Groundwater depletion embedded in international food

Nature 543, 700-704

DOI: 10.1038/nature21403

Citation Report

#	Article	IF	CITATIONS
1	Off-stage ecosystem service burdens: A blind spot for global sustainability. Environmental Research Letters, 2017, 12, 075001.	2.2	75
2	Eating ourselves dry. Nature, 2017, 543, 633-634.	13.7	10
3	The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Seminars in Immunology, 2017, 32, 35-42.	2.7	19
4	Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific Reports, 2017, 7, 7453.	1.6	109
5	Global Challenges in Water Governance. , 2017, , .		22
6	Problematic Quantifications: a Critical Appraisal of Scenario Making for a Global â€~Sustainable' Food Production. Food Ethics, 2017, 1, 173-179.	1.2	11
7	Groundwater and human development: synergies and trade-offs within the context of the sustainable development goals. Sustainability Science, 2017, 12, 1007-1017.	2.5	115
8	Four dimensions of water security with a case of the indirect role of water in global food security. Water Security, 2017, 1, 36-45.	1.2	45
9	Towards Adaptation of Water Resource Systems to Climatic and Socio-Economic Change. Water Resources Management, 2017, 31, 2965-2984.	1.9	53
10	Modelling Crop Pattern Changes and Water Resources Exploitation: A Case Study. Water (Switzerland), 2017, 9, 685.	1.2	18
12	We need radical change in how we produce and consume food. Food Security, 2017, 9, 1323-1327.	2.4	29
13	Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nature Communications, 2018, 9, 868.	5.8	181
14	A feasible methodology for groundwater resource modelling for sustainable use in sparse-data drylands: Application to the Amtoudi Oasis in the northern Sahara. Science of the Total Environment, 2018, 630, 1246-1257.	3.9	17
15	Measuring Embodied Blue Water in American Diets: An EIO Supply Chain Approach. Ecological Economics, 2018, 147, 179-188.	2.9	28
16	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	9.0	446
17	Quantifying the Hydrological Effect of Permitted Water Abstractions across Spatial Scales. Environmental Management, 2018, 62, 334-351.	1.2	12
18	Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification. Science of the Total Environment, 2018, 633, 1591-1601.	3.9	33
19	An integrated biophysical and ecosystem approach as a base for ecosystem services analysis across regions. Ecosystem Services, 2018, 31, 242-254.	2.3	20

#	Article	IF	CITATIONS
20	Land-Water-Food Nexus and indications of crop adjustment for water shortage solution. Science of the Total Environment, 2018, 626, 11-21.	3.9	72
21	Highâ€Resolution Water Footprints of Production of the United States. Water Resources Research, 2018, 54, 2288-2316.	1.7	84
22	The effect of different ecosystems on groundwater consumption in an agro-pastoral ecotone of northern China from an innovative perspective. Sustainable Water Resources Management, 2018, 4, 667-672.	1.0	4
23	Effective use rate of generalized water resources assessment and to improve agricultural water use efficiency evaluation index system. Ecological Indicators, 2018, 86, 58-66.	2.6	32
24	Environmental and social footprints of international trade. Nature Geoscience, 2018, 11, 314-321.	5.4	553
25	æŒç¶šå•èf½ãෳ未æ¥çﷺ会ã®ãŸã,ã®åœ°ä¸‹æ°´ç"究・å^©ç"¨ä¿å¨å^¶åº¦ãƒ»æŠ€è¡"é−‹ç™º. Journal of G	ro und wate	er H ydrology
26	Climate variability, rice production and groundwater depletion in India. Environmental Research Letters, 2018, 13, 034022.	2.2	9
27	Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?. Trends in Plant Science, 2018, 23, 539-550.	4.3	33
28	Groundwater-dependent irrigation costs and benefits for adaptation to global change. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 953-979.	1.0	9
30	Doomed to collapse: Why Algerian steppe rangelands are overgrazed and some lessons to help land-use transitions. Science of the Total Environment, 2018, 613-614, 1489-1497.	3.9	31
31	21st Century Seaâ€Level Rise in Line with the Paris Accord. Earth's Future, 2018, 6, 213-229.	2.4	45
32	Replacing Imports of Crop Based Commodities by Domestic Production in Finland: Potential to Reduce Virtual Water Imports. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	12
33	Epistemological dimensions of the water–energy–food nexus approach: reply to discussions of "Challenges in operationalizing the water–energy–food nexusâ€< sup />. Hydrological Sciences Journal, 2018, 63, 1868-1871.	1.2	13
34	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2018, , 1-23.		0
35	A global strategy to mitigate the environmental impact of China's ruminant consumption boom. Nature Communications, 2018, 9, 4133.	5.8	64
36	PCR-GLOBWBÂ2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 2018, 11, 2429-2453.	1.3	307
37	Universal scalable sorption-based atmosphere water harvesting. Energy, 2018, 165, 387-395.	4.5	78
38	Review of the sustainability of food systems and transition using the Internet of Food. Npj Science of Food, 2018, 2, 18.	2.5	52

#	Article	IF	Citations
39	Transformative change through Payments for Ecosystem Services (PES): a conceptual framework and application to conservation agriculture in Malawi. Global Sustainability, $2018,1,.$	1.6	10
40	The role of trade in the greenhouse gas footprints of EU diets. Global Food Security, 2018, 19, 48-55.	4.0	89
41	The water footprint of the EU: quantification, sustainability and relevance. Water International, 2018, 43, 731-745.	0.4	13
42	Assessing the trade-off between shallow groundwater conservation and crop production under limited exploitation in a well-irrigated plain of the Haihe River basin using the SWAT model. Journal of Hydrology, 2018, 567, 253-266.	2.3	27
43	Sustainability of aquifers supporting irrigated agriculture: a case study of the High Plains aquifer in Kansas. Water International, 2018, 43, 815-828.	0.4	41
44	Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Dataâ€Poor Regions. Water Resources Research, 2018, 54, 9724-9758.	1.7	247
45	The Effect Evaluation of Comprehensive Treatment for Groundwater Overdraft in Quzhou County, China. Water (Switzerland), 2018, 10, 874.	1.2	8
46	Assessments of seasonal groundwater recharge and discharge using environmental stable isotopes at Lower Muda River Basin, Malaysia. Applied Water Science, 2018, 8, 1.	2.8	11
47	Groundwater saving and quality improvement by reducing water footprints of crops to benchmarks levels. Advances in Water Resources, 2018, 121, 480-491.	1.7	17
48	A Continentalâ€Scale Hydroeconomic Model for Integrating Waterâ€Energyâ€Land Nexus Solutions. Water Resources Research, 2018, 54, 7511-7533.	1.7	57
49	Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability, 2018, 1, 486-494.	11.5	274
50	The water footprint of different diets within European sub-national geographical entities. Nature Sustainability, 2018, 1, 518-525.	11.5	101
51	Remote land use impacts on river flows through atmospheric teleconnections. Hydrology and Earth System Sciences, 2018, 22, 4311-4328.	1.9	79
52	Ecohydrological changes after tropical forest conversion to oil palm. Environmental Research Letters, 2018, 13, 064035.	2.2	37
53	Large-Scale Uranium Contamination of Groundwater Resources in India. Environmental Science and Technology Letters, 2018, 5, 341-347.	3.9	139
54	Emerging trends in global freshwater availability. Nature, 2018, 557, 651-659.	13.7	1,087
55	AÂframework for modelling the complexities of food and water security under globalisation. Earth System Dynamics, 2018, 9, 103-118.	2.7	29
56	Including Farmer Irrigation Behavior in a Sociohydrological Modeling Framework With Application in North India. Water Resources Research, 2018, 54, 4849-4866.	1.7	31

