Sodium-ion batteries: present and future

Chemical Society Reviews 46, 3529-3614 DOI: 10.1039/c6cs00776g

Citation Report

#	Article	IF	CITATIONS
1	Carbon-coated Li ₄ Ti ₅ O ₁₂ nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10902-10908.	5.2	52
2	Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries. ACS Applied Materials & Interfaces, 2017, 9, 39416-39424.	4.0	45
3	Quick Activation of Nanoporous Anatase TiO ₂ as High-Rate and Durable Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 39432-39440.	4.0	61
4	Dualâ€Graphene Rechargeable Sodium Battery. Small, 2017, 13, 1702449.	5.2	64
5	Synthesis and characterization of d-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries. Electrochimica Acta, 2017, 253, 536-544.	2.6	67
6	Synthesis of ZnSb@C microflower composites and their enhanced electrochemical performance for lithium-ion and sodium-ion batteries. New Journal of Chemistry, 2017, 41, 13060-13066.	1.4	18
7	Honeycomb-Ordered Na ₃ Ni _{1.5} M _{0.5} BiO ₆ (M = Ni, Cu,) Tj ETG 2715-2722.	Qq0 0 0 rg 8.8	BT /Overlock 70
8	Tunnel-type β-FeOOH cathode material for high rate sodium storage via a new conversion reaction. Nano Energy, 2017, 41, 687-696.	8.2	41
9	Freestanding Sodium-Ion Batteries Electrode Using Graphene Foam Coaxially Integrated with TiO ₂ Nanosheets. Journal of the Electrochemical Society, 2017, 164, A3060-A3067.	1.3	14
10	Na 2.5 Fe 1.75 (SO 4) 3 /Ketjen/rGO: An advanced cathode composite for sodium ion batteries. Journal of Power Sources, 2017, 369, 95-102.	4.0	29
11	Theoretical prediction of MXene-like structured Ti ₃ C ₄ as a high capacity electrode material for Na ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 29106-29113.	1.3	51
12	Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38401-38408.	4.0	61
13	Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23671-23680.	5.2	107
14	Flexible Electrodes for Sodiumâ€lon Batteries: Recent Progress and Perspectives. Advanced Materials, 2017, 29, 1703012.	11.1	156
15	A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a Highâ€Performance Anode for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2017, 23, 16586-16592.	1.7	12
16	Carbon-coated graphene/antimony composite with a sandwich-like structure for enhanced sodium storage. Journal of Materials Chemistry A, 2017, 5, 20623-20630.	5.2	27
17	Solvation and Dynamics of Sodium and Potassium in Ethylene Carbonate from ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 21913-21920.	1.5	152
18	Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18634-18642.	5.2	64

#	Article	IF	CITATIONS
19	Electrolyte Optimization for Enhancing Electrochemical Performance of Antimony Sulfide/Graphene Anodes for Sodium-Ion Batteries–Carbonate-Based and Ionic Liquid Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 8269-8276.	3.2	43
20	Long Straczekite Î′â€Ca _{0.24} V ₂ O ₅ â <h<sub>2O Nanorods and Derived βâ€Ca_{0.24}V₂O₅ Nanorods as Novel Host Materials for Lithium Storage with Excellent Cycling Stability. Chemistry - A European Journal, 2017, 23, 13221-13232.</h<sub>	1.7	23
21	A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 18919-18932.	5.2	235
22	High-rate capability of Na ₂ FePO ₄ F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18707-18715.	5.2	70
23	A novel coronene//Na2Ti3O7 dual-ion battery. Nano Energy, 2017, 40, 233-239.	8.2	103
24	High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries. Journal of Power Sources, 2017, 363, 404-412.	4.0	52
25	Insight into the Origin of Capacity Fluctuation of Na ₂ Ti ₆ O ₁₃ Anode in Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43596-43602.	4.0	34
26	A flexible Sb ₂ O ₃ /carbon cloth composite as a free-standing high performance anode for sodium ion batteries. Chemical Communications, 2017, 53, 13165-13167.	2.2	60
27	General and Scalable Solid‧tate Synthesis of 2D MPS ₃ (M = Fe, Co, Ni) Nanosheets and Tuning Their Li/Na Storage Properties. Small Methods, 2017, 1, 1700304.	4.6	90
28	Water effect on sodium mobility in zinc hexacyanoferrate during charge/discharge processes in sodium ion-based battery. Solid State Ionics, 2017, 312, 67-72.	1.3	23
29	Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15356-15366.	5.2	317
30	Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes. Nanomaterials, 2017, 7, 423.	1.9	13
31	A Novel Open-Framework Cu-Ge-Based Chalcogenide Anode Material for Sodium-Ion Battery. Scanning, 2017, 2017, 1-6.	0.7	7
32	Towards Highâ€Performance Aqueous Sodiumâ€Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICONâ€Type Na ₂ VTi(PO ₄) ₃ using Concentrated Electrolytes. ChemSusChem, 2018, 11, 1382-1389.	3.6	75
33	Interfaces in solid-state sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates. Electrochimica Acta, 2018, 268, 226-233.	2.6	23
34	Binding Sulfurâ€Doped Nb ₂ O ₅ Hollow Nanospheres on Sulfurâ€Doped Graphene Networks for Highly Reversible Sodium Storage. Advanced Functional Materials, 2018, 28, 1800394.	7.8	106
35	Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. Journal of Power Sources, 2018, 383, 80-86.	4.0	38
36	Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties. Advanced Materials Technologies, 2018, 3, 1700298.	3.0	34

#	Article	IF	CITATIONS
37	A stable layered P3/P2 and spinel intergrowth nanocomposite as a long-life and high-rate cathode for sodium-ion batteries. Nanoscale, 2018, 10, 6671-6677.	2.8	65
38	New Insights into the Roles of Mg in Improving the Rate Capability and Cycling Stability of O3-NaMn _{0.48} Ni _{0.2} Fe _{0.3} Mg _{0.02} O ₂ for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10819-10827.	4.0	113
39	Rational design of three-dimensional graphene encapsulated core–shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6414-6421.	5.2	113
40	Quaternary Transition Metal Oxide Layered Framework: O3-Type Na[Ni _{0.32} Fe _{0.13} Co _{0.15} Mn _{0.40}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122. 13500-13507.	1.5	39
41	Mesoporous TiO ₂ nanosheets anchored on graphene for ultra long life Na-ion batteries. Nanotechnology, 2018, 29, 225401.	1.3	17
42	Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. Dalton Transactions, 2018, 47, 4885-4892.	1.6	11
43	Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Electrochimica Acta, 2018, 269, 367-377.	2.6	26
44	<i>Ab initio</i> molecular dynamics study of 1-D superionic conduction and phase transition in β-eucryptite. Journal of Materials Chemistry A, 2018, 6, 5052-5064.	5.2	22
45	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 8901-8905.	7.2	252
46	Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na _{0.67} Mn _{0.5} Fe _{0.5} O ₂ as a Sodium Ion Battery Cathode Material. Inorganic Chemistry, 2018, 57, 5249-5257.	1.9	78
47	TiC ₃ Monolayer with High Specific Capacity for Sodium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 5962-5968.	6.6	244
48	Structural elucidation of NASICON (Na ₃ Al ₂ P ₃ O ₁₂) based glass electrolyte materials: effective influence of boron and gallium. RSC Advances, 2018, 8, 14422-14433.	1.7	12
49	Highâ€Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angewandte Chemie, 2018, 130, 9207-9210.	1.6	60
50	3D Graphene Network Encapsulating Mesoporous ZnS Nanospheres as Highâ€Performance Anode Material in Sodium″on Batteries. ChemElectroChem, 2018, 5, 1552-1558.	1.7	23
51	ZnV2O4: A potential anode material for sodium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 161-168.	2.7	25
52	Xanthoceras sorbifolia husks-derived porous carbon for sodium-ion and lithiumâ€́sulfur batteries. Diamond and Related Materials, 2018, 85, 104-111.	1.8	19
53	Prussian Blue Analogs for Rechargeable Batteries. IScience, 2018, 3, 110-133.	1.9	327
54	FePO ₄ as an anode material to obtain high-performance sodium-based dual-ion batteries. Chemical Communications, 2018, 54, 4349-4352.	2.2	35

	CITATION RE	PORT	
#	Article	IF	CITATIONS
55	Sulfur-functionalized three-dimensional graphene monoliths as high-performance anodes for ultrafast sodium-ion storage. Chemical Communications, 2018, 54, 4317-4320.	2.2	22
56	In Situ Encapsulating αâ€MnS into N,Sâ€Codoped Nanotubeâ€Like Carbon as Advanced Anode Material: α → β Transition Promoted Cycling Stability and Superior Li/Naâ€Storage Performance in Half/Full Cells. Advanced Materials, 2018, 30, e1706317.	Phase 11.1	164
57	Efficient Sodium Storage in Rolledâ€Up Amorphous Si Nanomembranes. Advanced Materials, 2018, 30, e1706637.	11.1	87
58	A Nonaqueous Potassiumâ€Based Battery–Supercapacitor Hybrid Device. Advanced Materials, 2018, 30, e1800804.	11.1	345
59	Investigation of the Na Storage Property of One-Dimensional Cu _{2–<i>x</i>} Se Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 13491-13498.	4.0	45
60	The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage. Small, 2018, 14, e1703671.	5.2	106
61	Phosphorus: An Anode of Choice for Sodium-Ion Batteries. ACS Energy Letters, 2018, 3, 1137-1144.	8.8	141
62	Tuning the component ratio and corresponding sodium storage properties of layer-tunnel hybrid Na0.6Mn1-Ni O2 cathode by a simple cationic Ni2+ doping strategy. Electrochimica Acta, 2018, 273, 63-70.	2.6	23
63	Ultrasmall TiO ₂ -Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 14818-14826.	4.0	54
64	Research progress on vanadium-based cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8815-8838.	5.2	161
65	Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. Journal of Materials Chemistry A, 2018, 6, 8558-8567.	5.2	52
66	Highâ€Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angewandte Chemie - International Edition, 2018, 57, 9069-9072.	7.2	144
67	Sodium and Sodiumâ€lon Batteries: 50 Years of Research. Advanced Energy Materials, 2018, 8, 1703137.	10.2	824
68	Sodiumâ€ion Battery Electrolytes: Modeling and Simulations. Advanced Energy Materials, 2018, 8, 1703036.	10.2	83
69	Influence of rare earth elements on porosity controlled synthesis of MnO2 nanostructures for supercapacitor applications. Electrochimica Acta, 2018, 265, 532-546.	2.6	31
70	Tailoring Highly Nâ€Doped Carbon Materials from Hexamineâ€Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Naâ€ŀon Storage. Small, 2018, 14, e1703548.	5.2	98
71	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	7.8	61
72	Structural design of anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6183-6205.	5.2	127

CITATION REPORT ARTICLE IF CITATIONS Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Materials, 9.5 129 2018, 13, 274-282. Prussian Blue Cathode Materials for Sodiumâ€lon Batteries and Other Ion Batteries. Advanced Energy 10.2 Materials, 2018, 8, 1702619. Conversionâ€Based Cathode Materials for Rechargeable Sodium Batteries. Advanced Energy Materials, 10.2 62 2018, 8, 1702646. Toward High-Safety Potassium–Sulfur Batteries Using a Potassium Polysulfide Catholyte and 99 Metal-Free Anode. ACS Energy Letters, 2018, 3, 540-541. Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO₂ as High-Performance Anode in Sodium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 4.0 103 5560-5568. Grapheneâ€Based Nanomaterials for Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702469. 10.2 Water Desalination with Energy Storage Electrode Materials. Joule, 2018, 2, 10-15. 11.7 217 <i>In situ</i> atomic force microscopy study of nanoâ€"micro sodium deposition in ester-based 104 electrolytes. Chemical Communications, 2018, 54, 2381-2384. Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance 10.2 221 Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702403. Distinguishing the thermal behavior of Na- and Li-intercalated hard carbons via differential scanning 2.3 calorimetry. Electrochemistry Communications, 2018, 88, 101-104. Carbon coated ultrasmall anatase TiO 2 nanocrystal anchored on N,S-RGO as high-performance anode 4.723 for sodium ion batteries. Green Energy and Environment, 2018, 3, 277-285. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life. ACS Applied Materials & amp; Interfaces, 2018, 10, 8016-8025. Elucidation of the Sodiumâ€Storage Mechanism in Hard Carbons. Advanced Energy Materials, 2018, 8, 10.2 212 1703217. Boosting the Potassium Storage Performance of Alloyâ€Based Anode Materials via Electrolyte Salt 10.2 Chemistry. Advanced Energy Materials, 2018, 8, 1703288. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles 4.0 92 Study. ACS Applied Materials & amp; Interfaces, 2018, 10, 5373-5384. Moving to Aqueous Binder: A Valid Approach to Achieving Highâ€Rate Capability and Longâ€Term Durability for Sodiumâ€lon Battery. Advanced Science, 2018, 5, 1700768. Bioinspired Surface Layer for the Cathode Material of Highâ€Energyâ€Density Sodiumâ€Ion Batteries.

Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Na″on Batteries. 90 Small, 2018, 14, e1703338.

10.2

91

Advanced Energy Materials, 2018, 8, 1702942.

#

73

74

75

77

79

81

83

84

85

87

#	Article	IF	CITATIONS
91	Readiness Level of Sodiumâ€ion Battery Technology: A Materials Review. Advanced Sustainable Systems, 2018, 2, 1700153.	2.7	135
92	Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 3284-3303.	5.2	224
93	Cu2NiSnS4 nanosphere array on carbon cloth as free-standing and binder-free electrodes for energy storage. Electrochimica Acta, 2018, 260, 305-313.	2.6	16
94	Electrochemically Formed Na _{<i>x</i>} Mn[Mn(CN) ₆] Thin Film Anodes Demonstrate Sodium Intercalation and Deintercalation at Extremely Negative Electrode Potentials in Aqueous Media. ACS Applied Energy Materials, 2018, 1, 123-128.	2.5	16
95	1D mesoporous NaTi2(PO4)3/carbon nanofiber: The promising anode material for sodium-ion batteries. Ceramics International, 2018, 44, 5813-5816.	2.3	21
96	Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy, 2018, 45, 136-147.	8.2	143
97	Migration of sodium and lithium interstitials in anatase TiO2. Solid State Ionics, 2018, 315, 40-43.	1.3	9
98	Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO ₂ Slabs. ACS Applied Materials & Margin Strategies, 2018, 10, 1707-1718.	4.0	34
99	Surface oatingâ€Mediated Electrochemical Performance in CuO Nanowires during the Sodiation–Desodiation Cycling. Advanced Materials Interfaces, 2018, 5, 1701255.	1.9	22
100	Prussian Blue@MoS ₂ Layer Composites as Highly Efficient Cathodes for Sodium―and Potassium―on Batteries. Advanced Functional Materials, 2018, 28, 1706125.	7.8	88
101	High Rate Capability and Enhanced Cyclability of Na ₃ V ₂ (PO ₄) ₂ F ₃ Cathode by Inâ€Situ Coating of Carbon Nanofibers for Sodiumâ€ion Battery Applications. Chemistry - A European Journal, 2018, 24, 2913-2919.	1.7	34
102	Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors. Small, 2018, 14, 1702961.	5.2	210
103	Optimized hard carbon derived from starch for rechargeable seawater batteries. Carbon, 2018, 129, 564-571.	5.4	54
104	Stepwise chelation-etching synthesis of carbon-confined ultrafine SnO2 nanoparticles for stable sodium storage. Chemical Communications, 2018, 54, 1469-1472.	2.2	14
105	High energy density rechargeable metal-free seawater batteries: a phosphorus/carbon composite as a promising anode material. Journal of Materials Chemistry A, 2018, 6, 3046-3054.	5.2	40
106	Do imaging techniques add real value to the development of better post-Li-ion batteries?. Journal of Materials Chemistry A, 2018, 6, 3304-3327.	5.2	36
107	Tinâ€Assisted Sb ₂ S ₃ Nanoparticles Uniformly Grafted on Graphene Effectively Improves Sodiumâ€ion Storage Performance. ChemElectroChem, 2018, 5, 811-816.	1.7	33
108	Boosting the Sodiation Capability and Stability of FeP by In Situ Anchoring on the Graphene Conductive Framework. ChemNanoMat, 2018, 4, 309-315.	1.5	19

#	Article	IF	CITATIONS
109	Facile synthesis of three-dimensional porous carbon networks for highly stable sodium storage. Ionics, 2018, 24, 3065-3073.	1.2	4
110	Advancement of technology towards developing Na-ion batteries. Journal of Power Sources, 2018, 378, 268-300.	4.0	142
111	The S-functionalized Ti ₃ C ₂ Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 2018, 10, 3385-3392.	2.8	139
112	Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for Highâ€Performance Sodium–Selenium Batteries. Advanced Functional Materials, 2018, 28, 1706609.	7.8	69
113	SnS ₂ /Sb ₂ S ₃ Heterostructures Anchored on Reduced Graphene Oxide Nanosheets with Superior Rate Capability for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2018, 24, 3873-3881.	1.7	88
114	A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes. Advanced Energy Materials, 2018, 8, 1702599.	10.2	127
115	Atomic layer deposition of crystalline epitaxial MoS ₂ nanowall networks exhibiting superior performance in thin-film rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 2302-2310.	5.2	40
116	Na ⁺ /Vacancy Disordered P2-Na _{0.67} Co _{1–<i>x</i>} Ti <i>_x</i> O ₂ : High-Energy and High-Power Cathode Materials for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10. 3562-3570.	4.0	78
117	New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Materials, 2018, 15, 257-265.	9.5	86
118	Structure modulation and performance optimization of P2-Na0.7Mn0.75Fe0.25-x-yNixCoyO2 through a synergistic substitution ofANi and Co for Fe. Electrochimica Acta, 2018, 277, 88-99.	2.6	29
119	Porphyrin-stabilized CNT in nanofiber via non-covalent interaction for enhanced electrochemical performance. Electrochimica Acta, 2018, 274, 112-120.	2.6	11
120	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 9039-9043.	1.6	50
121	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€Ion Battery Cathode. Angewandte Chemie, 2018, 130, 8310-8315.	1.6	23
122	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€lon Battery Cathode. Angewandte Chemie - International Edition, 2018, 57, 8178-8183.	7.2	109
123	Flexible Micro‣upercapacitors Based on Naturally Derived Juglone. ChemPlusChem, 2018, 83, 423-430.	1.3	7
124	Solvothermal synthesis and electrochemical properties of Na2CoSiO4 and Na2CoSiO4/carbon nanotube cathode materials for sodium-ion batteries. Electrochimica Acta, 2018, 276, 102-110.	2.6	26
125	A Dualâ€Stimuliâ€Responsive Sodiumâ€Bromine Battery with Ultrahigh Energy Density. Advanced Materials, 2018, 30, e1800028.	11.1	56
126	Internal structure – Na storage mechanisms – Electrochemical performance relations in carbons. Progress in Materials Science, 2018, 97, 170-203.	16.0	100

#	Article	IF	CITATIONS
127	TiO ₂ Nanostructures as Anode Materials for Li/Naâ€lon Batteries. Chemical Record, 2018, 18, 1178-1191.	2.9	47
128	Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. Electrochimica Acta, 2018, 269, 282-290.	2.6	35
129	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	8.3	103
130	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1703-1707.	2.5	90
131	Layered P2- type novel Na0.7Ni0.3Mn0.59Co0.1Cu0.01O2 cathode material for high-capacity & stable rechargeable sodium ion battery. Electrochimica Acta, 2018, 270, 363-368.	2.6	36
132	Rocksalt-type metal sulfide anodes for high-rate sodium storage. Journal of Materials Chemistry A, 2018, 6, 6867-6873.	5.2	23
133	Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorganic Chemistry Frontiers, 2018, 5, 999-1015.	3.0	57
134	Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Materials, 2018, 15, 108-115.	9.5	100
135	Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy, 2018, 48, 526-535.	8.2	99
136	Ion-Transport Design for High-Performance Na ⁺ -Based Electrochromics. ACS Nano, 2018, 12, 3759-3768.	7.3	136
137	An effective method to screen sodium-based layered materials for sodium ion batteries. Npj Computational Materials, 2018, 4, .	3.5	77
138	Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47, 2837-2872.	18.7	586
139	A rational microstructure design of SnS2–carbon composites for superior sodium storage performance. Nanoscale, 2018, 10, 7999-8008.	2.8	35
140	Symmetric Sodium-Ion Capacitor Based on Na _{0.44} MnO ₂ Nanorods for Low-Cost and High-Performance Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 11689-11698.	4.0	62
141	Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Materials Horizons, 2018, 5, 529-535.	6.4	119
142	Electronic states in oxidized Na CoO2 as revealed by X-ray absorption spectroscopy coupled with ab initio calculation. Journal of Power Sources, 2018, 384, 156-159.	4.0	4
143	In situ TEM study of the sodiation/desodiation mechanism of MnO2 nanowire with gel-electrolytes. Energy Storage Materials, 2018, 15, 91-97.	9.5	19
144	Electrical and mechanical properties of Na2.8Ca0.1Al2Ga0.5P2.7O12 glass based electrolyte materials: Influence of Ag+ ion-exchange. Journal of Non-Crystalline Solids, 2018, 498, 323-330.	1.5	7

#	Article	IF	CITATIONS
145	The Scaleâ€up and Commercialization of Nonaqueous Naâ€lon Battery Technologies. Advanced Energy Materials, 2018, 8, 1702869.	10.2	234
146	Computational Studies of Electrode Materials in Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702998.	10.2	137
147	From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodiumâ€ion Batteries through Carbon Anode Optimization. Advanced Energy Materials, 2018, 8, 1703268.	10.2	396
148	Hard Carbons for Sodiumâ€lon Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. ChemSusChem, 2018, 11, 506-526.	3.6	158
149	Two-dimensional metal oxide nanosheets for rechargeable batteries. Journal of Energy Chemistry, 2018, 27, 117-127.	7.1	105
150	Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Research, 2018, 11, 2573-2585.	5.8	47
151	High Energy Density Sodiumâ€lon Battery with Industrially Feasible and Airâ€6table O3â€Type Layered Oxide Cathode. Advanced Energy Materials, 2018, 8, 1701610.	10.2	161
152	Enhanced electrochemical properties of carbon coated Zn2GeO4 micron-rods as anode materials for sodium-ion batteries. Chemical Engineering Journal, 2018, 331, 203-210.	6.6	44
153	Sodiumâ€lon Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 2018, 8, 1701428.	10.2	494
154	Progress in Highâ€Voltage Cathode Materials for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1701785.	10.2	371
155	Designing a Highâ€Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dualâ€Functional Graphene–Polypropylene–Al ₂ O ₃ Separator. Advanced Functional Materials, 2018, 28, 1704294.	7.8	135
156	Self‧upported 3D Array Electrodes for Sodium Microbatteries. Advanced Functional Materials, 2018, 28, 1704880.	7.8	108
157	Preparation of a Si/SiO ₂ –Orderedâ€Mesoporousâ€Carbon Nanocomposite as an Anode for Highâ€Performance Lithiumâ€Ion and Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 4841-4848.	1.7	70
158	Advanced Metal Oxide@Carbon Nanotubes for Highâ€Energy Lithiumâ€Ion Full Batteries. Energy Technology, 2018, 6, 766-772.	1.8	16
159	Metal–Organic Frameworkâ€Derived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.	5.2	129
160	Graphene-coupled Ti ₃ C ₂ MXenes-derived TiO ₂ mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. Journal of Materials Chemistry A, 2018, 6, 1017-1027.	5.2	133
161	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 1513-1522.	5.2	198
162	N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chemical Engineering Journal, 2018, 334, 2190-2200.	6.6	88

#	Article	IF	CITATIONS
163	Nanotube-like hard carbon as high-performance anode material for sodium ion hybrid capacitors. Science China Materials, 2018, 61, 285-295.	3.5	34
164	Carbon-coated NaTi2(PO4)3 composite: A promising anode material for sodium-ion batteries with superior Na-storage performance. Solid State Ionics, 2018, 314, 61-65.	1.3	18
165	Ion-Pair Dissociation on α-MoO ₃ Surfaces: Focus on the Electrolyte–Cathode Compatibility Issue in Mg Batteries. Journal of Physical Chemistry C, 2018, 122, 398-405.	1.5	26
166	Sb 2 S 3 single crystal nanowires with comparable electrochemical properties as an anode for sodium ion batteries. Surfaces and Interfaces, 2018, 10, 170-175.	1.5	19
167	Triphase electrode performance adjustment for rechargeable ion batteries. Nano Energy, 2018, 43, 1-10.	8.2	34
168	<i>In situ</i> synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chemical Communications, 2018, 54, 38-41.	2.2	89
169	Layered Oxide Cathodes for Sodiumâ€lon Batteries: Phase Transition, Air Stability, and Performance. Advanced Energy Materials, 2018, 8, 1701912.	10.2	519
171	Deciphering the Cathode–Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials. Advanced Energy Materials, 2018, 8, 1801975.	10.2	111
172	Recent Progress in Rechargeable Potassium Batteries. Advanced Functional Materials, 2018, 28, 1802938.	7.8	518
173	Sodiumâ€lon Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials, 2018, 8, 1800079.	10.2	481
174	Sodium Rechargeable Batteries with Electrolytes Based on Nafion Membranes Intercalated by Mixtures of Organic Solvents. Batteries, 2018, 4, 61.	2.1	10
175	Sodium–Tin System: Thermodynamic Properties of Alloys and Prospects for Using Tin and Its Alloys and Compounds in Sodium-Ion Batteries (Review). Russian Journal of Applied Chemistry, 2018, 91, 1785-1798.	0.1	8
176	Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy and Environmental Science, 2018, 11, 3096-3127.	15.6	379
177	Anti-inflammatory fusicoccane-type diterpenoids from the phytopathogenic fungus <i>Alternaria brassicicola</i> . Organic and Biomolecular Chemistry, 2018, 16, 8751-8760.	1.5	18
178	Nano-embedded microstructured FeS ₂ @C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte. Journal of Materials Chemistry A, 2018, 6, 24425-24432.	5.2	42
179	Investigations of the capacity fading mechanism of Na0.44MnO2via ex situ XAS and magnetization measurements. Dalton Transactions, 2018, 47, 17102-17108.	1.6	11
180	Engineering of a TiO ₂ anode toward a record high Initial coulombic efficiency enabling high-performance low-temperature Na-ion hybrid capacitors. Journal of Materials Chemistry A, 2018, 6, 22840-22850.	5.2	26
181	New insight into Na intercalation with Li substitution on alkali site and high performance of O3-type layered cathode material for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 22731-22740.	5.2	21

#	Article	IF	CITATIONS
182	Recent developments of phosphorus-based anodes for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 24013-24030.	5.2	69
183	Tulip-like MoS ₂ with a single sheet tapered structure anchored on N-doped graphene substrates <i>via</i> C–O–Mo bonds for superior sodium storage. Journal of Materials Chemistry A, 2018, 6, 24433-24440.	5.2	48
184	Synthesis and Investigation of CuGeO3 Nanowires as Anode Materials for Advanced Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 193.	3.1	18
185	Materials based on group IVA elements for alloying-type sodium storage. Science China Chemistry, 2018, 61, 1494-1502.	4.2	22
186	Synthesis and Electrochemical Performance of Na0.5Li0.1Ni0.2Mn0.7Mg0.1O2 as a Cathode for Sodium-Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 5425-5432.	0.5	0
187	Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. Engineering, 2018, 4, 831-847.	3.2	169
188	Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF ₃ -Coated Nanorod Gradient Na[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 12912-12922.	7.3	82
189	Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability. ACS Applied Materials & Interfaces, 2018, 10, 42294-42300.	4.0	52
190	Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn–Teller Distortion of P′2-Type Na _{2/3} MnO ₂ : Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2018, 10, 40978-40984.	4.0	49
191	Construction of MoS ₂ /C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. ACS Nano, 2018, 12, 12578-12586.	7.3	272
192	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 42796-42803.	4.0	129
193	Flexible Three-Dimensional Heterostructured ZnO-Co ₃ O ₄ on Carbon Cloth as Free-Standing Anode with Outstanding Li/Na Storage Performance. Journal of the Electrochemical Society, 2018, 165, A3932-A3942.	1.3	32
194	High capacity MoO ₃ /rGO nanocomposite anode for lithium ion batteries: an intuition into the conversion mechanism of MoO ₃ . New Journal of Chemistry, 2018, 42, 18569-18577.	1.4	36
195	Asymmetric-Layered Tin Thiophosphate: An Emerging 2D Ternary Anode for High-Performance Sodium Ion Full Cell. ACS Nano, 2018, 12, 12902-12911.	7.3	45
196	Properties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective. Batteries, 2018, 4, 62.	2.1	36
197	Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications?. Journal of the Electrochemical Society, 2018, 165, A3714-A3722.	1.3	78
198	WSe ₂ /Reduced Graphene Oxide Nanocomposite with Superfast Sodium Ion Storage Ability as Anode for Sodium Ion Capacitors. Journal of the Electrochemical Society, 2018, 165, A3642-A3647.	1.3	26
199	A Synergistic Naâ€Mnâ€O Composite Cathodes for Highâ€Capacity Naâ€Ion Storage. Advanced Energy Materials, 2018, 8, 1802180.	10.2	21

#	Article	IF	CITATIONS
200	Computational Study of NaVOPO ₄ Polymorphs as Cathode Materials for Na-Ion Batteries: Diffusion, Electronic Properties, and Cation-Doping Behavior. Journal of Physical Chemistry C, 2018, 122, 25829-25836.	1.5	36
201	Graphene oxide supported tin dioxide: synthetic approaches and electrochemical characterization as anodes for lithium- and sodium-ion batteries. Russian Chemical Bulletin, 2018, 67, 1131-1141.	0.4	0
202	Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for Highâ€Capacity Dendriteâ€Free Sodium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804038.	7.8	73
203	<i>Operando</i> powder X-ray diffraction study of <i>P</i> 2-Na _{<i>x</i> } Ni _{0.3} Mn _{0.7} O ₂ cathode material during electrochemical cycling. Journal of Applied Crystallography, 2018, 51, 1304-1310.	1.9	6
204	Composition Screening of Lithium- and Sodium-Rich Anti-Perovskites for Fast-Conducting Solid Electrolytes. Journal of Physical Chemistry C, 2018, 122, 23978-23984.	1.5	59
205	Manganese hexacyanoferrate/graphene cathodes for sodium-ion batteries with superior rate capability and ultralong cycle life. Inorganic Chemistry Frontiers, 2018, 5, 2914-2920.	3.0	24
206	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566.	13.1	48
207	Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2018, 122, 23352-23363.	1.5	27
208	Insight on the Enhanced Reversibility of a Multimetal Layered Oxide for Sodium-Ion Battery. Journal of Physical Chemistry C, 2018, 122, 23925-23933.	1.5	21
209	An advanced blackberry-shaped Na3V2(PO4)3 cathode: Assists in high-rate performance and long-life stability. Electrochimica Acta, 2018, 292, 736-741.	2.6	25
210	Na1.68H0.32Ti2O3SiO4·1.76H2O as a Low-Potential Anode Material for Sodium-Ion Battery. ACS Applied Energy Materials, 2018, , .	2.5	4
211	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	10.2	324
212	Influence of Mn/Fe Ratio on Electrochemical and Structural Properties of P2-Na _{<i>x</i>} Mn _{1–<i>y</i>} Fe _{<i>y</i>} O ₂ Phases as Positive Electrode Material for Na-Ion Batteries. Chemistry of Materials, 2018, 30, 7672-7681.	3.2	36
213	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications, 2018, 9, 4082.	5.8	305
214	Electrochemical Energy Conversion and Storage with Zeolitic Imidazolate Framework Derived Materials: A Perspective. ChemElectroChem, 2018, 5, 3571-3588.	1.7	46
215	CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries. Electrochimica Acta, 2018, 292, 895-902.	2.6	78
216	Synthesis and performance evaluation of nanostructured NaFexCr1â^'X(SO4)2 cathode materials in sodium ion batteries (SIBs). RSC Advances, 2018, 8, 32985-32991.	1.7	16
217	A Waterâ€Soluble NaCMC/NaPAA Binder for Exceptional Improvement of Sodiumâ€Ion Batteries with an SnO ₂ â€Ordered Mesoporous Carbon Anode. ChemSusChem, 2018, 11, 3923-3931.	3.6	34

#	Article	IF	CITATIONS
218	Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials. Electrochimica Acta, 2018, 292, 98-106.	2.6	61
219	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	8.8	676
220	Three-dimensional hierarchical Ni ₃ Se ₂ nanorod array as binder/carbon-free electrode for high-areal-capacity Na storage. Nanoscale, 2018, 10, 18942-18948.	2.8	30
221	Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy, 2018, 54, 148-155.	8.2	106
222	Nâ€Doped Carbonâ€Coated Ni _{1.8} Co _{1.2} Se ₄ Nanoaggregates Encapsulated in Nâ€Doped Carbon Nanoboxes as Advanced Anode with Outstanding Highâ€Rate and Lowâ€Temperature Performance for Sodiumâ€Ion Half/Full Batteries. Advanced Functional Materials, 2018, 28, 1805444.	7.8	228
223	Cathode Materials for Potassium-Ion Batteries: Current Status and Perspective. Electrochemical Energy Reviews, 2018, 1, 625-658.	13.1	201
224	Overcoming transport and electrochemical limitations in the high-voltage Na0.67Ni0.33Mn0.67-yTiyO2 (0 ≤y ≤0.33) cathode materials by Ti-doping. Journal of Power Sources, 2018, 404, 39-46.	4.0	16
225	Selfâ€Adaptive Electrode with SWCNT Bundles as Elastic Substrate for Highâ€Rate and Longâ€Cycleâ€Life Lithium/Sodium Ion Batteries. Small, 2018, 14, e1802913.	5.2	32
226	Hierarchical Carbon@SnS ₂ Aerogel with "Skeleton/Skin―Architectures as a High-Capacity, High-Rate Capability and Long Cycle Life Anode for Sodium Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 37434-37444.	4.0	48
227	Enhancing the Rate Capability and Cycling Stability of Na _{0.67} Mn _{0.7} Fe _{0.2} Co _{0.1} O ₂ through a Synergy of Zr ⁴⁺ Doping and ZrO ₂ Coating. Journal of Physical Chemistry C, 2018. 122. 25909-25916.	1.5	28
228	Insight into the Multirole of Graphene in Preparation of High Performance Na _{2+2<i>x</i>} Fe _{2–<i>x</i>} (SO ₄) ₃ Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 16105-16112.	3.2	24
229	Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16121-16129.	3.2	63
230	Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications. Materials Today Energy, 2018, 10, 264-279.	2.5	75
231	Symmetric Cell Electrochemical Impedance Spectroscopy of Na ₂ FeP ₂ O ₇ Positive Electrode Material in Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2018, 122, 26857-26864.	1.5	33
232	High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan. ACS Applied Energy Materials, 2018, 1, 6425-6432.	2.5	25
233	Flowerlike Mesoporous FeF ₃ ·0.33H ₂ O with 3D Hierarchical Nanostructure: Size-Controlled Green-Synthesis and Application as Cathodes for Na-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 7153-7163.	2.5	22
234	Exploration of AVP ₂ O ₇ /C (A = Li, Li _{0.5} Na _{0.5} , and Na) for High-Rate Sodium-Ion Battery Applications. Journal of Physical Chemistry C, 2018, 122, 24609-24618.	1.5	7
235	High Performance Titanium Antimonide TiSb ₂ Alloy for Na-Ion Batteries and Capacitors. Chemistry of Materials, 2018, 30, 8155-8163.	3.2	36

#	Article	IF	CITATIONS
236	High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis. Batteries, 2018, 4, 8.	2.1	13
237	A Nonpresodiate Sodiumâ€ŀon Capacitor with High Performance. Small, 2018, 14, e1804035.	5.2	36
238	Mechanism behind the Unusually High Conductivities of High Concentrated Sodium Ion Glyme-Based Electrolytes. Journal of Physical Chemistry C, 2018, 122, 25237-25246.	1.5	21
239	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	10.2	207
240	TiS ₂ as an Advanced Conversion Electrode for Sodiumâ€lon Batteries with Ultraâ€High Capacity and Longâ€Cycle Life. Advanced Science, 2018, 5, 1801021.	5.6	101
241	Electrochemical performance of SnO–V2O5–SiO2 glass anode for Na-ion batteries. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	6
242	Increasing the stability of very high potential electrical double layer capacitors by operando passivation. Journal of Power Sources, 2018, 402, 53-61.	4.0	12
243	Enhanced Cycle Performance of Polyimide Cathode Using a Quasi-Solid-State Electrolyte. Journal of Physical Chemistry C, 2018, 122, 22294-22300.	1.5	30
244	Theoretical design of double anti-perovskite Na ₆ SOI ₂ as a super-fast ion conductor for solid Na ⁺ ion batteries. Journal of Materials Chemistry A, 2018, 6, 19843-19852.	5.2	36
245	Exploration of Phase Compositions, Crystal Structures, and Electrochemical Properties of NaxFeyMn1–yO2 Sodium Ion Battery Materials. Chemistry of Materials, 2018, 30, 6636-6645.	3.2	15
246	Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy, 2018, 53, 524-535.	8.2	165
247	Oxygen Vacancy Engineering in Tin(IV) Oxide Based Anode Materials toward Advanced Sodium″on Batteries. ChemSusChem, 2018, 11, 3693-3703.	3.6	37
248	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
249	Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Materials Chemistry Frontiers, 2018, 2, 1944-1986.	3.2	59
250	Recent Advances of Celluloseâ€Based Materials and Their Promising Application in Sodiumâ€Ion Batteries and Capacitors. Small, 2018, 14, e1802444.	5.2	75
251	Probing the Electrochemical Reaction Mechanism and Crystallinity Effect of RuO ₂ for Sodium Storage. Journal of the Electrochemical Society, 2018, 165, A2897-A2903.	1.3	5
252	MnSe2 nanocubes as an anode material for sodium-ion batteries. Materials Today Energy, 2018, 10, 62-67.	2.5	37
253	Synthesis and Electrochemical Performance of Novel Peanut-Like SbPO4 Aggregates. IOP Conference Series: Materials Science and Engineering, 2018, 381, 012017.	0.3	1

ARTICLE IF CITATIONS Tetra-butyl ammonium fluoride – An advanced activator of aluminum surfaces in organic electrolytes 254 9.5 32 for aluminum-air batteries. Energy Storage Materials, 2018, 15, 465-474. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion 8.2 194 storage. Nano Energy, 2018, 53, 415-424. Shift to Post-Li-Ion Capacitors: Electrochemical Behavior of Activated Carbon Electrodes in Li-, Na-256 and K-Salt Containing Organic Electrolytes. Journal of the Electrochemical Society, 2018, 165, 1.3 14 A2807-A2814. A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€Ion Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492. Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes. Journal of Solid State Electrochemistry, 2018, 22, 258 1.2 5 2801-2809. Electrochemical Na-Migration into Delithiated Phase LizNi1/3Mn1/3Co1/3O2: Structure and 1.3 Electrochemical Properties. Journal of the Electrochemical Society, 2018, 165, A1558-A1562. Rational Design and General Synthesis of Sâ€Doped Hard Carbon with Tunable Doping Sites toward 260 11.1 239 Excellent Naâ€Ion Storage Performance. Advanced Materials, 2018, 30, e1802035. CuS Microspheres with Tunable Interlayer Space and Micropore as a Highâ€Rate and Longâ€Life Anode for 10.2 Sodiumâ€ion Batteries. Advanced Energy Materials, 2<u>018, 8, 1</u>800930. Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion 262 2.6 78 batteries by K-Ca co-doping. Electrochimica Acta, 2018, 281, 208-217. Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate 1.7 44 capability using DFT. RSC Advances, 2018, 8, 17773-17785. Superion Conductor Na_{11.1}Sn_{2.1}P_{0.9}Se₁₂: Lowering the Activation Barrier of Na⁺ Conduction in Quaternary 1–4–5–6 Electrolytes. Chemistry 264 3.2 73 of Materials, 2018, 30, 4134-4139. Rational Design of Hierarchical Nanotubes through Encapsulating CoSe₂Nanoparticles into MoSe₂/C Composite Shells with Enhanced Lithium and Sodium Storage Performance. 4.0 107 ACS Applied Materials & amp; Interfaces, 2018, 10, 20635-20642. Large Ĩ€-Conjugated Porous Frameworks as Cathodes for Sodium-Ion Batteries. Journal of Physical 266 2.1 69 Chemistry Letters, 2018, 9, 3205-3211. Revealing the chemistry of an anode-passivating electrolyte salt for high rate and stable sodium metal batteries. Journal of Materials Chemistry A, 2018, 6, 12012-12017. 5.2 58 Sustainable one step process for making carbon-free TiO2 anodes and sodium-ion battery 268 2.55 electrochemistry. Sustainable Energy and Fuels, 2018, 2, 1582-1587. SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 10958-10966. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped 270 1.35 graphene. Nanotechnology, 2018, 29, 305401. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as 271 high-performance sodium-ion battery anodes. Fuel Processing Technology, 2018, 177, 328-335.

