1227	An agent-based approach for modelling and simulation of glycoprotein VI receptor diffusion, localisation and dimerisation in platelet lipid rafts. Scientific Reports, 2023, 13, .	1.6	2
1228	Detergent-Resistant Membranes in Chloroplasts and Mitochondria of the Halophyte Salicornia perennans under Salt Stress. Plants, 2023, 12, 1265.	1.6	1
1229	Hyperlens for capturing sub-diffraction nanoscale single molecule dynamics. Optics Express, 2023, 31, 12162.	1.7	2
1230	Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity. International Journal of Molecular Sciences, 2023, 24, 5525.	1.8	6
1231	Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacological Research, 2023, 190, 106729.	3.1	4
1232	Differential Behavior of Eicosapentaenoic and Docosahexaenoic Acids on the Organization, Dynamics, and Fusion of Homogeneous and Heterogeneous Membranes. Langmuir, 2023, 39, 4439-4449.	1.6	3
1233	Glycosphingolipid and Glycosylphosphatidylinositol Affect Each Other in and on the Cell. ChemBioChem, 2023, 24, .	1.3	1
1234	Tuning Targeted Liposome Avidity to Cells via Lipid Phase Separation. Biomacromolecules, 2023, 24, 1574-1584.	2.6	3
1235	Four billion years of microbial terpenome evolution. FEMS Microbiology Reviews, 2023, 47, .	3.9	7

#	Article	IF	CITATIONS
1236	A Photoswitchable Solvatochromic Dye for Probing Membrane Ordering by RESOLFT Superâ€resolution Microscopy**. ChemPhysChem, 2023, 24, .	1.0	3
1237	What information is contained in experimentally determined lipid profiles?. Frontiers in Analytical Science, 0, 3, .	1.1	0
1238	Identification of GPI-anchored protein LYPD1 as an essential factor for odontoblast differentiation in tooth development. Journal of Biological Chemistry, 2023, 299, 104638.	1.6	2
1240	Coronaviruses Use ACE2 Monomers as Entryâ€Receptors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1241	The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells, 2023, 12, 1003.	1.8	1
1242	Coronaviruses Use ACE2 Monomers as Entryâ€Receptors. Angewandte Chemie, 0, , .	1.6	0
1243	The New Kid on the Block: Mass Photometry. Molecules and Cells, 2023, 46, 187-189.	1.0	0
1244	Broadband Plasmonic Nanoantennas for Multi olor Nanoscale Dynamics in Living Cells. Small, 2023, 19, .	5.2	2
1246	CHARMM-GUI <i>Membrane Builder</i> : Past, Current, and Future Developments and Applications. Journal of Chemical Theory and Computation, 2023, 19, 2161-2185.	2.3	8
1247	Do lipids tune B cell signaling?. Nature Chemical Biology, 0, , .	3.9	0
1248	Sensitive and selective polymer condensation at membrane surface driven by positive co-operativity. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
1249	Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers, 2023, 15, 2144.	1.7	1
1250	Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins. Nano Letters, 2023, 23, 3377-3384.	4.5	2
1251	Label-free discrimination of T and B lymphocyte activation based on vibrational spectroscopy – A machine learning approach. Vibrational Spectroscopy, 2023, 126, 103529.	1.2	2
1253	Organic Fluorescent Probes for Monitoring Micro-Environments in Living Cells and Tissues. Molecules, 2023, 28, 3455.	1.7	4
1254	Lipid transport protein ORP2A promotes glucose signaling by facilitating RGS1 degradation. Plant Physiology, 0, , .	2.3	Ο
1255	Inducing Lipid Domains in Membranes by Selfâ€Assembly of DNA Origami. Advanced Materials Interfaces, 2023, 10, .	1.9	3
1257	Perspective on the Effect of Membrane Mimetics on Dynamic Properties of Integral Membrane Proteins. Journal of Physical Chemistry B, 0, , .	1.2	0

ARTICLE IF CITATIONS # Phosphatidylinositol 4,5-Bisphosphate Sensing Lipid Raft via Inter-Leaflet Coupling Regulated by Acyl 1258 1.6 3 Chain Length of Sphingomyelin. Langmuir, 2023, 39, 5995-6005. Plasma membrane localization of endocannabinoids system receptors., 2023, , 331-340. 1290 Patterning DNA Origami on Membranes Through Protein Self-Organization. Natural Computing Series, 1298 2.2 1 2023, , 411-431. Raman Imaging Reveals Insights into Membrane Phase Biophysics in Cells. Journal of Physical Chemistry 1.2 B, 2023, 127, 6233-6240. Peptide–lipid hybrid vesicles with stimuli-responsive phase separation for controlled membrane 1316 2.2 0 functions. Chemical Communications, 2023, 59, 10644-10647. Structure and function of mammalian sphingolipids in health and disease., 2023, , 1-65. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cellular 1333 2.4 1 and Molecular Life Sciences, 2023, 80, . The expanding organelle lipidomes: current knowledge and challenges. Cellular and Molecular Life 2.4 Sciences, 2023, 80, . 1351 Lipid Profiling in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2023, , 281-287. 0.8 0 Elementary Concepts and Definitions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2023, , 9-65. Cholesterol modulation of interactions between psychostimulants and dopamine transporters. 1378 0 1.2 Advances in Pharmacology, 2023, , . Synthesizing biomaterials in living organisms. Chemical Society Reviews, 2023, 52, 8126-8164. 18.7 The Structure of Oxysterols Determines Their Behavior at Phase Boundaries: Implications for Model Membranes and Structure–Activity Relationships. Advances in Experimental Medicine and Biology, 1387 0.8 0 2024, , 3-29. Defining the Assembleome of the Respiratory Syncytial Virus. Sub-Cellular Biochemistry, 2023, , 227-249. 1419 1.0 lonic liquids meet lipid bilayers: a state-of-the-art review. Biophysical Reviews, 2023, 15, 1909-1939. 1421 2 1.5 Exploring Host Factors of the Human Metabolism as Promising Targets for Dengue Treatment. 1435 Infectious Diseases, 0, , .