#	Article	IF	CITATIONS
57	A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water Resources Research, 2018, 54, 5803-5824.	1.7	42
58	Quantifying soybean evapotranspiration using an eddy covariance approach. Agricultural Water Management, 2018, 209, 228-239.	2.4	46
59	Evaluating agricultural grey water footprint with modeled nitrogen emission data. Resources, Conservation and Recycling, 2018, 138, 64-73.	5.3	47
60	Identifying the community structure of the food-trade international multi-network. Environmental Research Letters, 2018, 13, 054026.	2.2	54
61	The carbon footprint of global tourism. Nature Climate Change, 2018, 8, 522-528.	8.1	828
62	Transmission of climate risks across sectors and borders. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170301.	1.6	74
63	Response to Comments on "Large-Scale Uranium Contamination of Groundwater Resources in India― Environmental Science and Technology Letters, 2018, 5, 593-594.	3.9	2
64	National water, food, and trade modeling framework: The case of Egypt. Science of the Total Environment, 2018, 639, 485-496.	3.9	47
65	A water footprint management framework for supply chains under green market behaviour. Journal of Cleaner Production, 2018, 197, 592-606.	4.6	35
66	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environmental Science & Environmental Science	4.6	124
67	Contribution of Rainwater to the Irrigation Requirement for Paddy Cultivation at Tanore Upazila in Rajshahi, Bangladesh. Air, Soil and Water Research, 2019, 12, 117862211983754.	1.2	11
68	A Systems Approach To Assess Trade Dependencies in U.S. Food–Energy–Water Nexus. Environmental Science & Technology, 2019, 53, 10941-10950.	4.6	19
69	Using scenario analyses to address the future of food. EFSA Journal, 2019, 17, e170703.	0.9	13
70	The environmental and socioeconomic trade-offs of importing crops to meet domestic food demand in China. Environmental Research Letters, 2019, 14, 094021.	2.2	18
71	Deeper well drilling an unsustainable stopgap to groundwater depletion. Nature Sustainability, 2019, 2, 773-782.	11.5	64
72	Anthropocene risk. Nature Sustainability, 2019, 2, 667-673.	11.5	133
73	Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Science of the Total Environment, 2019, 693, 133642.	3.9	245
74	Recent Changes in the ISBA TRIP Land Surface System for Use in the CNRM M6 Climate Model and in Global Offâ€Line Hydrological Applications. Journal of Advances in Modeling Earth Systems, 2019, 11, 1207-1252.	1.3	120

#	ARTICLE	IF	Citations
75	Weighing economic values against societal needs: questioning the roles of valuing water in practice. Water Policy, 2019, 21, 514-525.	0.7	10
76	Socioeconomic Drivers of Global Blue Water Use. Water Resources Research, 2019, 55, 5650-5664.	1.7	27
77	Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Science of the Total Environment, 2019, 688, 1216-1227.	3.9	73
78	Unsustainable groundwater use for global food production and related international trade. Global Sustainability, 2019, 2, .	1.6	29
79	The consumptive water footprint of the European Union energy sector. Environmental Research Letters, 2019, 14, 104016.	2.2	29
80	Integrated approaches to understanding and reducing drought impact on food security across scales. Current Opinion in Environmental Sustainability, 2019, 40, 43-54.	3.1	63
81	Global unsustainable virtual water flows in agricultural trade. Environmental Research Letters, 2019, 14, 114001.	2.2	108
82	A nexus modeling framework for assessing water scarcity solutions. Current Opinion in Environmental Sustainability, 2019, 40, 72-80.	3.1	27
83	Solar and wind energy enhances drought resilience and groundwater sustainability. Nature Communications, 2019, 10, 4893.	5.8	39
84	Ensuring water security, food security, and clean water in the North China Plain – conflicting strategies. Current Opinion in Environmental Sustainability, 2019, 40, 63-71.	3.1	31
85	Sustainable Water Use for International Agricultural Trade: The Case of Pakistan. Water (Switzerland), 2019, 11, 2259.	1.2	4
86	Four perspectives on water for global food production and international trade: incommensurable objectives and implications. Current Opinion in Environmental Sustainability, 2019, 40, 30-36.	3.1	9
87	A Precipitation Recycling Network to Assess Freshwater Vulnerability: Challenging the Watershed Convention. Water Resources Research, 2019, 55, 9947-9961.	1.7	33
88	Regulations to protect groundwater resources during unconventional oil and gas extraction using fracking. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1382.	2.8	11
89	Usefulness of the Cl/Br ratio to identify the effect of reverse osmosis treated waters on groundwater systems. Desalination, 2019, 470, 114102.	4.0	4
90	Modeling evapotranspiration for irrigation water management in a humid climate. Agricultural Water Management, 2019, 225, 105731.	2.4	23
91	A Granger causality analysis of groundwater patterns over a half-century. Scientific Reports, 2019, 9, 12828.	1.6	15
92	Sustainable groundwater management: How long and what will it take?. Global Environmental Change, 2019, 58, 101972.	3.6	33

#	Article	IF	CITATIONS
93	Water for maize for pigs for pork: An analysis of inter-provincial trade in China. Water Research, 2019, 166, 115074.	5.3	45
94	Unseen and overlooked: methods for quantifying groundwater abstraction from different sectors in a data-scarce region, British Columbia, Canada. Canadian Water Resources Journal, 2019, 44, 382-400.	0.5	2
95	Environmental Sustainability Issues in Food Systems. , 2019, , .		1
96	Competition for Land, Water and Energy (Nexus) in Food Production. , 2019, , 187-195.		2
97	Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twentyâ€First Century. Earth's Future, 2019, 7, 123-135.	2.4	61
98	Principles for Commercial SupplyÂChainÂManagers of Livestock andÂPoultry. , 2019, , 1-15.		2
99	Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production. Sustainability, 2019, 11, 2908.	1.6	26
100	Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. Soil and Tillage Research, 2019, 192, 151-163.	2.6	27
101	Assessment of hydrological processes operating in a multi-layered sedimentary aquifer system in Saudi Arabia using integrated chemical and statistical approach. Environmental Monitoring and Assessment, 2019, 191, 460.	1.3	9
102	Guidance for assessing interregional ecosystem service flows. Ecological Indicators, 2019, 105, 92-106.	2.6	57
103	Climate Change, Land Use/Land Cover Change, and Population Growth as Drivers of Groundwater Depletion in the Central Valleys, Oaxaca, Mexico. Remote Sensing, 2019, 11, 1290.	1.8	34
104	A Uniform Practice for Conceptualizing and Communicating Foodâ€Energyâ€Water Nexus Studies. Earth's Future, 2019, 7, 504-515.	2.4	7
105	A multi-scale analysis of interregional sustainability: Applied to Israel's food supply. Science of the Total Environment, 2019, 676, 524-534.	3.9	12
106	Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: II. Scenario simulation and analysis. Journal of Hydrology, 2019, 574, 715-732.	2.3	25
107	The globalization of riverine environmental resources through the food trade. Environmental Research Letters, 2019, 14, 024020.	2.2	12
108	Sustainability assessment of agricultural rainwater harvesting: Evaluation of alternative crop types and irrigation practices. PLoS ONE, 2019, 14, e0216452.	1.1	15
109	Telecoupling Research: The First Five Years. Sustainability, 2019, 11, 1033.	1.6	53
110	Non-renewable groundwater use and groundwater depletion: a review. Environmental Research Letters, 2019, 14, 063002.	2.2	248

#	Article	IF	CITATIONS
111	The paradox of productivity: agricultural productivity promotes food system in efficiency. Global Sustainability, $2019, 2, .$	1.6	72
112	Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nature Sustainability, 2019, 2, 475-483.	11.5	42
113	Global Isotope Hydrogeology―Review. Reviews of Geophysics, 2019, 57, 835-965.	9.0	165
114	"More crop per drop― Exploring India's cereal water use since 2005. Science of the Total Environment, 2019, 673, 207-217.	3.9	44
115	Linking physical water consumption with virtual water consumption: Methodology, application and implications. Journal of Cleaner Production, 2019, 228, 1206-1217.	4.6	26
116	Energy consumption due to groundwater pumping for irrigation in the North China Plain. Science of the Total Environment, 2019, 669, 1033-1042.	3.9	32
117	Stable H and O isotope-based investigation of moisture sources and their role in river and groundwater recharge in the NE Carpathian Mountains, East-Central Europe. Isotopes in Environmental and Health Studies, 2019, 55, 161-178.	0.5	15
118	Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan. International Journal of Environmental Research and Public Health, 2019, 16, 886.	1.2	64
119	The trouble with trade. Nature Ecology and Evolution, 2019, 3, 522-523.	3.4	6
120	The impact of nutrient-rich food choices on agricultural water-use efficiency. Nature Sustainability, 2019, 2, 233-241.	11.5	20
121	Drivers of water and land use embodied in international soybean trade. Journal of Cleaner Production, 2019, 223, 83-93.	4.6	68
122	Water security in high mountain cities of the Andes under a growing population and climate change: A case study of La Paz and El Alto, Bolivia. Water Security, 2019, 6, 100025.	1.2	17
123	Virtual Water Trade Among World Countries Associated With Food Trade. , 2019, , 74-81.		0
124	A pathway of global food supply adaptation in a world with increasingly constrained groundwater. Science of the Total Environment, 2019, 673, 165-176.	3.9	37
125	Mapping Export-Oriented Crop Production. , 2019, , 89-113.		3
126	Geographical Evolution of Agricultural Production in China and Its Effects on Water Stress, Economy, and the Environment: The Virtual Water Perspective. Water Resources Research, 2019, 55, 4014-4029.	1.7	36
127	Impact of globalization on the resilience and sustainability of natural resources. Nature Sustainability, 2019, 2, 283-289.	11.5	74
128	Sustainable Pathways for Meeting Future Food Demand. , 2019, , 14-20.		5