#	Article	IF	CITATIONS
272	Revisiting the alluaudite NaMnFe2(PO4)3 sodium insertion material: Structural, diffusional and electrochemical insights. Electrochimica Acta, 2018, 283, 850-857.	2.6	19
273	SnS/C nanocomposites for high-performance sodium ion battery anodes. RSC Advances, 2018, 8, 23847-23853.	1.7	28
274	Ethers Illume Sodiumâ€Based Battery Chemistry: Uniqueness, Surprise, and Challenges. Advanced Energy Materials, 2018, 8, 1801361.	10.2	149
275	Rechargeable Magnesium Batteries using Conversionâ€Type Cathodes: A Perspective and Minireview. Small Methods, 2018, 2, 1800020.	4.6	135
276	Design and Synthesis of Layered Na ₂ Ti ₃ O ₇ and Tunnel Na ₂ Ti ₆ O ₁₃ Hybrid Structures with Enhanced Electrochemical Behavior for Sodiumâ€lon Batteries. Advanced Science, 2018, 5, 1800519.	5.6	102
277	2D holey cobalt sulfide nanosheets derived from metal–organic frameworks for high-rate sodium ion batteries with superior cyclability. Journal of Materials Chemistry A, 2018, 6, 14324-14329.	5.2	81
278	Molecular Dynamics Modeling of the Structure and Na+-Ion Transport in Na2S + SiS2Glassy Electrolytes. Journal of Physical Chemistry B, 2018, 122, 7597-7608.	1.2	11
279	Sodium superionic conduction in tetragonal Na3PS4. Journal of Solid State Chemistry, 2018, 265, 353-358.	1.4	52
280	Highly Efficient, Cost Effective, and Safe Sodiation Agent for Highâ€Performance Sodiumâ€Ion Batteries. ChemSusChem, 2018, 11, 3286-3291.	3.6	55
281	Exploration of the Na _x MoO ₂ phase diagram for low sodium contents (<i>x</i> ≤0.5). Journal of Materials Chemistry A, 2018, 6, 14651-14662.	5.2	4
282	Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries. Journal of Power Sources, 2018, 396, 476-482.	4.0	37
283	Na _{1.5} La _{1.5} TeO ₆ : Na ⁺ conduction in a novel Na-rich double perovskite. Chemical Communications, 2018, 54, 10040-10043.	2.2	18
284	Structural Engineering of Multishelled Hollow Carbon Nanostructures for Highâ€Performance Naâ€Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1800855.	10.2	121
285	A Flexible Sulfurâ€Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. Small, 2018, 14, e1802218.	5.2	103
286	Selfâ€Polymerized Disordered Carbon Enabling High Sodium Storage Performance through Expanded Interlayer Spacing by Bound Sulfur Atoms. ChemElectroChem, 2018, 5, 3206-3212.	1.7	5
287	Electrolyte Additives for Roomâ€Temperature, Sodiumâ€Based, Rechargeable Batteries. Chemistry - an Asian Journal, 2018, 13, 2770-2780.	1.7	53
288	A 3D coral-like structured NaVPO4F/C constructed by a novel synthesis route as high-performance cathode material for sodium-ion battery. Chemical Engineering Journal, 2018, 353, 25-33.	6.6	32
289	A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy, 2018, 52, 88-94.	8.2	58

#	Article	IF	CITATIONS
290	Development of P3-K _{0.69} CrO ₂ as an ultra-high-performance cathode material for K-ion batteries. Energy and Environmental Science, 2018, 11, 2821-2827.	15.6	157
291	Electrical Conductivity and Electrochemical Characteristics of Na3V2(PO4)3-Based NASICON-Type Materials. Inorganic Materials, 2018, 54, 794-804.	0.2	26
292	N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chemical Engineering Journal, 2018, 353, 606-614.	6.6	93
293	Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodiumâ€lon Batteries with Favorable Kinetics. Advanced Science, 2018, 5, 1800613.	5.6	65
294	Advances in Flexible and Wearable Energy torage Textiles. Small Methods, 2018, 2, 1800124.	4.6	123
295	Encapsulated hollow Na2Ti3O7 spheres in reduced graphene oxide films for flexible sodium-ion batteries. Electrochimica Acta, 2018, 284, 287-293.	2.6	32
296	Template-assisted <i>in situ</i> confinement synthesis of nitrogen and oxygen co-doped 3D porous carbon network for high-performance sodium-ion battery anode. New Journal of Chemistry, 2018, 42, 14410-14416.	1.4	15
297	Facile synthesis of amorphous FeVO4 nanoparticles as novel cathode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 768, 181-189.	2.8	17
298	Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage. Journal of the American Chemical Society, 2018, 140, 10315-10323.	6.6	351
299	Challenges for Developing Rechargeable Roomâ€Temperature Sodium Oxygen Batteries. Advanced Materials Technologies, 2018, 3, 1800110.	3.0	29
300	Mesoporous Graphitic Carbonâ€Encapsulated Fe ₂ O ₃ Nanocomposite as Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 14786-14793.	1.7	29
301	Three-dimensional carbon framework as a promising anode material for high performance sodium ion storage devices. Chemical Engineering Journal, 2018, 353, 453-459.	6.6	54
302	Free Energy Landscape of Sodium Solvation into Graphite. Journal of Physical Chemistry C, 2018, 122, 20064-20072.	1.5	9
303	Rational design of Na(Li _{1/3} Mn _{1/2} Cr _{1/6})O ₂ exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18036-18043.	5.2	19
304	Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Advanced Materials, 2018, 30, e1705146.	11.1	376
305	Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018, 4, 4.	2.1	251
306	Calciumâ€lon Batteries: Current Stateâ€ofâ€theâ€Art and Future Perspectives. Advanced Materials, 2018, 30, e1801702.	11.1	294
307	A 3D graphene current collector boosts ultrahigh specific capacity in a highly uniform Prussian blue@graphene composite as a freestanding cathode for sodium ion batteries. Nanoscale, 2018, 10, 14697-14704.	2.8	32

#	Article	IF	CITATIONS
308	Coaxial α-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. Journal of Materials Chemistry A, 2018, 6, 15797-15806.	5.2	65
309	Piezoelectric Response of Multi-Walled Carbon Nanotubes. Materials, 2018, 11, 638.	1.3	48
310	Redox Activity of Sodium Vanadium Oxides towards Oxidation in Na Ion Batteries. Materials, 2018, 11, 1021.	1.3	9
311	Organic Carbonyl Compounds for Sodiumâ€ion Batteries: Recent Progress and Future Perspectives. Chemistry - A European Journal, 2018, 24, 18235-18245.	1.7	65
312	Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52, 1-10.	8.2	148
313	Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study. Journal of Materials Science, 2018, 53, 14423-14434.	1.7	23
314	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599.	1.5	34
315	High performance potassium–sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. Journal of Materials Chemistry A, 2018, 6, 14587-14593.	5.2	89
316	Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications. Journal of Physical Chemistry Letters, 2018, 9, 4267-4274.	2.1	18
317	Vapor-Infiltration Approach toward Selenium/Reduced Graphene Oxide Composites Enabling Stable and High-Capacity Sodium Storage. ACS Nano, 2018, 12, 7397-7405.	7.3	60
318	γ-Na _{0.96} V ₂ O ₅ : A New Competitive Cathode Material for Sodium-Ion Batteries Synthesized by a Soft Chemistry Route. Chemistry of Materials, 2018, 30, 5305-5314.	3.2	25
319	Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy, 2018, 52, 279-291.	8.2	211
320	Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron. ACS Applied Materials & Interfaces, 2018, 10, 26348-26356.	4.0	54
321	Hierarchically Porous Fe ₂ CoSe ₄ Binaryâ€Metal Selenide for Extraordinary Rate Performance and Durable Anode of Sodiumâ€ion Batteries. Advanced Materials, 2018, 30, e1802745.	11.1	201
322	Red Phosphorus Nanoparticle@3D Interconnected Carbon Nanosheet Framework Composite for Potassiumâ€ion Battery Anodes. Small, 2018, 14, e1802140.	5.2	194
323	TiO2 nanosheets anchoring on carbon nanotubes for fast sodium storage. Electrochimica Acta, 2018, 283, 1514-1524.	2.6	18
324	A high-performance sodium anode composed of few-layer MoSe ₂ and N, P doped reduced graphene oxide composites. Inorganic Chemistry Frontiers, 2018, 5, 2189-2197.	3.0	53
325	Micrometer-Sized Nanoporous Sb/C Anode with High Volumetric Capacity and Fast Charging Performance for Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 2317-2325.	2.5	23

#	Article	IF	CITATIONS
326	Polyanionic Insertion Materials for Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703055.	10.2	267
327	Insights into Li ⁺ , Na ⁺ , and K ⁺ Intercalation in Lepidocrocite-Type Layered TiO ₂ Structures. ACS Applied Energy Materials, 2018, 1, 2078-2086.	2.5	31
328	Advanced perspective on the synchronized bifunctional activities of P2-type materials to implement an interconnected voltage profile for seawater batteries. Journal of Materials Chemistry A, 2018, 6, 11012-11021.	5.2	25
329	A hit-and-run strategy towards perylene diimide/reduced graphene oxide as high performance sodium ion battery cathode. Chemical Engineering Journal, 2018, 349, 66-71.	6.6	39
330	Revealing the formation and electrochemical properties of bis(trifluoromethanesulfonyl)imide intercalated graphite with first-principles calculations. Physical Chemistry Chemical Physics, 2018, 20, 14124-14132.	1.3	19
331	An ultralight and flexible sodium titanate nanowire aerogel with superior sodium storage. Journal of Materials Chemistry A, 2018, 6, 17495-17502.	5.2	12
332	Progress of metal-phosphide electrodes for advanced sodium-ion batteries. Functional Materials Letters, 2018, 11, 1830001.	0.7	22
333	Manganeseâ€Oxideâ€Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced Materials, 2018, 30, e1802569.	11.1	94
334	Graphene-Loaded Bi ₂ Se ₃ : A Conversion–Alloying-type Anode Material for Ultrafast Gravimetric and Volumetric Na Storage. ACS Applied Materials & Interfaces, 2018, 10, 30379-30387.	4.0	83
335	Two-dimensional sheet of germanium selenide as an anode material for sodium and potassium ion batteries: First-principles simulation study. Computational Materials Science, 2018, 154, 204-211.	1.4	74
336	Exposing {010} Active Facets by Multiple‣ayer Oriented Stacking Nanosheets for Highâ€Performance Capacitive Sodiumâ€Ion Oxide Cathode. Advanced Materials, 2018, 30, e1803765.	11.1	142
337	Mechanism of the Na-substituted Spinel Phase Generation in a Li ₄ Ti ₅ O ₁₂ Electrode via Sodium-ion Battery Cycling. Electrochemistry, 2018, 86, 194-197.	0.6	16
338	Synergistic Role of Electrolyte and Binder for Enhanced Electrochemical Storage for Sodium-Ion Battery. ACS Omega, 2018, 3, 9945-9955.	1.6	27
339	A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. Journal of Electroanalytical Chemistry, 2018, 826, 142-149.	1.9	48
340	3D Porous Tin Created by Tuning the Redox Potential Acts as an Advanced Electrode for Sodiumâ€lon Batteries. ChemSusChem, 2018, 11, 3376-3381.	3.6	35
341	Compared investigation of carbon-decorated Na3V2(PO4)3 with saccharides of different molecular weights as cathode of sodium ion batteries. Electrochimica Acta, 2018, 286, 231-241.	2.6	37
342	Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode. IScience, 2018, 6, 212-221.	1.9	63
343	Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. Journal of Power Sources, 2018, 407, 173-179.	4.0	50

#	ARTICLE The re-emergence of sodium ion batteries: testing, processing, and manufacturability.	IF	CITATIONS
344 345	Nanotechnology, Science and Applications, 2018, Volume 11, 23-33. Elucidation of the Sodium – Copper Extrusion Mechanism in CuCrS ₂ : A High Capacity, Longâ€Life Anode Material for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2018, 1, 176-183.	4.6 2.4	71 17
346	Rational design of metal organic framework-derived FeS ₂ hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale, 2018, 10, 17092-17098.	2.8	139
347	Marcasite iron sulfide as a high-capacity electrode material for sodium storage. Journal of Materials Chemistry A, 2018, 6, 17111-17119.	5.2	26
348	Hierarchical Porous Sb Films on 3D Cu Substrate Have Promise for Stable Sodium Storage. ACS Applied Energy Materials, 2018, 1, 3598-3602.	2.5	18
349	TiO _{2–<i>x</i>} Nanocages Anchored in N-Doped Carbon Fiber Films as a Flexible Anode for High-Energy Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4459-4466.	2.5	25
350	High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10, 775-787.	3.8	71
351	Enhancement of Stability by Positive Disruptive Effect on Mn–Fe Charge Transfer in Vacancy-Free Mn–Co Hexacyanoferrate Through a Charge/Discharge Process in Aqueous Na-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 20602-20610.	1.5	28
352	Simultaneous MgO coating and Mg doping of Na[Ni _{0.5} Mn _{0.5}]O ₂ cathode: facile and customizable approach to high-voltage sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 16854-16862.	5.2	93
353	X-ray Absorption Spectroscopy and In-Operando Neutron Diffraction Studies on Local Structure Fading Induced Irreversibility in a 18â€650 Cell with P2–Na ₂ /3Fe ₁ /3Mn ₂ /3O ₂ Cathode in a Long Cycle Test. Iournal of Physical Chemistry C. 2018. 122. 12623-12632.	1.5	10
354	Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 21335-21342.	4.0	164
355	The double effects of sulfur-doping on MoO2/C nanofibers with high properties for Na-ion batteries. Applied Surface Science, 2018, 455, 343-348.	3.1	30
356	Materials Based on Antimony and Bismuth for Sodium Storage. Chemistry - A European Journal, 2018, 24, 13719-13727.	1.7	68
357	Structural Designs for Accommodating Volume Expansion in Sodium Ion Batteries. Chinese Journal of Chemistry, 2018, 36, 866-874.	2.6	10
358	Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents. Solid State Ionics, 2018, 324, 28-32.	1.3	22
359	Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 13652-13660.	5.2	111
360	Electrochemistry and Solid‣tate Chemistry of NaMeO ₂ (Me = 3d Transition Metals). Advanced Energy Materials, 2018, 8, 1703415.	10.2	255
361	PEG400-assisted synthesis of oxygen-incorporated MoS2 ultrathin nanosheets supported on reduced graphene oxide for sodium ion batteries. Journal of Alloys and Compounds, 2018, 763, 257-266.	2.8	18

#	Article	IF	CITATIONS
362	Pyrophosphates AMoP 2 O 7 (A = Li and Na): Synthesis, structure and electrochemical properties. Materials Research Bulletin, 2018, 106, 170-175.	2.7	6
363	Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 22059-22066.	4.0	226
364	A Chemical Precipitation Method Preparing Hollow–Core–Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodiumâ€ l on Batteries. Small, 2018, 14, e1801246.	5.2	104
365	A Flexible Na ₃ V ₂ (PO ₄) ₃ /C Composite Fiber Membrane Cathode for Na-Ion and Na-Li Hybrid-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1761-A1769.	1.3	12
366	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	5.2	83
367	Heterostructure engineering of molybdenum chalcogenides for stable sodium storage. Materials Technology, 2018, 33, 543-547.	1.5	0
368	Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 13294-13301.	5.2	63
369	Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors. Electrochimica Acta, 2018, 283, 931-948.	2.6	37
370	Necklaceâ€Like Structures Composed of Fe ₃ N@C Yolk–Shell Particles as an Advanced Anode for Sodiumâ€Ion Batteries. Advanced Materials, 2018, 30, e1800525.	11.1	145
371	Cation Effects on the Reduction of Colloidal ZnO Nanocrystals. Journal of the American Chemical Society, 2018, 140, 8924-8933.	6.6	22
372	Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodium–selenium batteries. Materials Chemistry Frontiers, 2018, 2, 1574-1582.	3.2	48
373	Large interlayer spacing vanadium oxide nanotubes as cathodes for high performance sodium ion batteries. RSC Advances, 2018, 8, 22053-22061.	1.7	11
374	Mo2C embedded in S-doped carbon nanofibers for high-rate performance and long-life time Na-ion batteries. Solid State Ionics, 2018, 323, 151-156.	1.3	32
375	Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Materials, 2019, 16, 383-390.	9.5	79
376	In Situ Studies of Li/Cuâ€Doped Layered P2 Na <i>_x</i> MnO ₂ Electrodes for Sodiumâ€ion Batteries. Small Methods, 2019, 3, 1800092.	4.6	12
377	Recent Progress and Future Trends of Aluminum Batteries. Energy Technology, 2019, 7, 86-106.	1.8	85
378	Boosting sodium storage properties of titanium dioxide by a multiscale design based on MOF-derived strategy. Energy Storage Materials, 2019, 17, 126-135.	9.5	68
379	Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Materials, 2019, 16, 434-454.	9.5	156

#	Article	IF	CITATIONS
380	Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. Journal of Energy Chemistry, 2019, 32, 15-44.	7.1	61
381	Exploration of Advanced Electrode Materials for Rechargeable Sodiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1800212.	10.2	204
382	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Materials, 2019, 18, 366-374.	9.5	101
383	Nanomaterials for Electrical Energy Storage. , 2019, , 165-206.		12
384	Ultrahigh rate sodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon, 2019, 143, 21-29.	5.4	41
385	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy and Environmental Science, 2019, 12, 825-840.	15.6	205
386	Facile Tailoring of Multidimensional Nanostructured Sb for Sodium Storage Applications. ACS Nano, 2019, 13, 9533-9540.	7.3	62
387	The potential application of graphene nanotechnology for renewable energy systems. , 2019, , 59-80.		2
388	Selfâ€Supporting, Flexible, Additiveâ€Free, and Scalable Hard Carbon Paper Selfâ€Interwoven by 1D Microbelts: Superb Room/Lowâ€Temperature Sodium Storage and Working Mechanism. Advanced Materials, 2019, 31, e1903125.	11.1	184
389	MoS ₂ nanoflowers encapsulated into carbon nanofibers containing amorphous SnO ₂ as an anode for lithium-ion batteries. Nanoscale, 2019, 11, 16253-16261.	2.8	52
390	Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. Journal of Materials Chemistry A, 2019, 7, 20813-20823.	5.2	18
391	Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries. Nano Research, 2019, 12, 2609-2613.	5.8	24
392	<i>N</i> -Ethyl- <i>N</i> -propylpyrrolidinium Bis(fluorosulfonyl)amide Ionic Liquid Electrolytes for Sodium Secondary Batteries: Effects of Na Ion Concentration. Journal of Physical Chemistry C, 2019, 123, 22018-22026.	1.5	24
393	Facile Synthesis of Ultraâ€Small Few‣ayer Nanostructured MoSe ₂ Embedded on N, P Coâ€Doped Bioâ€Carbon for Highâ€Performance Half/Full Sodiumâ€Ion and Potassiumâ€Ion Batteries. Chemistry A European Journal, 2019, 25, 13411-13421.	-1.7	61
394	Reaching the Energy Density Limit of Layered O3â€NaNi _{0.5} Mn _{0.5} O ₂ Electrodes via Dual Cu and Ti Substitution. Advanced Energy Materials, 2019, 9, 1901785.	10.2	122
395	Sodium Naphthaleneâ€2,6â€dicarboxylate: An Anode for Sodium Batteries. ChemSusChem, 2019, 12, 4522-4528.	3.6	20
396	N-Doped Carbon Nanonecklaces with Encapsulated Sb as a Sodium-Ion Battery Anode. Matter, 2019, 1, 720-733.	5.0	76
397	Thermoplastic Polyurethane Elastomerâ€Based Gel Polymer Electrolytes for Sodiumâ€Metal Cells with Enhanced Cycling Performance. ChemSusChem, 2019, 12, 4645-4654.	3.6	42

#	Article	IF	CITATIONS
398	Designed Formation of Hybrid Nanobox Composed of Carbon Sheathed CoSe ₂ Anchored on Nitrogenâ€Doped Carbon Skeleton as Ultrastable Anode for Sodiumâ€Ion Batteries. Small, 2019, 15, e1902881.	5.2	79
399	Poly(N-vinylcarbazole) (PVK) as a high-potential organic polymer cathode for dual-intercalation Na-ion batteries. Organic Electronics, 2019, 75, 105386.	1.4	23
400	Glycine-Nitrate Process for Synthesis of Na3V2(PO4)3 Cathode Material and Optimization of Glucose-Derived Hard Carbon Anode Material for Characterization in Full Cells. Batteries, 2019, 5, 56.	2.1	10
401	Revealing the Simultaneous Effects of Conductivity and Amorphous Nature of Atomicâ€Layerâ€Deposited Doubleâ€Anionâ€Based Zinc Oxysulfide as Superior Anodes in Naâ€Ion Batteries. Small, 2019, 15, e1900595.	5.2	12
402	Enhanced sodium storage characteristics of P2-Na2/3Mn3/4Co1/4O2 cathode co-modified by La2O3 and TiO2 oxide. Materials Chemistry and Physics, 2019, 238, 121933.	2.0	3
403	Bismuth Sulfide–Integrated Carbon Derived from Organic Ligands as a Superior Anode for Sodium Storage. Energy Technology, 2019, 7, 1900668.	1.8	8
404	A Oneâ€Dimensional π–d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. Angewandte Chemie, 2019, 131, 14873-14881.	1.6	34
405	A Oneâ€Dimensional ï€â€"d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. Angewandte Chemie - International Edition, 2019, 58, 14731-14739.	7.2	144
406	Embracing high performance potassium-ion batteries with phosphorus-based electrodes: a review. Nanoscale, 2019, 11, 15402-15417.	2.8	59
407	A Versatile Pyramidal Hauerite Anode in Congeniality Diglymeâ€Based Electrolytes for Boosting Performance of Li―and Naâ€ŀon Batteries. Advanced Energy Materials, 2019, 9, 1900710.	10.2	29
408	Cycling Stability of Layered Potassium Manganese Oxide in Nonaqueous Potassium Cells. ACS Applied Materials & Interfaces, 2019, 11, 27770-27779.	4.0	38
409	Highly Ordered Graphene Solid: An Efficient Platform for Capacitive Sodium-Ion Storage with Ultrahigh Volumetric Capacity and Superior Rate Capability. ACS Nano, 2019, 13, 9161-9170.	7.3	53
410	Phase transformation and functional behavior of Na2MP2O7 (M = Mn, Co) pyrophosphates. AIP Conference Proceedings, 2019, , .	0.3	0
411	CoS nanosheets wrapping on bowl-like hollow carbon spheres with enhanced compact density for sodium-ion batteries. Nanotechnology, 2019, 30, 425402.	1.3	17
412	Excellent Electrolyte Wettability and High Energy Density of B ₂ S as a Two-Dimensional Dirac Anode for Non-Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28830-28840.	4.0	58
413	Building highly stable and industrial NaVPO ₄ F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 18451-18457.	5.2	39
414	Controlled Oxygen Redox for Excellent Power Capability in Layered Sodiumâ€Based Compounds. Advanced Energy Materials, 2019, 9, 1901181.	10.2	49
415	Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade. Carbon, 2019, 153, 634-647.	5.4	67

#	Article	IF	CITATIONS
416	Carbon nanonion-assembled microspheres for excellent gravimetric and volumetric Na-Ion storage. Carbon, 2019, 153, 298-307.	5.4	22
417	An ion conductive polyimide encapsulation: New insight and significant performance enhancement of sodium based P2 layered cathodes. Energy Storage Materials, 2019, 22, 168-178.	9.5	22
418	Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 2019, 6, 4922-4948.	1.7	7
419	Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19709-19718.	5.2	86
420	Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chemical Engineering Journal, 2019, 378, 122206.	6.6	69
421	Morphology-selected synthesis of copper ferrite via spray drying with excellent sodium storage properties. Ceramics International, 2019, 45, 20796-20802.	2.3	23
422	Room-temperature carbon coating on MoS2/Graphene hybrids with carbon dioxide for enhanced sodium storage. Carbon, 2019, 153, 217-224.	5.4	38
423	Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 2019, 397, 138-167.	9.5	164
424	Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chemical Engineering Journal, 2019, 378, 122168.	6.6	58
425	Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries. Materials Today Energy, 2019, 13, 221-232.	2.5	14
426	A dicyanobenzoquinone based cathode material for rechargeable lithium and sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 17888-17895.	5.2	35
427	Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 26817-26823.	4.0	27
428	NaCrO 2 /Coffee Waste–derived Nitrogenâ€doped Carbon Composite as Highâ€Performance Cathode Material for Sodium Ion Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 857-862.	1.0	7
429	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter, 2019, 1, 90-114.	5.0	266
430	One-Pot Formation of Sb–Carbon Microspheres with Graphene Sheets: Potassium-Ion Storage Properties and Discharge Mechanisms. ACS Applied Materials & Interfaces, 2019, 11, 27973-27981.	4.0	46
431	Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries. Journal of Materials Science, 2019, 54, 12723-12736.	1.7	12
432	Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochimica Acta, 2019, 319, 541-551.	2.6	63
433	P2-Na _{2/3} MnO ₂ by Co Incorporation: As a Cathode Material of High Capacity and Long Cycle Life for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28928-28933.	4.0	41

#	Article	IF	CITATIONS
434	Promoting Highly Reversible Sodium Storage of Iron Sulfide Hollow Polyhedrons via Cobalt Incorporation and Graphene Wrapping. Advanced Energy Materials, 2019, 9, 1901584.	10.2	71
435	Atomic Layer Deposition of a Magnesium Phosphate Solid Electrolyte. Chemistry of Materials, 2019, 31, 5566-5575.	3.2	30
436	The dual-function sacrificing template directed formation of MoS ₂ /C hybrid nanotubes enabling highly stable and ultrafast sodium storage. Journal of Materials Chemistry A, 2019, 7, 18828-18834.	5.2	47
437	All solid state rechargeable aluminum–air battery with deep eutectic solvent based electrolyte and suppression of byproducts formation. RSC Advances, 2019, 9, 22220-22226.	1.7	35
438	Electronic Properties, Phase Transformation, and Anionic Redox of Monoclinic Na ₂ MnO ₃ Cathode Material for Sodiumâ€ion Batteries: Firstâ€Principle Calculations. ChemElectroChem, 2019, 6, 3987-3993.	1.7	12
439	Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte. Journal of Solid State Electrochemistry, 2019, 23, 2401-2409.	1.2	48
440	High energy K-ion batteries based on P3-Type KO·5MnO2 hollow submicrosphere cathode. Journal of Power Sources, 2019, 437, 226913.	4.0	58
441	Sodium-ion battery anodes: Status and future trends. EnergyChem, 2019, 1, 100012.	10.1	217
442	Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics. Electrochimica Acta, 2019, 320, 134626.	2.6	50
443	In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29985-29992.	4.0	39
444	Intercalation pseudocapacitance in a NASICON-structured Na ₂ CrTi(PO ₄) ₃ @carbon nanocomposite: towards high-rate and long-lifespan sodium-ion-based energy storage. Journal of Materials Chemistry A, 2019, 7, 20604-20613.	5.2	18
445	Three-dimensional, hetero-structured, Cu ₃ P@C nanosheets with excellent cycling stability as Na-ion battery anode material. Journal of Materials Chemistry A, 2019, 7, 16999-17007.	5.2	71
446	Metallicâ€State SnS 2 Nanosheets with Expanded Lattice Spacing for Highâ€Performance Sodiumâ€Ion Batteries. ChemSusChem, 2019, 12, 4046-4053.	3.6	30
447	Facile synthesis of tin phosphide/reduced graphene oxide composites as anode material for potassium-ion batteries. Ionics, 2019, 25, 4795-4803.	1.2	27
448	Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New Journal of Chemistry, 2019, 43, 11618-11625.	1.4	48
449	Increased sodium-ion storage performances of uniform TiO2/carbon nanofibers by in-situ Fe-doping. Materials Letters, 2019, 253, 349-353.	1.3	3
450	Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	24
451	Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. CheM, 2019, 5, 2547-2570.	5.8	110

#	Article	IF	CITATIONS
452	Advanced non-small cell lung cancer patients with low tumor mutation burden might derive benefit from anti-programmed cell death (PD)-1 and anti-programmed deathligand 1 (PD-L1) blockade. Annals of Oncology, 2019, 30, ii62.	0.6	0
453	Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and Highâ€Rate Sodiumâ€lon Batteries. Advanced Materials, 2019, 31, e1904771.	11.1	201
454	Encapsulating Trogtalite CoSe ₂ Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes. Advanced Energy Materials, 2019, 9, 1901778.	10.2	131
455	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO ₂ Quantum Dots for Exceptional Sodiumâ€ion Storage. Angewandte Chemie - International Edition, 2019, 58, 14125-14128.	7.2	47
456	Novel Fabrication Of N/S Coâ€doped Hierarchically Porous Carbon For Potassiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 11488-11495.	0.7	29
457	SnS ₂ /Co ₃ S ₄ Hollow Nanocubes Anchored on Sâ€Doped Graphene for Ultrafast and Stable Naâ€lon Storage. Small, 2019, 15, e1903873.	5.2	57
458	Phosphorusâ€Dopingâ€Induced Surface Vacancies of 3D Na ₂ Ti ₃ O ₇ Nanowire Arrays Enabling Highâ€Rate and Longâ€Life Sodium Storage. Chemistry - A European Journal, 2019, 25, 14881-14889.	1.7	19
459	Al2O3 coated Na0.44MnO2 as high-voltage cathode for sodium ion batteries. Applied Surface Science, 2019, 494, 1156-1165.	3.1	45
460	Surface Anionization of Self-Assembled Iron Sulfide Hierarchitectures to Enhance Capacitive Storage for Alkaline-Metal-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 39991-39997.	4.0	25
461	Rational Construction of a Binder-Free and Universal Electrode for Stable and Fast Alkali-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 40006-40013.	4.0	13
462	SnS Nanosheets Confined Growth by S and N Codoped Graphene with Enhanced Pseudocapacitance for Sodium-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2019, 11, 41363-41373.	4.0	63
463	Influence of Oxygen–Sulfur Exchange on the Structural, Electronic, and Stability Properties of Alkali Hexastannates. Journal of Physical Chemistry C, 2019, 123, 24375-24382.	1.5	6
464	Design of Lamellar Mo ₂ C Nanosheets Assembled by Mo ₂ C Nanoparticles as an Anode Material toward Excellent Sodium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 18375-18383.	3.2	51
465	Allâ€Solidâ€State Planar Sodiumâ€Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways. Advanced Science, 2019, 6, 1902147.	5.6	34
466	Multi-Power Joint Peak-Shaving Optimization for Power System Considering Coordinated Dispatching of Nuclear Power and Wind Power. Sustainability, 2019, 11, 4801.	1.6	2
467	Oxygen Functional Group Modification of Cellulose-Derived Hard Carbon for Enhanced Sodium Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 18554-18565.	3.2	72
468	Identifying Multinuclear Organometallic Intermediates in Onâ€ S urface [2+2] Cycloaddition Reactions. Angewandte Chemie - International Edition, 2019, 58, 16485-16489.	7.2	14
469	Boosting Highâ€Rate Sodium Storage Performance of Nâ€Doped Carbonâ€Encapsulated Na ₃ V ₂ (PO ₄) ₃ Nanoparticles Anchoring on Carbon Cloth. Small, 2019, 15, e1902432.	5.2	51

