5-Aminolevulinic acid modulates antioxidant defense sy drought-induced damage in Kentucky bluegrass seedlin

Protoplasma 254, 2083-2094 DOI: 10.1007/s00709-017-1101-4

Citation Report

#	Article	IF	CITATIONS
1	Exogenous application of 5-aminolevulinic acid on wheat seedlings under drought stress enhances the transcription of psbA and psbD genes and improves photosynthesis. Revista Brasileira De Botanica, 2018, 41, 275-285.	1.3	29
2	Physiological Responses to Hypoxia and Manganese in Eucalyptus Clones with Differential Tolerance to Vale do Rio Doce Shoot Dieback. Revista Brasileira De Ciencia Do Solo, 2018, 42, .	1.3	2
3	The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environmental and Experimental Botany, 2018, 155, 260-271.	4.2	38
4	GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC Plant Biology, 2019, 19, 323.	3.6	19
5	PP2A and microtubules function in 5â€aminolevulinic acidâ€mediated H ₂ O ₂ signaling in <i>Arabidopsis</i> guard cells. Physiologia Plantarum, 2020, 168, 709-724.	5.2	12
6	Exogenous 5â€aminolevulinic acid improves strawberry tolerance to osmotic stress and its possible mechanisms. Physiologia Plantarum, 2020, 168, 948-962.	5.2	36
7	The use of 5â€aminolevulinic acid to reduce heatâ€stressâ€related damages in tall fescue. Crop Science, 2021, 61, 3206-3218.	1.8	7
8	The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC Plant Biology, 2020, 20, 96.	3.6	11
9	Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere, 2020, 250, 126158.	8.2	33
10	5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 2021, 40, 1451-1469.	5.6	35
11	5-Aminolevulinic Acid Pretreatment Mitigates Drought and Salt Stresses in Poplar Plants. Forests, 2021, 12, 1112.	2.1	4
12	Comparison and Characterization of Oxidation Resistance and Carbohydrate Content in Cd-Tolerant and -Sensitive Kentucky Bluegrass under Cd Stress. Agronomy, 2021, 11, 2358.	3.0	10
13	Advances in 5-Aminolevulinic Acid Priming to Enhance Plant Tolerance to Abiotic Stress. International Journal of Molecular Sciences, 2022, 23, 702.	4.1	30
14	Assessing the potential of native ecotypes of Poa pratensis L. for forage yield and phytochemical compositions under water deficit conditions. Scientific Reports, 2022, 12, 1121.	3.3	4
15	5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants. Plants, 2022, 11, 743.	3.5	14
16	Exogenous Melatonin Alleviates Alkaline Stress by Removing Reactive Oxygen Species and Promoting Antioxidant Defence in Rice Seedlings. Frontiers in Plant Science, 2022, 13, 849553.	3.6	15
17	Protective effects of 5-aminolevulinic acid against toxicity induced by alpha-cypermethrin to the liver-gut-microbiota axis in zebrafish. Ecotoxicology and Environmental Safety, 2022, 234, 113422.	6.0	5
18	Exogenous application of 5-aminolevulinic acid alleviated damage to wheat chloroplast ultrastructure under drought stress by transcriptionally regulating genes correlated with photosynthesis and chlorophyll biosynthesis. Acta Physiologiae Plantarum, 2022, 44, 1.	2.1	6

#	Article	IF	CITATIONS
19	Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress. Frontiers in Plant Science, 2022, 13, .	3.6	5
20	5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue. Plant Physiology and Biochemistry, 2022, 190, 248-261.	5.8	5
21	Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC Plant Biology, 2022, 22, .	3.6	1
22	Melatonin Enhances Drought Tolerance in Rice Seedlings by Modulating Antioxidant Systems, Osmoregulation, and Corresponding Gene Expression. International Journal of Molecular Sciences, 2022, 23, 12075.	4.1	20
23	24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. Ecotoxicology and Environmental Safety, 2023, 249, 114460.	6.0	2
24	Exogenous melatonin ameliorates drought stress in Agropyron mongolicum by regulating flavonoid biosynthesis and carbohydrate metabolism. Frontiers in Plant Science, 0, 13, .	3.6	4
26	Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. Journal of Plant Physiology, 2023, 282, 153919.	3.5	1
27	Transcriptome Analysis of 5-Aminolevulinic Acid Contributing to Cold Tolerance in Tea Leaves (Camellia sinensis L.). Forests, 2023, 14, 198.	2.1	0
28	MeJA-mediated enhancement of salt-tolerance of Populus wutunensis by 5-aminolevulinic acid. BMC Plant Biology, 2023, 23, .	3.6	1
29	Alleviation of Shade Stress in Chinese Yew (Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA). Plants, 2023, 12, 2333.	3.5	1
30	Exogenous 5-Aminolevulinic Acid Promotes Osmotic Stress Tolerance of Walnuts by Modulating Photosynthesis, Osmotic Adjustment and Antioxidant Systems. Forests, 2023, 14, 1789.	2.1	2
31	Regulation of 5-Aminolevunilic Acid and Its Application in Agroforestry. Forests, 2023, 14, 1857.	2.1	2
32	Transcriptome Analysis of Native Kentucky Bluegrass (Poa pratensis L.) in Response to Osmotic Stress. Plants, 2023, 12, 3971.	3.5	1

CITATION REPORT