#	ARTICLE	IF	Citations
129	Spatial Distribution of the International Food Prices: Unexpected Heterogeneity and Randomness. Ecological Economics, 2019, 159, 122-132.	2.9	8
130	Quantifying water and CO2 fluxes and water use efficiencies across irrigated C3 and C4 crops in a humid climate. Science of the Total Environment, 2019, 663, 338-350.	3.9	40
131	Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renewable and Sustainable Energy Reviews, 2019, 105, 499-512.	8.2	92
132	Water Debt Indicator Reveals Where Agricultural Water Use Exceeds Sustainable Levels. Water Resources Research, 2019, 55, 2464-2477.	1.7	43
133	Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environmental Research Letters, 2019, 14, 053001.	2.2	118
134	Impacts of Global Food Systems on Biodiversity and Water: The Vision of Two Reports and Future Aims. One Earth, 2019, 1, 298-302.	3.6	16
136	Knowledge, attitudes, skills, and aspirations of farmers in Abu Dhabi and Western Australia on groundwater management: A comparison study., 2019, 5, 161-178.		2
137	The Human Cost of Anthropogenic Global Warming: Semi-Quantitative Prediction and the 1,000-Tonne Rule. Frontiers in Psychology, 2019, 10, 2323.	1.1	29
138	Data Uses and Visualization Toward Global Sustainability. Trends in the Sciences, 2019, 24, 4_49-4_54.	0.0	1
139	Advances in global hydrology–crop modelling to support the UN's Sustainable Development Goals in South Asia. Current Opinion in Environmental Sustainability, 2019, 40, 108-116.	3.1	8
140	Anatomy and resilience of the global production ecosystem. Nature, 2019, 575, 98-108.	13.7	203
141	Savings and losses of global water resources in foodâ€related virtual water trade. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1320.	2.8	62
142	Global implications of regional grain production through virtual water trade. Science of the Total Environment, 2019, 659, 807-820.	3.9	33
143	Under non-stationarity securitization contributes to uncertainty and Tragedy of the Commons. Journal of Hydrology, 2019, 568, 716-721.	2.3	25
144	Species delimitation in endangered groundwater salamanders: Implications for aquifer management and biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2624-2633.	3.3	74
145	Viewing Agricultural Water Management Through a Systems Analysis Lens. Water Resources Research, 2019, 55, 1778-1791.	1.7	23
146	Global multi-pollutant modelling of water quality: scientific challenges and future directions. Current Opinion in Environmental Sustainability, 2019, 36, 116-125.	3.1	80
147	Overuse of Water Resources: Water Stress and the Implications for Food andÂAgriculture. , 2019, , 206-211.		1

#	Article	IF	CITATIONS
148	Cities as hotspots of indirect water consumption: The case study of Hong Kong. Journal of Hydrology, 2019, 573, 1075-1086.	2.3	29
149	Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: A review. Geoscience Frontiers, 2019, 10, 1643-1652.	4.3	34
150	Farmer perspectives and experiences introducing the novel perennial grain Kernza intermediate wheatgrass in the US Midwest. Renewable Agriculture and Food Systems, 2020, 35, 653-662.	0.8	42
151	Spatiotemporal assessment of humic substance-rich stream and shallow karst aquifer interactions in a boreal catchment of northern Estonia. Journal of Hydrology, 2020, 580, 124238.	2.3	10
152	Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environmental Geochemistry and Health, 2020, 42, 661-680.	1.8	36
153	Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan, India. Chemosphere, 2020, 239, 124782.	4.2	62
154	Global to regional scale evaluation of adaptation measures to reduce the future water gap. Environmental Modelling and Software, 2020, 124, 104578.	1.9	13
156	Evaluation of water shortage crisis in the Middle East and possible remedies. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 85-98.	0.6	62
157	Groundwater Depletion Embedded in Domestic Transfers and International Exports of the United States. Water Resources Research, 2020, 56, e2019WR024986.	1.7	19
158	Groundwater level prediction using genetic programming: the importance of precipitation data and weather station location on model accuracy. Environmental Earth Sciences, 2020, 79, 1.	1.3	15
159	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	1.7	86
160	Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India. Progress in Physical Geography, 2020, 44, 94-119.	1.4	28
161	Adaptation and development pathways for different types of farmers. Environmental Science and Policy, 2020, 104, 174-189.	2.4	125
162	A review of data-intensive approaches for sustainability: methodology, epistemology, normativity, and ontology. Sustainability Science, 2020, 15, 955-974.	2.5	6
163	Evenness is important in assessing progress towards sustainable development goals. National Science Review, 2021, 8, nwaa238.	4.6	27
164	The Water Footprint of Global Food Production. Water (Switzerland), 2020, 12, 2696.	1.2	90
165	Charting Pathways Toward Sustainability for Aquifers Supporting Irrigated Agriculture. Water Resources Research, 2020, 56, e2020WR027961.	1.7	18
166	Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis. Sustainability, 2020, 12, 7424.	1.6	15

#	ARTICLE	IF	CITATIONS
167	Global targets that reveal the social–ecological interdependencies of sustainable development. Nature Ecology and Evolution, 2020, 4, 1011-1019.	3.4	115
168	South-to-North Water Diversion stabilizing Beijing's groundwater levels. Nature Communications, 2020, 11, 3665.	5.8	254
169	Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nature Communications, 2020, 11, 5837.	5.8	114
170	Sustainable Groundwater Management in India Needs a Waterâ€Energyâ€Food Nexus Approach. Applied Economic Perspectives and Policy, 2022, 44, 394-410.	3.1	32
171	Water Resources for Sustainable Healthy Diets: State of the Art and Outlook. Water (Switzerland), 2020, 12, 3224.	1.2	13
172	Spillover risk analysis of virtual water trade based on multi-regional input-output model -A case study. Journal of Environmental Management, 2020, 275, 111242.	3.8	27
173	Challenges of sustainable groundwater management for large scale irrigation under changing climate in Lower Ganga River basin in India. Groundwater for Sustainable Development, 2020, 11, 100449.	2.3	23
174	A Bayesian framework to unravel food, groundwater, and climate linkages: A case study from Louisiana. PLoS ONE, 2020, 15, e0236757.	1.1	1
175	Waterborne pathogen monitoring in Jaipur, India reveals potential microbial risks of urban groundwater supply. Npj Clean Water, 2020, 3, .	3.1	14
176	Food System and Water–Energy–Biodiversity Nexus in Nepal: A Review. Agronomy, 2020, 10, 1129.	1.3	20
177	Future changes in the trading of virtual water. Nature Communications, 2020, 11, 3632.	5.8	54
178	Water Footprint Study Review for Understanding and Resolving Water Issues in China. Water (Switzerland), 2020, 12, 2988.	1.2	11
180	Integrated MASW and ERT Imaging for Geological Definition of an Unconfined Alluvial Aquifer Sustaining a Coastal Groundwater-Dependent Ecosystem in Southwest Portugal. Applied Sciences (Switzerland), 2020, 10, 5905.	1.3	14
181	A GIS-Based Fit for the Purpose Assessment of Brackish Groundwater Formations as an Alternative to Freshwater Aquifers. Water (Switzerland), 2020, 12, 2299.	1.2	5
182	Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food, 2020, 1, 562-571.	6.2	70
183	Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nature Communications, 2020, 11 , 4488.	5.8	63
184	An Explicit Scheme to Represent the Bidirectional Hydrologic Exchanges Between the Vadose Zone, Phreatic Aquifer, and River. Water Resources Research, 2020, 56, e2020WR027571.	1.7	6
185	Base of fresh water, groundwater salinity, and well distribution across California. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32302-32307.	3.3	13

#	Article	IF	CITATIONS
186	Reconciling irrigation demands for agricultural expansion with environmental sustainability - A preliminary assessment for the Ica Valley, Peru. Journal of Cleaner Production, 2020, 276, 123544.	4.6	18
187	Blue water footprint linked to national consumption and international trade is unsustainable. Nature Food, 2020, 1, 792-800.	6.2	50
188	Potential for sustainable irrigation expansion in a 3 \hat{A}° C warmer climate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29526-29534.	3.3	106
189	A Snapshot of the World's Groundwater Challenges. Annual Review of Environment and Resources, 2020, 45, 171-194.	5.6	91
190	AQUACOAST: A Simulation Tool to Explore Coastal Groundwater and Irrigation Farming Interactions. Scientific Programming, 2020, 2020, 1-20.	0.5	7
191	Exploring farmers' perceptions about their depleting groundwater resources using path analysis: implications for groundwater overdraft and income diversification. Hydrogeology Journal, 2020, 28, 1975-1991.	0.9	5
192	The Freshwater Commons. , 2020, , 1-33.		0
193	Global Endangerment of Freshwater Biodiversity. , 2020, , 34-60.		0
194	Overexploitation. , 2020, , 61-122.		0
195	Alien Species and Their Effects. , 2020, , 123-215.		0
196	River Regulation., 2020,, 216-258.		0
197	Vanishing Lakes and Threats to Lacustrine Biodiversity. , 2020, , 259-290.		0
198	How Will Climate Change Affect Freshwater Biodiversity?., 2020,, 291-331.		0
199	Ecosystem Services and Incentivizing Conservation of Freshwater Biodiversity., 2020,, 332-355.		0
200	Conservation of Freshwater Biodiversity. , 2020, , 356-398.		0
206	Identification and quantification of main anthropogenic stocks and flows of potassium in Brazil. Environmental Science and Pollution Research, 2020, 27, 32579-32593.	2.7	16
207	COVID-19 pandemic and associated lockdown as a "Global Human Confinement Experiment―to investigate biodiversity conservation. Biological Conservation, 2020, 248, 108665.	1.9	180
208	Assessing irrigation water use efficiency and economy of twinâ€row soybean in the Mississippi Delta. Agronomy Journal, 2020, 112, 4219-4231.	0.9	18