#	Article	IF	CITATIONS
470	Electrochemically Stable Sodium Metalâ€Tellurium/Carbon Nanorods Batteries. Advanced Energy Materials, 2019, 9, 1903046.	10.2	33
471	O3â€Type Layered Niâ€Rich Oxide: A Highâ€Capacity and Superiorâ€Rate Cathode for Sodiumâ€Ion Batteries. Sm 2019, 15, e1905311.	iall, 5.2	41
472	Layered K _{0.28} MnO ₂ ·0.15H ₂ O as a Cathode Material for Potassium-Ion Intercalation. ACS Applied Materials & Interfaces, 2019, 11, 43312-43319.	4.0	25
473	Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Research, 2019, 12, 3051-3058.	5.8	70
474	Sulfur-Doped TiO ₂ Anchored on a Large-Area Carbon Sheet as a High-Performance Anode for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 44170-44178.	4.0	32
475	A Computational Study of Defects, Li-Ion Migration and Dopants in Li2ZnSiO4 Polymorphs. Crystals, 2019, 9, 563.	1.0	5
476	First-Principles Characterization of Lithium Cobalt Pyrophosphate as a Cathode Material for Solid-State Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 29623-29629.	1.5	5
477	Reversible Alloying of Phosphorene with Potassium and Its Stabilization Using Reduced Graphene Oxide Buffer Layers. ACS Nano, 2019, 13, 14094-14106.	7.3	36
478	High-Performance Phosphorus–Graphite Dual-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 45755-45762.	4.0	37
479	2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Letters, 2019, 4, 2689-2690.	8.8	109
480	Dopant Segregation Boosting Highâ€Voltage Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Materials, 2019, 31, e1904816.	11.1	89
481	A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Naâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1901431.	10.2	59
482	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO 2 Quantum Dots for Exceptional Sodiumâ€ion Storage. Angewandte Chemie, 2019, 131, 14263-14266.	1.6	13
483	Improving the Understanding of the Redox Properties of Fluoranil Derivatives for Cathodes in Sodiumâ€kon Batteries. ChemSusChem, 2019, 12, 4968-4975.	3.6	15
484	Bilayered Potassium Vanadate K _{0.5} V ₂ O ₅ as Superior Cathode Material for Naâ€lon Batteries. ChemSusChem, 2019, 12, 5192-5198.	3.6	23
485	Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries. Journal of Alloys and Compounds, 2019, 784, 720-726.	2.8	35
486	Structure and luminescence properties of multicolor phosphor Ba2La3(SiO4)3Cl:Tb3+,Eu3+. Journal of Solid State Chemistry, 2019, 280, 121009.	1.4	12
487	Integrated metabolomics and network toxicology to reveal molecular mechanism of celastrol induced cardiotoxicity. Toxicology and Applied Pharmacology, 2019, 383, 114785.	1.3	35

#	Article	IF	CITATIONS
488	Exploring the Role of Manganese on Structural, Transport, and Electrochemical Properties of NASICON-Na ₃ Fe _{2–<i>y</i>} Mn _{<i>y</i>} (PO ₄) _{3Materials for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 43046-43055.}	ub>â€ốCath	10d22
489	Aprotic and Protic Ionic Liquids Combined with Olive Pits Derived Hard Carbon for Potassium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3504-A3510.	1.3	21
490	First Principle Material Genome Approach for All Solid‣tate Batteries. Energy and Environmental Materials, 2019, 2, 234-250.	7.3	69
491	3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage. Composites Part B: Engineering, 2019, 179, 107538.	5.9	37
492	Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 43056-43065.	4.0	49
493	Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 43252-43260.	4.0	65
494	Crystal structure of a new polymorphic modification of Na ₂ Mn ₃ (SO ₄) ₄ . Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 697-705.	0.4	5
495	Heterostructured TiO ₂ Spheres with Tunable Interiors and Shells toward Improved Packing Density and Pseudocapacitive Sodium Storage. Advanced Materials, 2019, 31, e1904589.	11.1	73
496	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie, 2019, 131, 17210-17216.	1.6	49
497	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	7.2	119
498	An Allâ€Prussianâ€Blueâ€Based Aqueous Sodiumâ€lon Battery. ChemElectroChem, 2019, 6, 4848-4853.	1.7	44
499	Sizeâ€, Waterâ€, and Defectâ€Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Lowâ€Cost Sodiumâ€Ion Batteries. Small, 2019, 15, e1902420.	5.2	82
500	Dynamic ICSP Graph Optimization Approach for Car-Like Robot Localization in Outdoor Environments. Computers, 2019, 8, 63.	2.1	3
501	An Investigation of the Effectiveness of Prefabrication Incentive Policies in China. Sustainability, 2019, 11, 5149.	1.6	36
502	Efficient Surface Modulation of Single-Crystalline Na ₂ Ti ₃ O ₇ Nanotube Arrays with Ti ³⁺ Self-Doping toward Superior Sodium Storage. , 2019, 1, 389-398.		24
503	New insights into the origin of unstable sodium graphite intercalation compounds. Physical Chemistry Chemical Physics, 2019, 21, 19378-19390.	1.3	68
504	β-NaVP ₂ O ₇ as a Superior Electrode Material for Na-Ion Batteries. Chemistry of Materials, 2019, 31, 7463-7469.	3.2	31
505	Single-Crystalline Nb-Doped Rutile TiO ₂ Nanoparticles as Anode Materials for Na-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 5360-5364.	2.4	32

#	Article	IF	CITATIONS
506	Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. ACS Nano, 2019, 13, 10787-10797.	7.3	90
507	A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 21362-21370.	5.2	61
508	Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode. Applied Surface Science, 2019, 497, 143814.	3.1	43
509	Engineering of Yolk–Double Shell Cube-like SnS@N–S Codoped Carbon as a High-Performance Anode for Li- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 35050-35059.	4.0	65
510	A novel carbon-coated Ga2S3 anode material derived from post-synthesis modified MOF for high performance lithium ion and sodium ion batteries. Electrochimica Acta, 2019, 322, 134790.	2.6	26
511	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na _{0.66} Li _{0.22} Ti _{0.15} Mn _{0.63} O ₂ . ACS Energy Letters, 2019, 4, 2409-2417.	8.8	112
512	Structural Study of Carbon-Coated TiO ₂ Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7142-7151.	2.5	18
513	Thermodynamics of graphite intercalation binary alloys of Li-Na, Na-K, and Li-K from van der Waals density functionals. Journal of Solid State Electrochemistry, 2019, 23, 2825-2834.	1.2	2
514	A P2-type Na _{0.7} (Ni _{0.6} Co _{0.2} Mn _{0.2})O ₂ cathode with excellent cyclability and rate capability for sodium ion batteries. Chemical Communications, 2019, 55, 11575-11578.	2.2	22
515	Lithium- and sodium-ion transport properties of Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13. Journal of Solid State Chemistry, 2019, 279, 120930.	1.4	11
516	Core–shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating. Nanoscale, 2019, 11, 17860-17868.	2.8	21
517	Review on anionic redox in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23662-23678.	5.2	77
518	Design of meso/macro porous 2D Mn-vanadate as potential novel anode materials for sodium-ion storage. Journal of Energy Storage, 2019, 26, 100915.	3.9	13
519	Fabrication of an Inexpensive Hydrophilic Bridge on a Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36676-36684.	4.0	49
520	Structural complexities and sodium-ion diffusion in the intercalates Na _x TiS ₂ : move it, change it, re-diffract it. RSC Advances, 2019, 9, 27780-27788.	1.7	3
521	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	2.5	31
522	Theoretical formulation of Na ₃ AO ₄ X (A = S/Se, X = F/Cl) as high-performance solid electrolytes for all-solid-state sodium batteries. Journal of Materials Chemistry A, 2019, 7, 21985-21996.	5.2	25
523	Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nature Communications, 2019, 10, 4244.	5.8	219

#	Article	IF	CITATIONS
524	Aluminium substituted β–type NaMn1-Al O2: A stable and enhanced electrochemical kinetic sodium-ion battery cathode. Journal of Power Sources, 2019, 438, 227025.	4.0	20
525	Boosting Sodium Storage of Fe1â^'xS/MoS2 Composite via Heterointerface Engineering. Nano-Micro Letters, 2019, 11, 80.	14.4	77
526	Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123957.	2.3	24
527	Granular molybdenum dioxide precipitated on N-doped carbon nanorods with multistage architecture for ultralong-life sodium-ion batteries. Electrochimica Acta, 2019, 325, 134903.	2.6	19
528	Mechanochemical synthesis of a new composite Na3FePO4CO3/C cathode material for sodium-ion batteries. Materials Today: Proceedings, 2019, 12, 3-8.	0.9	5
529	Na2Ti3O7 nanowires with TiO2 and N-doped carbon dual-shells as binder-free electrodes for efficient sodium storage. Electrochimica Acta, 2019, 321, 134714.	2.6	10
530	Net-Y as a high performance electrode material for Na-ion battery. Chemical Physics Letters, 2019, 734, 136733.	1.2	11
531	Boosting Na-ion diffusion by piezoelectric effect induced by alloying reaction of micro red-phosphorus/BaTiO3/graphene composite anode. Nano Energy, 2019, 66, 104136.	8.2	20
532	Ti Substitution Facilitating Oxygen Oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 Cathode. CheM, 2019, 5, 2913-2925.	5.8	75
533	Thickness-dependent electrochemical response of plasma enhanced atomic layer deposited WS2 anodes in Na-ion battery. Electrochimica Acta, 2019, 322, 134766.	2.6	18
534	Effect of Fe3+ for Ru4+ substitution in disordered Na1.33Ru0.67O2 cathode for sodium-ion batteries: Structural and electrochemical characterizations. Electrochimica Acta, 2019, 325, 134926.	2.6	10
535	Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials, 2019, 9, 1323.	1.9	23
536	Defect, Diffusion and Dopant Properties of NaNiO2: Atomistic Simulation Study. Energies, 2019, 12, 3094.	1.6	15
537	Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Scientific Reports, 2019, 9, 13665.	1.6	23
538	Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 562-565.	3.0	48
539	2D few-layer iron phosphosulfide: a self-buffer heterophase structure induced by irreversible breakage of P–S bonds for high-performance lithium/sodium storage. Journal of Materials Chemistry A, 2019, 7, 1529-1538.	5.2	48
540	Metallic P ₃ C monolayer as anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 405-411.	5.2	75
541	Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3903-3909.	5.2	41

#	Article	IF	CITATIONS
542	A high energy-density P2-Na _{2/3} [Ni _{0.3} Co _{0.1} Mn _{0.6}]O ₂ cathode with mitigated P2–O2 transition for sodium-ion batteries. Nanoscale, 2019, 11, 2787-2794.	2.8	33
543	Bio-derived 3D TiO ₂ hollow spheres with a mesocrystal nanostructure to achieve improved electrochemical performance of Na-ion batteries in ether-based electrolytes. Journal of Materials Chemistry A, 2019, 7, 3399-3407.	5.2	24
544	Investigation of K modified P2 Na _{0.7} Mn _{0.8} Mg _{0.2} O ₂ as a cathode material for sodium-ion batteries. CrystEngComm, 2019, 21, 172-181.	1.3	12
545	Mitigating the P2–O2 phase transition of high-voltage P2-Na _{2/3} [Ni _{1/3} Mn _{2/3}]O ₂ cathodes by cobalt gradient substitution for high-rate sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4705-4713.	5.2	39
546	Ultrathin 2D TiS ₂ Nanosheets for High Capacity and Long‣ife Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803210.	10.2	100
547	Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy, 2019, 58, 392-398.	8.2	70
548	Polypyrrole and Carbon Nanotube Coâ€Composited Titania Anodes with Enhanced Sodium Storage Performance in Etherâ€Based Electrolyte. Advanced Sustainable Systems, 2019, 3, 1800154.	2.7	5
549	A new strategy to activate graphite oxide as a high-performance cathode material for lithium-ion batteries. New Journal of Chemistry, 2019, 43, 4727-4733.	1.4	4
550	Recent Progress in Understanding Ion Storage in Selfâ€Organized Anodic TiO ₂ Nanotubes. Small Methods, 2019, 3, 1800385.	4.6	31
551	Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Materials Today Energy, 2019, 11, 218-227.	2.5	38
552	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, 4062-4066.	1.6	11
553	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 4022-4026.	7.2	56
554	Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Materials, 2019, 22, 160-167.	9.5	100
555	Room-Temperature Potassium–Sulfur Batteries Enabled by Microporous Carbon Stabilized Small-Molecule Sulfur Cathodes. ACS Nano, 2019, 13, 2536-2543.	7.3	80
556	Novel tape-cast SiOC-based porous ceramic electrode materials for potential application in bioelectrochemical systems. Journal of Materials Science, 2019, 54, 6471-6487.	1.7	12
557	Promotional role of nano TiO2 for pomegranate-like SnS2@C spheres toward enhanced sodium ion storage. Chemical Engineering Journal, 2019, 363, 213-223.	6.6	43
558	<i>In situ</i> formation of highly controllable and stable Na ₃ PS ₄ as a protective layer for Na metal anode. Journal of Materials Chemistry A, 2019, 7, 4119-4125.	5.2	51
559	Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 4399-4405.	3.2	5

#	Article	IF	CITATIONS
560	Constructing Conductive Graphitic Structure on Hard Carbon as an Efficient Free-Standing Anode for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A390-A397.	1.3	7
561	Na ₂ Ru _{1â^'x} Mn _x O ₃ as the cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4395-4399.	5.2	24
562	Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. Journal of Materials Chemistry A, 2019, 7, 5748-5759.	5.2	24
563	Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries. Ionics, 2019, 25, 3129-3141.	1.2	20
564	Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. Carbon, 2019, 146, 78-87.	5.4	60
565	Bio-inspired self-breathable structure driven by the volumetric effect: an unusual driving force of metal sulfide for high alkaline ion storage capability. Journal of Materials Chemistry A, 2019, 7, 5677-5684.	5.2	17
566	Utilization of biomass pectin polymer to build high efficiency electrode architectures with sturdy construction and fast charge transfer structure to boost sodium storage performance for NASICON-type cathode. Journal of Materials Chemistry A, 2019, 7, 1548-1555.	5.2	20
567	Recent developments in electrode materials for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4334-4352.	5.2	214
568	A 3D flower-like VO ₂ /MXene hybrid architecture with superior anode performance for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 1315-1322.	5.2	112
569	Molecular structure and ultrafast dynamics of sodium thiocyanate ion pairs formed in glymes of different lengths. Physical Chemistry Chemical Physics, 2019, 21, 833-841.	1.3	10
570	NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage. Nano-Micro Letters, 2019, 11, 44.	14.4	100
571	Reduced air sensitivity and improved electrochemical stability of P2–Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Composites Part B: Engineering, 2019, 173, 106913.	5.9	26
572	A Universal Strategy to Fabricate Metal Sulfides@Carbon Fibers As Freestanding and Flexible Anodes for High-Performance Lithium/Sodium Storage. ACS Applied Energy Materials, 2019, 2, 4421-4427.	2.5	17
573	Carbon nanofoam paper enables high-rate and high-capacity Na-ion storage. Energy Storage Materials, 2019, 21, 481-486.	9.5	15
574	Monoclinic Fe2(SO4)3: A new Fe-based cathode material with superior electrochemical performances for Na-ion batteries. Journal of Power Sources, 2019, 434, 226750.	4.0	14
575	Crystal structure stabilization, electrochemical properties, and morphology of P2-type Na0.67Mn0.625Fe0.25Ni0.125O2 for Na-ion battery cathodes. Journal of Power Sources, 2019, 431, 105-113.	4.0	4
576	Electrochemical Performance of Large-Grained NaCrO ₂ Cathode Materials for Na-Ion Batteries Synthesized by Decomposition of Na ₂ Cr ₂ O ₇ ·2H ₂ O. Chemistry of Materials, 2019, 31, 5214-5223.	3.2	34
577	Understanding Challenges of Cathode Materials for Sodiumâ€lon Batteries using Synchrotronâ€Based Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 842-851.	2.4	23

#	Article	IF	CITATIONS
578	A bridge between battery and supercapacitor for power/energy gap by using dual redox-active ions electrolyte. Chemical Engineering Journal, 2019, 375, 122054.	6.6	28
579	A Highâ€Performance Monolithic Solidâ€State Sodium Battery with Ca ²⁺ Doped Na ₃ Zr ₂ Si ₂ PO ₁₂ Electrolyte. Advanced Energy Materials, 2019, 9, 1901205.	10.2	174
580	Lithium Pre ycling Induced Fast Kinetics of Commercial Sb ₂ S ₃ Anode for Advanced Sodium Storage. Energy and Environmental Materials, 2019, 2, 209-215.	7.3	17
581	Electrochemical Intercalation of Sodium into Composites Based on Iron(III) Phosphate and Carbon. Inorganic Materials, 2019, 55, 462-469.	0.2	1
582	Ni-based cathode materials for Na-ion batteries. Nano Research, 2019, 12, 2018-2030.	5.8	67
583	Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ through Correlative <i>Operando</i> X-ray Diffraction and Electrochemical Impedance Spectroscopy. Chemistry of Materials, 2019, 31, 5152-5159.	3.2	24
584	General Approach to Produce Nanostructured Binary Transition Metal Selenides as Highâ€₽erformance Sodium Ion Battery Anodes. Small, 2019, 15, e1901995.	5.2	52
585	Electrochemical Properties of Na _{0.66} V ₄ O ₁₀ Nanostructures as Cathode Material in Rechargeable Batteries for Energy Storage Applications. ACS Omega, 2019, 4, 9878-9888.	1.6	15
586	Facile formation of NiCo2O4 yolk-shell spheres for highly reversible sodium storage. Journal of Alloys and Compounds, 2019, 800, 125-133.	2.8	17
587	A long life sodium–selenium cathode by encapsulating selenium into N-doped interconnected carbon aerogels. Nanoscale, 2019, 11, 11671-11678.	2.8	24
588	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1900673.	10.2	32
589	Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23520-23526.	4.0	73
590	Sulfur, Nitrogen Dual Doped Reduced Graphene Oxide Supported Twoâ€Dimensional Sb ₂ S ₃ Nanostructures for the Anode Material of Sodiumâ€Ion Battery. ChemistrySelect, 2019, 4, 6679-6686.	0.7	18
591	Defect Chemistry and Na-Ion Diffusion in Na3Fe2(PO4)3 Cathode Material. Materials, 2019, 12, 1348.	1.3	22
592	Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. Journal of Power Sources, 2019, 430, 157-168.	4.0	59
593	Thermodynamic and Electrochemical Studies of Sodium-Antimony Alloys. Russian Journal of Applied Chemistry, 2019, 92, 321-331.	0.1	5
594	Photothermal and Moisture Actuator Made with Graphene Oxide and Sodium Alginate for Remotely Controllable and Programmable Intelligent Devices. ACS Applied Materials & Interfaces, 2019, 11, 21926-21934.	4.0	41
595	Revealing the Atomic Origin of Heterogeneous Liâ€lon Diffusion by Probing Na. Advanced Materials, 2019, 31, e1805889.	11.1	30

ARTICLE IF CITATIONS Sodium-Sulfur Batteries with a Polymer-Coated NASICON-type Sodium-Ion Solid Electrolyte. Matter, 596 5.0 75 2019, 1, 439-451. Spinel-Type Sodium Titanium Oxide: A Promising Sodium-Insertion Material of Sodium-Ion Batteries. ACS 597 2.5 Applied Énergy Materials, 2019, 2, 4345-4353. Gassing in Sn-Anode Sodium-Ion Batteries and Its Remedy by Metallurgically Prealloying Na. ACS Applied 598 4.0 37 Materials & amp; Interfaces, 2019, 11, 23207-23212. Control of SEI Formation for Stable Potassium-Ion Battery Anodes by Bi-MOF-Derived Nanocomposites. 599 4.0 ACS Applied Materials & amp; Interfaces, 2019, 11, 22474-22480. A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 587 Td (oxide)–Na<sub 600 81 1, 132-138. From lithium to sodium: design of heterometallic molecular precursors for the NaMO2 cathode materials. Chemical Communications, 2019, 55, 7243-7246. 2.2 Nature-Inspired, Graphene-Wrapped 3D MoS₂ Ultrathin Microflower Architecture as a 602 High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 4.0 93 2019, 11, 22323-22331. Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ 4.0 Polymerization Coating. ACS Applied Materials & amp; Interfaces, 2019, 11, 22339-22345. Growth of Bouquet-like Zn₂GeO₄ Crystal Clusters in Molten Salt and 604 Understanding the Fast Na-Storage Properties. ACS Applied Materials & amp; Interfaces, 2019, 11, 4.0 12 22371-22379. MoS 2 Nanosheets Anchored on Melamineâ€Spongesâ€Derived Nitrogenâ€Doped Carbon Microtubes as Anode for Highâ€Rate Sodiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 6148-6154. Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion 606 1.5 53 Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 15777-15786. Boosting Sodium Storage in TiF₃/Carbon Core/Sheath Nanofibers through an Efficient Mixedâ€Conducting Network. Advanced Energy Materials, 2019, 9, 1901470. Scalable and Economic Synthesis of High-Performance Na₃V₂(PO₄)₂F₃ by a 608 8.8 75 Solvothermal–Ball-Milling Method. ACS Energy Letters, 2019, 4, 1565-1571. Metallic 1T MoS2 overlapped nitrogen-doped carbon superstructures for enhanced sodium-ion storage. Applied Surface Science, 2019, 491, 180-186. 609 3.1 Capturing the differences between lithiation and sodiation of nanostructured TiS2 electrodes. Nano 610 8.2 21 Energy, 2019, 63, 103820. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nature 5.8 195 Communications, 2019, 10, 2598 Constructing CoO/Co₃Heterostructures Embedded in Nâ€doped Carbon 612 Frameworks for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 7.8 169 1901925. Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for 1.2 sodium-ion batteries. lonics, 2019, 25, 4775-4786.

#	Article	IF	CITATIONS
614	Air-Stable NaxTMO2 Cathodes for Sodium Storage. Frontiers in Chemistry, 2019, 7, 335.	1.8	58
615	Effect of Mixed Li+/Na+-ion Electrolyte on Electrochemical Performance of Na4Fe3(PO4)2P2O7 in Hybrid Batteries. Batteries, 2019, 5, 39.	2.1	14
616	A New Strategy to Build a Highâ€Performance P′2â€Type Cathode Material through Titanium Doping for Sodiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1901912.	7.8	76
617	Realizing a Highâ€Performance Naâ€Storage Cathode by Tailoring Ultrasmall Na ₂ FePO ₄ F Nanoparticles with Facilitated Reaction Kinetics. Advanced Science, 2019, 6, 1900649.	5.6	74
618	Passivation of aluminum current collectors in non-aqueous carbonate solutions containing sodium or potassium hexafluorophosphate salts. Journal of Materials Chemistry A, 2019, 7, 13012-13018.	5.2	24
619	Advanced rechargeable Na–CO ₂ batteries enabled by a ruthenium@porous carbon composite cathode with enhanced Na ₂ CO ₃ reversibility. Chemical Communications, 2019, 55, 7946-7949.	2.2	30
620	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807770.	11.1	113
621	Polyanions Enhance Conversion Reactions for Lithium/Sodiumâ€lon Batteries: The Case of SbVO ₄ Nanoparticles on Reduced Graphene Oxide. Small Methods, 2019, 3, 1900231.	4.6	31
622	Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. Journal of Power Sources, 2019, 430, 60-66.	4.0	47
623	Nanostructures and Nanomaterials for Sodium Batteries. , 2019, , 265-312.		1
624	Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon, 2019, 150, 378-387.	5.4	58
625	A perspective on R&D status of energy storage systems in South Korea. Energy Storage Materials, 2019, 23, 154-158.	9.5	9
626	Synthesis, characterization and electrical properties of Na6M(SO4)4 (M = Co, Ni, Cu) vanthoffite materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 244, 56-64.	1.7	9
627	Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries. Carbon, 2019, 151, 1-9.	5.4	73
628	CoTe nanorods/rGO composites as a potential anode material for sodium-ion storage. Electrochimica Acta, 2019, 313, 331-340.	2.6	40
629	Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10310-10322.	3.2	41
630	ReS ₂ -Based electrode materials for alkali-metal ion batteries. CrystEngComm, 2019, 21, 3755-3769.	1.3	58
631	Exploration of the sodium ion ordered transfer mechanism in a MoSe ₂ @Graphene composite for superior rate and lifespan performance. Journal of Materials Chemistry A, 2019, 7, 13736-13742.	5.2	23

#	Article	IF	CITATIONS
632	Novel amorphous CoSnO3@rGO nanocomposites highly enhancing sodium storage. Electrochimica Acta, 2019, 316, 236-247.	2.6	22
633	Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Materials, 2019, 23, 233-251.	9.5	279
634	Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy, 2019, 62, 154-163.	8.2	166
635	A nanoarchitectured Na ₆ Fe ₅ (SO ₄) ₈ /CNTs cathode for building a low-cost 3.6ÂV sodium-ion full battery with superior sodium storage. Journal of Materials Chemistry A, 2019, 7, 14656-14669.	5.2	51
636	Next generation and beyond lithium chemistries. , 2019, , 253-284.		0
638	Ti ₂ PTe ₂ monolayer: a promising two-dimensional anode material for sodium-ion batteries. RSC Advances, 2019, 9, 15536-15541.	1.7	18
639	Na ₂ Ti ₃ O ₇ Nanotubes as Anode Materials for Sodiumâ€ion Batteries and Selfâ€powered Systems. ChemElectroChem, 2019, 6, 3085-3090.	1.7	19
640	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
641	Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. Advanced Materials, 2019, 31, e1803444.	11.1	103
642	Hydrophilic binder interface interactions inducing inadhesion and capacity collapse in sodium-ion battery. Journal of Power Sources, 2019, 427, 62-69.	4.0	13
643	Confined annealing-induced transformation of tin oxide into sulfide for sodium storage applications. Journal of Materials Chemistry A, 2019, 7, 11877-11885.	5.2	18
644	Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode. Materials, 2019, 12, 1324.	1.3	21
645	Interpreting Electrochemical and Chemical Sodiation Mechanisms and Kinetics in Tin Antimony Battery Anodes Using <i>in Situ</i> Transmission Electron Microscopy and Computational Methods. ACS Applied Energy Materials, 2019, 2, 3578-3586.	2.5	14
646	Surfaceâ€Confined SnS ₂ @C@rGO as Highâ€Performance Anode Materials for Sodium―and Potassiumâ€Ion Batteries. ChemSusChem, 2019, 12, 2689-2700.	3.6	98
647	Pseudocapacitive Na ⁺ Insertion in Ti–O–C Channels of TiO ₂ –C Nanofibers with High Rate and Ultrastable Performance. ACS Applied Materials & Interfaces, 2019, 11, 17416-17424.	4.0	32
648	Ni-Rich Oxide LiNi _{0.85} Co _{0.05} Mn _{0.1} O ₂ for Lithium Ion Battery: Effect of Microwave Radiation on Its Morphology and Electrochemical Property. Journal of the Electrochemical Society, 2019, 166, A1300-A1309.	1.3	37
649	Rational Design of Environmental Benign Organic–Inorganic Hybrid as a Prospective Cathode for Stable High-Voltage Sodium Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 11464-11475.	1.5	6
650	Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. ACS Applied Materials & Interfaces, 2019, 11, 17109-17127.	4.0	100

#	Article	IF	CITATIONS
651	Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 12732-12739.	5.2	78
652	Templateâ€Free Construction of Selfâ€Supported Sb Prisms with Stable Sodium Storage. Advanced Energy Materials, 2019, 9, 1901096.	10.2	57
653	In Situ Formation of Co ₉ S ₈ Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Applied Materials & Interfaces, 2019, 11, 19218-19226.	4.0	51
654	Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode. Electrochimica Acta, 2019, 313, 122-130.	2.6	34
655	Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nature Communications, 2019, 10, 1965.	5.8	77
656	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Applied Energy Materials, 2019, 2, 3869-3877.	2.5	40
657	Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution. Energy Storage Materials, 2019, 20, 324-334.	9.5	45
658	K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy, 2019, 61, 284-294.	8.2	120
659	Synthesis of Hard Carbon-TiN/TiC Composites by Reacting Cellulose with TiCl ₄ Followed by Carbothermal Nitridation/Reduction. Inorganic Chemistry, 2019, 58, 5776-5786.	1.9	12
660	Pulverizationâ€Tolerance and Capacity Recovery of Copper Sulfide for Highâ€Performance Sodium Storage. Advanced Science, 2019, 6, 1900264.	5.6	39
661	Self-chargeable sodium-ion battery for soft electronics. Nano Energy, 2019, 61, 435-441.	8.2	30
662	Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries. Journal of Membrane Science, 2019, 583, 163-170.	4.1	27
663	First-principles study on the two-dimensional siligene (2D SiGe) as an anode material of an alkali metal ion battery. Computational Materials Science, 2019, 165, 121-128.	1.4	60
664	Na ₂ Fe(SO ₄) ₂ : an anhydrous 3.6ÂV, low-cost and good-safety cathode for a rechargeable sodium-ion battery. Journal of Materials Chemistry A, 2019, 7, 13197-13204.	5.2	32
665	Rational design and kinetics study of flexible sodium-ion full batteries based on binder-free composite film electrodes. Journal of Materials Chemistry A, 2019, 7, 9890-9902.	5.2	31
667	P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics. Journal of Alloys and Compounds, 2019, 790, 1092-1100.	2.8	26
668	Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy, 2019, 60, 312-323.	8.2	154
669	Microporous Battery Electrodes from Molecular Cluster Precursors. ACS Applied Materials & Interfaces, 2019, 11, 11292-11297.	4.0	8

#	Article	IF	CITATIONS
670	Simultaneously tuning cationic and anionic redox in a P2-Na _{0.67} Mn _{0.75} Ni _{0.25} O ₂ cathode material through synergic Cu/Mg co-doping. Journal of Materials Chemistry A, 2019, 7, 9099-9109.	5.2	76
671	Electrospun Nanomaterials for Energy Applications: Recent Advances. Applied Sciences (Switzerland), 2019, 9, 1049.	1.3	49
672	Halides encapsulation in aluminum/boron phosphide nanoclusters: An effective strategy for high cell voltage in Na-ion battery. Materials Science in Semiconductor Processing, 2019, 97, 71-79.	1.9	26
673	Editors' Choice—Review—Innovative Polymeric Materials for Better Rechargeable Batteries: Strategies from CIC Energigune. Journal of the Electrochemical Society, 2019, 166, A679-A686.	1.3	36
674	Mesoporous dominant cashewnut sheath derived bio-carbon anode for LIBs and SIBs. Electrochimica Acta, 2019, 304, 175-183.	2.6	24
675	Preparation of Porous TiO ₂ from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance. Journal of Physical Chemistry C, 2019, 123, 7025-7032.	1.5	9
676	Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochimica Acta, 2019, 304, 246-254.	2.6	51
677	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
678	Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy, 2019, 59, 762-772.	8.2	155
679	Enhanced Silicon Diphosphide-Carbon Composite Anode for Long-Cycle, High-Efficient Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 2223-2229.	2.5	22
680	Purifying the Phase of NaTi ₂ (PO ₄) ₃ for Enhanced Na ⁺ Storage Properties. ACS Applied Materials & Interfaces, 2019, 11, 10663-10671.	4.0	27
681	Discovery of Anion Insertion Electrochemistry in Layered Hydroxide Nanomaterials. Scientific Reports, 2019, 9, 2462.	1.6	10
682	Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. Journal of Colloid and Interface Science, 2019, 544, 164-171.	5.0	29
683	α-VPO ₄ : A Novel Many Monovalent Ion Intercalation Anode Material for Metal-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12431-12440.	4.0	20
684	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ as a cathode material with high-rate and long-life for sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 9215-9221.	5.2	102
685	Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodiumâ€ion Batteries. ChemSusChem, 2019, 12, 2302-2309.	3.6	48
686	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1803978.	10.2	191
687	Heteroatomâ€Doped Mesoporous Hollow Carbon Spheres for Fast Sodium Storage with an Ultralong Cycle Life. Advanced Energy Materials, 2019, 9, 1900036.	10.2	212

#	Article	IF	CITATIONS
688	Intercalation Pseudocapacitance Boosting Ultrafast Sodium Storage in Prussian Blue Analogs. ChemSusChem, 2019, 12, 2415-2420.	3.6	28
689	Bituminous Coal as Lowâ€Cost Anode Materials for Sodiumâ€lon and Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1900005.	1.8	16
690	All-iron sodium-ion full-cells assembled via stable porous goethite nanorods with low strain and fast kinetics. Nano Energy, 2019, 60, 294-304.	8.2	14
691	In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. Nano Energy, 2019, 60, 424-431.	8.2	41
692	Rb/Cs-Modified P2 Na _{0.7} Mn _{0.8} Mg _{0.2} O ₂ : Application in Sodium-Ion Batteries. ACS Omega, 2019, 4, 5784-5794.	1.6	4
693	Special layer-structured WS ₂ nanoflakes as high performance sodium ion storage materials. Sustainable Energy and Fuels, 2019, 3, 1239-1247.	2.5	25
694	Electrolytes and Electrolyte/Electrode Interfaces in Sodiumâ€Ion Batteries: From Scientific Research to Practical Application. Advanced Materials, 2019, 31, e1808393.	11.1	264
695	General Synthesis of Heteroatomâ€Đoped Hierarchical Carbon toward Excellent Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 712-722.	2.4	27
696	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
697	Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Research, 2019, 12, 2230-2237.	5.8	47
698	Enhancement of the advanced Na storage performance of Na ₃ V ₂ (PO ₄) ₃ in a symmetric sodium full cell <i>via</i> a dual strategy design. Journal of Materials Chemistry A, 2019, 7, 10231-10238.	5.2	42
699	Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/potassium ion batteries. Electrochimica Acta, 2019, 307, 118-128.	2.6	70
700	Nitrogen-doped carbon coating mesoporous ZnS nanospheres as high-performance anode material of sodium-ion batteries. Materials Today Communications, 2019, 19, 396-401.	0.9	26
701	A novel aqueous sodium–manganese battery system for energy storage. Journal of Materials Chemistry A, 2019, 7, 8122-8128.	5.2	36
702	Exploring the Economic Potential of Sodium-Ion Batteries. Batteries, 2019, 5, 10.	2.1	105
703	Na2Ru0.8Mn0.2O3: A novel cathode material for ultrafast sodium ion battery with large capacity and superlong cycle life. Journal of Power Sources, 2019, 421, 14-22.	4.0	16
704	Progressively Exposing Active Facets of 2D Nanosheets toward Enhanced Pseudocapacitive Response and Highâ€Rate Sodium Storage. Advanced Materials, 2019, 31, e1900526.	11.1	83
705	Potassium Ordering and Structural Phase Stability in Layered K _{<i>x</i>} CoO ₂ . ACS Applied Energy Materials, 2019, 2, 2629-2636.	2.5	29

#	Article	IF	CITATIONS
706	Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordination Chemistry Reviews, 2019, 388, 172-201.	9.5	192
707	Atomistic Insight into Glide-Driven Phase Transformations in Layered Oxides for Sodium-Ion Batteries: A Case Study on Na <i>_x</i> VO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 12562-12569.	4.0	13
708	Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy and Environmental Science, 2019, 12, 1512-1533.	15.6	402
709	Polypyrrole-encapsulated amorphous Bi ₂ S ₃ hollow sphere for long life sodium ion batteries and lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 11370-11378.	5.2	99
710	A novel composite strategy to build a sub-zero temperature stable anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9051-9058.	5.2	9
711	High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries. Journal of Power Sources, 2019, 422, 1-8.	4.0	51
712	Rational design of few-layer MoSe ₂ confined within ZnSe–C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale, 2019, 11, 6766-6775.	2.8	143
713	Constructing hyperbranched polymers as a stable elastic framework for copper sulfide nanoplates for enhancing sodium-storage performance. Nanoscale, 2019, 11, 7188-7198.	2.8	20
714	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	5.2	199
715	Submicronâ€sized Sb ₂ O ₃ with hierarchical structure as highâ€performance anodes for Naâ€ion storage. International Journal of Energy Research, 2019, 43, 6561-6565.	2.2	14
716	Fe-doped Li3VO4 as an excellent anode material for lithium ion batteries: Optimizing rate capability and cycling stability. Electrochimica Acta, 2019, 308, 185-194.	2.6	31
717	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	9.5	90
718	Effect of co-precipitation pH on the electrochemical properties of Prussian blue electrode materials for sodium-ion batteries. Solid State Ionics, 2019, 336, 120-128.	1.3	18
719	Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 10483-10493.	5.2	27
720	Size control of zwitterionic polymer micro/nanospheres and its dependence on sodium storage. Nanoscale Horizons, 2019, 4, 1092-1098.	4.1	32
721	Maximization of sodium storage capacity of pure carbon material used in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 16149-16160.	5.2	41
722	Popcorn derived carbon enhances the cyclic stability of MoS2 as an anode material for sodium-ion batteries. Electrochimica Acta, 2019, 309, 25-33.	2.6	35
723	Ultrafine Prussian Blue as a Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery Cathode. Energy Technology, 2019, 7, 1900108.	1.8	31

#	Article	IF	CITATIONS
724	Carbonâ€Based Alloyâ€Type Composite Anode Materials toward Sodiumâ€Ion Batteries. Small, 2019, 15, e1900628.	5.2	42
725	A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11976-11984.	5.2	78
726	High-energy-resolution XANES of layered oxides for sodium-ion battery. Applied Physics Express, 2019, 12, 052005.	1.1	1
727	Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12145-12153.	5.2	106
728	Carboxymethyl Cellulose Binder Greatly Stabilizes Porous Hollow Carbon Submicrospheres in Capacitive K-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 15581-15590.	4.0	58
729	Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15630-15637.	4.0	45
730	Dual-Purpose 3D Pillared Metal–Organic Framework with Excellent Properties for Catalysis of Oxidative Desulfurization and Energy Storage in Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 14759-14773.	4.0	97
731	Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon, 2019, 148, 525-531.	5.4	70
732	First-principles study of Na _x TiO ₂ with trigonal bipyramid structures: an insight into sodium-ion battery anode applications. Physical Chemistry Chemical Physics, 2019, 21, 8408-8417.	1.3	10
733	Uniform and ultrathin carbon-layer coated layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid with enhanced electrochemical performance for anodes in sodium ion batteries. Journal of Supercritical Fluids, 2019, 148, 116-129.	1.6	27
734	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	5.8	260
735	Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 14848-14853.	4.0	60
736	Composite K ₂ Mo ₄ O ₁₃ /α-MoO ₃ nanorods: sonochemical preparation and applications for advanced Li ⁺ /Na ⁺ pseudocapacitance. Journal of Materials Chemistry A, 2019, 7, 10954-10961.	5.2	6
737	An ion-conducting SnS–SnS ₂ hybrid coating for commercial activated carbons enabling their use as high performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10761-10768.	5.2	29
738	Facile Synthesis of the Composites of Polyaniline and TiO2 Nanoparticles Using Self-Assembly Method and Their Application in Gas Sensing. Nanomaterials, 2019, 9, 493.	1.9	27
739	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy, 2019, 60, 591-599.	8.2	136
740	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900189.	10.2	41
741	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	23.0	572

#	Article	IF	CITATIONS
742	A Dualâ€lon Organic Symmetric Battery Constructed from Phenazineâ€Based Artificial Bipolar Molecules. Angewandte Chemie, 2019, 131, 10007-10011.	1.6	32
743	A Dualâ€lon Organic Symmetric Battery Constructed from Phenazineâ€Based Artificial Bipolar Molecules. Angewandte Chemie - International Edition, 2019, 58, 9902-9906.	7.2	123
744	Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Materials, 2019, 23, 566-586.	9.5	119
746	Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 788, 240-247.	2.8	90
747	Multivalent Batteries—Prospects for High Energy Density: Ca Batteries. Frontiers in Chemistry, 2019, 7, 79.	1.8	62
748	Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803342.	10.2	215
749	Highâ€Abundance and Lowâ€Cost Metalâ€Based Cathode Materials for Sodiumâ€ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials, 2019, 9, 1803609.	10.2	176
750	Niobiumâ€Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. Small, 2019, 15, e1804884.	5.2	130
751	Rodâ€Like Sb ₂ MoO ₆ : Structure Evolution and Sodium Storage for Sodiumâ€Ion Batteries. Small Methods, 2019, 3, 1800533.	4.6	26
752	Layerâ€Based Heterostructured Cathodes for Lithiumâ€lon and Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1808522.	7.8	82
753	A New P2â€Type Layered Oxide Cathode with Extremely High Energy Density for Sodiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1803346.	10.2	143
754	Energy Efficiency of Capacitive Deionization. Environmental Science & Technology, 2019, 53, 3366-3378.	4.6	184
755	SnO-GeO2-Sb2O3 glass anode network mixed with different Ba2+ fractions: Investigations on Na-ion storage capacity and stability. Journal of Non-Crystalline Solids, 2019, 506, 80-87.	1.5	21
756	Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 4626-4639.	5.2	59
757	Highâ€Safety Nonaqueous Electrolytes and Interphases for Sodiumâ€Ion Batteries. Small, 2019, 15, e1805479.	5.2	65
758	Zirconiumâ€Based Materials for Electrochemical Energy Storage. ChemElectroChem, 2019, 6, 1949-1968.	1.7	5
759	Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon. Electrochimica Acta, 2019, 302, 119-129.	2.6	16
760	Nitrogen and oxygen co-doping carbon microspheres by a sustainable route for fast sodium-ion batteries. Electrochimica Acta, 2019, 303, 140-147.	2.6	41

#	Article	IF	CITATIONS
761	Single crystalline nanorods of Na0.44MnO2 enhanced by reduced graphene oxides as a high rate and high capacity cathode material for sodium-ion batteries. Electrochimica Acta, 2019, 303, 125-132.	2.6	17
762	Mesoporous Cu2-xSe nanocrystals as an ultrahigh-rate and long-lifespan anode material for sodium-ion batteries. Energy Storage Materials, 2019, 22, 275-283.	9.5	88
763	Nextâ€Generation Additive Manufacturing of Complete Standalone Sodiumâ€Ion Energy Storage Architectures. Advanced Energy Materials, 2019, 9, 1803019.	10.2	48
764	Hierarchical nanocomposite of hollow carbon spheres encapsulating nano-MoO2 for high-rate and durable Li-ion storage. Journal of Alloys and Compounds, 2019, 787, 301-308.	2.8	17
765	Hollow NaTi 1.9 Sn 0.1 (PO 4) 3 @C Nanoparticles for Anodes of Sodiumâ€lon Batteries with Superior Rate and Cycling Properties. Energy Technology, 2019, 7, 1900079.	1.8	5
766	Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 7128-7137.	5.2	97
767	Phosphorene: Current status, challenges and opportunities. Frontiers of Chemical Science and Engineering, 2019, 13, 296-309.	2.3	17
768	Three-electron reversible redox for a high-energy fluorophosphate cathode: Na ₃ V ₂ O ₂ (PO ₄) ₂ F. Chemical Communications, 2019, 55, 3979-3982.	2.2	18
769	Scalable synthesis of FeS ₂ nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale, 2019, 11, 3773-3779.	2.8	58
770	Evidence of a Pseudo apacitive Behavior Combined with an Insertion/Extraction Reaction Upon Cycling of the Positive Electrode Material P2â€Na _x Co _{0.9} Ti _{0.1} O ₂ for Sodiumâ€ion Batteries. ChemElectroChem. 2019. 6. 892-903.	1.7	18
771	Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59, 197-206.	8.2	100
772	Prussian White Hierarchical Nanotubes with Surfaceâ€Controlled Charge Storage for Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1806405.	7.8	124
773	Superior electrochemical sodium storage of V ₄ P ₇ nanoparticles as an anode for rechargeable sodium-ion batteries. Chemical Communications, 2019, 55, 3207-3210.	2.2	13
774	The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 787, 229-238.	2.8	47
775	Enhanced cyclability of organic redox flow batteries enabled by an artificial bipolar molecule in neutral aqueous electrolyte. Journal of Power Sources, 2019, 417, 83-89.	4.0	49
776	Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 6363-6373.	5.2	57
777	Current State of Lithium Ion Battery Components and Their Development. IOP Conference Series: Materials Science and Engineering, 2019, 553, 012058.	0.3	6
778	Density Functional Theory-Assisted ³¹ P and ²³ Na Magic-Angle Spinning Nuclear Magnetic Resonance Study of the Na ₃ V ₂ (PO ₄) ₂ F ₃ –Na ₃ V _{2 Solid Solution: Unraveling Its Local and Electronic Structures. Chemistry of Materials, 2019, 31, 9759-9768.}	(PC	l≺s∎ab>4

#	Article	IF	CITATIONS
779	P2 Type Layered Solid-State Electrolyte Na ₂ Zn ₂ TeO ₆ : Crystal Structure and Stacking Faults. Journal of the Electrochemical Society, 2019, 166, A3830-A3837.	1.3	10
780	Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications. Nano Today, 2019, 29, 100796.	6.2	64
781	Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries. Frontiers in Chemistry, 2019, 7, 733.	1.8	18
782	A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 21323-21331.	1.1	2
783	Facile construction of flower-like MoO2@N, P co-doped carbon on carbon cloth as self-standing anode for high-performance sodium ion battery. Journal of Electroanalytical Chemistry, 2019, 852, 113510.	1.9	8
784	Emergence of rechargeable seawater batteries. Journal of Materials Chemistry A, 2019, 7, 22803-22825.	5.2	71
785	Are type 316L stainless steel coin cells stable in nonaqueous carbonate solutions containing NaPF ₆ or KPF ₆ salt?. Journal of Materials Chemistry A, 2019, 7, 26250-26260.	5.2	8
786	Spatially controlled synthesis of superlattice-like SnS/nitrogen-doped graphene hybrid nanobelts as high-rate and durable anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 27475-27483.	5.2	29
787	NASICON <i>vs.</i> Na metal: a new counter electrode to evaluate electrodes for Na secondary batteries. Journal of Materials Chemistry A, 2019, 7, 27057-27065.	5.2	25
788	The general construction of asymmetric bowl-like hollow nanostructures by grafting carbon-sheathed ultrasmall iron-based compounds onto carbon surfaces for use as superior anodes for sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 24199-24204.	5.2	31
789	Enhanced Structural, Electrochemical, and Electrode Kinetic Properties of Na _{0.5} Ni _{0.2} Mg _{0.1} Mn _{0.7} O ₂ Material for Sodium-Ion Battery Applications. Industrial & Engineering Chemistry Research, 2019, 58, 22804-22810.	1.8	9
790	Tiâ€Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small, 2019, 15, e1904740.	5.2	121
791	Tailoring Coral-Like Fe ₇ Se ₈ @C for Superior Low-Temperature Li/Na-Ion Half/Full Batteries: Synthesis, Structure, and DFT Studies. ACS Applied Materials & Interfaces, 2019, 11, 47886-47893.	4.0	35
792	Magnesium-Bismuth System: Thermodynamic Properties and Prospects for Use in Magnesium-Ion Batteries. Russian Journal of Applied Chemistry, 2019, 92, 1325-1335.	0.1	4
793	Anion amphiprotic ionic liquids as protic electrolyte matrices allowing sodium metal plating. Chemical Communications, 2019, 55, 12523-12526.	2.2	7
794	Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy and Environmental Science, 2019, 12, 3247-3287.	15.6	129
795	Probing the reversibility and kinetics of Li ⁺ during SEI formation and (de)intercalation on edge plane graphite using ion-sensitive scanning electrochemical microscopy. Chemical Science, 2019, 10, 10749-10754.	3.7	27
796	In situ synthesis of tin dioxide submicrorods anchored on nickel foam as an additive-free anode for high performance sodium-ion batteries. Journal of Colloid and Interface Science, 2019, 533, 733-741.	5.0	18

#	Article	IF	CITATIONS
797	Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chemical Engineering Journal, 2019, 356, 1042-1051.	6.6	181
798	Hierarchical Hollow Prussian Blue Rods Synthesized via Selfâ€ S acrifice Template as Cathode for High Performance Sodium Ion Battery. Small Methods, 2019, 3, 1800259.	4.6	45
799	An Overview of Mixed Polyanionic Cathode Materials for Sodiumâ€ l on Batteries. Small Methods, 2019, 3, 1800253.	4.6	87
800	Graphitic Carbon Materials for Advanced Sodiumâ€ŀon Batteries. Small Methods, 2019, 3, 1800227.	4.6	81
801	In situ growth of amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 356, 107-116.	6.6	92
802	Facile fabrication of 3D hierarchically honeycomb-like Na7Fe4.5(P2O7)4@C nanocomposites with enhanced sodium storage performance. Journal of Alloys and Compounds, 2019, 771, 297-301.	2.8	9
803	In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries. Applied Surface Science, 2019, 464, 422-428.	3.1	77
804	Organic electrode materials for lithium and post-lithium batteries: an ab initio perspective on design. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 8-14.	3.2	12
805	Improvement of electrochemical properties of P2-type Na2/3Mn2/3Ni1/3O2 sodium ion battery cathode material by water-soluble binders. Electrochimica Acta, 2019, 298, 496-504.	2.6	18
806	Reduced graphene oxide (RGO) decorated Sb2S3 nanorods as anode material for sodium-ion batteries. Chemical Physics Letters, 2019, 716, 171-176.	1.2	38
807	Understanding the Behavior and Mechanism of Oxygen-Deficient Anatase TiO ₂ toward Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 3061-3069.	4.0	26
808	Rechargeable Seawater Batteries—From Concept to Applications. Advanced Materials, 2019, 31, e1804936.	11.1	73
809	Confined Growth of Nano-Na ₃ V ₂ (PO ₄) ₃ in Porous Carbon Framework for High-Rate Na-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 3107-3115.	4.0	50
810	Electrochemical Mechanism Investigation of Cu ₂ MoS ₄ Hollow Nanospheres for Fast and Stable Sodium Ion Storage. Advanced Functional Materials, 2019, 29, 1807753.	7.8	72
811	Pseudocapacitive Grapheneâ€Wrapped Porous VO ₂ Microspheres for Ultrastable and Ultrahighâ€Rate Sodiumâ€ion Storage. ChemElectroChem, 2019, 6, 1400-1406.	1.7	7
812	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Research, 2019, 12, 2218-2223.	5.8	88
813	Co(OH)2@Co electrode for efficient alkaline anode based on Co2+/Co° redox mechanism. Energy Storage Materials, 2019, 21, 372-377.	9.5	13
814	Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous and Mesoporous Materials, 2019, 279, 293-315.	2.2	78

#	Article	IF	CITATIONS
815	Benefits of Copper and Magnesium Cosubstitution in Na _{0.5} Mn _{0.6} Ni _{0.4} O ₂ as a Superior Cathode for Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 844-851.	2.5	20
816	Barium Titanate-Based Porous Ceramic Flexible Membrane as a Separator for Room-Temperature Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 3889-3896.	4.0	36
817	Bimetallic sulfide microflowers as an advanced anode for sodium-ion batteries. Materials Letters, 2019, 238, 222-225.	1.3	14
818	In-situ sulfuration synthesis of N,S-doped carbon nanosheet encapsulated Fe-doped Co9S8 as anodes for tunable lithium storage. Applied Surface Science, 2019, 473, 673-680.	3.1	33
819	Hierarchical Ultrafine Ni ₃ V ₂ O ₈ Nanoparticles Anchored on rGO as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1800784.	1.8	15
820	Safe, economical and fast-charging secondary batteries using single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2019, 58, SAAE02.	0.8	4
821	Synthesis of MoS2/nitrogen-doped carbon composites for reversible sodium-storage. Materials Letters, 2019, 236, 591-595.	1.3	1
822	Bio-derived mesoporous disordered carbon: An excellent anode in sodium-ion battery and full-cell lab prototype. Carbon, 2019, 143, 402-412.	5.4	102
823	Na ₂ FePO ₄ F Fluorophosphate as Positive Insertion Material for Aqueous Sodiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 444-449.	1.7	27
824	Facile synthesis of hydrated magnesium vanadium bronze Ïf-Mg0.25V2O5·H2O as a novel cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 777, 931-938.	2.8	7
825	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56, 426-433.	8.2	111
826	Microwave-irradiated reduced graphene oxide nanosheets for highly reversible and ultrafast sodium storage. Journal of Alloys and Compounds, 2019, 778, 382-390.	2.8	9
827	A General Eco-friendly Production of Bio-sources Derived Micro-/Mesoporous Carbons with Robust Supercapacitive Behaviors and Sodium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 779-789.	3.2	44
828	Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres. Journal of Materials Science, 2019, 54, 4124-4134.	1.7	15
829	High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochimica Acta, 2019, 297, 392-397.	2.6	33
830	A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte. Energy Storage Materials, 2019, 19, 270-280.	9.5	29
831	Construction of carbon-coated nickel phosphide nanoparticle assembled submicrospheres with enhanced electrochemical properties for lithium/sodium-ion batteries. Journal of Colloid and Interface Science, 2019, 538, 187-198.	5.0	26
832	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 2701-2705.	1.6	29

#	Article	IF	CITATIONS
833	Carbon Nanofiber Elastically Confined Nanoflowers: A Highly Efficient Design for Molybdenum Disulfide-Based Flexible Anodes Toward Fast Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 5183-5192.	4.0	45
834	Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Materials, 2019, 22, 66-95.	9.5	149
835	Two-Dimensional Anode Materials for Non-lithium Metal-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 932-955.	2.5	83
836	F-Doped NaTi ₂ (PO ₄) ₃ /C Nanocomposite as a High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3116-3124.	4.0	52
837	Highâ€Performance Flexible Freestanding Anode with Hierarchical 3D Carbonâ€Networks/Fe ₇ S ₈ /Graphene for Applicable Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1806664.	11.1	233
838	The role of Zn substitution in P2-type Na0.67Ni0.23Zn0.1Mn0.67O2 cathode for inhibiting the phase transition at high potential and dissolution of manganese at low potential. Journal of Materials Science: Materials in Electronics, 2019, 30, 4006-4013.	1.1	13
839	Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts. ChemElectroChem, 2019, 6, 1019-1022.	1.7	29
840	Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Research, 2019, 12, 695-700.	5.8	50
841	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 2675-2679.	7.2	182
842	Typha-derived hard carbon for high-performance sodium ion storage. Journal of Alloys and Compounds, 2019, 784, 1290-1296.	2.8	28
843	Improved rate and cycling performance of FeF2-rGO hybrid cathode with poly (acrylic acid) binder for sodium ion batteries. Journal of Power Sources, 2019, 413, 449-458.	4.0	25
844	Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors. Journal of Power Sources, 2019, 414, 68-75.	4.0	45
845	Carbon-Free TiO ₂ Microspheres as Anode Materials for Sodium Ion Batteries. ACS Energy Letters, 2019, 4, 494-501.	8.8	63
846	K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. Journal of Alloys and Compounds, 2019, 784, 939-946.	2.8	37
847	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	8.3	537
848	High-energy Mn-based layered cathodes for sodium-ion batteries. Science Bulletin, 2019, 64, 149-150.	4.3	4
849	Hard Carbon as Sodiumâ€lon Battery Anodes: Progress and Challenges. ChemSusChem, 2019, 12, 133-144.	3.6	257
850	Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage. Journal of Alloys and Compounds, 2019, 776, 912-918.	2.8	29

ARTICLE IF CITATIONS Alluaudite-Na1.47Fe3(PO4)3: Structural and electrochemical properties of potential cathode material 851 1.5 16 for Na-ion Batteries. Solid State Sciences, 2019, 87, 21-26. Compositeâ€Structure Materials for Naâ€Ion Batteries. Small Methods, 2019, 3, 1800205. 4.6 Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes 853 8.2 194 with superior sodium storage. Nano Energy, 2019, 57, 414-423. Sodium Superionic Conductors Based on Clusters. ACS Applied Materials & amp; Interfaces, 2019, 11, 4.0 44 963-972. Comparison of carbon materials as cathodes for the aluminium-ion battery. Carbon, 2019, 144, 333-341. 855 5.4 55 Agglomeration-resistant 2D nanoflakes configured with super electronic networks for 8.2 extraordinary fast and stable sodium-ion storage. Nano Energy, 2019, 56, 502-511. Ab initio simulations of liquid electrolytes for energy conversion and storage. International Journal 857 1.0 14 of Quantum Chemistry, 2019, 119, e25795. Sodium Ion Batteries using Ionic Liquids as Electrolytes. Chemical Record, 2019, 19, 758-770. 2.9 858 Rational design and synthesis of advanced Na3·32Fe2·34(P2O7)2 cathode with multiple-dimensional 859 4.0 18 N-doped carbon matrix. Journal of Power Sources, 2019, 412, 350-358. A V2O5-nanosheets-coated hard carbon fiber fabric as high-performance anode for sodium ion battery. 2.2 64 Surface and Coatings Technology, 2019, 358, 661-666. Musselâ€Inspired Nitrogenâ€Doped Porous Carbon as Anode Materials for Sodiumâ€Ion Batteries. Energy 861 1.8 9 Technology, 2019, 7, 1800763. Solvate Ionic Liquids for Li, Na, K, and Mg Batteries. Chemical Record, 2019, 19, 708-722. 862 Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion 863 1.7 18 batteries. Journal of Materials Science, 2019, 54, 2472-2482. Sol–gel synthesis of K1.33Mn8O16 nanorods and their applications for aqueous K-ion hybrid 864 2.7 supercapacítors. Materials Research Bulletin, 2019, 109, 29-33. Atomic layer deposited-ZnO@3D-Ni-foam composite for Na-ion battery anode: A novel route for easy 865 2.324 and efficient electrode preparation. Ceramics International, 2019, 45, 1084-1092. VO2 (A)/graphene nanostructure: Stand up to Na ion intercalation/deintercalation for enhanced electrochemical performance as a Na-ion battery cathode. Electrochimica Acta, 2019, 293, 97-104. Heteroatomâ€Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodiumâ€Ion Batteries. 867 4.6 203 Small Methods, 2019, 3, 1800323. Hierarchical porous stratified texture and enhanced lithium-ion storage performance of Co3O4 modified by nitrogen-doped reduced graphene oxides. Journal of Alloys and Compounds, 2019, 774, 2.8 236-243.

#	Article	IF	CITATIONS
869	Moderately concentrated electrolyte improves solid–electrolyte interphase and sodium storage performance of hard carbon. Energy Storage Materials, 2019, 16, 146-154.	9.5	73
870	Binderâ€Free Electrodes for Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1806304.	11.1	206
871	Synthesis Strategies and Structural Design of Porous Carbonâ€Incorporated Anodes for Sodiumâ€Ion Batteries. Small Methods, 2020, 4, 1900163.	4.6	49
872	Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. Journal of Materials Science and Technology, 2020, 55, 73-80.	5.6	22
873	Large and reversible sodium storage through interlaced reaction design. Energy Storage Materials, 2020, 25, 687-694.	9.5	9
874	One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Materials, 2020, 25, 636-643.	9.5	101
875	One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Materials, 2020, 25, 443-476.	9.5	89
876	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1903826.	11.1	329
877	Electrical and Thermal Transport Properties of n â€ŧype Bi 6 Cu 2 Se 4 O 6 (2BiCuSeO + 2Bi 2 O 2 Se). Annalen Der Physik, 2020, 532, 1900340.	0.9	11
878	An integrated and robust yolk–shell nanoreactor based on wrinkly silica microspheres loaded with Au nanoparticles and nested in a silica inverse opal. Journal of Materials Science, 2020, 55, 2006-2017.	1.7	4
879	Molecular Dynamics Simulations of Polymer–Ionic Liquid (1-Ethyl-3-methylimidazolium) Tj ETQq0 0 0 rgBT /Ove Information and Modeling, 2020, 60, 485-499.	erlock 10 T 2.5	f 50 347 Td 23
880	Construction of 1Tâ€MoSe ₂ /TiC@C Branch–Core Arrays as Advanced Anodes for Enhanced Sodium Ion Storage. ChemSusChem, 2020, 13, 1575-1581.	3.6	34
881	Recent progress in grapheneâ€based electrodes for flexible batteries. InformaÄnÃ-MateriÃily, 2020, 2, 509-526.	8.5	122
882	Na-rich metal hexacyanoferrate with water-mediated room-temperature fast Na+-ion conductance. Microporous and Mesoporous Materials, 2020, 292, 109715.	2.2	6
883	MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chinese Chemical Letters, 2020, 31, 1221-1225.	4.8	49
884	A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research, 2020, 286, 401-416.	3.5	171
885	Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries. Energy Storage Materials, 2020, 25, 502-509.	9.5	17
886	Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chemical Engineering Journal, 2020, 380, 122457.	6.6	102

#	Article	IF	CITATIONS
887	Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 2020, 379, 122418.	6.6	23
888	Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability. Energy Storage Materials, 2020, 24, 504-511.	9.5	22
889	Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chemical Engineering Journal, 2020, 379, 122261.	6.6	90
890	High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Materials, 2020, 24, 467-471.	9.5	50
891	New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery. Energy Storage Materials, 2020, 24, 458-466.	9.5	20
892	Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25, 811-826.	9.5	114
893	Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Materials, 2020, 24, 208-219.	9.5	140
894	Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chemical Engineering Journal, 2020, 380, 122624.	6.6	22
895	Structural and ion transport properties of sodium ion conducting Na2MTeO6 (M= MgNi and MgZn) solid electrolytes. Ceramics International, 2020, 46, 663-671.	2.3	16
896	AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chemical Engineering Journal, 2020, 382, 122697.	6.6	20
897	A Low ost and Environmentally Friendly Mixed Polyanionic Cathode for Sodiumâ€lon Storage. Angewandte Chemie - International Edition, 2020, 59, 740-745.	7.2	75
898	Advanced Materials for Sodiumâ€lon Capacitors with Superior Energy–Power Properties: Progress and Perspectives. Small, 2020, 16, e1902843.	5.2	45
899	Manipulating 2D Few‣ayer Metal Sulfides as Anode Towards Enhanced Sodiumâ€ŀon Batteries. Batteries and Supercaps, 2020, 3, 236-253.	2.4	16
900	Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodiumâ€ l on Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 2020, 4, 1900673.	4.6	47
901	Substantial doping engineering in Na3V2-xFex(PO4)3 (0â‰ ¤ â‰ 0 .15) as high-rate cathode for sodium-ion battery. Materials and Design, 2020, 186, 108287.	3.3	48
902	Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy, 2020, 67, 104240.	8.2	56
903	Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. Journal of Energy Chemistry, 2020, 46, 71-77.	7.1	75
904	Multi-metal–Organic Frameworks and Their Derived Materials for Li/Na-Ion Batteries. Electrochemical Energy Reviews, 2020, 3, 127-154.	13.1	64

ARTICLE IF CITATIONS # Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power 905 26 1.6 Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 2470-2477. Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. Journal of Alloys and Compounds, 2020, 832, 152824. 906 2.8 Modelling of antimonene as an anode material in sodium-ion battery: A first-principles study. 907 2.0 27 Materials Chemistry and Physics, 2020, 241, 122381. Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy, 2020, 67, 104250. Spray-drying synthesis of P2-Na2/3Fe1/2Mn1/2O2 with improved electrochemical properties. Advanced 909 2.0 16 Powder Technology, 2020, 31, 190-197. A Low ost and Environmentally Friendly Mixed Polyanionic Cathode for Sodiumâ€Ion Storage. Angewandte Chemie, 2020, 132, 750-755. 1.6 Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power 911 7.2 101 Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for 8.2 143 sodium-ion batteries. Nano Energy, 2020, 67, 104219. Effect of downsizing the maricite 1±-phase sodium cobalt phosphate (1±-NaCoPO4) in sodium-ion battery. 913 0.8 11 Journal of Nanoparticle Research, 2020, 22, 1. Crystal structure of NaFeO2 and NaAlO2 and their correlation with ionic conductivity. Ionics, 2020, 914 1.2 26, 2917-2926. Ferroconcrete-inspired design of a nonwoven graphene fiber fabric reinforced electrode for flexible 915 17 5.2 fast-charging sodium ion storage devices. Journal of Materials Chemistry A, 2020, 8, 2777-2788. Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. 1.2 26 Journal of Solid State Electrochemistry, 2020, 24, 521-532. Progress in electrolytes for beyond-lithium-ion batteries. Journal of Materials Science and 917 5.6 74 Technology, 2020, 44, 237-257. New Dimorphs of Na₅V(PO₄)₂F₂ as an Ultrastable Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 1181-1189. 918 2.5 16 Micropores-in-macroporous gel polymer electrolytes for alkali metal batteries. Sustainable Energy 919 2.521 and Fuels, 2020, 4, 177-189. Three-dimensional mesoporous <i>)î³</i>-Fe₂O₃@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries. Nanotechnology, 2020, 31, 155401. Insights into P2-Type Layered Positive Electrodes for Sodium Batteries: From Long- to Short-Range 921 4.0 25 Order. ACS Applied Materials & amp; Interfaces, 2020, 12, 5017-5024. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy, 2020, 69, 8.2 104474.

#	Article	IF	CITATIONS
923	Plasmaâ€Enabled Ternary SnO ₂ @Sn/Nitrogenâ€Doped Graphene Aerogel Anode for Sodiumâ€lon Batteries. ChemElectroChem, 2020, 7, 1358-1364.	1.7	26
924	Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. Journal of Colloid and Interface Science, 2020, 565, 494-502.	5.0	44
925	Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	5.2	37
926	Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. Journal of Materials Chemistry A, 2020, 8, 3222-3227.	5.2	73
927	Porous lithium titanate nanosheets as an advanced anode material for sodium ion batteries. Journal of Materials Science, 2020, 55, 4372-4381.	1.7	12
928	Reversible Na+-extraction/insertion in nitrogen-doped graphene-encapsulated Na3V2(PO4)2F3@C electrode for advanced Na-ion battery. Ceramics International, 2020, 46, 9170-9175.	2.3	17
929	3D Hierarchically Structured CoS Nanosheets: Li ⁺ Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 3709-3718.	4.0	72
930	Nickel Hollow Spheres Concatenated by Nitrogenâ€Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium–Sulfur Batteries. Advanced Science, 2020, 7, 1902617.	5.6	70
931	Dendriteâ€Free Potassium Metal Anodes in a Carbonate Electrolyte. Advanced Materials, 2020, 32, e1906735.	11.1	107
932	Engineering Hollow Porous Carbon-Sphere-Confined MoS ₂ with Expanded (002) Planes for Boosting Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 1232-1240.	4.0	79
933	Chalcopyrite-Derived Na <i>_x</i> MO ₂ (M = Cu, Fe, Mn) Cathode: Tuning Impurities for Self-Doping. ACS Applied Materials & Interfaces, 2020, 12, 2432-2444.	4.0	41
934	The Advances of Metal Sulfides and In Situ Characterization Methods beyond Li Ion Batteries: Sodium, Potassium, and Aluminum Ion Batteries. Small Methods, 2020, 4, 1900648.	4.6	106
935	Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₃ Supported on Multiwalled Carbon Nanotubes for Halfâ€/Fullâ€Cell Sodiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901080.	1.8	21
936	Transition metal chalcogenides for energy storage and conversion. , 2020, , 355-391.		7
937	FeS/ZnS nanoflower composites as high performance anode materials for sodium ion batteries. Inorganic Chemistry Communication, 2020, 111, 107635.	1.8	17
938	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
939	Selfâ€Assembling of Conductive Interlayerâ€Expanded WS ₂ Nanosheets into 3D Hollow Hierarchical Microflower Bud Hybrids for Fast and Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1907677.	7.8	82
940	Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium―and Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1902485.	10.2	511

#	Article	IF	CITATIONS
941	High-performance nitrogen and sulfur co-doped nanotube-like carbon anodes for sodium ion hybrid capacitors. Chinese Chemical Letters, 2020, 31, 2219-2224.	4.8	19
942	A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 2020, 7, 402-410.	3.0	128
943	Understanding the Multiple Effects of TiO ₂ Coating on NaMn _{0.33} Fe _{0.33} Ni _{0.33} O ₂ Cathode Material for Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 933-942.	2.5	78
944	Minerals as perspective prototypes of cathode materials for metal-ion batteries. Materials Today: Proceedings, 2020, 25, 420-423.	0.9	1
945	Enhanced sodium storage kinetics by volume regulation and surface engineering <i>via</i> rationally designed hierarchical porous FeP@C/rGO. Nanoscale, 2020, 12, 4341-4351.	2.8	80
946	Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries. Chinese Chemical Letters, 2020, 31, 2167-2176.	4.8	51
947	Suppressing Cation Migration and Reducing Particle Cracks in a Layered Feâ€Based Cathode for Advanced Sodiumâ€lon Batteries. Small, 2020, 16, e1904388.	5.2	41
948	Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. Nano Energy, 2020, 69, 104389.	8.2	49
949	FeSb2S4 anchored on amine-modified graphene towards high-performance anode material for sodium ion batteries. Chemical Engineering Journal, 2020, 385, 123857.	6.6	31
950	Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes. Ceramics International, 2020, 46, 8405-8412.	2.3	19
951	Promoting electrochemical performances of vanadium carbide nanodots via N and P co-doped carbon nanosheets wrapping. Chemical Engineering Journal, 2020, 393, 123596.	6.6	13
952	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 851-857.	4.0	28
953	Challenges and perspectives for manganeseâ€based oxides for advanced aqueous zincâ€ion batteries. InformaÄnÃ-Materiály, 2020, 2, 237-260.	8.5	264
954	Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chemical Engineering Journal, 2020, 385, 123839.	6.6	141
955	Dual-Functional Template-Directed Synthesis of MoSe ₂ /Carbon Hybrid Nanotubes with Highly Disordered Layer Structures as Efficient Alkali-Ion Storage Anodes beyond Lithium. ACS Applied Materials & Interfaces, 2020, 12, 2390-2399.	4.0	41
956	Polypyrrole modified hierarchical porous CoS2@RGO aerogel electrode for ultrafast sodium storage. Journal of Solid State Electrochemistry, 2020, 24, 81-91.	1.2	9
957	A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life. ACS Applied Materials & Interfaces, 2020, 12, 2424-2431.	4.0	59
958	Physical properties and conductivity relaxation processes in sodium sulfo-borophosphate glasses. Journal of Physics Condensed Matter, 2020, 32, 115702.	0.7	1

#	Article	IF	Citations
959	Controllable Synthesis of Twoâ€Dimensional Molybdenum Disulfide (MoS ₂) for Energyâ€Storage Applications. ChemSusChem, 2020, 13, 1379-1391.	3.6	60
960	Prospects in anode materials for sodium ion batteries - A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109549.	8.2	266
961	Perylenedianhydride-Based Polyimides as Organic Cathodes for Rechargeable Lithium and Sodium Batteries. ACS Applied Energy Materials, 2020, 3, 240-252.	2.5	43
962	Engineering Solid Electrolyte Interphase on Red Phosphorus for Long-Term and High-Capacity Sodium Storage. Chemistry of Materials, 2020, 32, 448-458.	3.2	29
963	Uniform yolkâ~'shell Fe7S8@C nanoboxes as a general host material for the efficient storage of alkali metal ions. Journal of Alloys and Compounds, 2020, 817, 152732.	2.8	73
964	Ceramics for electrochemical storage. , 2020, , 549-709.		21
965	Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries. Journal of Solid State Electrochemistry, 2020, 24, 17-24.	1.2	24
966	Hierarchical Engineering of Porous P2â€Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Nanofibers Assembled by Nanoparticles Enables Superior Sodiumâ€lon Storage Cathodes. Advanced Functional Materials, 2020, 30. 1907837.	7.8	117
967	The effect of Sn substitution on the structure and oxygen activity of Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries. Journal of Power Sources, 2020, 449, 227554.	4.0	38
968	A Selective Reduction Approach to Construct Robust Cu1.81S Truss Structures for High-Performance Sodium Storage. Matter, 2020, 2, 428-439.	5.0	35
969	Electrode Engineering by Atomic Layer Deposition for Sodiumâ€ion Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials, 2020, 30, 1906890.	7.8	36
970	Concentration-Gradient Prussian Blue Cathodes for Na-Ion Batteries. ACS Energy Letters, 2020, 5, 100-108.	8.8	71
971	Development of a New Mixed-Polyanion Cathode with Superior Electrochemical Performances for Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 163-171.	3.2	20
972	Nanointerface-driven pseudocapacitance tuning of TiO2 nanosheet anodes for high-rate, ultralong-life and enhanced capacity sodium-ion batteries. Chemical Engineering Journal, 2020, 391, 123598.	6.6	33
973	MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Materials, 2020, 26, 550-559.	9.5	108
974	Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 561, 203-210.	5.0	47
975	Towards standard electrolytes for sodium-ion batteries: physical properties, ion solvation and ion-pairing in alkyl carbonate solvents. Physical Chemistry Chemical Physics, 2020, 22, 22768-22777.	1.3	30
976	Theoretical and experimental study of reversible intercalation of Li ions in the Jarosite NaFe3(SO4)2(OH)6 structure. Electrochimica Acta, 2020, 359, 136950.	2.6	6