#	Article	IF	CITATIONS
209	Disinfection by-products and their effect on aquatic and agriculture ecosystem., 2020,, 205-233.		3
210	Telecoupled environmental impacts of current and alternative Western diets. Global Environmental Change, 2020, 62, 102066.	3.6	33
211	A Novel Idea for Groundwater Resource Management during Megadrought Events. Water Resources Management, 2020, 34, 1743-1755.	1.9	10
212	Revisiting recharge and sustainability of the North-Western Sahara aquifers. Regional Environmental Change, 2020, 20, 1.	1.4	12
213	Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach. Agricultural Water Management, 2020, 233, 106091.	2.4	28
214	Photo- and Thermosensitive Polymer Membrane with a Tunable Microstructure Doped with Graphene Oxide Nanosheets and Poly(<i>N</i> -isopropylacrylamide) for the Application of Light-Cleaning. ACS Applied Materials & Diterfaces, 2020, 12, 14352-14364.	4.0	24
215	Alleviating water scarcity and poverty in drylands through telecouplings: Vegetable trade and tourism in northwest China. Science of the Total Environment, 2020, 741, 140387.	3.9	23
216	Direct and indirect vulnerability of economic sectors to water scarcity: A hotspot analysis of the Indian economy. Journal of Industrial Ecology, 2020, 24, 1323-1337.	2.8	2
217	Sustainability of the blue water footprint of crops. Advances in Water Resources, 2020, 143, 103679.	1.7	66
218	Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Global Food Security, 2020, 24, 100360.	4.0	88
219	Long-term surface water trends and relationship with open water evaporation losses in the Namoi catchment, Australia. Journal of Hydrology, 2020, 584, 124714.	2.3	21
220	Evaluating the Risks of Groundwater Extraction in an Agricultural Landscape under Different Climate Projections. Water (Switzerland), 2020, 12, 400.	1.2	11
221	Reducing yield-scaled global warming potential and water use by rice plastic film mulching in a winter flooded paddy field. European Journal of Agronomy, 2020, 114, 126007.	1.9	22
222	Cleaner production strategies for the food industry. , 2020, , 1-34.		4
223	Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 2020, 48, 431-463.	4.6	161
224	Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts. Agricultural Water Management, 2020, 233, 106061.	2.4	69
225	Charting out the future agricultural trade and its impact on water resources. Science of the Total Environment, 2020, 714, 136626.	3.9	16
226	Flowering Plants in the Anthropocene: A Political Agenda. Trends in Plant Science, 2020, 25, 349-368.	4.3	28

#	Article	IF	Citations
227	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	2.4	65
228	Reducing global environmental inequality: Determining regional quotas for environmental burdens through systems optimisation. Journal of Cleaner Production, 2020, 270, 121828.	4.6	16
229	Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems. Energy, 2020, 200, 117507.	4.5	49
230	Planning for groundwater sustainability accounting for uncertainty and costs: An application to California's Central Valley. Journal of Environmental Management, 2020, 264, 110426.	3.8	16
231	Public policies for sustainability and water security: The case of Almeria (Spain). Global Ecology and Conservation, 2020, 23, e01037.	1.0	44
232	Re-examining the drive forces of China's industrial wastewater pollution based on GWR model at provincial level. Journal of Cleaner Production, 2020, 262, 121309.	4.6	37
233	High-resolution monitoring of inland water bodies across China in long time series and water resource changes. Environment, Development and Sustainability, 2021, 23, 3673-3695.	2.7	4
234	Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India. Environment, Development and Sustainability, 2021, 23, 7289-7309.	2.7	20
235	Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agricultural Water Management, 2021, 244, 106534.	2.4	86
236	Evaluating the saline water irrigation schemes using a distributed agro-hydrological model. Journal of Hydrology, 2021, 594, 125688.	2.3	16
237	Introduction: Why Study Global Groundwater?. , 2021, , xxxvii-xxxix.		0
238	Transport and speciation of uranium in groundwater-surface water systems impacted by legacy milling operations. Science of the Total Environment, 2021, 761, 143314.	3.9	19
239	Groundwater depletion in northern India: Impacts of the subâ€regional anthropogenic landâ€use, socioâ€politics and changing climate. Hydrological Processes, 2021, 35, e14003.	1.1	11
240	ACPAR: A framework for linking national water and food security management with global conditions. Advances in Water Resources, 2021, 147, 103809.	1.7	16
241	Transboundary cooperation a potential route to sustainable development in the Indus basin. Nature Sustainability, 2021, 4, 331-339.	11.5	47
242	Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence. Agricultural Water Management, 2021, 245, 106588.	2.4	38
243	Water, energy and land insecurity in global supply chains. Global Environmental Change, 2021, 67, 102158.	3.6	26
244	Repenser le modÃ"le de développement agricole du Maroc pour l'Ã"re post Covid-19. Cahiers Agricultures, 2021, 30, 17.	0.4	9

#	Article	IF	CITATIONS
245	Drip irrigation as a socio-technical configuration: policy design and technological choice in Western India. Water International, 2021, 46, 112-129.	0.4	7
246	Groundwater Crisis: A Crisis of Governance?. World Water Resources, 2021, , 185-208.	0.4	0
247	An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	11
248	A Strong Linkage between Seasonal Crop Growth and Groundwater Storage Variability in India. Journal of Hydrometeorology, 2021, 22, 125-138.	0.7	7
249	Ecosystem services and the resilience of agricultural landscapes. Advances in Ecological Research, 2021, , 1-43.	1.4	33
250	Stimulating environmental degradation: A global study of resource use in cocoa, coffee, tea and tobacco supply chains. Current Research in Environmental Sustainability, 2021, 3, 100029.	1.7	7
251	Sustainable water resource management using surface-groundwater modelling: Motueka-Riwaka Plains, New Zealand. Watershed Ecology and the Environment, 2021, 3, 38-56.	0.6	2
252	Groundwater sustainability in cold and arid regions. , 2021, , 371-382.		1
253	The Italian Virtual Water Trade and Water Footprint of Agricultural Production: Trends and Perspectives. Global Issues in Water Policy, 2021, , 213-237.	0.1	0
254	Sustainability of groundwater used in agricultural production and trade worldwide., 2021,, 347-357.		2
255	Drivers of Natural Variation in Water-Use Efficiency Under Fluctuating Light Are Promising Targets for Improvement in Sorghum. Frontiers in Plant Science, 2021, 12, 627432.	1.7	24
256	Anthropogenic basin closure and groundwater salinization (ABCSAL). Journal of Hydrology, 2021, 593, 125787.	2.3	19
257	Statistical analysis of groundwater quality parameters in selected sites at Kirkuk governorate/Iraq. IOP Conference Series: Materials Science and Engineering, 2021, 1058, 012028.	0.3	3
258	Groundwater depletion will reduce cropping intensity in India. Science Advances, 2021, 7, .	4.7	87
259	Impact of climate change on groundwater resource in a region with a fast depletion rate: the Mississippi Embayment. Journal of Water and Climate Change, 2021, 12, 2245-2255.	1.2	7
260	Precipitation response to climate change and urban development over the continental United States. Environmental Research Letters, 2021, 16, 044001.	2.2	34
261	Identifying Agricultural Managed Aquifer Recharge Locations to Benefit Drinking Water Supply in Rural Communities. Water Resources Research, 2021, 57, e2020WR028811.	1.7	15
262	Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 2021, 11, 9135.	1.6	104