#	Article	IF	CITATIONS
977	Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate. Journal of Power Sources, 2020, 480, 228794.	4.0	18
978	Impact of Mg ²⁺ and Al ³⁺ Substitutions on the Structural and Electrochemical Properties of NASICONâ \in Na <i>_x</i> VMn _{0.75} M _{0.25} (PO ₄) ₃ (M = Mg and Al) Cathodes for Sodiumâ \in on Batteries, Small, 2020, 16, e2003973.	5.2	53
979	Lithium-ion batteries $\hat{a} \in Current$ state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
980	Polymer electrolytes for metal-ion batteries. Russian Chemical Reviews, 2020, 89, 1132-1155.	2.5	48
981	Rational design of vanadium chalcogenides for sodium-ion batteries. Journal of Power Sources, 2020, 478, 228769.	4.0	21
982	MnS@N,S Coâ€Doped Carbon Core/Shell Nanocubes: Sulfurâ€Bridged Bonds Enhanced Naâ€Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy. Small, 2020, 16, e2003001.	5.2	42
983	Atomic-scale studies of garnet-type Mg3Fe2Si3O12: Defect chemistry, diffusion and dopant properties. Journal of Power Sources Advances, 2020, 3, 100016.	2.6	2
984	1-Aminoanthraquinone as an electro-polymerizable additive to improve the cycling performance of a Na3V2(PO4)2F3 cathode. Electrochemistry Communications, 2020, 119, 106829.	2.3	3
985	Pyrrhotite Fe1â^'xS microcubes as a new anode material in potassium-ion batteries. Microsystems and Nanoengineering, 2020, 6, 75.	3.4	12
986	Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries. Sustainable Materials and Technologies, 2020, 26, e00227.	1.7	25
987	Enhancing Na-Ion Storage at Subzero Temperature via Interlayer Confinement of Sn ²⁺ . ACS Nano, 2020, 14, 13765-13774.	7.3	22
988	Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22507-22543.	5.2	56
989	Insights into the Li incorporation effect in Ni/Co-free P2-type Na _{0.6} Mn _{0.8} Cu _{0.2} O ₂ for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22346-22355.	5.2	10
990	Boron and phosphorous co-doped porous carbon as high-performance anode for sodium-ion battery. Solid State Ionics, 2020, 356, 115455.	1.3	15
991	Faradaic Electrodes Open a New Era for Capacitive Deionization. Advanced Science, 2020, 7, 2002213.	5.6	104
992	Towards valorizing natural coals in sodium-ion batteries: impact of coal rank on energy storage. Scientific Reports, 2020, 10, 15871.	1.6	7
993	High-Performance NaVO ₃ with Mixed Cationic and Anionic Redox Reactions for Na-Ion Battery Applications. Chemistry of Materials, 2020, 32, 8836-8844.	3.2	14
994	Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na ₃ ONO ₂ . Journal of Materials Chemistry A, 2020, 8, 21265-21272.	5.2	29

#	Article	IF	CITATIONS
995	Metallic Monolayer Ta ₂ CS ₂ : An Anode Candidate for Li ⁺ , Na ⁺ , K ⁺ , and Ca ²⁺ Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10695-10701.	2.5	23
996	Anomalous Sodium Storage Behavior in Al/F Dualâ€Doped P2â€Type Sodium Manganese Oxide Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002205.	10.2	36
997	Designing Advanced Vanadiumâ€Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002244.	10.2	79
998	Design strategies for organic carbonyl materials for energy storage: Small molecules, oligomers, polymers and supramolecular structures. EcoMat, 2020, 2, e12055.	6.8	24
999	Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators?. Journal of Cleaner Production, 2020, 276, 124244.	4.6	27
1000	Potential of porous nodal-line semi-metallic carbon for sodium-ion battery anode. Journal of Power Sources, 2020, 478, 228746.	4.0	14
1001	Synchronous sulfurization and carbonization using sulfur-rich metal-organic frameworks for fast-charge sodium-ion batteries. Journal of Power Sources, 2020, 478, 228778.	4.0	9
1002	Nanocable with thick active intermediate layer for stable and high-areal-capacity sodium storage. Nano Energy, 2020, 78, 105265.	8.2	12
1003	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.	8.2	141
1004	Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries. Energy & Fuels, 2020, 34, 13412-13426.	2.5	35
1005	Improved High Rate Performance and Cycle Performance of Al-Doped O3-Type NaNi _{0.5} Mn _{0.5} O ₂ Cathode Materials for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 22925-22933.	1.5	39
1006	Engineering the crystal orientation of Na ₃ V ₂ (PO ₄) ₂ F ₃ @rGO microcuboids for advanced sodium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 2932-2942.	3.2	46
1007	An epoxy-reinforced ceramic sheet as a durable solid electrolyte for solid state Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14528-14537.	5.2	23
1008	Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. RSC Advances, 2020, 10, 27033-27041.	1.7	31
1009	Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode. Journal of Materials Science: Materials in Electronics, 2020, 31, 14521-14530.	1.1	5
1010	The Sb/SbPO4@3D-G composite as a promising anode material for sodium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 3448-3455.	3.0	3
1011	Advancing layered cathode material's cycling stability from uniform doping to non-uniform doping. Journal of Materials Chemistry A, 2020, 8, 16690-16697.	5.2	14
1012	Unraveling the Properties of Biomass-Derived Hard Carbons upon Thermal Treatment for a Practical Application in Na-Ion Batteries. Energies, 2020, 13, 3513.	1.6	30

#	Article	IF	CITATIONS
1013	Activating an MXene as a host for EMIm ⁺ by electrochemistry-driven Fe-ion pre-intercalation. Journal of Materials Chemistry A, 2020, 8, 16265-16270.	5.2	17
1014	Advances in Organic Anode Materials for Na″K″on Rechargeable Batteries. ChemSusChem, 2020, 13, 4866-4884.	3.6	55
1015	Recent advances in alloy-based anode materials for potassium ion batteries. Rare Metals, 2020, 39, 970-988.	3.6	68
1016	Hard carbons for sodium-ion batteries and beyond. Progress in Energy, 2020, 2, 042002.	4.6	130
1017	Exploring Route for Pyrophosphateâ€based Electrode Materials: Interplay between Synthesis and Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1260-1266.	0.6	2
1018	Improving electrochemical performance of Na3(VPO4)2O2F cathode materials for sodium ion batteries by constructing conductive scaffold. Electrochimica Acta, 2020, 337, 135816.	2.6	28
1019	Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy, 2020, 77, 105123.	8.2	51
1020	Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries. Carbon, 2020, 168, 448-457.	5.4	52
1021	Intelligent optimization methodology of battery pack for electric vehicles: A multidisciplinary perspective. International Journal of Energy Research, 2020, 44, 9686-9706.	2.2	31
1022	Investigation of superior sodium storage and reversible Na ₂ S conversion reactions in a porous NiS ₂ @C composite using <i>in operando</i> X-ray diffraction. Journal of Materials Chemistry A, 2020, 8, 24401-24407.	5.2	14
1023	Chemical pressure-stabilized post spinel-NaMnSnO4 as potential cathode for sodium-ion batteries. Bulletin of Materials Science, 2020, 43, 1.	0.8	6
1024	Fluorine Triggered Surface and Lattice Regulation in Anatase TiO _{2â^'} <i>_x</i> F <i>_x</i> Nanocrystals for Ultrafast Pseudocapacitive Sodium Storage. Small, 2020, 16, e2006366.	5.2	31
1025	Heterogeneous structured pomegranate-like Bi@C nanospheres for high-performance sodium storage. Journal of Materials Chemistry A, 2020, 8, 25746-25755.	5.2	27
1026	Nature of Alkali Ion Conduction and Reversible Na-Ion Storage in Hybrid Formate Framework Materials. Journal of Physical Chemistry C, 2020, 124, 26714-26721.	1.5	0
1027	A review on recent approaches for designing the SEI layer on sodium metal anodes. Materials Advances, 2020, 1, 3143-3166.	2.6	42
1028	Synthesis and Performance Evaluation of Na _(2â€x) Li _x FeP ₂ O ₇ (x=0, 0.6) Hybrid Cathodes. ChemistrySelect, 2020, 5, 12548-12557.	0.7	2
1029	SnS2 Nanocrystalline-Anchored Three-Dimensional Graphene for Sodium Batteries with Improved Rate Performance. Nanomaterials, 2020, 10, 2336.	1.9	4
1030	Scientific Literature Analysis on Sustainability with the Implication of Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 2020, 6, 162.	2.6	16

#	ARTICLE Transformation of Two-Dimensional Iron Sulfide Nanosheets from FeS ₂ to FeS as	IF	CITATIONS
1031	High-Rate Anodes for Pseudocapacitive Sodium Storage. ACS Applied Energy Materials, 2020, 3, 12672-12681.	2.5	20
1032	Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes. Applied Physics Reviews, 2020, 7, .	5.5	15
1033	Boosting Tunnel-Type Manganese Oxide Cathodes by Lithium Nitrate for Practical Aqueous Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10744-10751.	2.5	4
1034	Nanoframes@CNT Beadsâ€onâ€aâ€String Structures: Toward an Advanced Highâ€Stable Sodiumâ€lon Full Battery. Small, 2020, 16, e2005095.	5.2	15
1035	Stepwise Intercalation-Conversion-Intercalation Sodiation Mechanism in CuInS ₂ Prompting Sodium Storage Performance. ACS Energy Letters, 2020, 5, 3725-3732.	8.8	33
1036	Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy, 2020, 77, 105299.	8.2	20
1037	Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12799-12808.	3.2	33
1038	Storage performance of Mg ²⁺ substituted NaMnPO ₄ with an olivine structure. RSC Advances, 2020, 10, 29051-29060.	1.7	16
1039	Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. Ionics, 2020, 26, 5535-5542.	1.2	39
1040	Stationary battery systems: Future challenges regarding resources, recycling, and sustainability. , 2020, , 71-89.		6
1041	Cedarwood Bark-Derived Hard Carbon as an Anode for High-Performance Sodium-Ion Batteries. Energy & Fuels, 2020, 34, 11489-11497.	2.5	22
1042	P2-Type Layered Na _{0.75} Ni _{1/3} Ru _{1/6} Mn _{1/2} O ₂ Cathode Material with Excellent Rate Performance for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 39056-39062.	4.0	18
1043	Flexible Quasi-Solid-State Sodium Battery for Storing Pulse Electricity Harvested from Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 39342-39351.	4.0	19
1044	State-of-the-Art Electrode Materials for Sodium-Ion Batteries. Materials, 2020, 13, 3453.	1.3	37
1045	Confining Ultrathin 2D Superlattices in Mesoporous Hollow Spheres Renders Ultrafast and Highâ€Capacity Na″on Storage. Advanced Energy Materials, 2020, 10, 2001033.	10.2	25
1046	Exfoliation of <scp>Na₂Ti₃O₇</scp> into Colloidal Nanosheets with Enhanced Discharge Capacity. Bulletin of the Korean Chemical Society, 2020, 41, 906-912.	1.0	2
1047	High-capacity and fast Na-ion diffusion rate three-dimensional MoS2/SnS2-RGO anode for advanced sodium-ion batteries and sodium-ion capacitors. Solid State Ionics, 2020, 355, 115416.	1.3	20
1048	Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy. ACS Applied Energy Materials, 2020, 3, 7474-7484.	2.5	56

#	Article	IF	CITATIONS
1049	Exploring the application of carbon xerogels as anodes for sodium-ion batteries. Microporous and Mesoporous Materials, 2020, 308, 110542.	2.2	8
1050	Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage. Materials, 2020, 13, 3139.	1.3	4
1051	Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion. Chemical Research in Chinese Universities, 2020, 36, 560-583.	1.3	14
1052	Hierarchical graphene@TiO2 sponges for sodium-ion storage with high areal capacity and robust stability. Electrochimica Acta, 2020, 355, 136782.	2.6	13
1053	Synthesis and sodium storage performance of Sb porous nanostructure. Journal of Alloys and Compounds, 2020, 846, 156369.	2.8	8
1054	Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries. ACS Nano, 2020, 14, 10438-10451.	7.3	53
1055	Deep eutectic solvent synthesis of a 3D hierarchical porous NaTi2(PO4)3/C as a high-performance anode for sodium-ion batteries. Ionics, 2020, 26, 5553-5563.	1.2	7
1056	Dual-ion battery with MoS2 cathode. Energy Storage Materials, 2020, 32, 159-166.	9.5	18
1057	Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy, 2020, 70, 104548.	8.2	92
1058	Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery. Frontiers in Chemistry, 2020, 8, 635.	1.8	32
1059	Enhanced sodium storage kinetics of nitrogen rich cellulose-derived hierarchical porous carbon via subsequent boron doping. Applied Surface Science, 2020, 531, 147302.	3.1	23
1060	Cathode materials in non-aqueous aluminum-ion batteries: Progress and challenges. Ceramics International, 2020, 46, 26454-26465.	2.3	25
1061	Understanding the Capacity Fading Mechanisms of O3â€Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001609.	10.2	59
1062	Citrate-mediated synthesis of highly crystalline transition metal hexacyanoferrates and their Na ion storage properties. Applied Surface Science, 2020, 531, 147336.	3.1	5
1063	Review of current progress in non-aqueous aluminium batteries. Renewable and Sustainable Energy Reviews, 2020, 133, 110100.	8.2	57
1064	Controlling at Elevated Temperature the Sodium Intercalation Capacity and Rate Capability of P 3â€Na 2/3 Ni 1/2 Mn 1/2 O 2 through the Selective Substitution of Nickel with Magnesium. Batteries and Supercaps, 2020, 3, 1329-1340.	2.4	12
1065	Advances in materials for allâ€climate sodiumâ€ion batteries. EcoMat, 2020, 2, e12043.	6.8	32
1066	A comprehensive study of the multiple effects of Y/Al substitution on O3-type NaNi _{0.33} Mn _{0.33} Fe _{0.33} O ₂ with improved cycling stability and rate capability for Na-ion battery applications. Nanoscale, 2020, 12, 16831-16839	2.8	13

#	Article	IF	CITATIONS
1067	Dually Decorated Na ₃ V ₂ (PO ₄) ₂ F ₃ by Carbon and 3D Graphene as Cathode Material for Sodiumâ€ion Batteries with High Energy and Power Densities. ChemElectroChem, 2020, 7, 3975-3983.	1.7	17
1068	Coral reef-like MoS2 microspheres with 1T/2H phase as high-performance anode material for sodium ion batteries. Journal of Materials Science, 2020, 55, 14389-14400.	1.7	16
1069	Featuring surface sodium storage properties of confined MoS2/bacterial cellulose-derived carbon nanofibers anode. Applied Surface Science, 2020, 530, 147261.	3.1	13
1070	Understanding the Na-Ion Storage Mechanism in Na _{3+<i>x</i>} V _{2–<i>x</i>} M _{<i>x</i>} (PO ₄) ₃ (M = Ni ²⁺ , Co ²⁺ , Mg ²⁺ ; <i>x</i> = 0.1–0.5) Cathodes. ACS Applied Energy Materials. 2020. 3. 8475-8486.	2.5	25
1071	Water-stable O3-type layered Na transition metal oxides enabling environment friendly â€~aqueous processing' of electrodes with long-term electrochemical stability. Journal of Materials Chemistry A, 2020, 8, 18064-18078.	5.2	18
1072	Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2001449.	10.2	50
1073	Spray-drying synthesis of Na2Fe1-Mn PO4F/C cathodes: A facile synergetic strategy harvesting superior sodium storage. Advanced Powder Technology, 2020, 31, 1564-1573.	2.0	12
1074	Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy, 2020, 77, 105143.	8.2	282
1075	High-performance graphene/disodium terephthalate electrodes with ether electrolyte for exceptional cooperative sodiation/desodiation. Nano Energy, 2020, 77, 105203.	8.2	16
1076	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 2020, 120, 7795-7866.	23.0	950
1077	N-doped carbon-coated ultrasmall Nb ₂ O ₅ nanocomposite with excellent long cyclability for sodium storage. Nanoscale, 2020, 12, 18673-18681.	2.8	18
1078	Sodium diffusion in ionic liquid-based electrolytes for Na-ion batteries: the effect of polarizable force fields. Physical Chemistry Chemical Physics, 2020, 22, 20114-20122.	1.3	13
1079	Reinforced supercapacitive behavior of O3-type layer-structured Na3Ni2BiO6 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) electrolyte. Journal of Materials Science: Materials in Electronics, 2020, 31, 16688-16700.	1.1	2
1080	Stable Potassium Metal Anodes with an Allâ€Aluminum Current Collector through Improved Electrolyte Wetting. Advanced Materials, 2020, 32, e2002908.	11.1	70
1081	Ostwald Ripening Tailoring Hierarchically Porous Na ₃ V ₂ (PO ₄) ₂ O ₂ F Hollow Nanospheres for Superior Highâ€Rate and Ultrastable Sodium Ion Storage. Small, 2020, 16, e2004925.	5.2	34
1082	Hierarchically nanorod structured Na2Ti6O13/Na2Ti3O7 nanocomposite as a superior anode for high-performance sodium ion battery. Journal of Electroanalytical Chemistry, 2020, 877, 114747.	1.9	13
1083	A robust spring-like lamellar VO/C nanostructure for high-rate and long-life potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23939-23946.	5.2	15
1084	Designing a slope-dominated hybrid nanostructure hard carbon anode for high-safety and high-capacity Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22613-22619.	5.2	15

#	Article	IF	CITATIONS
1085	Branched conjugated polymers for fast capacitive storage of sodium ions. Journal of Materials Chemistry A, 2020, 8, 23851-23856.	5.2	32
1086	Hydrothermal Activation of Porous Nitrogen-Doped Carbon Materials for Electrochemical Capacitors and Sodium-Ion Batteries. Nanomaterials, 2020, 10, 2163.	1.9	41
1087	Integrating P2 into Oâ€23 toward a robust Mn-Based layered cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23820-23826.	5.2	21
1088	Recent progress in organic electrodes for zinc-ion batteries. Journal of Semiconductors, 2020, 41, 091704.	2.0	31
1089	Multifunctionalities of Graphene for Exploiting a Facile Conversion Reaction Route of Perovskite CoSnO ₃ for Highly Reversible Na Ion Storage. Journal of Physical Chemistry Letters, 2020, 11, 7988-7995.	2.1	5
1090	Vacancyâ€Driven High Rate Capabilities in Calciumâ€Doped Na _{0.4} MnO ₂ Cathodes for Aqueous Sodiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002077.	10.2	37
1091	Highly Reversible Naâ€Intercalation into Graphite Recovered from Spent Li–Ion Batteries for Highâ€Energy Naâ€Ion Capacitor. ChemSusChem, 2020, 13, 5654-5663.	3.6	25
1092	Efficient Naâ€lon Storage in 2D TiS ₂ Formed by a Vapor Phase Anionâ€Exchange Process. Small Methods, 2020, 4, 2000439.	4.6	12
1093	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	4.6	15
1094	Intrinsically high efficiency sodium metal anode. Science China Chemistry, 2020, 63, 1557-1562.	4.2	7
1095	One-Pot Synthesized Biomass C-Si Nanocomposites as an Anodic Material for High-Performance Sodium-Ion Battery. Nanomaterials, 2020, 10, 1728.	1.9	15
1096	Tunable Surface Selenization on MoO ₂ â€Based Carbon Substrate for Notably Enhanced Sodiumâ€lon Storage Properties. Small, 2020, 16, e2001905.	5.2	60
1097	A Selfâ€Healing Amalgam Interface in Metal Batteries. Advanced Materials, 2020, 32, e2004798.	11.1	34
1098	Dualâ€Strategy of Cationâ€Doping and Nanoengineering Enables Fast and Stable Sodiumâ€Ion Storage in a Novel Fe/Mnâ€Based Layered Oxide Cathode. Advanced Science, 2020, 7, 2002199.	5.6	83
1099	High-Rate and Long-Cycle Cathode for Sodium-Ion Batteries: Enhanced Electrode Stability and Kinetics via Binder Adjustment. ACS Applied Materials & Interfaces, 2020, 12, 47580-47589.	4.0	29
1100	Nanoengineered Organic Electrodes for Highly Durable and Ultrafast Cycling of Organic Sodiumâ€lon Batteries. Small, 2020, 16, e2003688.	5.2	21
1101	A comprehensive review on the fabrication, modification and applications of Na ₃ V ₂ (PO ₄) ₂ F ₃ cathodes. Journal of Materials Chemistry A, 2020, 8, 21387-21407.	5.2	65
1102	Sodium Storage Mechanism Investigations through Structural Changes in Hard Carbons. ACS Applied Energy Materials, 2020, 3, 9918-9927.	2.5	56

#	Article		CITATIONS
1103	Toward Rapidâ€Charging Sodiumâ€Ion Batteries using Hybridâ€Phase Molybdenum Sulfide Selenideâ€Based Anodes. Advanced Materials, 2020, 32, e2003534.		82
1104	Novel Approach Through the Harmonized Sulfur in Disordered Carbon Structure for High-Efficiency Sodium-Ion Exchange. ACS Applied Materials & Interfaces, 2020, 12, 43750-43760.	4.0	12
1105	Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 19113-19132.	5.2	61
1106	Effect of Microstructure on Ionic Transport in Silica-Based Sodium Containing Nanoconfined Systems and Their Electrochemical Performance as Electrodes. Journal of Physical Chemistry C, 2020, 124, 21155-21169.	1.5	11
1107	A preliminary study of phases, elemental mapping, and electrical properties on Na ₂ FeSiO ₄ derived from rice husk silica. Journal of Physics: Conference Series, 2020, 1572, 012003.	0.3	6
1108	Electrolytes for Lithium―and Sodiumâ€Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3584-3598.	1.7	28
1109	In Situ-Formed Cr ₂ O ₃ Coating on NaCrO ₂ with Improved Sodium Storage Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 44671-44678.	4.0	20
1110	Spinel-Layered Intergrowth Composite Cathodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 45997-46004.	4.0	26
1111	High rate and cyclic performance of Na3–2xMgxV2(PO4)3/C cathode for sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 18360-18369.		9
1112	Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten, 2020, 2, 217-239.	2.0	44
1113	Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Letters, 2020, 5, 3212-3220.	8.8	97
1114	Facilitating Phase Evolution for a High-Energy-Efficiency, Low-Cost O3-Type Na _{<i>x</i>} Cu _{0.18} Fe _{0.3} Mn _{0.52} O ₂ Sodium Ion Battery Cathode. Inorganic Chemistry, 2020, 59, 13792-13800.	1.9	15
1115	Redox Mechanism in Na-Ion Battery Cathodes Probed by Advanced Soft X-Ray Spectroscopy. Frontiers in Chemistry, 2020, 8, 816.	1.8	12
1116	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Structures, 2020, 1, 2000053.	6.9	47
1117	A Scalable Approach to Na ₂ FeP ₂ O ₇ @Carbon/Expanded Graphite as a Lowâ€Cost and Highâ€Performance Cathode for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3874-3882.	1.7	21
1118	Elucidating the Redox Behavior in Different P-type Layered Oxides for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43665-43673.	4.0	13
1119	High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. Journal of Materials Chemistry A, 2020, 8, 19898-19907.	5.2	23
1120	Coatingâ€Mediated Nanomechanical Behaviors of CuO Electrodes in Li―and Naâ€ŀon Batteries. Advanced Materials Interfaces, 2020, 7, 2001161.	1.9	8

#	Article		CITATIONS
1121	Progress and Prospects of Transition Metal Sulfides for Sodium Storage. Advanced Fiber Materials, 2020, 2, 314-337.		74
1122	Recent Advances on Mixed Metal Sulfides for Advanced Sodiumâ€lon Batteries. Advanced Materials, 2020, 32, e2002976.	11.1	234
1123	Pseudocapacitive Vanadiumâ€based Materials toward Highâ€Rate Sodiumâ€lon Storage. Energy and Environmental Materials, 2020, 3, 221-234.	7.3	95
1124	Phase transformation, charge transfer, and ionic diffusion of Na ₄ MnV(PO ₄) ₃ in sodium-ion batteries: a combined first-principles and experimental study. Journal of Materials Chemistry A, 2020, 8, 17477-17486.	5.2	23
1125	Assessment on the Use of High Capacity "Sn ₄ P ₃ â€∤NHC Composite Electrodes for Sodiumâ€ŀon Batteries with Ether and Carbonate Electrolytes. Advanced Functional Materials, 2020, 30, 2004798.	7.8	41
1126	Grapheneâ€Like Carbon Film Wrapped Tin (II) Sulfide Nanosheet Arrays on Porous Carbon Fibers with Enhanced Electrochemical Kinetics as Highâ€Performance Li and Na Ion Battery Anodes. Advanced Science, 2020, 7, 1903045.	5.6	49
1127	Large Interlayer Spacing of Few-Layered Cobalt–Tin-Based Sulfide Providing Superior Sodium Storage. ACS Applied Materials & Interfaces, 2020, 12, 41546-41556.	4.0	11
1128	Delineating the Capacity Fading Mechanisms of Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ at Higher Operating Voltages in Sodium-Ion Cells. Chemistry of Materials, 2020, 32, 7389-7396.	3.2	25
1129	Zwitterionic Copolymer-Supported Ionogel Electrolytes Featuring a Sodium Salt/Ionic Liquid Solution. Chemistry of Materials, 2020, 32, 7951-7957.	3.2	21
1130	Effect of Hematite Doping with Aliovalent Impurities on the Electrochemical Performance of α-Fe2O3@rGO-Based Anodes in Sodium-Ion Batteries. Nanomaterials, 2020, 10, 1588.	1.9	10
1131	Electrochemical aspects of sol-gel synthesized MgCoO2 for aqueous supercapacitor and alkaline HER electrocatalyst applications. Current Applied Physics, 2020, 20, 1404-1415.	1.1	6
1132	Probing the Effect of Titanium Substitution on the Sodium Storage in Na3Ni2BiO6 Honeycomb-Type Structure. Energies, 2020, 13, 6498.	1.6	2
1133	Modulation of the Crystal Structure and Ultralong Life Span of a Na ₃ V ₂ (PO ₄) ₃ -Based Cathode for a High-Performance Sodium-Ion Battery by Niobium–Vanadium Substitution. Industrial & Engineering Chemistry Research, 2020, 59, 21039-21046.	1.8	15
1134	Ultrafine Antimony Nanocrystals/Phosphorus Pitaya-Like Nanocomposites as Anodes for High-Performance Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 18535-18544.	3.2	8
1135	A review on current anode materials for rechargeable Mg batteries. Journal of Magnesium and Alloys, 2020, 8, 963-979. Revisiting the commission	5.5	79
1136	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> -type antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NaNiO</mml:mi><mml:mn>2with muon spin rotation measurements and density functional theory calculations. Physical Review B.</mml:mn></mml:msub></mml:math 	nl:mh> <td>nmf:msub></td>	nmf:msub>
1137	2020, 102, Fe ₃ O ₄ /Graphene Aerogel as High-Performance Flexible Anode for Sodium-Ion Battery. Journal of Physics: Conference Series, 2020, 1637, 012079.	0.3	3
1138	The performance of sodium ion battery with NaFePO ₄ cathode prepared from local iron sand. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012008.	0.3	3

#	Article		CITATIONS
1139	Hierarchical porous carbon sheets for high-performance room temperature sodium–sulfur batteries: integration of nitrogen-self-doping and space confinement. Journal of Materials Chemistry A, 2020, 8, 24590-24597.		45
1140	Iron Oxide–Iron Sulfide Hybrid Nanosheets as High-Performance Conversion-Type Anodes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10765-10775.	2.5	20
1141	Hierarchical Multicavity Nitrogenâ€Doped Carbon Nanospheres as Efficient Polyselenide Reservoir for Fast and Longâ€Life Sodium‧elenium Batteries. Small, 2020, 16, e2005534.	5.2	44
1143	Dense Sandwichâ€like Na ₂ Ti ₃ O ₇ @rGO Composite with Superior Performance for Sodium Storage. ChemElectroChem, 2020, 7, 2258-2264.	1.7	10
1144	Sodium Bis(oxalato)borate in Trimethyl Phosphate: A Fire-Extinguishing, Fluorine-Free, and Low-Cost Electrolyte for Full-Cell Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4974-4982.	2.5	34
1145	Recent progresses on SnO ₂ anode materials for sodium storage. Journal Physics D: Applied Physics, 2020, 53, 353001.	1.3	18
1147	Alkali Metal Cations Bonding to Carboxylate Anions: Studies using Mass Spectrometry and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2020, 124, 4390-4399.	1.1	2
1148	Recent Advances of Bimetallic Sulfide Anodes for Sodium Ion Batteries. Frontiers in Chemistry, 2020, 8, 353.	1.8	24
1149	Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Letters, 2020, 5, 1939-1966.	8.8	149
1150	Stabilized Co ³⁺ /Co ⁴⁺ Redox Pair in In Situ Produced CoSe _{2â^'} <i>_x</i> â€Derived Cobalt Oxides for Alkaline Zn Batteries with 10 000â€Cycle Lifespan and 1.9â€V Voltage Plateau. Advanced Energy Materials, 2020, 10, 2000892.	10.2	114
1151	Tuning the Kinetics of Zincâ€ion Insertion/Extraction in V ₂ O ₅ by In Situ Polyaniline Intercalation Enables Improved Aqueous Zincâ€ion Storage Performance. Advanced Materials, 2020, 32, e2001113.	11.1	357
1152	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737.	5.2	44
1153	Development of High-Throughput Methods for Sodium-Ion Battery Cathodes. ACS Combinatorial Science, 2020, 22, 311-318.	3.8	21
1154	A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy and Environmental Science, 2020, 13, 2441-2449.	15.6	67
1155	Highâ€Voltage Oxygenâ€Redoxâ€Based Cathode for Rechargeable Sodiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2001111.	10.2	72
1156	Hard carbon microspheres derived from resorcinol formaldehyde resin as high-performance anode materials for sodium-ion battery. Ionics, 2020, 26, 4523-4532.	1.2	34
1157	Na ₄ Ni ₃ P ₄ O ₁₅ –Ni(OH) ₂ core–shell nanoparticles as hybrid electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. Dalton Transactions, 2020, 49, 8226-8237.	1.6	12
1158	Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2020, 8, 11493-11510.	5.2	113

#	Article		CITATIONS
1159	Dealloyed Nanoporous Materials for Rechargeable Post‣ithium Batteries. ChemSusChem, 2020, 13, 3376-3390.	3.6	20
1160	Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chemical Society Reviews, 2020, 49, 3981-4042.	18.7	162
1161	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	7.8	276
1162	Modeling of chemical and electrochemical Na+/Li+ ion exchange in cathode material Na4Fe3(PO4)2P2O7. Materials Today: Proceedings, 2020, 25, 501-504.	0.9	2
1164	Fast charging sodium-ion batteries based on Te-P-C composites and insights to low-frequency limits of four common equivalent impedance circuits. Chemical Engineering Journal, 2020, 398, 125703.	6.6	21
1165	Direct carbonization of black liquor powders into 3D honeycomb-like porous carbons with a tunable disordered degree for sodium-ion batteries. New Journal of Chemistry, 2020, 44, 10697-10702.	1.4	3
1166	Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Materials, 2020, 30, 9-26.	9.5	127
1167	Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes. Nano Energy, 2020, 74, 104895.	8.2	49
1168	High capacitive sodium-ion storage in N, P co-doped carbon supported on carbon nanotubes. Journal of Electroanalytical Chemistry, 2020, 870, 114200.	1.9	10
1169	Interlayer Engineering of Molybdenum Trioxide toward Highâ€Capacity and Stable Sodium Ion Half/Full Batteries. Advanced Functional Materials, 2020, 30, 2001708.	7.8	58
1170	Achieving superior high-capacity K-ion batteries with the C57 carbon monolayer anode by first-principles calculations. Applied Surface Science, 2020, 526, 146638.	3.1	12
1171	Research progress of nanocellulose for electrochemical energy storage: A review. Journal of Energy Chemistry, 2020, 51, 342-361.	7.1	67
1172	A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 11598-11606.	5.2	21
1173	Sodium Induced Morphological Changes of Carbon Coated TiO2 Anatase Nanoparticles - High-Performance Materials for Na-Ion Batteries. MRS Advances, 2020, 5, 2221-2229.	0.5	4
1174	Scalable Synthesis and Kinetic Studies of Carbon Coated Sodium Titanate: A Promising Ultra-low Voltage Anode for Sodium Ion Battery. , 2020, 5, 475-483.		2
1175	Minerals to Functional Materials: Characterization of Structural Phase Transitions and Raman Analysis of a Superionic Phase in Na ₆ Co(SO ₄) ₄ . Inorganic Chemistry, 2020, 59, 8424-8431.	1.9	3
1176	Revisiting the Stability of the Cr ⁴⁺ /Cr ³⁺ Redox Couple in Sodium Superionic Conductor Compounds. ACS Applied Materials & Interfaces, 2020, 12, 28313-28319.	4.0	8
1177	Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chemical Society Reviews, 2020, 49, 3783-3805.	18.7	161

#	Article		CITATIONS
1178	Na-Ion storage in iron hydroxide phosphate hydrate through a reversible crystalline-to-amorphous phase transition. Nanoscale, 2020, 12, 12824-12830.	2.8	3
1179	Polyanion Sodium Vanadium Phosphate for Next Generation of Sodiumâ€lon Batteries—A Review. Advanced Functional Materials, 2020, 30, 2001289.	7.8	83
1180	Unconventional Mn Vacancies in Mn–Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage. CheM, 2020, 6, 1804-1818.	5.8	148
1181	Optimizing oxygen vacancies can improve the lithium storage properties in NiO porous nanosheet anodes. Materials Characterization, 2020, 166, 110447.	1.9	14
1182	Peat-derived hard carbon electrodes with superior capacity for sodium-ion batteries. RSC Advances, 2020, 10, 20145-20154.	1.7	26
1183	Novel structurally-stable Na-rich Na ₄ V ₂ O ₇ cathode material with high reversible capacity by utilization of anion redox activity. Chemical Communications, 2020, 56, 8245-8248.	2.2	8
1184	Design and Construction of Graphitic/Amorphous Heterophase Porous Carbon with a Lotus-Leaf-like Surface Microstructure for High-Performance Li-Ion and Na-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 11475-11484.	1.8	14
1185	Activation energy barriers for Na migration in Na12A zeolite: The main contribution to ionic current via doubly occupied Nall site?. Microporous and Mesoporous Materials, 2020, 305, 110288.	2.2	3
1186	Operando Sodiation Mechanistic Study of a New Antimony-Based Intermetallic CoSb as a High-Performance Sodium-Ion Battery Anode. Journal of Physical Chemistry C, 2020, 124, 15757-15768.	1.5	11
1187	Research progress on tin-based anode materials for sodium ion batteries. Rare Metals, 2020, 39, 1005-1018.	3.6	37
1188	Influence of Ti/V Cation-Exchange in Na ₂ Ti ₃ O ₇ on Na-Ion Negative Electrode Performance: An Insight from First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 17897-17906.	1.5	11
1189	Hetero <i>tri</i> metallic Precursor with 2:2:1 Metal Ratio Requiring at Least a Pentanuclear Molecular Assembly. Journal of the American Chemical Society, 2020, 142, 12767-12776.	6.6	14
1190	High-energy O3-Na _{1â^²2x} Ca _x [Ni _{0.5} Mn _{0.5}]O ₂ cathodes for long-life sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13776-13786.	5.2	46
1191	Pristine MOF and COF materials for advanced batteries. Energy Storage Materials, 2020, 31, 115-134.	9.5	149
1192	Impact of Preoxidation Treatments on Performances of Pitch-Based Hard Carbons for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6501-6510.	2.5	24
1193	Metal–Organic Frameworksâ€Derived Porous Yolk–Shell MoP/Cu ₃ P@carbon Microcages as Highâ€Performance Anodes for Sodiumâ€Ion Batteries. Energy and Environmental Materials, 2020, 3, 529-534.	7.3	30
1194	Exploring the Possibility of βâ€Phase Arsenicâ€Phosphorus Polymorph Monolayer as Anode Materials for Sodiumâ€Ion Batteries. Advanced Theory and Simulations, 2020, 3, 2000023.	1.3	14
1195	Mn ₃ O ₄ nanoparticle-decorated hollow mesoporous carbon spheres as an efficient catalyst for oxygen reduction reaction in Zn–air batteries. Nanoscale Advances, 2020, 2, 3367-3374.	2.2	12

ARTICLE IF CITATIONS Emerging organic potassium-ion batteries: electrodes and electrolytes. Journal of Materials 1196 5.2 69 Chemistry A, 2020, 8, 15547-15574. Cobalt sulfide nanoflakes grown on graphite foam for Na-ion batteries with ultrahigh initial 5.2 coulombic efficiency. Journal of Materials Chemistry A, 2020, 8, 14900-14907. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for 1198 4.0 63 battery/capacitor sodium ion storage. Journal of Power Sources, 2020, 469, 228414. Overcoming the Unfavorable Kinetics of Na₃V₂(PO₄)₂F₃//SnP<i>_x</i> 1199 Fullâ€Cell Sodiumâ€Ion Batteries for High Specific Énergy and Energy Efficiency. Advanced Functional Materials, 2020, 30, 2003086. High Voltage Stability and Characterization of P2â€Na 0.66 Mn 1―y Mg y O 2 Cathode for Sodiumâ€Ion 1200 1.7 8 Batteries. ChemElectroChem, 2020, 7, 3284-3290. Improvement in fast Na-ion conduction in Na3+xCrxTi2â[^]x(PO4)3 glassâ€^e ceramic electrolyte material for Na-ion batteries. Journal of the Iranian Chemical Society, 2020, 17, 2637-2649. 1.2 Coffee-Ground-Derived Nanoporous Carbon Anodes for Sodium-Ion Batteries with High Rate 1202 2.5 11 Performance and Cyclic Stability. Energy & amp; Fuels, 2020, 34, 7666-7675. Selected future tasks in electrochemical research related to advanced power sources. Journal of 1205 1.2 Solid State Electrochemistry, 2020, 24, 2027-2029. Nanostructured transition metal sulfide/selenide anodes for high-performance sodium-ion batteries. 1206 10 2020, , 437-464. Interconnected Na2Ti3O7 nanotube/g-C3N4/graphene network as high performance anode materials for 3.8 sodium storage. International Journal of Hydrogen Energy, 2020, 45, 19611-19619. Manganese selenide: Synthetic aspects and applications. Journal of Alloys and Compounds, 2020, 842, 1208 2.8 18 155800. Electrochemistry, past, present, and future: energy conversion, sensors, and beyond. Journal of Solid 1209 1.2 State Electrochemistry, 2020, 24, 2195-2197. Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium 1210 8.2 65 ion batteries. Nano Energy, 2020, 72, 104702. Probing Electrochemical Behaviour of Lignocellulosic, Orange Peel Derived Hard Carbon as Anode 1.3 for Sodium Ion Battery. Journal of the Electrochemical Society, 2020, 167, 090505. 1212 A redox-active organic salt for safer Na-ion batteries. Nano Energy, 2020, 72, 104705. 8.2 25 Nitrogen and Sulfur Vacancies in Carbon Shell to Tune Charge Distribution of Co₆Ni₃S₈ Core and Boost Sodium Storage. Advanced Energy Materials, 2020, 10, 1904147. Codoped Holey Graphene Aerogel by Selective Etching for Highâ€Performance Sodiumâ€Ion Storage. 1214 10.2 56 Advanced Energy Materials, 2020, 10, 2000099. Computational predictions of twoâ€dimensional anode materials of metalâ€ion batteries. Wiley 6.2 Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1473.

#	Article	IF	Citations
1216	Building High Power Density of Sodium-Ion Batteries: Importance of Multidimensional Diffusion Pathways in Cathode Materials. Frontiers in Chemistry, 2020, 8, 152.	1.8	26
1217	Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochimica Acta, 2020, 341, 136030.	2.6	35
1218	Chemically bonded amorphous red phosphorous with disordered carbon nanosheet as high voltage cathode for rechargeable aluminium ion battery. Journal of Alloys and Compounds, 2020, 830, 154693.	2.8	13
1219	Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. Journal of Power Sources, 2020, 454, 227954.	4.0	30
1220	High-Performance Cathode of Sodium-Ion Batteries Enabled by a Potassium-Containing Framework of K _{0.5} Mn _{0.7} Fe _{0.2} Ti _{0.1} O ₂ . ACS Applied Materials & Interfaces, 2020, 12, 15313-15319.	4.0	16
1221	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	7.3	155
1222	Fast Sodium Storage with Ultralong Cycle Life for Nitrogen Doped Hollow Carbon Nanofibers Anode at Elevated Temperature. Advanced Materials Interfaces, 2020, 7, 1901922.	1.9	14
1223	³ Spherical sodium metal deposition and growth mechanism study in three-electrode sodium-ion full-cell system. Journal of Power Sources, 2020, 455, 227919.		9
1224	Graphene-based hybrid materials for advanced batteries. , 2020, , 73-95.		0
1225	On controlling the P2-O2 phase transition by optimal Ti-substitution on Ni- site in P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) cathode for Na-ion batteries. Journal of Power Sources, 2020, 455, 227957.	4.0	42
1226	Pseudo Jahn–Teller Origin of Buckling Deformation of Two-dimensional Group-IV-Based Triphosphides		0
1227	Twoâ€dimensional materials of groupâ€ŀVA boosting the development of energy storage and conversion. , 2020, 2, 54-71.		73
1228	Nitrogen-doped 3D nanocarbon with nanopore defects as high-capacity and stable anode materials for sodium/lithium-ion batteries. Materials Today Energy, 2020, 16, 100395.	2.5	17
1229	Electrode Design for High-Performance Sodium-Ion Batteries: Coupling Nanorod-Assembled Na ₃ V ₂ (PO ₄) ₃ @C Microspheres with a 3D Conductive Charge Transport Network. ACS Applied Materials & Interfaces, 2020, 12, 13869-13877.	4.0	49
1230	Electronic structure, ion diffusion and cation doping in the Na ₄ VO(PO ₄) ₂ compound as a cathode material for Na-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 6653-6659.	1.3	15
1231	Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem, 2020, 2, 100031.	10.1	37
1232	Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 8902-8912.	1.3	79
1233	lron-Based Mixed Phosphate Na ₄ Fe ₃ (PO ₄) ₂ P ₂ O ₇ Thin Films for Sodium-Ion Microbatteries. ACS Omega, 2020, 5, 7219-7224.	1.6	19

#	Article	IF	CITATIONS
1234	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17620-17627.		95
1235	Nature-Derived Cellulose-Based Composite Separator for Sodium-Ion Batteries. Frontiers in Chemistry, 2020, 8, 153.	1.8	30
1236	Preparation and optimization of ZrO2 modified P2-type Na2/3Ni1/6Co1/6Mn2/3O2 with enhanced electrochemical performance as cathode for sodium ion batteries. Ceramics International, 2020, 46, 16080-16087.	2.3	14
1237	Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews, 2020, 49, 2342-2377.	18.7	422
1238	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	10.2	425
1239	Co2B2O5 as an anode material with high capacity for sodium ion batteries. Rare Metals, 2020, 39, 1045-1052.	3.6	22
1240	Decreasing the Ion Diffusion Pathways for the Intercalation of Multivalent Cations into One-Dimensional TiS ₂ Nanobelt Arrays. ACS Applied Materials & Interfaces, 2020, 12, 21788-21798.	4.0	14
1241	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 12174-12181.	1.6	20
1242	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	5.6	190
1243	Enhancing the Charge Transportation Ability of Yolk–Shell Structure for High-Rate Sodium and Potassium Storage. ACS Nano, 2020, 14, 4463-4474.	7.3	56
1244	Bottomâ€Up Synthesis of Advanced Carbonaceous Anode Materials Containing Sulfur for Naâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2000592.	7.8	37
1245	Exploiting Polythiophenylâ€Triazineâ€Based Conjugated Microporous Polymer with Superior Lithiumâ€ S torage Performance. ChemSusChem, 2020, 13, 2295-2302.	3.6	38
1246	Redox effects in Cu, Co or Fe in oxides nanocrystals with high catalytic activity for the acetonitrile combustion. SN Applied Sciences, 2020, 2, 1.	1.5	3
1247	A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes. Journal of Materials Chemistry A, 2020, 8, 6822-6827.	5.2	20
1248	Review—Polymer Electrolytes for Sodium Batteries. Journal of the Electrochemical Society, 2020, 167, 070534.	1.3	86
1249	Defects and Dopants in CaFeSi2O6: Classical and DFT Simulations. Energies, 2020, 13, 1285.	1.6	11
1250	Constructing Safe and Durable Highâ€Voltage P2 Layered Cathodes for Sodium Ion Batteries Enabled by Molecular Layer Deposition of Alucone. Advanced Functional Materials, 2020, 30, 1910251.	7.8	47
1251	TMDs beyond MoS ₂ for Electrochemical Energy Storage. Chemistry - A European Journal, 2020, 26, 6320-6341.	1.7	52

ARTICLE IF CITATIONS Visualizing the Redox Reaction Dynamics of Perovskite Nanocrystals in Real and Reciprocal Space. 1252 2.1 7 Journal of Physical Chemistry Letters, 2020, 11, 2550-2558. Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. 6.6 Chemical Engineering Journal, 2020, 401, 126065. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for 1254 70 3.6 sodium-ion batteries. Rare Metals, 2020, 39, 1053-1062. Thiourea-based polyimide/RGO composite cathode: A comprehensive study of storage mechanism with alkali metal ions. Science China Materials, 2020, 63, 1929-1938. Formation, Structure, and Function of Hydrogenated and Fluorinated Longâ€Chain Phosphonateâ€Modified Singleâ€Walled Carbon Nanotubes with Bidentate Bonds. ChemistrySelect, 2020, 5, 1256 0.7 6 6594-6607. Enhanced Functional Properties of Ti 3 C 2 T x MXenes as Negative Electrodes in Sodiumâ€lon Batteries by Chemical Tuning. Small Methods, 2020, 4, 2000314. 4.6 Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for 1258 5.8 51 sodium-ion batteries. Nano Research, 2020, 13, 2289-2298. Regulating the breathing of mesoporous Fe0.95S1.05 nanorods for fast and durable sodium storage. Energy Storage Materials, 2020, 32, 151-158. Fundamental promise of anthraquinone functionalized graphene based next generation battery 1260 5.2 11 electrodes: a DFT study. Journal of Materials Chemistry Å, 2020, 8, 14152-14161. The effect of the calcination atmosphere in the formation of mineral sodium titanate. AIP Conference Proceedings, 2020, , . Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage 1262 9.5 74 Materials, 2020, 31, 382-400. <i>In Situ</i> Observation of Sodium Dendrite Growth and Concurrent Mechanical Property Measurements Using an Environmental Transmission Electron Microscopy–Atomic Force Microscopy (ETEM-AFM) Platform. ACS Energy Letters, 2020, 5, 2546-2559. 8.8 Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion 1264 4.1 53 battery anode. Nanoscale Horizons, 2020, 5, 1264-1273. Co3O4-modified P2–Na2/3Mn0.75Co0.25O2 cathode for Na-ion batteries with high capacity and 2.8 excellent cyclability. Journal of Alloys and Compounds, 2020, 832, 154960. Electroanalytical methods and their hyphenated techniques for novel ion battery anode research. 1266 15.6 29 Energy and Environmental Science, 2020, 13, 2618-2656. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline 11.1 168 Decorated with Prussian Blue Nanocrystals. Advanced Materials, 2020, 32, e1907404. Materials for Sodium-Ion Batteries., 2022, 106-114. 1268 2 1269 Advances in ultrathin borophene materials. Chemical Engineering Journal, 2020, 401, 126109. 6.6

		CITATION REPORT		
#	Article		IF	CITATIONS
1270	Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness. Joule, 2020,	4, 1616-1620.	11.7	227
1271	Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membrar sodium batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 13249-13	ies for 3260.	1.1	21
1272	<i>Operando</i> Synchrotron-Based X-ray Study of Prussian Blue and Its Analogue as Cath Materials for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 16332-163	iode 37.	1.5	6
1273	Electrochemical Characteristics of Cyanoquinones as Organic Cathodes for High-Potential Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 11328-11336.		3.2	15
1274	Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS ₂ /C interoverlapped superstructure with robust charge transfer networks. Journal of Materials Chemistry A, 2020, 8, 15002-15011.		5.2	26
1275	Synthesis of hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanosphe anode materials for lithium/sodium ion batteries. RSC Advances, 2020, 10, 6035-6042.	eres as	1.7	19
1276	Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb allc nanofibers. Energy Storage Materials, 2020, 27, 270-278.	y/carbon	9.5	64
1277	Low-cost lignite-derived hard carbon for high-performance sodium-ion storage. Journal of N Science, 2020, 55, 5994-6004.	laterials	1.7	7
1278	Construction of the Na0.92Li0.40Ni0.73Mn0.24Co0.12O2 sodium-ion cathode with balanced high-power/energy-densities. Energy Storage Materials, 2020, 27, 252-260.		9.5	22
1279	Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems. Journal of Materials Chemistry A, 2020, 8, 5284-5297.		5.2	42
1280	Sodiumâ€ion capacitors: Materials, Mechanism, and Challenges. ChemSusChem, 2020, 13	, 2522-2539.	3.6	90
1281	The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Chemistry - A European Journal, 2020, 26, 8190-8204.	Review.	1.7	21
1282	Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for ion batteries. Electrochimica Acta, 2020, 342, 135928.	r sodium	2.6	21
1283	An optimized approach toward high energy density cathode material for K-ion batteries. En Storage Materials, 2020, 27, 342-351.	ergy	9.5	37
1284	Tin asymmetric membranes for high capacity sodium ion battery anodes. Materials Today Communications, 2020, 24, 100998.		0.9	1
1285	Sodium-ion capacitors with superior energy-power performance by using carbon-based mar both electrodes. Progress in Natural Science: Materials International, 2020, 30, 13-19.	terials in	1.8	14
1286	Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small M 2020, 4, 1900856.	ethods,	4.6	73
1287	Stable cycling of a Prussian blue-based Na/Zn hybrid battery in aqueous electrolyte with a v electrochemical window. New Journal of Chemistry, 2020, 44, 4639-4646.	vide	1.4	24

#	Article	IF	CITATIONS
1288	Constructing Naâ€lon Cathodes via Alkali‧ite Substitution. Advanced Functional Materials, 2020, 30, 1910840.	7.8	28
1289	Bioderived Molecular Electrodes for Nextâ€Generation Energyâ€Storage Materials. ChemSusChem, 2020, 13, 2186-2204.	3.6	32
1290	Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 19393-19401.	4.0	16
1291	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	6.6	206
1292	Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese Physics B, 2020, 29, 048201.	0.7	26
1293	Self-supported binder-free hard carbon electrodes for sodium-ion batteries: insights into their sodium storage mechanisms. Journal of Materials Chemistry A, 2020, 8, 5558-5571.	5.2	60
1294	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
1295	Ultralowâ€5train Znâ€5ubstituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. Advanced Functional Materials, 2020, 30, 1910327.	7.8	110
1296	Biomassâ€Derived Carbons for Sodiumâ€Ion Batteries and Sodiumâ€Ion Capacitors. ChemSusChem, 2020, 13, 1275-1295.	3.6	96
1297	Hybrid Ionic Liquid Propylene Carbonate-Based Electrolytes for Aluminum–Air Batteries. ACS Applied Energy Materials, 2020, 3, 2585-2592.	2.5	23
1298	Influence of Ga2O3, CuGa2O4 and Cu4O3 phases on the sodium-ion storage behaviour of CuO and its gallium composites. Nanoscale Advances, 2020, 2, 1269-1281.	2.2	7
1299	Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode. Electrochimica Acta, 2020, 338, 135900.	2.6	49
1300	Investigation of electrochemical performance of MgNiO2 prepared by sol-gel synthesis route for aqueous-based supercapacitor application. Current Applied Physics, 2020, 20, 628-637.	1.1	11
1301	Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11, 980.	5.8	283
1302	Encapsulation of MnS Nanocrystals into N, S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 34.	14.4	42
1303	Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes. IScience, 2020, 23, 100898.	1.9	13
1304	Theoretical identification of layered MXene phase Na _x Ti ₄ C ₂ O ₄ as superb anodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 11177-11187.	5.2	20
1305	Facile Selfâ€Forming Superionic Conductors Based on Complex Borohydride Surface Oxidation. Advanced Sustainable Systems, 2020, 4, 1900113.	2.7	14

#	Article	IF	CITATIONS
1306	Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material. Electrochimica Acta, 2020, 341, 135978.	2.6	13
1307	Low potassium mobility in iron pyrophosphate glasses. Journal of Non-Crystalline Solids, 2020, 535, 119969.	1.5	3
1308	Composites of Sb ₂ O ₄ and Biomassâ€Derived Mesoporous Disordered Carbon as Versatile Anodes for Sodiumâ€lon Batteries. ChemistrySelect, 2020, 5, 1846-1857.	0.7	7
1309	Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 766-776.	8.8	134
1310	SnS@C nanospheres coated with few-layer MoS ₂ nanosheets and nitrogen, phosphorus-codoped carbon as robust sodium ion battery anodes. Materials Chemistry Frontiers, 2020, 4, 1212-1221.	3.2	26
1311	Renewable Energy: Volume 3: Electrical, Magnetic, and Chemical Energy Storage Methods. Synthesis Lectures on Energy and the Environment Technology Science and Society, 2020, 3, i-99.	0.1	0
1312	Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery. Polymers, 2020, 12, 405.	2.0	11
1313	High-performance sodium–selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. Journal of Power Sources, 2020, 453, 227855.	4.0	25
1314	N-Doped Biomass Carbon/Reduced Graphene Oxide as a High-Performance Anode for Sodium-Ion Batteries. Energy & Fuels, 2020, 34, 3923-3930.	2.5	26
1315	General Synthesis of M _{<i>x</i>} S (M = Co, Cu) Hollow Spheres with Enhanced Sodium-Ion Storage Property in Ether-Based Electrolyte. Industrial & Engineering Chemistry Research, 2020, 59, 1568-1577.	1.8	11
1316	In Situ Electrochemical Coating Mechanism of NASICON-Structured AgTi ₂ (PO ₄) ₃ for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5932-5938.	4.0	8
1317	A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3119-3127.	5.2	36
1318	Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2913-2933.	5.2	91
1319	Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. Journal of Colloid and Interface Science, 2020, 565, 218-226.	5.0	25
1320	Research Development on K-Ion Batteries. Chemical Reviews, 2020, 120, 6358-6466.	23.0	804
1321	Encapsulating N-Doped Carbon Nanorod Bundles/MoO ₂ Nanoparticles via Surface Growth of Ultrathin MoS ₂ Nanosheets for Ultrafast and Ultralong Cycling Sodium Storage. ACS Applied Materials & Map; Interfaces, 2020, 12, 6205-6216.	4.0	22
1322	Ultrasmall SnS Quantum Dots Anchored onto Nitrogen-Enriched Carbon Nanospheres as an Advanced Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 7114-7124.	4.0	71
1323	lonogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy and Environmental Science, 2020, 13, 821-829.	15.6	82

#	Article	IF	CITATIONS
1324	An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 3450-3458.	5.2	81
1325	Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. Journal of Materials Chemistry A, 2020, 8, 3369-3378.	5.2	58
1326	Facile Synthesis of Bi2MoO6 Nanosheets@Nitrogen and Sulfur Codoped Graphene Composites for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2020, 36, 115-119.	1.3	10
1327	Pore structure regulation of hard carbon: Towards fast and highâ€capacity sodiumâ€ion storage. Journal of Colloid and Interface Science, 2020, 566, 257-264.	5.0	49
1328	Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer. Angewandte Chemie - International Edition, 2020, 59, 6596-6600.	7.2	89
1329	Small amount COFs enhancing storage of large anions. Energy Storage Materials, 2020, 27, 35-42.	9.5	62
1330	Beyond Lithium-Based Batteries. Materials, 2020, 13, 425.	1.3	47
1331	Synthesis of nano-Na3V2(PO4)2F3 cathodes with excess Na+ intercalation for enhanced capacity. Applied Materials Today, 2020, 19, 100554.	2.3	5
1332	Design of porous calcium phosphate based gel polymer electrolyte for Quasi-solid state sodium ion battery. Journal of Electroanalytical Chemistry, 2020, 859, 113864.	1.9	21
1333	High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chemical Engineering Journal, 2020, 388, 124228.	6.6	91
1334	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903966.	10.2	94
1335	K _{0.83} V ₂ O ₅ : A New Layered Compound as a Stable Cathode Material for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9332-9340.	4.0	43
1336	Li and Ti Co-doping to stabilize slabs of high-voltage P2-type Na0.560[Li0.041Mn0.642Ni0.221Ti0.095]O2. Journal of Alloys and Compounds, 2020, 824, 153938.	2.8	12
1337	Sulfur-doped reduced graphene oxide/Sb2S3 composite for superior lithium and sodium storage. Materials Chemistry and Physics, 2020, 244, 122661.	2.0	19
1338	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
1339	Recent Progress in Advanced Organic Electrode Materials for Sodiumâ€lon Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Advanced Functional Materials, 2020, 30, 1908445.	7.8	173
1340	Toward Highâ€Energyâ€Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. Advanced Materials, 2020, 32, e1905219.	11.1	154
1341	Computer modeling investigation of MgV2O4 for Mg-ion batteries. Journal of Applied Physics, 2020, 127, 035106.	1.1	10

#	Article	IF	CITATIONS
1342	A 1D Honeycomb‣ike Amorphous Zincic Vanadate for Stable and Fast Sodiumâ€Ion Storage. Small, 2020, 16, e1906214.	5.2	27
1343	SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage. Journal of Alloys and Compounds, 2020, 822, 153686.	2.8	32
1344	Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery. Nano-Micro Letters, 2020, 12, 31.	14.4	19
1345	High crystallinity, preferred orientation and superior reversible capacity P2–Na0.67Ni0.25Mn0.75O2 thin film as cathode material for wide voltage sodium-ion battery. Electrochimica Acta, 2020, 337, 135761.	2.6	4
1346	High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. Journal of Physical Chemistry C, 2020, 124, 4459-4469.	1.5	23
1347	Associating and Tuning Sodium and Oxygen Mixedâ€kon Conduction in Niobiumâ€Based Perovskites. Advanced Functional Materials, 2020, 30, 1909254.	7.8	15
1348	Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer. Angewandte Chemie, 2020, 132, 6658-6662.	1.6	33
1349	A Novel Moistureâ€Insensitive and Lowâ€Corrosivity Ionic Liquid Electrolyte for Rechargeable Aluminum Batteries. Advanced Functional Materials, 2020, 30, 1909565.	7.8	38
1350	Realizing the Single-Phase Spinel-Type Sodium Titanium Oxide with the Li ₄ Ti ₅ O ₁₂ -like Structure for Building Stable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9322-9331.	4.0	18
1351	Assembled NiS nanoneedles anode for Na-ion batteries: Enhanced the performance by organic hyperbranched polymer electrode additives. Journal of Power Sources, 2020, 451, 227796.	4.0	27
1352	Thiophene-rich conjugated microporous polymers as anode materials for high performance lithium- and sodium-ion batteries. Solid State Ionics, 2020, 347, 115247.	1.3	18
1353	Atomic Layer Deposition of Sodium Phosphorus Oxynitride: A Conformal Solid-State Sodium-Ion Conductor. ACS Applied Materials & Interfaces, 2020, 12, 21641-21650.	4.0	17
1354	Engineering of Polyanion Type Cathode Materials for Sodiumâ€lon Batteries: Toward Higher Energy/Power Density. Advanced Functional Materials, 2020, 30, 2000473.	7.8	117
1355	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142
1356	A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery. Energy Storage Materials, 2020, 29, 287-299.	9.5	33
1357	Polyfurfuryl alcohol assisted synthesis of Na2FePO4F/C nanocomposites as cathode material of sodium ion batteries. Journal of Electroanalytical Chemistry, 2020, 867, 114187.	1.9	9
1358	Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. Journal of Materials Chemistry A, 2020, 8, 10269-10282.	5.2	47
1359	Al-doped walnut-shell-like P2-type Na2/3Ni1/3Co(1/3-x)Mn1/3AlxO2 as advanced sodium ion battery cathode materials with enhanced rate and cycling performance. Electrochimica Acta, 2020, 349, 136347.	2.6	12

#	Article	IF	CITATIONS
1360	Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging. Nature Communications, 2020, 11, 2083.	5.8	62
1361	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12076-12083.	7.2	78
1362	Dualâ€Function Sacrificing Templateâ€Directed Strategy for Constructing Hollow and Core‧hell Nonstoichiometric Fe _{1–x} S@C Microspheres Exhibiting Ultrafast Sodium Storage. ChemNanoMat, 2020, 6, 963-968.	1.5	4
1363	Hollow CoS2@C nanocubes for high-performance sodium storage. Applied Surface Science, 2020, 519, 146268.	3.1	40
1364	Spindle-shaped core-shell Fe3O4@N-doped carbon composites scattered in graphene as excellent anode materials for lithium/sodium ion battery. Journal of Alloys and Compounds, 2020, 832, 154879.	2.8	30
1365	Porous Co3O4@CoO composite nanosheets as improved anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155030.	2.8	61
1366	Reversible AlCl4â^'/Al2Cl7â^' conversion in a hybrid Na–Al battery. Journal of Power Sources, 2020, 453, 227843.	4.0	7
1367	Highly Reversible Sodiation/Desodiation from a Carbon-Sandwiched SnS ₂ Nanosheet Anode for Sodium Ion Batteries. Nano Letters, 2020, 20, 3844-3851.	4.5	69
1368	Synthesis of Vanadium Nitride–Hard Carbon Composites from Cellulose and Their Performance for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4286-4294.	2.5	28
1369	N-Doped Carbon Nanotubes Decorated Na ₃ V ₂ (PO ₄) ₂ F ₃ as a Durable Ultrahigh-rate Cathode for Sodium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3845-3853.	2.5	39
1370	Origin of the Superior Electrochemical Performance of Amorphous-Phase Conversion-Reaction-Based Electrode Materials for Na-Ion Batteries: Formation of a Bicontinuous Metal Network. ACS Applied Materials & Interfaces, 2020, 12, 22721-22729.	4.0	7
1371	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. Journal of Materials Chemistry A, 2020, 8, 15829-15833.	5.2	14
1372	Construction of Bimetallic Selenides Encapsulated in Nitrogen/Sulfur Coâ€Doped Hollow Carbon Nanospheres for Highâ€Performance Sodium/Potassiumâ€ion Half/Full Batteries. Small, 2020, 16, e1907670.	5.2	74
1373	Metal Cationâ€Assisted Synthesis of Amorphous B, N Coâ€Doped Carbon Nanotubes for Superior Sodium Storage. Small, 2020, 16, e2001607.	5.2	35
1374	PY ₁₃ FSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 22981-22991.	4.0	34
1375	Multiradical-stabilized hollow carbon spheres as a pressure-resistant cathode for fast lithium/sodium storage with excellent performance. Journal of Materials Chemistry A, 2020, 8, 8875-8882.	5.2	7
1376	Plasma Enabled Fe2O3/Fe3O4 Nano-aggregates Anchored on Nitrogen-doped Graphene as Anode for Sodium-Ion Batteries. Nanomaterials, 2020, 10, 782.	1.9	37
1377	Anodes and Sodiumâ€Free Cathodes in Sodium Ion Batteries. Advanced Energy Materials, 2020, 10, 2000288.	10.2	89

#	Article	IF	CITATIONS
1378	Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. Journal of Materials Chemistry A, 2020, 8, 9911-9918.	5.2	5
1379	Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries. Nano Research, 2020, 13, 1948-1954.	5.8	26
1381	A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 393, 124788.	6.6	23
1382	Vitalization of P2–Na2/3Ni1/3Mn2/3O2 at high-voltage cyclability via combined structural modulation for sodium-ion batteries. Energy Storage Materials, 2020, 29, 182-189.	9.5	70
1383	A quantum mechanical study on the application of inorganic BC2N nanotubes in the Na-ion batteries. Inorganic Chemistry Communication, 2020, 116, 107886.	1.8	3
1384	Direct tuning of meso-/micro-porous structure of carbon nanofibers confining Sb nanocrystals for advanced sodium and potassium storage. Journal of Alloys and Compounds, 2020, 833, 155127.	2.8	27
1385	In situ fabrication of ultrathin few-layered WSe2 anchored on N, P dual-doped carbon by bioreactor for half/full sodium/potassium-ion batteries with ultralong cycling lifespan. Journal of Colloid and Interface Science, 2020, 574, 217-228.	5.0	67
1386	Structural Polymorphism in Na ₄ Zn(PO ₄) ₂ Driven by Rotational Order–Disorder Transitions and the Impact of Heterovalent Substitutions on Na-Ion Conductivity. Inorganic Chemistry, 2020, 59, 6528-6540.	1.9	7
1387	Effect of the interfacial protective layer on the NaFe _{0.5} Ni _{0.5} O ₂ cathode for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13964-13970.	5.2	19
1388	Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon. Advanced Energy Materials, 2020, 10, 2000283.	10.2	175
1389	The Sodium Storage Mechanism in Tunnel‶ype Na _{0.44} MnO ₂ Cathodes and the Way to Ensure Their Durable Operation. Advanced Energy Materials, 2020, 10, 2000564.	10.2	51
1390	Recent progress on MOFâ€derived carbon materials for energy storage. , 2020, 2, 176-202.		198
1391	Core–Shell Structure and Xâ€Doped (X = Li, Zr) Comodified O3â€NaNi _{0.5} Mn _{0.5} O ₂ : Excellent Electrochemical Performance as Cathode Materials of Sodiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901504.	1.8	16
1392	Alluaudite Battery Cathodes. Small Methods, 2020, 4, 2000051.	4.6	22
1393	Li-free P2/O3 biphasic Na0.73Ni0.4Mn0.4Ti0.2O2 as a cathode material for sodium-ion batteries. Ionics, 2020, 26, 3911-3917.	1.2	8
1394	Thermodynamic reversible cycles of electrochemical desalination with intercalation materials in symmetric and asymmetric configurations. Journal of Colloid and Interface Science, 2020, 574, 152-161.	5.0	17
1395	Ultrafast and Stable Lithium Storage Enabled by the Electric Field Effect in Layer-Structured Tablet-Like NH ₄ TiOF ₃ Mesocrystals. ACS Applied Materials & Interfaces, 2020, 12, 20404-20413.	4.0	10
1396	Direction for Commercialization of O3-Type Layered Cathodes for Sodium-Ion Batteries. ACS Energy Letters, 2020, 5, 1278-1280.	8.8	54

#	Article	IF	CITATIONS
1397	Construction of Porous Co ₉ S ₈ Hollow Boxes with Double Open Ends toward High-Performance Half/Full Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 6305-6314.	3.2	46
1398	Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe. Molecules, 2020, 25, 1585.	1.7	15
1399	Conductive metalâ€organic frameworks: Recent advances in electrochemical energyâ€related applications and perspectives. , 2020, 2, 203-222.		75
1400	Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy and Environment, 2021, 6, 212-219.	4.7	28
1401	Materials Design for Highâ€Safety Sodiumâ€ion Battery. Advanced Energy Materials, 2021, 11, 2000974.	10.2	282
1402	Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. Journal of Energy Chemistry, 2021, 53, 26-35.	7.1	59
1403	Exploring Na-ion technological advances: Pathways from energy to power. Materials Today: Proceedings, 2021, 39, 1118-1131.	0.9	6
1404	Recent advances in electrospun electrode materials for sodium-ion batteries. Journal of Energy Chemistry, 2021, 54, 225-241.	7.1	91
1405	A robust, highly reversible, mixed conducting sodium metal anode. Science Bulletin, 2021, 66, 179-186.	4.3	29
1406	The recent progress of pitch-based carbon anodes in sodium-ion batteries. Journal of Energy Chemistry, 2021, 55, 34-47.	7.1	94
1407	The Layered Oxides in Lithium and Sodiumâ€lon Batteries: A Solid‣tate Chemistry Approach. Advanced Energy Materials, 2021, 11, 2001201.	10.2	93
1408	Can domestic wastes-evolved Fe2N@Carbon hybrids serve as competitive anodes for sustainable Li/Na storage applications?. Materials Research Bulletin, 2021, 134, 111088.	2.7	8
1409	Understanding Na-Ion Transport in NaxV4O10 Electrode Material for Sodium-Ion Batteries. Journal of Electronic Materials, 2021, 50, 1794-1799.	1.0	6
1410	Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon, 2021, 173, 31-40.	5.4	107
1411	Investigation of "Na2/3Co2/3Ti1/3O2―as a multi-phase positive electrode material for sodium batteries. Journal of Power Sources, 2021, 481, 229120.	4.0	9
1412	Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. Chemical Engineering Journal, 2021, 420, 127597.	6.6	28
1413	Surface modification of nano Na[Ni0.60Mn0.35Co0.05]O2 cathode material by dextran functionalized RGO via hydrothermal treatment for high performance sodium batteries. Applied Surface Science, 2021, 535, 147695.	3.1	33
1414	Effects of calcination temperature on electrochemical properties of cathode material Na4MnV(PO4)3/C synthesized by sol-gel method for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 850, 156707.	2.8	14

#	Article	IF	CITATIONS
1415	Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries. Journal of Materials Science and Technology, 2021, 74, 230-236.	5.6	18
1416	Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries. Journal of Energy Chemistry, 2021, 53, 396-406.	7.1	37
1417	Gallium-based anodes for alkali metal ion batteries. Journal of Energy Chemistry, 2021, 55, 557-571.	7.1	27
1418	Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chemical Engineering Journal, 2021, 403, 126291.	6.6	51
1419	Fullerenes for rechargeable battery applications: Recent developments and future perspectives. Journal of Energy Chemistry, 2021, 55, 70-79.	7.1	54
1420	Porous hierarchical TiO2/MoS2/RGO nanoflowers as anode material for sodium ion batteries with high capacity and stability. Applied Surface Science, 2021, 536, 147735.	3.1	31
1421	The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceramics International, 2021, 47, 4595-4603.	2.3	15
1422	Rapid synthesis of sodium-rich Prussian white for Sodium-ion battery via a bottom-up approach. Chemical Engineering Journal, 2021, 405, 126688.	6.6	16
1423	Sodium Quasiâ€Intercalation in Black P for Superior Sodiumâ€Ion Battery Anodes. Batteries and Supercaps, 2021, 4, 112-119.	2.4	9
1424	Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. Nano Research, 2021, 14, 139-147.	5.8	18
1425	Biowaste-sustained MoSe2 composite as an efficient anode for sodium/potassium storage applications. Journal of Alloys and Compounds, 2021, 850, 156770.	2.8	29
1426	Synthesis of phase-pure Cd2GeO4/G nanorods for high capacity Na-ion battery anode. Journal of Alloys and Compounds, 2021, 851, 156894.	2.8	10
1427	Structural stability of Na-inserted spinel-type sodium titanium oxide. Journal of Alloys and Compounds, 2021, 853, 157211.	2.8	9
1428	Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon, 2021, 171, 119-129.	5.4	21
1429	Self-healing Sn4P3@Hard carbon Co-storage anode for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 851, 156746.	2.8	28
1430	Investigations on different strategies towards improving the electrochemical properties of Na2VTi (PO4)3 for symmetrical sodium-ion batteries. Journal of Alloys and Compounds, 2021, 851, 156813.	2.8	15
1431	Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Materials, 2021, 34, 436-460.	9.5	61
1432	A Review of Modification Methods of Solid Electrolytes for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Energy Technology, 2021, 9, 2000682.	1.8	19

#	Article	IF	CITATIONS
1433	N-doped graphene wrapped SnP2O7 for sodium storage with high pseudocapacitance contribution. Journal of Alloys and Compounds, 2021, 854, 156992.	2.8	22
1434	ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network as high-rate and freeze-resistant anode materials for sodium-ion batteries. Applied Surface Science, 2021, 538, 148194.	3.1	23
1435	Se-decorated SnO2/rGO composite spheres and their sodium storage performances. Chinese Chemical Letters, 2021, 32, 282-285.	4.8	13
1436	Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chemical Engineering Journal, 2021, 404, 126578.	6.6	53
1437	1T-Phase MoS2 with large layer spacing supported on carbon cloth for high-performance Na+ storage. Journal of Colloid and Interface Science, 2021, 583, 579-585.	5.0	65
1438	A bipolar metal phthalocyanine complex for sodium dual-ion battery. Journal of Energy Chemistry, 2021, 58, 9-16.	7.1	47
1439	Strategies for Alleviating Electrode Expansion of Graphite Electrodes in Sodiumâ€lon Batteries Followed by In Situ Electrochemical Dilatometry. Energy Technology, 2021, 9, 2000880.	1.8	17
1440	Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Materials, 2021, 35, 400-430.	9.5	45
1441	Porous Copper Sulfide Microflowers Grown Inâ€Situ on Commercial Copper Foils as Advanced Binderâ€Free Electrodes with High Rate and Long Cycle Life for Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 157-163.	1.7	6
1442	Investigation the sodium storage kinetics of H 1.07 Ti 1.73 O 4 @rGO composites for high rate and long cycle performance. Journal of the American Ceramic Society, 2021, 104, 1526-1538.	1.9	10
1443	Mixed Polyanion Naâ€Mnâ€Vâ€P Glass–Ceramic Cathode Network: Improved Electrochemical Performance and Stability. Energy Technology, 2021, 9, 2000845.	1.8	14
1444	Towards a Greener and Scalable Synthesis of Na ₂ Ti ₆ O ₁₃ Nanorods and Their Application as Anodes in Batteries for Gridâ€Level Energy Storage. Energy Technology, 2021, 9, 2000856.	1.8	4
1445	Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Materials Today Energy, 2021, 19, 100608.	2.5	30
1446	Dual-Manipulation on P2-Na0.67Ni0.33Mn0.67O2 Layered Cathode toward Sodium-Ion Full Cell with Record Operating Voltage Beyond 3.5 V. Energy Storage Materials, 2021, 35, 620-629.	9.5	79
1447	A reductive ion exchange strategy using NaTi ₂ (PO ₄) ₃ for metal removal/recovery from wastewater. Journal of Materials Chemistry A, 2021, 9, 293-300.	5.2	9
1448	Optimal utilization of fluoroethylene carbonate in potassium ion batteries. Chemical Communications, 2021, 57, 1607-1610.	2.2	11
1449	Hierarchical TiO2 microspheres with enlarged lattice spacing for rapid and ultrastable sodium storage. Chemical Engineering Science, 2021, 231, 116298.	1.9	11
1450	Realizing efficient sodium storage property with NASICON-type Na2VTi(PO4)3 modified by nitrogen and sulfur dual-doped carbon layer for sodium ion batteries. Journal of Alloys and Compounds, 2021, 856, 157992.	2.8	12

ARTICLE IF CITATIONS Investigation of sodium storage in manganese vanadate MnV2O6 nanobelt and nanoparticle as an 1451 2.6 11 anode for sodium-ion batteries. Electrochimica Acta, 2021, 367, 137520. Complex Hollow Bowlâ€Like Nanostructures: Synthesis, Application, and Perspective. Advanced 1452 Functional Materials, 2021, 31, 2007801. Diverse physical functionalities of rare-earth hexacyanidometallate frameworks and their molecular 1453 3.0 38 analogues. Inorganic Chemistry Frontiers, 2021, 8, 452-483. Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature 1454 using sodium alloy composite. Energy Storage Materials, 2021, 35, 310-316. Design of Black Phosphorous Derivatives with Excellent Stability and Ion-Kinetics for Alkali Metal-Ion 1455 9.5 8 Battery. Energy Storage Materials, 2021, 35, 283-309. Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective. Energy Storage Materials, 2021, 35, 443-469. Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for 1457 7.1 25 high-performance sodium-ion battery. Journal of Energy Chemistry, 2021, 59, 38-46. A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for 1458 4.2 40 sodium-ion batteries. Science China Chemistry, 2021, 64, 385-402. Foldable potassium-ion batteries enabled by free-standing and flexible SnS₂@C nanofibers. 1459 15.6 142 Energy and Environmental Science, 2021, 14, 424-436. Antimony nanocrystals self-encapsulated within bio-oil derived carbon for ultra-stable sodium 1460 storage. Journal of Colloid and Interface Science, 2021, 582, 459-466. Co2GeO4/graphene hetero-architecture as a potential anode for sodium ion batteries. Journal of 1461 1.9 6 Physics and Chemistry of Solids, 2021, 150, 109863. Mesocarbon microbeads with superior anode performance for sodium-ion batteries. Ionics, 2021, 27, 1.2 677-682. 1463 Components., 2021, , 11-21. 0 Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite 1464 248 Composite for Lithium Ion Batteries. Energy Storage Materials, 2021, 35, 550-576. Potassium ions stabilized hollow Mn-based prussian blue analogue nanocubes as cathode for high 1465 3.8 25 performance sodium ions battery. International Journal of Hydrogen Energy, 2021, 46, 4252-4258. Vanadium diphosphide as a negative electrode material for sodium secondary batteries. Journal of 1466 Power Sources, 2021, 483, 229182. 2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate 1467 5.8 19 Li/K storage. Nano Research, 2021, 14, 1061-1068. Carboxylâ€Dominant Oxygen Rich Carbon for Improved Sodium Ion Storage: Synergistic Enhancement of 1468 Adsorption and Intercalation Mechanisms. Advanced Energy Materials, 2021, 11, .