#	Article	IF	CITATIONS
263	Groundwater residence time estimates obscured by anthropogenic carbonate. Science Advances, 2021, 7, .	4.7	10
264	Integrated Effect of Deficit Irrigation and Sowing Methods on Weed Dynamics and System Productivity of Maize–Cowpea Sequence on Vertisols. Agronomy, 2021, 11, 808.	1.3	3
265	Combining of MASW and GPR Imaging and Hydrogeological Surveys for the Groundwater Resource Evaluation in a Coastal Urban Area in Southern Spain. Applied Sciences (Switzerland), 2021, 11, 3154.	1.3	14
266	Impact of grain virtual water flow on surface water and groundwater in China. Advances in Water Resources, 2021, 150, 103848.	1.7	9
267	Trans-regional rice supply paradigm reveals unsustainable water use in China. Water Policy, 2021, 23, 783-800.	0.7	1
268	Simulating and assessing the effects of seasonal fallow schemes on the water-food-energy nexus in a shallow groundwater-fed plain of the Haihe River basin of China. Journal of Hydrology, 2021, 595, 125992.	2.3	12
269	Causes and implications of groundwater depletion in India: A review. Journal of Hydrology, 2021, 596, 126103.	2.3	92
270	The Land-Water-Food-Environment nexus in the context of China's soybean import. Advances in Water Resources, 2021, 151, 103892.	1.7	25
271	Groundwater depletion susceptibility zonation using TOPSIS model in Bhagirathi river basin, India. Modeling Earth Systems and Environment, 2022, 8, 1711-1731.	1.9	17
272	Managed aquifer recharge implementation criteria to achieve water sustainability. Science of the Total Environment, 2021, 768, 144992.	3.9	69
273	Exploring global interregional food system's sustainability using the functional regions typology. Global Environmental Change, 2021, 68, 102276.	3 . 6	7
274	Spatial dependency of the groundwater uranium in the alluvial soil region of Gunnaur, India. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 35-43.	0.7	5
275	Application of the †theory of planned behavior' to understand farmers' intentions to accept water policy options using structural equation modeling. Water Science and Technology: Water Supply, 2021, 21, 2720-2734.	1.0	9
276	Anthropogenic depletion of Iran's aquifers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	82
277	Near-saturated soil hydraulic conductivity and pore characteristics as influenced by conventional and conservation tillage practices in North-West Himalayan region, India. International Soil and Water Conservation Research, 2021, 9, 249-259.	3.0	15
279	Eddy covariance quantification of soybean (Glycine max L.,) crop coefficients in a farmer's field in a humid climate. Irrigation Science, 2021, 39, 651-669.	1.3	2
280	Virtual carbon and water flows embodied in globalÂfashionÂtrade - a case study of denim products. Journal of Cleaner Production, 2021, 303, 127080.	4.6	25
281	Dark times for cosmopolitanism? An ethical framework to address private agriâ€food governance and planetary stewardship. Business Ethics, Environment and Responsibility, 2021, 30, 697-715.	1.6	2

#	Article	IF	CITATIONS
282	Assessing the Relationship between the Growth of Population and Crop Area with Depletion of Groundwater in Lower Bari Doab Canal. , 2021 , , .		0
283	Beyond blue: An extended framework of blue water footprint accounting. Science of the Total Environment, 2021, 777, 146010.	3.9	14
284	Multilayer Network Clarifies Prevailing Water Consumption Telecouplings in the United States. Water Resources Research, 2021, 57, e2020WR029141.	1.7	4
285	Climate-Land-Energy-Water Nexus Models Across Scales: Progress, Gaps and Best Accessibility Practices. Frontiers in Environmental Science, 2021, 9, .	1.5	19
286	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
287	The impact of groundwater depletion on agricultural production in India. Environmental Research Letters, 2021, 16, 085003.	2.2	33
288	Pollution, Land Use, Biodiversity, and Health., 2021, , 77-124.		0
290	Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States. Water (Switzerland), 2021, 13, 2001.	1.2	12
291	A new framework of a multi-criteria decision making for agriculture water distribution system. Journal of Cleaner Production, 2021, 306, 127178.	4.6	14
292	The increasing global environmental consequences of a weakening US–China crop trade relationship. Nature Food, 2021, 2, 578-586.	6.2	18
293	A high-resolution life cycle impact assessment model for continental freshwater habitat change due to water consumption. Science of the Total Environment, 2021, 782, 146664.	3.9	11
294	Iran's Groundwater Hydrochemistry. Earth and Space Science, 2021, 8, e2021EA001793.	1.1	39
295	Importance of stopping groundwater irrigation for balancing agriculture and wetland ecosystem. Ecological Indicators, 2021, 127, 107747.	2.6	12
296	Agricultural impacts of sustainable water use in the United States. Scientific Reports, 2021, 11, 17917.	1.6	14
297	A growing produce bubble: United States produce tied to Mexico's unsustainable agricultural water use. Environmental Research Letters, 0, , .	2.2	8
298	Assessment of grey water footprint in paddy rice cultivation: Effects of field water management policies. Journal of Cleaner Production, 2021, 313, 127876.	4.6	18
299	Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Reports, 2021, 40, 2021-2036.	2.8	19
300	Vulnerability of the Belt and Road Initiative to External Water Dependency. IOP Conference Series: Earth and Environmental Science, 2021, 849, 012008.	0.2	0

#	Article	IF	CITATIONS
301	Decreasing Groundwater Supply Can Exacerbate Lake Warming and Trigger Algal Blooms. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006455.	1.3	3
302	Responses of groundwater to precipitation variability and ENSO in the Vietnamese Mekong Delta. Hydrology Research, 2021, 52, 1280-1293.	1.1	6
303	Understanding the trends in Denmark's global food trade-related greenhouse gas and resource footprint. Journal of Cleaner Production, 2021, 313, 127785.	4.6	7
304	Assessing groundwater status and human perception in drought-prone areas: a case of Bankura-I and Bankura-II blocks, West Bengal (India). Environmental Earth Sciences, 2021, 80, 636.	1.3	14
305	Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 2021, 220, 103689.	4.0	104
306	Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 2021, 4, 1262-1277.	3.6	63
307	Mapping spatial supply chain paths for embodied water flows driven by food demand in China. Science of the Total Environment, 2021, 786, 147480.	3.9	8
308	Contribution of local factors to the status of a groundwater dependent terrestrial ecosystem in the transboundary Gauja-Koiva River basin, North-Eastern Europe. Journal of Hydrology, 2021, 600, 126656.	2.3	7
309	Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agricultural Water Management, 2021, 255, 106995.	2.4	17
310	The Five Ws of the Water-Energy-Food Nexus: A Reflexive Approach to Enable the Production of Actionable Knowledge. Frontiers in Water, 2021, 3, .	1.0	9
311	The Crop Generator: Implementing crop rotations to effectively advance eco-hydrological modelling. Agricultural Systems, 2021, 193, 103183.	3.2	6
312	Environmental impact of grain virtual water flows in China: From 1997 to 2014. Agricultural Water Management, 2021, 256, 107127.	2.4	11
313	Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agriculture, Ecosystems and Environment, 2021, 320, 107612.	2.5	10
314	The micronutrient content of the European Union's agricultural trade. Ecological Economics, 2021, 188, 107118.	2.9	1
315	Elevated uranium in drinking water sources in basement aquifers of southern India. Applied Geochemistry, 2021, 133, 105092.	1.4	12
316	Quantifying the spatiotemporal dynamics of recharge in a composite Great Lakes watershed using a high-resolution hydrology model and multi-source data. Journal of Hydrology, 2021, 601, 126594.	2.3	2
317	Quantification of embedded phosphorus in Mexican agriculture. Sustainable Production and Consumption, 2021, 28, 824-828.	5.7	2
318	Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material. Ecological Economics, 2021, 188, 107129.	2.9	16

#	Article	IF	Citations
319	The suitability of water scarcity indicators to the Indian context. Water Security, 2021, 14, 100097.	1.2	2
320	Exploring the pathways towards the mitigation of the environmental impacts of food consumption. Science of the Total Environment, 2022, 806, 150528.	3.9	7
321	A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 2021, 4, 88-101.	3 . 6	103
322	Global groundwater: from scarcity to security through sustainability and solutions. , 2021, , 3-20.		30
323	Groundwater as a Common Pool Resource: Modelling, Management and the Complicity Ethic in a Non-collective World. Wissenschaftsethik Und Technikfolgenbeurteilung, 2020, , 89-109.	0.8	5
324	Environments. , 2017, , 21-51.		2
325	World Water Resources at Stake. Advances in Geological Science, 2020, , 89-95.	0.0	1
326	Gravity applications in estimating the mass variations in the Middle East: a case study from Iran. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	27
328	Social tipping points in global groundwater management. Nature Human Behaviour, 2017, 1, 640-649.	6.2	89
329	Multi-scale analysis of the water-energy-food nexus in the Gulf region. Environmental Research Letters, 2020, 15, 094024.	2.2	17
330	How much can sustainable intensification increase yields across South Asia? a systematic review of the evidence. Environmental Research Letters, 2020, 15, 083004.	2.2	21
332	Integrated Approach to Hydrogeochemical Appraisal and Quality Assessment of Groundwater from Sargodha District, Pakistan. Geofluids, 2020, 2020, 1-15.	0.3	11
333	Effects of environmental change on agriculture, nutrition and health: A framework with a focus on fruits and vegetables. Wellcome Open Research, 2017, 2, 21.	0.9	34
334	Seguridad hÃdrica en México: diagnóstico general y desafÃos principales. IngenierÃa Del Agua, 2019, 23, 107.	0.2	18
336	Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach. Hydrology and Earth System Sciences, 2020, 24, 5251-5277.	1.9	19
337	Agir en commun pour un usage durable de l'eau agricole. , 2021, , 1-27.		0
338	Water-Saving Efficiency and Inequality of Virtual Water Trade in China. Water (Switzerland), 2021, 13, 2994.	1.2	7
339	Uranium estimation, radiation dose assessment and physico-chemical parametric study of ground water in Tarn Taran District, Punjab State, India. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1445-1452.	0.7	1

#	Article	IF	CITATIONS
340	Assessing Appropriate Technologies for Sustainable Irrigation Practices in Muljipura Village, India. Lecture Notes in Networks and Systems, 2022, , 345-355.	0.5	1
341	Telecoupled Groundwaters: New Ways to Investigate Increasingly De-Localized Resources. Water (Switzerland), 2021, 13, 2906.	1.2	6
342	Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nature Food, 2021, 2, 780-791.	6.2	15
343	Irrigation efficiency and renewable energy powered desalination as key components of Pakistan's water management strategy. Smart Energy, 2021, 4, 100052.	2.6	16
344	Natural and anthropogenic drivers of the lost groundwater from the Ganga River basin. Environmental Research Letters, 2021, 16, 114009.	2.2	20
345	Groundwater-sourced irrigation and agro-power subsidies: Boon or bane for small/marginal farmers in India?. Groundwater for Sustainable Development, 2021, 15, 100690.	2.3	13
346	Introduction: Defining Nexus Shocks. , 2019, , 1-21.		0
347	Challenges for future hydrology: From the view points of interdisciplinary and transdisciplinary studies. Journal of Japanese Association of Hydrological Sciences, 2018, 48, 133-146.	0.2	2
348	The Market and Common-Pool Resource Problem: Surface Water Trading and Groundwater Depletion in California. SSRN Electronic Journal, 0, , .	0.4	0
349	Ecohydrology of Agroecosystems: Interactions Between Local and Global Processes. , 2019, , 511-532.		1
350	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2020, , 1137-1159.		0
351	Sources of Growth in Agriculture. , 2019, , 1-42.		4
352	Urban Agriculture: Opportunities and Challenges for Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-14.	0.0	2
353	Growth of Food Security of the Southern Federal District. Regionalnaya Ekonomika Yug Rossii, 2020, , 148-157.	0.0	0
354	Human arsenic exposure risk via crop consumption and global trade from groundwater-irrigated areas. Environmental Research Letters, 2021, 16, 124013.	2.2	4
355	Virtual Water Flows in Internal and External Agricultural Product Trade in Central Asia. Journal of the American Water Resources Association, 0, , .	1.0	0
356	Urban Agriculture: Opportunities and Challenges for Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2020, , 929-942.	0.0	3
357	Water, Food Security, and Trade in Sub-Saharan Africa. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 384-399.	0.3	0

#	Article	IF	CITATIONS
358	Global Shallow Groundwater Patterns From Soil Moisture Satellite Retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 89-101.	2.3	5
359	Monitoring spatiotemporal variation of groundwater level and salinity under land use change using integrated field measurements, GIS, geostatistical, and remote-sensing approach: case study of the Feija aquifer, Middle Draa watershed, Moroccan Sahara. Environmental Monitoring and Assessment, 2021. 193. 769.	1.3	17
360	Mining can exacerbate global degradation of dryland. Geophysical Research Letters, 2021, 48, e2021GL094490.	1.5	9
361	Large spatial variation and stagnation of cropland gross primary production increases the challenges of sustainable grain production and food security in China. Science of the Total Environment, 2022, 811, 151408.	3.9	17
362	Trading water: virtual water flows through interstate cereal trade in India. Environmental Research Letters, 2020, 15, 125005.	2.2	10
363	Contributions to groundwater from National Forest lands in the Mississippi Embayment: a century-long simulation. Water Practice and Technology, 2021, 16, 83-95.	1.0	0
364	Comparative Study of Groundwater-Induced Subsidence for London and Delhi Using PSInSAR. Remote Sensing, 2021, 13, 4741.	1.8	17
365	Trade of economically and physically scarce virtual water in the global food network. Scientific Reports, 2021, 11, 22806.	1.6	13
366	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	1.5	23
367	Impact of irrigation water type and sampling frequency on Microbial Water Quality Profiles required for compliance with U.S. Food Safety Modernization Act Produce Safety Rule standards. Environmental Research, 2022, 205, 112480.	3.7	5
368	Integrating water quality index, GIS and multivariate statistical techniques towards a better understanding of drinking water quality. Environmental Science and Pollution Research, 2022, 29, 26860-26876.	2.7	30
369	IIASRH: An Integrative IoT Approach for Smart Rainwater Harvesting. International Journal of Innovative Technology and Exploring Engineering, 2021, 11, 1-5.	0.2	0
372	Effects of production fragmentation and inter-provincial trade on spatial blue water consumption and scarcity patterns in China. Journal of Cleaner Production, 2022, 334, 130186.	4.6	5
373	Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. Journal of Hydrology, 2022, 605, 127315.	2.3	36
374	Exploring long-term impacts of different crop rotation systems on sustainable use of groundwater resources using DSSAT model. Journal of Cleaner Production, 2022, 336, 130377.	4.6	11
375	Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region. Agricultural Water Management, 2022, 262, 107432.	2.4	5
376	Australia-Japan Telecoupling of Wind Power-Based Green Ammonia for Passenger Transportation: Efficiency, Impacts, and Sustainability. SSRN Electronic Journal, 0, , .	0.4	0
377	Soil and Groundwater Investigation for Sustainable Agricultural Development: A Case Study from Brunei Darussalam. Sustainability, 2022, 14, 1388.	1.6	6

#	Article	IF	CITATIONS
378	Application of Embedded Smart Wearable Device Monitoring in Joint Cartilage Injury and Rehabilitation Training. Journal of Healthcare Engineering, 2022, 2022, 1-11.	1.1	1
379	Groundwater quality assessment for safe drinking water and irrigation purposes in Malda district, Eastern India. Environmental Earth Sciences, 2022, 81, 1.	1.3	29
380	Risk assessment of land subsidence and associated faulting in Mexico City using InSAR. Natural Hazards, 2022, 112, 37-55.	1.6	14
381	Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation. Agricultural Water Management, 2022, 264, 107488.	2.4	5
382	The edge of the petri dish for a nation: Water resources carrying capacity assessment for Iran. Science of the Total Environment, 2022, 817, 153038.	3.9	25
383	ldentifying the impact of crop distribution on groundwater resources carrying capacity in groundwater-depended agricultural regions. Agricultural Water Management, 2022, 264, 107504.	2.4	4
384	Soil-plant water dynamics, yield, quality and profitability of spring sweet corn under variable irrigation scheduling, crop establishment and moisture conservation practices. Field Crops Research, 2022, 279, 108450.	2.3	9
385	Managing irrigation supplies effectively under interrupted electricity supply: Lesson from an arid region of India. Agricultural Water Management, 2022, 263, 107465.	2.4	1
386	An optimization model for water resources allocation in Dongjiang River Basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities. Science of the Total Environment, 2022, 820, 153198.	3.9	15
387	Groundwater – Global Abundance and Distribution. , 2022, , .		1
388	Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nature Climate Change, 2022, 12, 163-170.	8.1	55
389	A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development. Renewable and Sustainable Energy Reviews, 2022, 159, 112182.	8.2	14
390	GMD perspective: The quest to improve the evaluation of groundwater representation in continental to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	1.3	38
392	Anthropogenic Pressures on Groundwater. , 2022, , .		1
393	Identification of Suitable Site-specific Recharge Areas using Fuzzy Analytic Hierarchy Process (FAHP) Technique: A Case Study of Iranshahr Basin (Iran). Air, Soil and Water Research, 2022, 15, 117862212110638.	1.2	8
395	Label-free quantitative proteomics of maize roots from different root zones provides insight into proteins associated with enhance water uptake. BMC Genomics, 2022, 23, 184.	1.2	6
396	Temporal variation of saturated and nearâ€saturated soil hydraulic conductivity and waterâ€conducting macroporosity in a maizeâ€wheat rotation under conventional and conservation tillage practices. Land Degradation and Development, 0, , .	1.8	4
397	A multifaceted quantitative index for sustainability assessment of groundwater management: application for aquifers around Iran. Water International, 2022, 47, 338-360.	0.4	8