#	Article	IF	CITATIONS
1469	Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021, 36, 10-30.	9.5	82
1470	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	2.4	23
1471	Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries. Energy Storage Materials, 2021, 35, 192-202.	9.5	66
1472	Na _{0.67} Mn _(1â€<i>x</i>) Fe _{<i>x</i>} O ₂ Compounds as Highâ€Capacity Cathode Materials for Rechargeable Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 508-516.	1.7	8
1473	A synergetic promotion of sodium-ion storage in titania nanosheets by superlattice assembly with reduced graphene oxide and Fe-doping strategy. Chemical Engineering Journal, 2021, 407, 127198.	6.6	19
1474	Insight into effects of divalent cation substitution stabilizing P2-Type layered cathode materials for sodium-ion batteries. Electrochimica Acta, 2021, 368, 137614.	2.6	19
1475	Structure and ionic conductivity of Na3+Sc2Si P3-O12 (x=0.0, 0.2, 0.4, 0.8) NASICON materials: A combined neutron diffraction, MAS NMR and impedance study. Solid State Sciences, 2021, 111, 106470.	1.5	14
1476	PVDF-HFP/PMMA/TPU-based gel polymer electrolytes composed of conductive Na3Zr2Si2PO12 filler for application in sodium ions batteries. Solid State Ionics, 2021, 359, 115532.	1.3	30
1477	Lithium‣ubstituted Tunnel/Spinel Heterostructured Cathode Material for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2008569.	7.8	17
1478	Shapeâ€Induced Kinetics Enhancement in Layered P2â€Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ Porous Microcuboids Enables High Energy/Power Sodiumâ€Ion Full Battery. Batteries and Supercaps, 2021, 4, 456-463.	2.4	19
1479	Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2628-2661.	5.2	39
1480	Progress in and application prospects of advanced and cost-effective iron (Fe)-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 1938-1969.	5.2	65
1481	Perspective on the synergistic effect of chalcogenide multiphases in sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 1694-1715.	3.2	22
1482	A Lowâ€Temperature Sodiumâ€Ion Full Battery: Superb Kinetics and Cycling Stability. Advanced Functional Materials, 2021, 31, 2009458.	7.8	77
1483	Sulfur and nitrogen-doped Li4Ti5O12/rGO as an anode material for advanced sodium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 158190.	2.8	22
1484	Opportunities of Aqueous Manganeseâ€Based Batteries with Deposition and Stripping Chemistry. Advanced Energy Materials, 2021, 11, 2002904.	10.2	107
1485	Phosphonium Bromides Regulating Solid Electrolyte Interphase Components and Optimizing Solvation Sheath Structure for Suppressing Lithium Dendrite Growth. Advanced Functional Materials, 2021, 31, 2009013.	7.8	75
1486	Electrochemical deposition mechanism of sodium and potassium. Energy Storage Materials, 2021, 36, 91-98.	9.5	30

#	Article	IF	CITATIONS
1487	Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM. Journal of Energy Chemistry, 2021, 59, 405-418.	7.1	12
1488	Synthesis and electrochemical properties of P2–Na2/3[Ni1/3Mn2/3]O2 microspheres as cathode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 859, 157768.	2.8	13
1489	Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale, 2021, 13, 692-699.	2.8	46
1490	Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chemical Engineering Journal, 2021, 409, 127943.	6.6	38
1491	Difference in the electron energy loss spectra between the spinel-type Na3LiTi5O12 and Li4Ti5O12 clarified by density functional theory calculations. Computational Materials Science, 2021, 188, 110240.	1.4	5
1492	Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries. Journal of Colloid and Interface Science, 2021, 584, 372-381.	5.0	30
1493	Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires. Science China Materials, 2021, 64, 557-570.	3.5	36
1494	Bark shaped structure BiPO4@rGO applying to high efficiency of sodium ion battery. Journal of Alloys and Compounds, 2021, 857, 157547.	2.8	10
1495	Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries. Electrochimica Acta, 2021, 365, 137379.	2.6	26
1496	Copper-substituted NaxMO2 (MÂ=ÂFe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. Chemical Engineering Journal, 2021, 406, 126830.	6.6	39
1497	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	1.9	5
1498	Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. Advanced Sustainable Systems, 2021, 5, .	2.7	49
1499	Comparative life cycle assessment of Fe2O3-based fibers as anode materials for sodium-ion batteries. Environment, Development and Sustainability, 2021, 23, 6786-6799.	2.7	12
1500	Recent Progress on the Alloyâ€Based Anode for Sodiumâ€Ion Batteries and Potassiumâ€Ion Batteries. Small, 2021, 17, e1903194.	5.2	284
1501	Preparation of flower-like iron phosphate materials as a novel anode for dual-ion batteries. Materials Advances, 2021, 2, 6703-6712.	2.6	5
1502	Recent advanced skeletons in sodium metal anodes. Energy and Environmental Science, 0, , .	15.6	69
1503	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy and Environmental Science, 2021, 14, 5864-5874.	15.6	30
1504	CuS ₂ sheets: a hidden anode material with a high capacity for sodium-ion batteries. Journal of Materials Chemistry C, 2021, 9, 1387-1395.	2.7	12

#	Article	IF	CITATIONS
1505	WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries. Molecules, 2021, 26, 377.	1.7	12
1506	Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook. Journal of Materials Chemistry A, 2021, 9, 8279-8302.	5.2	113
1507	A CoSe–C@C core–shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer. Journal of Materials Chemistry A, 2021, 9, 11397-11404.	5.2	28
1508	One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors. Materials Chemistry Frontiers, 2021, 5, 2320-2327.	3.2	22
1509	Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials, 2021, 20, 353-361.	13.3	155
1510	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
1511	An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future prospects from material synthesis to battery performance. Journal of Materials Chemistry A, 2021, 9, 5164-5196.	5.2	38
1512	Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 3809-3818.	1.1	4
1513	A Poriferous Nanoflake-Assembled Flower-Like Ni ₅ P ₄ Anode for High-Performance Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	4.7	6
1514	Boosting Li/Na storage performance of graphite by defect engineering. RSC Advances, 2021, 11, 22297-22304.	1.7	3
1515	Environmentally phase-controlled stratagem for open framework pyrophosphate anode materials in battery energy storage. Journal of Materials Chemistry C, 0, , .	2.7	9
1516	N-Doped carbon encapsulating Bi nanoparticles derived from metal–organic frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 22048-22055.	5.2	33
1517	Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chemical Communications, 2021, 57, 4243-4246.	2.2	31
1518	Electrode materials viewed with transmission electron microscopy. , 2021, , .		0
1519	Sb ₂ O ₃ nanoparticles anchored on N-doped graphene nanoribbons as improved anode for sodium-ion batteries. RSC Advances, 2021, 11, 31566-31571.	1.7	3
1520	Facile fabrication of WS ₂ nanocrystals confined in chlorella-derived N, P co-doped bio-carbon for sodium-ion batteries with ultra-long lifespan. Dalton Transactions, 2021, 50, 14745-14752.	1.6	6
1521	The Potential of MOFs in the Field of Electrochemical Energy Storage. , 2021, , 111-154.		2
1522	Restraining polysulfide shuttling by designing a dual adsorption structure of bismuth encapsulated into carbon nanotube cavity. Nanoscale, 2021, 13, 10320-10328.	2.8	4

#	Article	IF	CITATIONS
1523	Batteries., 2021,, 79-141.		0
1524	A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode for sodium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 2491-2499.	1.3	12
1525	Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries: synthesis, structures, and electrochemical properties. Journal of Solid State Electrochemistry, 2021, 25, 1271-1281.	1.2	6
1526	Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronics. Nanoscale Advances, 2021, 3, 942-962.	2.2	46
1527	Hysteresis abated P2-type NaCoO ₂ cathode reveals highly reversible multiple phase transitions for high-rate sodium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 3219-3228.	2.5	17
1528	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, 2021, 12, 13.	5.8	85
1529	Robust hollow TiO ₂ spheres for lithium/sodium ion batteries with excellent cycling stability and rate capability. Inorganic Chemistry Frontiers, 2021, 8, 5024-5033.	3.0	24
1530	MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries. Nanotechnology, 2021, 32, 165401.	1.3	33
1531	Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 9506-9534.	5.2	78
1532	Electrolyteâ€Mediated Stabilization of Highâ€Capacity Microâ€Sized Antimony Anodes for Potassiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2005993.	11.1	96
1533	The metal–organic framework mediated synthesis of bell string-like hollow ZnS–C nanofibers to enhance sodium storage performance. Materials Chemistry Frontiers, 2021, 5, 4712-4724.	3.2	18
1534	Measurement of Volume Changes and Associated Stresses in Ge Electrodes Due to Na/Na ⁺ Redox Reactions. Journal of the Electrochemical Society, 2021, 168, 010504.	1.3	7
1535	A gallic acid based metal organic framework derived NiS/C anode for sodium ion batteries. Sustainable Energy and Fuels, 2021, 5, 3363-3372.	2.5	10
1536	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	5.2	102
1537	Carbon defects applied to potassium-ion batteries: a density functional theory investigation. Nanoscale, 2021, 13, 13719-13734.	2.8	21
1538	Sodium-Ion Battery. , 2022, , 191-206.		0
1539	Improved electrochemical performance of lanthanum-modified Na ₃ V ₂ (PO ₄) ₃ /C cathode materials for sodium-ion batteries. New Journal of Chemistry, 2021, 45, 906-914.	1.4	10
1540	Sustainable Batteries—Quo Vadis?. Advanced Energy Materials, 2021, 11, 2003700.	10.2	46

#	Article	IF	CITATIONS
1541	Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy and Environmental Science, 2021, 14, 4564-4573.	15.6	66
1542	Hierarchical polyaromatic hydrocarbons (PAH) with superior sodium storage properties. Journal of Materials Chemistry A, 2021, 9, 16554-16564.	5.2	6
1543	Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 2538-2546.	4.0	13
1544	Iron Selenide Microcapsules as Universal Conversionâ€Typed Anodes for Alkali Metalâ€Ion Batteries. Small, 2021, 17, e2005745.	5.2	66
1545	Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. Journal of Materials Chemistry A, 2021, 9, 18632-18643.	5.2	24
1546	CoSe@N-Doped Carbon Nanotubes as a Potassium-Ion Battery Anode with High Initial Coulombic Efficiency and Superior Capacity Retention. ACS Nano, 2021, 15, 1121-1132.	7.3	98
1547	Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy storage. Sustainable Energy and Fuels, 2021, 5, 5061-5113.	2.5	11
1548	Rationally designed yolk–shell Co ₉ S ₈ –Co _{1â^'<i>x</i>} S hollow spheres for advanced sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 23537-23544.	5.2	19
1549	Mitigating the P2–O2 transition and Na ⁺ /vacancy ordering in Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ by anion/cation dual-doping for fast and stable Na ⁺ insertion/extraction. Journal of Materials Chemistry A, 2021, 9, 10803-10811.	5.2	23
1550	Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1877-1893.	1.9	16
1551	Cobalt-based metal–organic frameworks as functional materials for battery applications. CrystEngComm, 2021, 23, 5140-5152.	1.3	3
1552	Stoichiometric tuning of lattice flexibility and Na diffusion in NaAlSiO ₄ : quasielastic neutron scattering experiment and <i>ab initio</i> molecular dynamics simulations. Journal of Materials Chemistry A, 2021, 9, 16129-16136.	5.2	4
1553	Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices. Energy and Environmental Materials, 2022, 5, 201-214.	7.3	38
1554	ZnSe with nanostructure embedded in graphene nanosheets with elevated electrochemical performance for anode material of sodium ion battery. Journal of Alloys and Compounds, 2021, 854, 157318.	2.8	15
1555	Diagnosing the SEI Layer in a Potassium Ion Battery Using Distribution of Relaxation Time. Journal of Physical Chemistry Letters, 2021, 12, 2064-2071.	2.1	33
1556	Molybdenumâ€based materials for sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 339-352.	8.5	65
1557	A review of covalent organic framework electrode materials for rechargeable metal-ion batteries. New Carbon Materials, 2021, 36, 1-18.	2.9	23
1558	High-Operating Voltage, Long-Life Layered Oxides for Sodium Ion Batteries Enabled by Cosubstitution of Titanium and Magnesium. ACS Sustainable Chemistry and Engineering, 2021, 9, 2534-2542.	3.2	16

#	Article	IF	CITATIONS
1559	Enhancing the long-term Na-storage cyclability of conversion-type iron selenide composite by construction of 3D inherited hyperbranched polymer buffering matrix. Nano Research, 2021, 14, 3952-3960.	5.8	7
1560	Synthesis and Electrochemical Investigation of O3-Type High-nickel NCM Cathodes for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 280-285.	1.3	5
1561	Poly(2,5â€Dihydroxyâ€1,4â€Benzoquinonyl Sulfide) As an Efficient Cathode for Highâ€Performance Aqueous Zinc–Organic Batteries. Advanced Functional Materials, 2021, 31, 2010049.	7.8	143
1562	Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions. Nano Letters, 2021, 21, 2281-2287.	4.5	54
1563	Synergistic Dualâ€Additive Electrolyte for Interphase Modification to Boost Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Functional Materials, 2021, 31, 2010500.	7.8	43
1564	What Is the Right Carbon for Practical Anode in Alkali Metal Ion Batteries?. Small Science, 2021, 1, 2000063.	5.8	25
1565	Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003399.	10.2	24
1566	High-performance sodium-ion capacitors with SnS2/ZnS-reduced graphene oxide anodes and biomass waste-derived porous carbon cathodes. Ionics, 2021, 27, 1781-1794.	1.2	3
1567	An Attempt to Formulate Nonâ€Carbonate Electrolytes for Sodiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 791-814.	2.4	26
1568	Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors, 2021, 21, 1470.	2.1	148
1569	NASICONâ€Type Na ₃ Zr ₂ Si ₂ PO ₁₂ Solidâ€State Electrolytes for Sodium Batteries**. ChemElectroChem, 2021, 8, 1035-1047.	1.7	68
1570	Improved sodium storage properties of nickel sulfide nanoparticles decorated on reduced graphene oxide nanosheets as an advanced anode material. Nanotechnology, 2021, 32, 195406.	1.3	5
1571	Nitrogen-enriched carbon nanofibers with tunable semi-ionic C F bonds as a stable long cycle anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2021, 583, 535-543.	5.0	24
1572	Graphitic SiC : A potential anode material for Naâ€ion battery with extremely high storage capacity. International Journal of Quantum Chemistry, 2021, 121, e26608.	1.0	2
1573	Transport of Sodium Ions in Solids: Progress in Firstâ€Principle Theoretical Formulation of Potential Solid Sodiumâ€Ion Electrolytes. Batteries and Supercaps, 2021, 4, 1096-1107.	2.4	11
1574	An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes. ACS Energy Letters, 2021, 6, 915-924.	8.8	21
1575	Single-Atom Catalysts for Improved Cathode Performance in Na–S Batteries: A Density Functional Theory (DFT) Study. Journal of Physical Chemistry C, 2021, 125, 4458-4467.	1.5	45
1576	Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Research, 2021, 14, 4100-4106.	5.8	29

#	Article	IF	CITATIONS
1577	Efficient Reversible Conversion between MoS ₂ and Mo/Na ₂ S Enabled by Grapheneâ€Supported Single Atom Catalysts. Advanced Materials, 2021, 33, e2007090.	11.1	108
1578	Molecular Engineering of Aromatic Imides for Organic Secondary Batteries. Small, 2021, 17, e2005752.	5.2	37
1579	Interlayer Spacing-Controlled Na _{0.71} Co _{0.96} O ₂ with High Pseudocapacitance for Enhanced Sodium Storage. Energy & Fuels, 2021, 35, 3479-3489.	2.5	6
1580	The main problems and solutions in practical application of anode materials for sodium ion batteries and the latest research progress. International Journal of Energy Research, 2021, 45, 9753-9779.	2.2	20
1581	Design Strategies of 3D Carbonâ€Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Advanced Functional Materials, 2021, 31, 2010041.	7.8	99
1582	Expanding the family of mineral-like anhydrous alkali copper sulfate framework structures: new phases, topological analysis and evaluation of ion migration potentialities. Journal of Applied Crystallography, 2021, 54, 237-250.	1.9	7
1583	A Wide-Temperature-Range, Low-Cost, Fluorine-Free Battery Electrolyte Based On Sodium Bis(Oxalate)Borate. Chemistry of Materials, 2021, 33, 1130-1139.	3.2	24
1584	3D Bimodal Porous Amorphous Carbon with Self-Similar Porosity by Low-Temperature Sequential Chemical Dealloying. Chemistry of Materials, 2021, 33, 1013-1021.	3.2	11
1585	Sulfur-Doped Flowerlike Porous Carbon Derived from Metal–Organic Frameworks as a High-Performance Potassium-Ion Battery Anode. ACS Applied Energy Materials, 2021, 4, 2282-2291.	2.5	28
1586	One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ionAbattery anodes. Journal of Materials Science, 2021, 56, 11000-11010.	1.7	12
1587	Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando x-ray absorption spectroscopy. Electronic Structure, 2021, 3, 013001.	1.0	4
1588	Synchronous Promotion in Sodiophilicity and Conductivity of Flexible Host via Vertical Graphene Cultivator for Longevous Sodium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101233.	7.8	32
1589	Recycling Biowaste to Synthesize Nitrogen-Doped Highly Porous Activated Carbon Scaffolds for Selenium Stuffing with Superior Electrochemical Properties. ACS Applied Energy Materials, 2021, 4, 2786-2796.	2.5	6
1590	Investigations of Thermal Stability and Solid Electrolyte Interphase on Na ₂ Ti ₃ O ₇ /C as a Non-carbonaceous Anode Material for Sodium Storage Using Non-flammable Ether-based Electrolyte. ACS Applied Materials & amp; Interfaces, 2021, 13, 11732-11740.	4.0	15
1591	Controllable Design Coupled with Finite Element Analysis of Lowâ€Tortuosity Electrode Architecture for Advanced Sodiumâ€ion Batteries with Ultraâ€High Mass Loading. Advanced Energy Materials, 2021, 11, 2003725.	10.2	34
1592	Enhanced Cycling Stability of O3-Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode through Sn Addition for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 6593-6600.	1.5	14
1593	Bi Nanoparticles Embedded in 2D Carbon Nanosheets as an Interfacial Layer for Advanced Sodium Metal Anodes. Small, 2021, 17, e2007578.	5.2	28
1594	Simple Preparation of Baroque Mn-Based Chalcogenide/Honeycomb-like Carbon Composites for Sodium-Ion Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Fuels, 2021, 35, 6265-6271.	2.5	4

#	Article	IF	CITATIONS
1595	Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Research, 2021, 14, 3690-3723.	5.8	30
1596	DFT study of solvation of Li ⁺ /Na ⁺ in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery*. Chinese Physics B, 2021, 30, 038203.	0.7	1
1597	Degradation Mechanism of O3-Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Materials During Ambient Storage and Their In Situ Regeneration. ACS Applied Energy Materials, 2021, 4, 2061-2067.	2.5	28
1598	Tunable Electrochemical Activity of P2–Na _{0.6} Mn _{0.7} Ni _{0.3} O _{2–<i>x</i>} F _{<i>x</i>} Microspheres as High-Rate Cathodes for High-Performance Sodium Ion Batteries. ACS Applied Materials &: Interfaces. 2021. 13. 15333-15343.	4.0	22
1599	Nanoengineering of Advanced Carbon Materials for Sodiumâ€lon Batteries. Small, 2021, 17, e2007431.	5.2	72
1600	In-situ constructing uniform polymer network for iron oxide microspheres: A novel approach to improve the cycling stability of the conversion electrodes through chemical interaction. Journal of Power Sources, 2021, 489, 229510.	4.0	6
1601	Enabling a Stable Room-Temperature Sodium–Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers. ACS Nano, 2021, 15, 5639-5648.	7.3	70
1602	MXeneâ€Based Materials for Electrochemical Sodiumâ€ion Storage. Advanced Science, 2021, 8, e2003185.	5.6	88
1603	Insights into Na-Ion Storage Behavior of Solid Waste-Derived Carbon via "Charge-Averaged― Discharge/Charge Voltages. Energy & Fuels, 2021, 35, 5291-5297.	2.5	3
1604	²³ Na Solidâ€State NMR Analyses for Naâ€Ion Batteries and Materials. Batteries and Supercaps, 2021, 4, 1267-1278.	2.4	12
1605	Self-Template Synthesis of NaCrO ₂ Submicrospheres for Stable Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 12203-12210.	4.0	11
1606	Enhanced Sodiumâ€ion Storage Performance of a 2D MoS ₂ Anode Material Coated on Carbon Nanotubes. ChemElectroChem, 2021, 8, 903-910.	1.7	18
1607	Confined Selenium in N-Doped Mesoporous Carbon Nanospheres for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16558-16566.	4.0	27
1608	FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chinese Chemical Letters, 2021, 32, 3113-3117.	4.8	18
1609	Atomic Layer Coated Al ₂ O ₃ on Nitrogen Doped Vertical Graphene Nanosheets for High Performance Sodium Ion Batteries. Energy and Environmental Materials, 2022, 5, 285-294.	7.3	23
1610	A Passionfruitâ€Like Carbonâ€Confined Cu ₂ ZnSnS ₄ Anode for Ultralongâ€Life Sodium Storage. Advanced Energy Materials, 2021, 11, 2100082.	10.2	49
1611	One-pot synthesis of nanocrystalline SnS@tremella-like porous carbon by supercritical CO2 method for excellent sodium storage performance. Electrochimica Acta, 2021, 373, 137933.	2.6	10
1612	Ce-MOF derived ceria: Insights into the Na-ion storage mechanism as a high-rate performance anode material. Applied Materials Today, 2021, 22, 100935.	2.3	18

		CITATION REPORT		
#	Article		IF	Citations
1613	An Emerging Energy Storage System: Advanced Na–Se Batteries. ACS Nano, 2021, 1	.5, 5876-5903.	7.3	56
1614	Pure carbon-based electrodes for metal-ion batteries. Carbon Trends, 2021, 3, 100035		1.4	10
1615	Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc properties of cathode material. Journal of Power Sources, 2021, 490, 229528.	c ions storage	4.0	26
1616	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapi Storage. Angewandte Chemie, 2021, 133, 11582-11587.	d, Stable Sodium	1.6	17
1617	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon And Materials & Interfaces, 2021, 13, 18914-18922.	ode. ACS Applied	4.0	18
1618	Recent advances of vanadium-based cathode materials for zinc-ion batteries. Chinese (2021, 32, 3753-3761.	Chemical Letters,	4.8	27
1619	Stabilization of High-Energy Cathode Materials of Metal-Ion Batteries: Control Strategi Synthesis Protocols. Energy & Fuels, 2021, 35, 7511-7527.	es and	2.5	11
1620	Recent Progress in Layered Manganese and Vanadium Oxide Cathodes for Znâ€lon Ba Technology, 2021, 9, 2100011.	tteries. Energy	1.8	22
1621	Group VI metallic pillars for assembly of expanded graphite anodes for high-capacity Na Carbon, 2021, 175, 585-593.	a-ion batteries.	5.4	14
1622	FeS under wrinkled thin-layer carbon derived from ionic liquid as a high-performance so battery anode material. Journal of Electroanalytical Chemistry, 2021, 886, 115102.	odium-ion	1.9	9
1623	Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxida Highâ€Performance Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 210	ation for)0757.	10.2	99
1624	UiO-66 Metal–Organic Framework as an Anode for a Potassium-Ion Battery: Quantu Analysis. Journal of Physical Chemistry C, 2021, 125, 9679-9687.	m Mechanical	1.5	21
1625	Ca ₂ C MXene monolayer as a superior anode for metal-ion batteries. 2D N 035015.	1aterials, 2021, 8,	2.0	44
1626	Understanding disorder in oxide-based electrode materials for rechargeable batteries. J 2021, 3, 031002.	Phys Energy,	2.3	4
1627	One-step in situ hydrothermal synthesis of layered Ni3Ge2O5(OH)4/carbon nanocomp superior sodium storage properties. Journal of Electroanalytical Chemistry, 2021, 887,		1.9	4
1629	Ultrahigh Phosphorus Doping of Carbon for Highâ€Rate Sodium Ion Batteries Anode. A Materials, 2021, 11, 2003911.	dvanced Energy	10.2	91
1630	Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrol lonics, 2021, 27, 2509-2525.	yte films.	1.2	25
1631	The Mystery from Tetragonal NaVPO ₄ F to Monoclinic NaVPO _{4Presentation, Phase Conversion, and Naâ€Storage Kinetics. Advanced Energy Materials}		10.2	11

	Сітатіс	on Report	
#	Article	IF	Citations
1632	Cellulose: A Contribution for the Zero eâ \in Waste Challenge. Advanced Materials Technologies, 2021, 6, .	3.0	56
1633	Engineering Solid Electrolyte Interface at Nanoâ€Scale for Highâ€Performance Hard Carbon in Sodiumâ€lor Batteries. Advanced Functional Materials, 2021, 31, 2100278.	۱ 7.8	90
1634	Photoâ€assisted Rechargeable Metal Batteries for Energy Conversion and Storage. Energy and Environmental Materials, 2022, 5, 439-451.	7.3	55
1635	Composite electrolytes based on electrospun PVDF and ionic plastic crystal matrices for Na-metal battery applications. JPhys Materials, 2021, 4, 034003.	1.8	9
1637	Pitch-Derived Soft-Carbon-Wrapped NaVPO ₄ F Composite as a Potential Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4059-4069.	2.5	18
1638	Bimetallic Antimony–Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 21127-21137.	4.0	14
1639	The novel N-rich hard carbon nanofiber as high-performance electrode materials for sodium-ion batteries. Ceramics International, 2021, 47, 9118-9124.	2.3	7
1642	Controllable construction of yolk–shell Sn–Co@void@C and its advantages in Na-ion storage. Rare Metals, 2021, 40, 2392-2401.	3.6	21
1643	Stable Na Electrodeposition Enabled by Agarose-Based Water-Soluble Sodium Ion Battery Separators. ACS Applied Materials & Interfaces, 2021, 13, 21250-21260.	4.0	20
1644	Hydrothermal Microwave-Assisted Synthesis of Na _{3+<i>x</i>} V _{2â€"<i>y</i>} Mn _{<i>y</i>} (PO ₄) _{2< Solid Solutions as Potential Positive Electrodes for Na-Ion Batteries. ACS Applied Energy Materials, 2021. 4. 5007-5014.}	/sub>F _{3<!--</td--><td>sub> 11</td>}	sub> 11
1645	Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries. JPhys Materials, 2021, 4, 032004.	1.8	19
1646	Flower-like spherical FeCoS2 coated by reduced graphene oxide as anode for high performance potassium ion storage. Journal of Alloys and Compounds, 2021, 861, 158458.	2.8	22
1647	Pseudocapacitive Anode Materials toward Highâ€Power Sodiumâ€ion Capacitors. Batteries and Supercaps, 2021, 4, 1567-1587.	2.4	31
1648	Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries. Ionics, 2021, 27, 1853-1860.	1.2	9
1649	Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochemistry Communications, 2021, 125, 107000.	2.3	3
1650	Electrochemical storage behavior of <scp> NiCo ₂ O ₄ </scp> nanoparticles anode with structural and morphological evolution in lithiumâ€ion and sodiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 15036-15048.	2.2	10
1651	Simultaneously Enhancing Structural Stability and Cationic Redox in Na _{0.67} Mn _{0.75} Fe _{0.25} O ₂ through a Synergy of Multisite Substitution. Journal of Physical Chemistry C, 2021, 125, 8105-8115.	1.5	6
1652	Polyaniline-coated nanoporous antimony with improved performance for sodium-ion battery anodes. Journal of Alloys and Compounds, 2021, 861, 158647.	2.8	8

ARTICLE IF CITATIONS Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium 1653 7.2 124 Storage. Angewandte Chemie - International Edition, 2021, 60, 11481-11486. Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion 1654 6.2 batteries. Nano Today, 2021, 37, 101074. Electrical Conductivity Adjustment for Interface Capacitiveâ€Like Storage in Sodiumâ€Ion Battery. 1655 7.8 19 Advanced Functional Materials, 2021, 31, 2101081. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 2021, 50, 400-417. Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton. Carbon, 2021, 176, 1657 5.4 25 219-227. Studies on ionic liquid based nanocomposite gel polymer electrolyte and its application in sodium battery. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 267, 1.7 115098. Oxygen-vacancy-rich TiO2-coated carbon nanofibers for fast sodium storage in high-performance 1659 4.0 34 sodium-ion hybrid capacitors. Journal of Power Sources, 2021, 493, 229678. CuFeS₂ as a Very Stable High-Capacity Anode Material for Sodium-Ion Batteries: A Multimethod Approach for Elucidation of the Complex Reaction Mechanisms during Discharge and 4.0 14 Charge Processes. ACS Applied Materials & amp; Interfaces, 2021, 13, 26034-26045 The study of sodium-vanadium oxide NaV3O8 as an electrode material for all-solid-state sodium-ion 1661 2.8 7 batteries. Journal of Alloys and Compounds, 2021, 864, 158516. Nitrogen doped porous carbon coated antimony as high performance anode material for sodium-ion 1.3 batteries. Nanotechnology, 2021, 32, 315401. Interface Engineering of a Sandwich Flexible Electrode PAn@CoHCF Rooted in Carbon Cloth for 1663 4.06 Enhanced Sodium-Ion Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 23794-23802. Comprehensive Electrochemical, Calorimetric Heat Generation and Safety Analysis of Na_{0.53}MnO₂ Cathode Material in Coin Cells. Journal of the Electrochemical 1664 1.3 Society, 2021, 168, 050544. MOF derived double-carbon layers boosted the lithium/sodium storage performance of 1665 1.3 6 SnO₂ nanoparticles. Nanotechnology, 2021, 32, 305403. Boron-doped Sb/SbO₂@rGO composites with tunable components and enlarged lattice spacing for high-rate sodium-ion batteries. Journal Physics D: Applied Physics, 2021, 54, 315505. 1.3 Multi-Redox (V⁵⁺/V⁴⁺/V³⁺/V²⁺) Driven Asymmetric Sodium (De)intercalation Reactions in NASICON-Na₃VIn(PO₄)₃ 1667 1.3 4 Cathode. Journal of the Electrochemical Society, 2021, 168, 050534. Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy 44 Storage Materials, 2021, 37, 396-416. A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate 1669 6.6 24 structure for high-performance sodium-ion battery. Chemical Engineering Journal, 2021, 412, 128719. Pinning Effect Enhanced Structural Stability toward a Zeroâ€Strain Layered Cathode for Sodiumâ€Ion 1670 Batteries. Angewandte Chemie - International Edition, 2021, 60, 13366-13371.