#	Article	IF	CITATIONS
398	Water-Food-Carbon Nexus Related to the Producer–Consumer Link: A Review. Advances in Nutrition, 2022, 13, 938-952.	2.9	6
399	A Hybrid of Copula Prediction and Time Series Computation to Estimate Stream Discharge Based on Precipitation Data. Journal of the American Water Resources Association, 0, , .	1.0	2
400	Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis. Water (Switzerland), 2022, 14, 949.	1.2	35
401	Agricultural trade: Impacts on food security, groundwater and energy use. Current Opinion in Environmental Science and Health, 2022, 27, 100354.	2.1	3
402	Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land, 2022, 11, 484.	1.2	61
403	Electrical resistivity tomography and induced polarization study for groundwater exploration in the agricultural development areas of Brunei Darussalam. Environmental Earth Sciences, 2022, 81, 1.	1.3	7
404	HYDRUS-2D simulations of typical pollutant migration in a soil aquifer system in the Zibo-Weifang funnel area of China. Journal of Cleaner Production, 2022, 345, 131099.	4.6	4
405	Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nature Communications, 2022, 13, 1849.	5.8	26
406	Climate change and New Zealand's groundwater resources: A methodology to support adaptation. Journal of Hydrology: Regional Studies, 2022, 40, 101053.	1.0	4
407	Rapid 3D geophysical imaging of aquifers in diverse hydrogeological settings. Water Security, 2022, 15, 100111.	1.2	1
408	Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management. Journal of Hydrology, 2022, 608, 127630.	2.3	35
409	Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. Journal of Hydrology, 2022, 608, 127674.	2.3	9
410	A framework for assessing freshwater vulnerability along China's Belt and Road Initiative: An exposure, sensitivity and adaptive capacity approach. Environmental Science and Policy, 2022, 132, 247-261.	2.4	1
411	Regulating agricultural groundwater use in arid and semi-arid regions of the Global South: Challenges and socio-environmental impacts. Current Opinion in Environmental Science and Health, 2022, 27, 100341.	2.1	7
412	Learning from the past to build the future governance of groundwater use in agriculture. Water International, 2021, 46, 1037-1059.	0.4	3
413	Global Food Security Assessment during 1961–2019. Sustainability, 2021, 13, 14005.	1.6	14
414	Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan. Hydrology and Earth System Sciences, 2022, 26, 1953-1975.	1.9	12
415	Widespread and increased drilling of wells into fossil aquifers in the USA. Nature Communications, 2022, 13, 2129.	5.8	14

#	ARTICLE	IF	CITATIONS
416	An AHP based approach to forecast groundwater level at potential recharge zones of Uckermark District, Brandenburg, Germany. Scientific Reports, 2022, 12, 6365.	1.6	8
417	Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Applied Water Science, 2022, 12, 1.	2.8	55
421	Water, Food Security, and Trade in Sub-Saharan Africa. , 2022, , 650-665.		0
422	Land-use emissions embodied in international trade. Science, 2022, 376, 597-603.	6.0	61
423	International food trade benefits biodiversity and food security in low-income countries. Nature Food, 2022, 3, 349-355.	6.2	14
424	Assessing the feasibility of sprinkler irrigation schemes at the regional scale using a distributed agro-hydrological model. Journal of Hydrology, 2022, 610, 127917.	2.3	6
425	Embedded Health Risk from Arsenic in Globally Traded Rice. Environmental Science & Emp; Technology, 2022, 56, 6415-6425.	4.6	10
426	The grey water footprint of milk due to nitrate leaching from dairy farms in Canterbury, New Zealand. Australasian Journal of Environmental Management, 2022, 29, 177-199.	0.6	6
427	Water-Energy-Food Nexus: Linking Global to Local. Trends in the Sciences, 2022, 27, 1_28-1_34.	0.0	0
428	Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environmental Research Letters, 2022, 17, 063008.	2.2	51
429	Tracing geochemical sources and health risk assessment of uranium in groundwater of arid zone of India. Scientific Reports, 2022, 12, .	1.6	5
430	High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural sunlight. Cell Reports Physical Science, 2022, 3, 100954.	2.8	22
431	The evolution of international grain trade pattern based on complex network and entropy. International Journal of Modern Physics C, 2023, 34, .	0.8	7
432	Fresh/brackish watering at growth period provided a trade-off between lettuce growth and resistance to NaCl-induced damage. Scientia Horticulturae, 2022, 304, 111283.	1.7	8
433	The Optimal Irrigation Water Salinity and Salt Component for High-Yield and Good-Quality of Tomato in Ningxia. SSRN Electronic Journal, 0, , .	0.4	0
434	Satellite Observations of Terrestrial Water Storage. , 2022, , 331-386.		2
435	Impacts of Water Resources Development on Hydrology. , 2022, , 389-437.		2
436	Optimal Water Resources Allocation in the Yinma River Basin in Jilin Province, China, Using Fuzzy Programming. Water (Switzerland), 2022, 14, 2119.	1.2	4

#	Article	IF	CITATIONS
437	Modeling groundwater and surface water interaction: An overview of current status and future challenges. Science of the Total Environment, 2022, 846, 157355.	3.9	34
438	Climate change impacts on water sustainability of South African crop production. Environmental Research Letters, 2022, 17, 084017.	2.2	8
439	Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries. Water Research, 2022, 221, 118803.	5. 3	14
440	Advancing UN Comtrade for physical trade flow analysis: Addressing the issue of missing values. Resources, Conservation and Recycling, 2022, 186, 106525.	5.3	6
441	Ground Truthing Global-Scale Model Estimates of Groundwater Recharge Across Africa. SSRN Electronic Journal, 0, , .	0.4	0
442	Genetic Improvement of Minor Crop Legumes: Prospects of <i>De Novo</i> Domestication., 0,,.		1
443	Analysis and Evaluation of Variation Characteristics in Groundwater Resources Carrying Capacity in Beijing between 2010 and 2020. Sustainability, 2022, 14, 9200.	1.6	2
444	A CNN-LSTM Model Based on a Meta-Learning Algorithm to Predict Groundwater Level in the Middle and Lower Reaches of the Heihe River, China. Water (Switzerland), 2022, 14, 2377.	1.2	7
445	Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability. Renewable and Sustainable Energy Reviews, 2022, 168, 112884.	8.2	5
446	Groundwater resources for agricultural purposes in the Brazilian semi-arid region. Revista Brasileira De Engenharia Agricola E Ambiental, 2022, 26, 915-923.	0.4	6
448	Susceptibility Assessment of Groundwater Nitrate Contamination Using an Ensemble Machine Learning Approach. Ground Water, 2023, 61, 510-516.	0.7	7
449	Influence of inter-aquifer leakage on well-injection capacity: Theory and aquifer-scale mapping for artificial recharge. Journal of Environmental Management, 2022, 322, 116035.	3.8	1
450	The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia. Agricultural Water Management, 2022, 274, 107940.	2.4	13
451	River Basin Governance. Water Governance - Concepts, Methods, and Practice, 2022, , 69-88.	0.1	0
452	Transformations and Circulations. , 2022, , 270-299.		0
454	Enhanced Understanding of Groundwater Storage Changes under the Influence of River Basin Governance Using GRACE Data and Downscaling Model. Remote Sensing, 2022, 14, 4719.	1.8	7
455	Is flood to drip irrigation a solution to groundwater depletion in the Indo-Gangetic plain?. Environmental Research Letters, 2022, 17, 104002.	2.2	3
456	Designing an investment model and developing irrigation systems for sustainable management of water resources using a dynamic systems approach. International Journal of Environmental Science and Technology, 2022, 19, 10691-10706.	1.8	2

#	Article	IF	CITATIONS
457	The spatiotemporal trajectory of US agricultural irrigation withdrawal during 1981–2015. Environmental Research Letters, 2022, 17, 104027.	2.2	4
458	The role of CAM ecophysiology in the Anthropocene. Acta Horticulturae, 2022, , 267-282.	0.1	0
459	The Bengal Water Machine: Quantified freshwater capture in Bangladesh. Science, 2022, 377, 1315-1319.	6.0	11
460	Coupling a large-scale hydrological model (CWatM $v1.1$) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale. Geoscientific Model Development, 2022, 15, 7099-7120.	1.3	11
461	Does Mexico have the agricultural land resources to feed its population with a healthy and sustainable diet?. Sustainable Production and Consumption, 2022, 34, 371-384.	5.7	2
462	Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality. Geoscientific Model Development, 2022, 15, 7287-7323.	1.3	10
463	Food independence and efficient exploitation of natural resources. International Journal of Technology Management and Sustainable Development, 2022, 21, 161-180.	0.4	1
464	Power plus: Tony Allan's contributions to understanding transboundary water arrangements. Water International, 2022, 47, 1001-1015.	0.4	3
465	Socio-cognitive analysis of farmers' water conservation behaviour: The case of the Kavar plain, Iran. Science Progress, 2022, 105, 003685042211287.	1.0	4
466	Rising agricultural water scarcity in China is driven by expansion of irrigated cropland in water scarce regions. One Earth, 2022, 5, 1139-1152.	3.6	24
467	Subsurface groundwater aquifer mapping and quality characterization in Matiari district, Sindh, Pakistan. Environmental Monitoring and Assessment, 2023, 195, .	1.3	3
468	Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Science of the Total Environment, 2023, 858, 159837.	3.9	9
469	Ground truthing global-scale model estimates of groundwater recharge across Africa. Science of the Total Environment, 2023, 858, 159765.	3.9	4
470	Challenges and solutions to biodiversity conservation in arid lands. Science of the Total Environment, 2023, 857, 159695.	3.9	18
471	Groundwater conservation and management: Recent trends and future prospects., 2023,, 371-385.		2
472	Environmental Sustainability Issues in Food Systems. , 2023, , .		0
473	Role of groundwater potentiality and soil nutrient status on agricultural productivity: A case study in Paschim Medinipur District, West Bengal., 2023,, 39-66.		1
474	Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge. Hydrology and Earth System Sciences, 2022, 26, 5697-5720.	1.9	4

#	Article	IF	CITATIONS
475	Governing spillovers of agricultural land use through voluntary sustainability standards: A coverage analysis of sustainability requirements. Earth System Governance, 2022, 14, 100158.	2.1	1
476	When the virtual water runs out: local and global responses to addressing unsustainable groundwater consumption. Water International, 2022, 47, 1060-1084.	0.4	4
477	Tony Allan: a magic toolbox of theoretical frameworks, a never-ending story. Water International, 2022, 47, 1147-1150.	0.4	0
478	The global biodiversity footprint of urban consumption: A spatially explicit assessment for the city of Vienna. Science of the Total Environment, 2023, 861, 160576.	3.9	2
479	Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 2022, 12, .	1.6	3
480	Water use efficiency evolution in the Yellow River Basin: an integrated analysis of spatial-temporal decomposition. Hydrological Sciences Journal, 2023, 68, 119-130.	1.2	3
481	Groundwater Variability in a Semi-Arid River Basin, Central India. Hydrology, 2022, 9, 222.	1.3	4
482	Analysis of Groundwater Overexploitation Based on Groundwater Regime Information. Ground Water, 2023, 61, 692-705.	0.7	4
483	Global Assessment of Groundwater Stress Vis-Ã-Vis Sustainability of Irrigated Food Production. Sustainability, 2022, 14, 16896.	1.6	0
484	Mental models of sustainable groundwater management among farmers in semi-arid regions of Maharashtra, India. Groundwater for Sustainable Development, 2023, 21, 100904.	2.3	3
485	Trade for Food Security: The Stability of Global Agricultural Trade Networks. Foods, 2023, 12, 271.	1.9	9
486	Importance of good groundwater governance in economic development: The case of western Iran. Groundwater for Sustainable Development, 2023, 21, 100892.	2.3	6
487	Irrigation by crop in the Continental United States from 2008 to 2020. Water Resources Research, 0, , .	1.7	1
488	基于供需å^†ç¦»åŠå‰§çš"è¿'30å¹´æ¥ä¸å›½è°·ç‰©ç¢³æŽ'放转移时空演å•̃ç"ç©¶. SCIENTIA	∖SINJ C A Te	err æ, 2023, ,
489	Improvement of Water and Nitrogen Use Efficiencies by Alternative Cropping Systems Based on a Model Approach. Plants, 2023, 12, 597.	1.6	1
490	Global groundwater in the Anthropocene. , 2023, , 483-500.		2
491	Water Conservation Structure as an Unconventional Method for Improving Sustainable Use of Irrigation Water for Soybean Crop Under Rainfed Climate Condition. Springer Climate, 2023, , 629-641.	0.3	5
492	Water Energy Food Nexus to Tackle Future Arab Countries Water Scarcity. Air, Soil and Water Research, 2023, 16, 117862212311609.	1.2	3

#	Article	IF	CITATIONS
493	Study and Evaluation of Dynamic Carrying Capacity of Groundwater Resources in Hebei Province from 2010 to 2017. Sustainability, 2023, 15, 4394.	1.6	1
494	Groundwater sustainability under land-use and land-cover changes. Environmental Earth Sciences, 2023, 82, .	1.3	2
495	A multi-pollutant pilot study to evaluate the grey water footprint of irrigated paddy rice. Agricultural Water Management, 2023, 282, 108291.	2.4	3
496	Patterns and driving factors of agricultural virtual water imports in China. Agricultural Water Management, 2023, 281, 108262.	2.4	4
497	Trade-induced displacement of impacts of global crop production on oxygen depletion in marine ecosystems. Science of the Total Environment, 2023, 873, 162226.	3.9	1
498	Groundwater stress induced by shale resources development in the US: Evolution, response, and mitigation. Applied Energy, 2023, 340, 121037.	5.1	2
499	Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment, 2023, 4, 87-101.	12.2	119
500	Integrating stakeholders' inputs to co-design climate resilience adaptation measures in Mediterranean areas with conflicts between wetland conservation and intensive agriculture. Science of the Total Environment, 2023, 870, 161905.	3.9	1
501	A simple system for phenotyping of plant transpiration and stomatal conductance response to drought. Plant Science, 2023, 329, 111626.	1.7	1
502	Modeling Nitrogen Balance for Pre-Assessment of Surface and Groundwater Nitrate (NO3-â^3N) Contamination from N–Fertilizer Application Loss: a Case of the Bilate Downstream Watershed Cropland. Water, Air, and Soil Pollution, 2023, 234, .	1.1	4
503	The future of water in a desert river basin facing climate change and competing demands: A holistic approach to water sustainability in arid and semi-arid regions. Journal of Hydrology: Regional Studies, 2023, 46, 101336.	1.0	2
504	Quantifying the impact of large-scale afforestation on the atmospheric water cycle during rainy season over the Chinese Loess Plateau. Journal of Hydrology, 2023, 619, 129326.	2.3	5
505	Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change. Water Resources Management, 2023, 37, 2805-2834.	1.9	12
506	Groundwater Quality and Health: Making the Invisible Visible. Environmental Science & Emp; Technology, 2023, 57, 5125-5136.	4.6	13
507	Maladaptation in food systems and ways to avoid it. Current Opinion in Environmental Sustainability, 2023, 61, 101269.	3.1	2
508	Inorganic and organic foliar fertilization in olives. Zahradnictvi (Prague, Czech Republic: 1992), 2023, 50, 1-11.	0.3	3
509	Groundwater Connections and Sustainability in Socialâ€Ecological Systems. Ground Water, 2023, 61, 463-478.	0.7	5
510	Crop switching can enhance environmental sustainability and farmer incomes in China. Nature, 2023, 616, 300-305.	13.7	42

#	ARTICLE	IF	CITATIONS
511	Evaluating the Combined Effects of Water and Fertilizer Coupling Schemes on Pear Vegetative Growth and Quality in North China. Agronomy, 2023, 13, 867.	1.3	1
512	Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water (Switzerland), 2023, 15, 1182.	1.2	9
513	International corporations trading Brazilian soy are keystone actors for water stewardship. Communications Earth & Environment, 2023, 4, .	2.6	1
514	Excessive pumping limits the benefits of a strengthening summer monsoon for groundwater recovery in India. One Earth, 2023, 6, 419-427.	3.6	2
515	Solutions to agricultural green water scarcity under climate change. , 2023, 2, .		8
516	Aplicación de un enfoque de avance del conocimiento cientÃfico al desarrollo de la legislación sobre aguas subterráneas. Hydrogeology Journal, 2023, 31, 853-871.	0.9	3
517	Water crisis in Iran: A system dynamics approach on water, energy, food, land and climate (WEFLC) nexus. Science of the Total Environment, 2023, 882, 163549.	3.9	16
518	Identifying the main factors driving groundwater stress in a semi-arid region, southern Iran. Hydrological Sciences Journal, 0, , 1-16.	1.2	0
519	"Biomass from somewhere?―Governing the spatial mismatch of Viennese biomass consumption and its impact on biodiversity. Land Use Policy, 2023, 131, 106693.	2.5	1
520	Grain carbon emission transfer and its spatiotemporal shifts based on the increasing supply-demand separation in China over the past three decades. Science China Earth Sciences, 2023, 66, 1087-1107.	2.3	1
521	Alleviating groundwater depletion while realizing food security for sustainable development. Journal of Cleaner Production, 2023, 393, 136351.	4.6	4
544	Coastal Development: Resilience, Restoration and Infrastructure Requirements., 2023,, 213-277.		1
560	Prevalence of Uranium in groundwater of rural and urban regions of India. , 2024, , 213-234.		0
570	Can the Wells Run Dry?. Springer Climate, 2023, , 135-178.	0.3	0
583	Water Provisioning Services. , 2023, , 65-84.		0
594	Assessing the Environmental Impact of Plant-Based Diets: A Comprehensive Analysis. , 2023, , .		0