#	Article	IF	CITATIONS
1671	Improved Performance of Na ₃ TiMn(PO ₄) ₃ Using a Non-stoichiometric Synthesis Strategy. ACS Energy Letters, 2021, 6, 2081-2089.	8.8	32
1672	Preparation of SnS2/enteromorpha prolifera derived carbon composite and its performance of sodium-ion batteries. Journal of Physics and Chemistry of Solids, 2021, 152, 109976.	1.9	9
1673	Pinning Effect Enhanced Structural Stability toward a Zero‧train Layered Cathode for Sodiumâ€lon Batteries. Angewandte Chemie, 2021, 133, 13478-13483.	1.6	17
1674	Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24070-24080.	4.0	24
1675	Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12, 3066.	5.8	92
1676	Aluminum and lithium sulfur batteries: a review of recent progress and future directions. Journal of Physics Condensed Matter, 2021, 33, 253002.	0.7	7
1677	A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Naâ€ion Battery Anodes. ChemElectroChem, 2021, 8, 2358-2396.	1.7	25
1678	Layered Structure Na ₂ Ti ₃ O ₇ as a Promising Anode Material for Sodiumâ€ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000095.	2.8	7
1679	Rechargeable Potassium–Selenium Batteries. Advanced Functional Materials, 2021, 31, 2102326.	7.8	30
1680	Status of rechargeable potassium batteries. Nano Energy, 2021, 83, 105792.	8.2	113
1681	Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chemical Engineering Journal, 2021, 411, 128490.	6.6	57
1682	Recent Advances on Sodiumâ€ion Batteries and Sodium Dualâ€ion Batteries: Stateâ€ofâ€theâ€Art Na ^{+Host Anode Materials. Small Science, 2021, 1, 2100014.}	1 <u>5.8</u>	65
1683	Dualâ€Metal Electrolytes for Hybridâ€lon Batteries: Synergism or Antagonism?. ChemPhysChem, 2021, 22, 1110-1123.	1.0	4
1684	Rationalized atomic/clusters dispersion of Fe/Se/Al on interconnected N-doped carbon nanofibers for fast sodiation. Chemical Engineering Journal, 2021, 411, 128420.	6.6	5
1685	Enhanced electrochemical behavior of Na0.66Li0.22Ti0.78O2/C layered P2-type composite anode material for Na-ion batteries. Composites Part B: Engineering, 2021, 213, 108729.	5.9	8
1686	Review—Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 050524.	1.3	82
1687	Carbon-Decorated Na ₃ V ₂ (PO ₄) ₃ as Ultralong Lifespan Cathodes for High-Energy-Density Symmetric Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25036-25043.	4.0	55
1688	Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. Energy Storage Materials, 2021, 37, 243-273.	9.5	41

ARTICLE IF CITATIONS Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassiumâ€Ion Batteries. 1689 5.2 99 Small, 2021, 17, e2006627. Vitreum Etchingâ€Assisted Fabrication of Porous Hollow Carbon Architectures for Enhanced 5.2 Capacitive Sodium and Potassiumâ€lon Storage. Small, 2021, 17, e2100538. Cyanogel and its derived-materials: properties, preparation methods, and electrochemical 1691 7 2.5applications. Materials Today Energy, 2021, 20, 100701. Dopant and Current Rate Dependence on the Structural Evolution of P2â€Na 2/3 Mn 0.8 Zn 0.1 M 0.1 O 2 () Tj ETQq1 1 0.784314 rg Nitrogen Doped Carbon Coated Bi Microspheres as Highâ€performance Anode for Half and Full Sodium 1693 1.7 19 Ion Batteries. Chemistry - an Asian Journal, 2021, 16, 2314-2320. Ultrafine Sodium Sulfide Clusters Confined in Carbon Nano-polyhedrons as High-Efficiency 1694 Presodiation Reagents for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 4.0 Dual Confinement of CoSe₂ Nanorods with Polyphosphazene-Derived Heteroatom-Doped 1695 1.6 12 Carbon and Reduced Graphene Oxide for Potassium-Ion Batteries. ACS Omega, 2021, 6, 17113-17125. Biocarbon with different microstructures derived from corn husks and their potassium storage 1696 3.6 properties. Rare Metals, 2021, 40, 3166-3174. Promising sodium storage of bismuthinite by conversion chemistry. Energy Storage Materials, 2021, 38, 1697 9.5 16 241-248. Covalent Organic Frameworks for Batteries. Advanced Functional Materials, 2021, 31, 2100505. 154 Metal–organic framework-derived carbon decorated Ni–Sn nanostructures for ultrastable metal-ion 1699 2 3.3 batteries. Composites Communications, 2021, 25, 100724. Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors. Chinese Chemical Letters, 2022, 33, 714-729. 1700 4.8 29 Doping-induced polymorph transformation to boost ultrafast sodium storage in hierarchical 1701 2.5 10 CoSe2-carbon arrays. Materials Today Energy, 2021, 20, 100631. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: Synthesis, modifications, and perspectives. Journal of Alloys and Compounds, 2021, 867, 159060. 1702 2.8 60 Sb2S3-Bi2S3 microrods with the combined action of carbon encapsulation and rGO confinement for 1703 improving high cycle stability in sodium/potassium storage. Chemical Engineering Journal, 2021, 414, 6.6 46 128787. Polyvinylpyrrolidone assisted synthesized ultra-small Na4Fe3(PO4)2(P2O7) particles embedded in 1D 1704 carbon nanoribbons with enhanced room and low temperature sodium storage performance. Journal of Power Sources, 2021, 498, 229907. Molecular Coupling and Selfâ€Assembly Strategy toward WSe₂/Carbon Micro–Nano 1705 4.6 24 Hierarchical Structure for Elevated Sodiumâ€Ion Storage. Small Methods, 2021, 5, e2100374. Probing the Limiting Mechanism of Sodium-Ion Extraction in the 1706 Na₅V(PO₄)₂F₂ Cathode. Journal of Physical 1.5 Chemistry C, 2021, 125, 14583-14589.

ARTICLE IF CITATIONS Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 1707 7.3 272 2021, 15, 9244-9272. Oxygen Vacancy Engineering in Na₃V₂(PO₄)₃ for 1708 Boosting Sodium Storage Kinetics. Advanced Materials Interfaces, 2021, 8, 2100188. Synergetic Strategy for the Fabrication of Self-Standing Distorted Carbon Nanofibers with 1709 1.6 8 Heteroatom Doping for Sodium-Ion Batteries. ACS Omega, 2021, 6, 15686-15697. Efficient Stress Dissipation in Wellâ€Aligned Pyramidal SbSn Alloy Nanoarrays for Robust Sodium 1710 Storage. Advanced Functional Materials, 2021, 31, 2104798. Electrolytic bismuth/carbon nanotubes composites for high-performance sodium-ion battery anodes. 1711 4.0 10 Journal of Power Sources, 2021, 496, 229830. Stabilisation of the superoxide anion in bis(fluorosulfonyl)imide (FSI) ionic liquid by small chain length phosphonium cations: Voltammetric, DFT modelling and spectroscopic perspectives. Electrochemistry Communications, 2021, 127, 107029. 1712 2.3 Growth of cobalt hexacyanoferrate particles through electrodeposition and chemical etching of 1713 cobalt precursors on reticulated vitreous carbon foams for Na-ion electrochemical storage. Solid 1.56 State Sciences, 2021, 116, 106603. Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2021, 38, 130-140. 1714 9.5 Unveiling Oxygen Redox Activity in P2-Type 1715 Na_{<i>xi</i>}Ni_{0.25}Mn_{0.68}O₂ High-Energy Cathode for 8.8 32 Na-Ion Batteries. ACS Energy Letters, 2021, 6, 2470-2480. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium 1716 2.5 44 batteries. Materials Today Energy, 2021, 20, 100691. Bio-assisted engineering of hierarchical porous carbon nanofiber host in-situ embedded with iron 1717 5.439 carbide nanocatalysts toward high-performance Liâ€"S batteries. Carbon, 2021, 177, 60-70. High-Performance Aqueous Sodium-Ion Battery Based on Graphene-Doped Na₂MnFe(CN)₆–Zinc with a Highly Stable Discharge Platform and Wide Electrochemical Stability. Energy & amp; Fuels, 2021, 35, 10860-10868. 1718 2.5 Effect of Local Atomic Structure on Sodium Ion Storage in Hard Amorphous Carbon. Nano Letters, 1719 4.5 37 2021, 21, 6504-6510. Prussian Blue Analogous Na2Ni0.33Co0.33[Fe(CN)6] Nanoparticles as Cathode Material for Non-Aqueous Na-Ion Batteries. ECS Journal of Solid State Science and Technology, 2021, 10, 061012. Closely Coupled Binary Metal Sulfide Nanosheets Shielded Molybdenum Sulfide Nanorod Hierarchical 1722 Structure via Eco-Benign Surface Exfoliation Strategy towards Efficient Lithium and Sodium-ion 9.5 21 Batteries. Energy Storage Materials, 2021, 38, 344-353. Metal–organic framework–derived ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe 1.2 nanospheres as enhanced anode materials for sodium-ion batteries. Ionics, 2021, 27, 3327-3337. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and 1724 5.8 75 high-rate capability. Nano Research, 2022, 15, 925-932. Realization of High Energy Density Sodium-Ion Hybrid Capacitors through Interface Engineering of Pseudocapacitive 3D-CoO-NrGO Hybrid Anodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 27999-28009.

#	Article	IF	Citations
1726	Stable High apacity Organic Aluminum–Porphyrin Batteries. Advanced Energy Materials, 2021, 11, 2101446.	10.2	54
1727	Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes. ACS Energy Letters, 2021, 6, 2481-2490.	8.8	52
1728	Liquid Ammoniates as Efficient Electrolytes for Room-Temperature Rechargeable Sodium-Metal Batteries Based on an Organic Cathode. ACS Applied Energy Materials, 2021, 4, 6806-6814.	2.5	1
1729	Solid-state fabrication of CNT-threaded Fe1-S@N-doped carbon composite as high-rate anodes for sodium-ion batteries and hybrid capacitors. Journal of Alloys and Compounds, 2021, 869, 159303.	2.8	8
1730	Selective Interface Synthesis of Cobalt Metaphosphate Nanosheet Arrays Motivated by Functionalized Carbon Cloths for Fast and Durable Na/K-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 34410-34418.	4.0	8
1731	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
1732	Development of porous carbon nanosheets from polyvinyl alcohol for sodium-ion capacitors. Chemical Engineering Journal, 2021, 415, 129012.	6.6	28
1733	Redox Charge Transfer Kinetics and Reversibility of VO ₂ in Aqueous and Nonâ€Aqueous Electrolytes of Naâ€Ion Storage. Energy and Environmental Materials, 2022, 5, 1222-1228.	7.3	4
1734	Conversionâ€Alloying Anode Materials for Sodium Ion Batteries. Small, 2021, 17, e2101137.	5.2	102
1735	G-Si C as an anode material for potassium-ion batteries insight from first principles. Materials Chemistry and Physics, 2021, 266, 124541.	2.0	4
1736	Aliovalentâ€Ionâ€Induced Lattice Regulation Based on Charge Balance Theory: Advanced Fluorophosphate Cathode for Sodiumâ€Ion Full Batteries. Small, 2021, 17, e2102010.	5.2	23
1737	2D-VN2 MXene as a novel anode material for Li, Na and K ion batteries: Insights from the first-principles calculations. Journal of Colloid and Interface Science, 2021, 593, 51-58.	5.0	35
1738	Metastable V2O3 embedded in 2D N-doped carbon facilitates ion transport for stable and ultrafast sodium-ion storage. Chemical Engineering Journal, 2022, 430, 131156.	6.6	19
1739	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O ₂ Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 33015-33023.	ub> 4.0	31
1740	Revisit Electrolyte Chemistry of Hard Carbon in Ether for Na Storage. Jacs Au, 2021, 1, 1208-1216.	3.6	28
1741	Engineering Ultramicroporous Carbon with Abundant Câ•O as Extended "Slope-Dominated―Sodium Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9727-9739.	3.2	27
1742	A MoS ₂ and Graphene Alternately Stacking van der Waals Heterostructure for Li ⁺ /Mg ²⁺ Coâ€intercalation. Advanced Functional Materials, 2021, 31, 2103214.	7.8	35
1743	Nitrogen-doped carbon encapsulated zinc vanadate polyhedron engineered from a metal–organic framework as a stable anode for alkali ion batteries. Journal of Colloid and Interface Science, 2021, 593, 251-265.	5.0	33

#	Article	IF	CITATIONS
1744	Nanostructured MoS ₂ â€, SnS ₂ â€, and WS ₂ â€Based Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries via Chemical Methods: A Review Article. Energy Technology, 2021, 9, 2100179.	1.8	9
1745	Dendrite‣uppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electroâ€Chemoâ€Mechanical Viewpoint of Macromolecular Design. Macromolecular Rapid Communications, 2021, 42, e2100279.	2.0	11
1746	Renewable Energy in Russia: System Analysis of Barriers. BRICS Law Journal, 2021, 8, 89-119.	0.1	1
1747	Facile synthesis of high capacity P2-type Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries. Transactions of Nonferrous Metals Society of China, 2021, 31, 2074-2080.	1.7	10
1748	Cation-Disordered O3-Na _{0.8} Ni _{0.6} Sb _{0.4} O ₂ Cathode for High-Voltage Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32948-32956.	4.0	21
1749	Improvement of Cyclic Stability of Na0.67Mn0.8Ni0.1Co0.1O2 via Suppressing Lattice Variation. Chinese Physics Letters, 2021, 38, 076102.	1.3	1
1750	High-rate sodium storage performance enabled using hollow Co3O4 nanoparticles anchored in porous carbon nanofibers anode. Journal of Alloys and Compounds, 2021, 868, 159262.	2.8	11
1751	MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environmental Chemistry Letters, 2021, 19, 3645-3681.	8.3	48
1752	Recent Advances in Electrode Materials with Anion Redox Chemistry for Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	4.7	40
1753	Novel antimony phosphate loaded on grid-like N, S-doped carbon for facilitating sodium-ion storage. Chemical Engineering Journal, 2021, 415, 128942.	6.6	13
1754	Van der Waals Heterostructures—Recent Progress in Electrode Materials for Clean Energy Applications. Materials, 2021, 14, 3754.	1.3	10
1755	In Situ (Operando) Electrochemical Dilatometry as a Method to Distinguish Charge Storage Mechanisms and Metal Plating Processes for Sodium and Lithium Ions in Hard Carbon Battery Electrodes. Advanced Materials Interfaces, 2022, 9, 2100596.	1.9	10
1756	New insights on ultrafast Na[solv]+ coinserted graphite driven by an electric field. Science China Materials, 2021, 64, 2967-2975.	3.5	3
1757	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust sodium anode. Sustainable Materials and Technologies, 2021, 28, e00255.	1.7	5
1758	VS4/carbon nanotube hybrid: A high-rate anode for sodium-ion battery. Journal of Power Sources, 2021, 501, 230021.	4.0	27
1759	Metal organic framework derived NaCoxOy for room temperature hydrogen sulfide removal. Scientific Reports, 2021, 11, 14740.	1.6	24
1760	Solid Solution Metal Chalcogenides for Sodiumâ€ l on Batteries: The Recent Advances as Anodes. Small, 2021, 17, e2101058.	5.2	45
1761	Metal-organic framework derived FeS/MoS2 composite as a high performance anode for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 869, 159348.	2.8	28

		CITATION REPORT		
#	Article		IF	CITATIONS
1762	Advances in metal phosphides for sodiumâ€ion batteries. SusMat, 2021, 1, 359-392.		7.8	109
1763	A review on powertrain subsystems and charging technology in battery electric vehicle future trends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Engineering, 2022, 236, 479-496.	es: Current and f Automobile	1.1	2
1764	A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batte difference and similarities. Nanotechnology, 2021, 32, 422501.	eries:	1.3	11
1765	Mechanistic Insights into Interactions of Polysulfides at VS ₂ Interfaces in A DFT Study. ACS Applied Materials & amp; Interfaces, 2021, 13, 35848-35855.	Na–S Batteries:	4.0	28
1766	Organic Negative Electrode Materials for Metalâ€Ion and Molecularâ€Ion Batteries: Pr Challenges from a Molecular Engineering Perspective. Advanced Energy Materials, 202		10.2	44
1767	Selection of Sodium Salt Electrolyte Compatible with Na _{0.67} Ni _{0.15} Fe _{0.2} Mn _{0.65} O <sub Sodiumâ€ion Batteries. Energy Technology, 2021, 9, 2100190.</sub 	>>2 Cathode for	1.8	10
1768	Dualâ€Ion NiNc Battery: A Sustainable Revolution for Sodium Organic Batteries. Batter 2021, 4, 1605-1610.	ries and Supercaps,	2.4	5
1769	Superior sodium storage of Na ₃ V(PO ₃) ₃ N nan voltage cathode for flexible sodium-ion battery devices. Nanotechnology, 2021, 32, 43		1.3	5
1770	Naturally nitrogen-doped porous carbon derived from waste crab shell as anode material for high performance sodium-ion battery. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105215.		2.6	14
1771	Palmyra Palm tree biomass-derived carbon low-voltage plateau region capacity on Na-ion battery and its full cell performance. Journal of Environmental Chemical Engineering, 2021, 9, 105698.		3.3	18
1772	Engineering strategies for low-cost and high-power density aluminum-ion batteries. Ch Engineering Journal, 2021, 418, 129385.	emical	6.6	25
1773	Review on the synthesis and doping strategies in enhancing the Na ion conductivity of (NASICON) based solid electrolytes. Solid State Ionics, 2021, 366-367, 115671.	Na3Zr2Si2PO12	1.3	33
1774	Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced S Anodes. Inorganic Chemistry, 2021, 60, 12526-12535.	Godium-Storage	1.9	2
1775	Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for su Sodium-ion batteries. Chemical Engineering Journal, 2021, 417, 129161.	iperior	6.6	78
1776	Constructing MoO2@MoS2 heterostructures anchored on graphene nanosheets as a high-performance anode for sodium ion batteries. Electrochimica Acta, 2021, 388, 138	3612.	2.6	15
1777	Ultrafine ZnSe Encapsulated in Nitrogen-Doped Porous Carbon Nanofibers for Superio Batteries with a Long Lifespan and Low-Temperature Performance. ACS Sustainable Ch Engineering, 2021, 9, 11705-11713.	r Na-lon nemistry and	3.2	31
1778	Ordered nano-structured mesoporous CMK-8 and other carbonaceous positive electro rechargeable aluminum batteries. Chemical Engineering Journal, 2021, 417, 129131.	des for	6.6	15
1779	Promises and Challenges of <scp>Snâ€Based</scp> Anodes for <scp>Sodiumâ€lonBatteries^{â€}. Chinese Journal of Chemistry, 2021, 39, 2931-2942.</scp>	scp>	2.6	11

#	Article	IF	CITATIONS
1780	Insights of the Electrochemical Reversibility of P2-Type Sodium Manganese Oxide Cathodes via Modulation of Transition Metal Vacancies. ACS Applied Materials & Interfaces, 2021, 13, 38305-38314.	4.0	13
1781	Bimetallic Sulfide SnS ₂ /FeS ₂ Nanosheets as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39248-39256.	4.0	51
1782	Stable Interfaces in a Sodium Metal-Free, Solid-State Sodium-Ion Battery with Gradient Composite Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 39355-39362.	4.0	17
1783	Reacquainting the Electrochemical Conversion Mechanism of FeS ₂ Sodium-Ion Batteries by Operando Magnetometry. Journal of the American Chemical Society, 2021, 143, 12800-12808.	6.6	69
1784	Ironâ€Based Layered Cathodes for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	2.4	19
1785	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	5.6	27
1786	Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 418, 129501.	6.6	48
1787	Recent Advances on Spinel Zinc Manganate Cathode Materials for Zincâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	22
1788	Elucidating the Impact of Mg Substitution on the Properties of NASICONâ€Na ₃₊ <i>_yV_{2â^'}<i>_y Cathodes. Advanced Functional Materials, 2021, 31, 2105463.</i></i>	7.(PO <s< td=""><td>ub¤4)</td></s<>	ub ¤4)
1789	Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives. Journal of Alloys and Compounds, 2021, 873, 159742.	2.8	66
1790	Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Materials, 2021, 39, 365-394.	9.5	139
1791	Flexible, all-hydrogel supercapacitor with self-healing ability. Chemical Engineering Journal, 2021, 418, 128616.	6.6	101
1792	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. Journal of the American Chemical Society, 2021, 143, 14097-14105.	6.6	30
1793	Engineering stable and fast sodium diffusion route by constructing hierarchical MoS2 hollow spheres. Journal of Colloid and Interface Science, 2021, 595, 43-50.	5.0	30
1794	Statistical optimization of amorphous iron phosphate: inorganic sol–gel synthesis-sodium potential insertion. BMC Chemistry, 2021, 15, 48.	1.6	4
1795	A novel conjugated porous polymer based on triazine and imide as cathodes for sodium storage. Journal of Polymer Science, 2022, 60, 992-1001.	2.0	11
1796	Ultrafast presodiation of graphene anodes for highâ€efficiency and highâ€rate s <scp>odiumâ€ion</scp> storage. InformaÄnÃ-MateriÄily, 2021, 3, 1445-1454.	8.5	40
1797	Porous MXene monoliths with locally laminated structure for enhanced pseudo-capacitance and fast sodium-ion storage. Nano Energy, 2021, 86, 106091.	8.2	47

#	Article	IF	CITATIONS
1798	Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Storage Materials, 2021, 39, 21-44.	9.5	54
1799	A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. Science China Materials, 2022, 65, 328-336.	3.5	22
1800	Regulating Deposition Behavior of Sodium Ions for Dendriteâ€Free Sodiumâ€Metal Anode. Advanced Energy Materials, 2021, 11, 2101976.	10.2	51
1801	Synthesis of High-Performance Hard Carbon from Waste Coffee Ground as Sodium Ion Battery Anode Material: A Review. Materials Science Forum, 0, 1044, 25-39.	0.3	1
1802	Three-Dimensional Fast Na-Ion Transport in Sodium Titanate Nanoarchitectures via Engineering of Oxygen Vacancies and Bismuth Substitution. ACS Nano, 2021, 15, 13604-13615.	7.3	36
1803	Degradation of Layered Oxide Cathode in a Sodium Battery: A Detailed Investigation by Xâ€Ray Tomography at the Nanoscale. Small Methods, 2021, 5, e2100596.	4.6	9
1804	SnS nanoparticles anchored on nitrogen-doped carbon sheets derived from metal-organic-framework precursors as anodes with enhanced electrochemical sodium ions storage. Electrochimica Acta, 2021, 387, 138535.	2.6	16
1805	MOFâ€Derived Fe ₇ S ₈ Nanoparticles/Nâ€Doped Carbon Nanofibers as an Ultraâ€Stable Anode for Sodiumâ€Ion Batteries. Small, 2021, 17, e2102349.	5.2	42
1806	Sodium and lithium incorporated cathode materials for energy storage applications - A focused review. Journal of Power Sources, 2021, 506, 230098.	4.0	17
1807	First-row transition metal compounds for aqueous metal ion batteries. Journal of Energy Chemistry, 2021, 63, 195-216.	7.1	8
1808	Emerging Carbonyl Polymers as Sustainable Electrode Materials for Lithiumâ€Free Metalâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 1037-1059.	7.3	18
1809	Size Effects in Sodium Ion Batteries. Advanced Functional Materials, 2021, 31, 2106047.	7.8	51
1810	New Diglymeâ€based Gel Polymer Electrolytes for Naâ€based Energy Storage Devices. ChemSusChem, 2021, 14, 4836-4845.	3.6	9
1811	Modified bornite materials with high electrochemical performance for sodium and lithium storage. Energy Storage Materials, 2021, 40, 150-158.	9.5	13
1812	Electrostatic Selfâ€Assembly of CoSe ₂ HBs/Ti ₃ C ₂ T _x Composites for Longâ€cycleâ€life Sodium Ion Batteries. ChemElectroChem, 2021, 8, 4047-4053.	1.7	4
1813	Crosslinking Nanoarchitectonics of Nitrogenâ€doped Carbon/MoS ₂ Nanosheets/Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrids for Highly Reversible Sodium Storage. ChemSusChem, 2021, 14, 5293-5303.	3.6	22
1814	Review on recent progress in <scp>Manganeseâ€based</scp> anode materials for <scp>sodiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 667-683.	2.2	13
1815	Superior Sodium Storage Properties in the Anode Material NiCr ₂ S ₄ for Sodiumâ€Ion Batteries: An Xâ€ray Diffraction, Pair Distribution Function, and Xâ€ray Absorption Study Reveals a Conversion Mechanism via Nickel Extrusion. Advanced Materials, 2021, 33, e2101576.	11.1	25

#	Article	IF	CITATIONS
1816	In-situ TEM revisiting NH4V4O10 to unveil the unknown sodium storage mechanism as an anode material. Nano Energy, 2021, 87, 106182.	8.2	10
1817	Unveiling the Working Mechanism of g-C ₃ N ₄ as a Protection Layer for Lithium- and Sodium-Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 46821-46829.	4.0	11
1818	Sodium storage performance of <scp> FeSb ₂ </scp> @C composite. International Journal of Energy Research, 2022, 46, 2081-2085.	2.2	4
1819	The Missing Piece: The Structure of the Ti ₃ C ₂ T _{<i>x</i>} MXene and Its Behavior as Negative Electrode in Sodium Ion Batteries. Nano Letters, 2021, 21, 8290-8297.	4.5	22
1820	Electrochemical Overview: A Summary of ACo <i>_x</i> Mn <i>_y</i> Ni <i>_z</i> O ₂ and Metal Oxides as Versatile Cathode Materials for Metalâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2107761.	7.8	13
1821	Amorphous SnO–Sb2O3–SiO2 glassy anode: high-performance electrode materials for Na-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 26709-26715.	1.1	2
1822	Diaper-derived Selenium–carbon composites as High-capacity Anodes for Sodium-ion Batteries. Chemical Engineering Journal, 2021, 430, 132705.	6.6	14
1823	Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification. Chemical Research in Chinese Universities, 2021, 37, 1130.	1.3	1
1824	Bimetallic alloy SbSn nanodots filled in electrospun N-doped carbon fibers for high performance Na-ion battery anode. Electrochimica Acta, 2021, 389, 138246.	2.6	17
1825	Maricite NaFePO4 Katot Malzemesinin Üretimi ve Elektrokimyasal Özellikleri. Journal of the Institute of Science and Technology, 0, , 1970-1979.	0.3	0
1826	Engineering metal selenides for sodium-and potassium-ion batteries. Cell Reports Physical Science, 2021, 2, 100555.	2.8	20
1827	Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy, 2021, 87, 106184.	8.2	50
1828	Rational Design of Cellulose Nanofibrils Separator for Sodium-Ion Batteries. Molecules, 2021, 26, 5539.	1.7	9
1829	Nitrogen-doped carbon decorated TiO2/Ti3C2T MXene composites as anode material for high-performance sodium-ion batteries. Surface and Coatings Technology, 2021, 422, 127568.	2.2	22
1830	Improvement of cycle performance of the high nickel cathode material LiNi0.88Co0.07Al0.05O2 for lithium-ion batteries by the spray drying of V2O5. Journal of Alloys and Compounds, 2022, 892, 162161.	2.8	12
1831	Understanding the Structural Evolution and Storage Mechanism of NASICON-Structure Mg _{0.5} Ti ₂ (PO ₄) ₃ for Li-Ion and Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 13414-13423.	3.2	5
1832	Ultra-High-Rate Na3V(PO3)3N Cathode with Superior Stability for Fast-Charging Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10136-10144.	2.5	14
1833	A mini review on cathode materials for sodiumâ€ion batteries. International Journal of Applied Ceramic Technology, 2022, 19, 913-923.	1.1	26

#	Article	IF	CITATIONS
1834	Status and Challenges of Cathode Materials for Roomâ€Temperature Sodium–Sulfur Batteries. Small Science, 2021, 1, 2100059.	5.8	28
1835	Harnessing the Volume Expansion of MoS ₃ Anode by Structure Engineering to Achieve High Performance Beyond Lithiumâ€Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232.	11.1	83
1836	Redox chemistry of advanced functional material for low-cost and environment-friendly seawater energy storage. Materials Today Energy, 2021, 21, 100805.	2.5	8
1837	Synchronous electrochemical evolution of electrode and performance enhancement of sodium ion battery anode. Cell Reports Physical Science, 2021, 2, 100553.	2.8	13
1838	Development of coarse-grained force field to investigate sodium-ion transport mechanisms in cyanoborate-based ionic liquid. Journal of Molecular Liquids, 2021, 338, 116648.	2.3	6
1839	<i>In Situ</i> Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials. Nano Letters, 2021, 21, 7579-7586.	4.5	20
1840	Nonflammable Gel Polymer Electrolyte with Ion-Conductive Polyester Networks for Sodium Metal Cells with Excellent Cycling Stability and Enhanced Safety. ACS Applied Energy Materials, 2021, 4, 10153-10162.	2.5	7
1841	Unraveling the Role of Fluorinated Alkyl Carbonate Additives in Improving Cathode Performance in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46478-46487.	4.0	19
1842	Progress of the Elements Doped NaFeO ₂ Cathode Materials for High Performance Sodiumâ€ion Batteries. ChemistrySelect, 2021, 6, 9701-9708.	0.7	5
1843	K ₂ Ti ₄ O ₉ Nanoribbon Arrays Functionalized with Graphene Quantum Dots for Superior Pseudocapacitive Sodium Storage. ChemElectroChem, 2021, 8, 3410-3415.	1.7	3
1844	Multifunctional Disordered Sulfur-Doped Carbon for Efficient Sodium-Ion-Exchange and 2-Electron-Transfer-Dominant Oxygen Reduction Reaction. Carbon, 2021, 182, 242-253.	5.4	17
1845	Rational design of black phosphorene/g-C3B heterostructures as high-performance electrodes for Li and Na-ion batteries. Applied Surface Science, 2021, 561, 150093.	3.1	13
1846	Ship in bottle synthesis of yolk-shell MnS@hollow carbon spheres for sodium storage. Nanotechnology, 2021, 32, 505602.	1.3	11
1847	Electrochemical investigations of a highâ€capacity Na 2 CrO 4 /C nanocomposite anode for sodiumâ€ion batteries. International Journal of Energy Research, 0, , .	2.2	3
1848	A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. Journal of Energy Chemistry, 2021, 60, 572-590.	7.1	49
1849	Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements. Ionics, 2021, 27, 4549-4572.	1.2	11
1850	Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy. JPhys Materials, 2021, 4, 044015.	1.8	2
1851	Engineering of CuSx@C derived from Cu-MOF as long-life anodes for sodium-ion batteries. Journal of Solid State Chemistry, 2021, 302, 122348.	1.4	17

#	Article	IF	CITATIONS
1852	Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788.	6.6	16
1853	MoS2@N-doped graphene microtubes for fast sodium ion storage. Applied Surface Science, 2021, 564, 150394.	3.1	2
1854	SiO _{<i>x</i>} /C Composite Anode of Lithium-Ion Batteries with Enhanced Performances Using Multicomponent Binders. ACS Omega, 2021, 6, 26805-26813.	1.6	5
1855	Carbon in lithium-ion and post-lithium-ion batteries: Recent features. Synthetic Metals, 2021, 280, 116864.	2.1	15
1856	Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Storage Materials, 2021, 41, 183-195.	9.5	42
1857	Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chemical Engineering Journal, 2021, 422, 130052.	6.6	58
1858	ZnIn2S4: A promising anode material with high electrochemical performance for sodium-ion batteries. Ceramics International, 2021, 47, 28634-28641.	2.3	9
1859	Inherent inhibition of oxygen loss by regulating superstructural motifs in anionic redox cathodes. Nano Energy, 2021, 88, 106252.	8.2	32
1860	New synthesis route for glasses and glass-ceramics in the Ga2S3Na2S binary system. Materials Research Bulletin, 2021, 142, 111423.	2.7	8
1861	Mixed structures as a new strategy to develop outstanding oxides-based cathode materials for sodium ion batteries: A review. Journal of Energy Chemistry, 2021, 61, 47-60.	7.1	52
1862	In-plane ordering and nature of N-doping in hard carbon synthesized at low temperature govern the sodium-ion intercalation. Journal of Electroanalytical Chemistry, 2021, 899, 115669.	1.9	5
1863	Surface-Modified Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ Cathodes with Enhanced Cycle Life and Air Stability for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11735-11742.	2.5	31
1864	Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries. Electrochimica Acta, 2021, 394, 139139.	2.6	17
1865	FeMoO4 nanorods anchored on graphene sheets as a potential anode for high performance sodium ion batteries. Journal of Alloys and Compounds, 2021, 877, 160306.	2.8	8
1866	Ultra-Stable, Ultra-Long-Lifespan and Ultra-High-Rate Na-ion Batteries Using Small-Molecule Organic Cathodes. Energy Storage Materials, 2021, 41, 738-747.	9.5	40
1867	Nickel silicate hydroxide on hierarchically porous carbon derived from rice husks as high-performance electrode material for supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 35351-35364.	3.8	17
1868	Conductive halloysite clay nanotubes for high performance sodium ion battery cathode. Applied Clay Science, 2021, 213, 106265.	2.6	13
1869	Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. Journal of Energy Chemistry, 2021, 62, 307-337.	7.1	73

#	Article	IF	CITATIONS
1870	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	7.1	56
1871	Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceramics International, 2021, 47, 30164-30171. Structural and electrochemical trends in mixed manganese oxides Na <mmi:math< td=""><td>2.3</td><td>8</td></mmi:math<>	2.3	8
1872	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e610" altimg="si150.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:msub> (M0.44Mn0.56)O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e624"</mml:math 	4.0	10
1873	altimg="si187.svg"> <mml:msub><mml:mrow /><mml:mrov)>Flexible ShS2/CNTs/porous Cu tube textile anode for enhanced sodium-ion batteries. Electrochimica Acta, 2021, 396, 139243.</mml:mrov)></mml:mrow </mml:msub>	2.6	12
1874	High-performance Na3V2(PO4)2F2.5O0.5 cathode: Hybrid reaction mechanism study via ex-situ XRD and sodium storage properties in solid-state batteries. Chemical Engineering Journal, 2021, 423, 130310.	6.6	10
1875	Mixed polyoxyanion cathode materials. Energy Storage Materials, 2021, 42, 570-593.	9.5	7
1876	A novel type of chloride ion battery that can change the structure of electric vehicle. Journal of Power Sources, 2021, 512, 230507.	4.0	13
1877	Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. Journal of Energy Chemistry, 2021, 62, 497-504.	7.1	34
1878	Elucidating the role of graphene and porous carbon coating on nanostructured Sb2S3 for superior lithium and sodium storage. Journal of Alloys and Compounds, 2021, 883, 160906.	2.8	26
1879	Synergetic enhancement of sodium storage in gallium-based heterostructures. Nano Energy, 2021, 89, 106395.	8.2	15
1880	Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renewable and Sustainable Energy Reviews, 2021, 151, 111640.	8.2	46
1881	Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. Journal of Alloys and Compounds, 2021, 887, 161318.	2.8	8
1882	Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries. Chemical Engineering Journal, 2021, 425, 130547.	6.6	32
1883	Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency. Renewable and Sustainable Energy Reviews, 2021, 152, 111704.	8.2	22
1884	Vitrification of maricite NaFePO4 crystal by laser irradiation and enhanced sodium ion battery performance. Journal of Alloys and Compounds, 2021, 885, 160928.	2.8	10
1885	Chiral carbon nanotubes decorated MoS2 nanosheets as stable anode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 887, 161354.	2.8	14
1886	Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices. Chemical Engineering Journal, 2021, 426, 131544.	6.6	36
1887	P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy, 2021, 90, 106504.	8.2	69

#	Article	IF	CITATIONS
1888	Benzene-bridged anthraquinones as a high-rate and long-lifespan organic cathode for advanced Na-ion batteries. Chemical Engineering Journal, 2021, 426, 131251.	6.6	12
1889	Leaf-like integrated hierarchical NiCo2O4 nanorods@Ni-Co-LDH nanosheets electrodes for high-rate asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 884, 161165.	2.8	52
1890	Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. Materials Research Bulletin, 2021, 144, 111491.	2.7	13
1891	A high rate and long-cycle-life anode based on micrometer-sized Pb powder for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 886, 161240.	2.8	7
1892	Rational design of Co-free layered cathode material for sodium-ion batteries. Journal of Power Sources, 2021, 514, 230581.	4.0	20
1893	Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 2021, 426, 130817.	6.6	170
1894	Tailored amorphous titanium oxide and carbon composites for enhanced pseudocapacitive sodium storage. Journal of Energy Chemistry, 2022, 65, 127-132.	7.1	7
1895	Constructing NiS2/NiSe2 heteroboxes with phase boundaries for Sodium-Ion batteries. Journal of Colloid and Interface Science, 2022, 607, 752-759.	5.0	36
1896	Construction of MoS2/Mxene heterostructure on stress-modulated kapok fiber for high-rate sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 605, 472-482.	5.0	48
1897	Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity. Journal of Energy Chemistry, 2022, 64, 286-295.	7.1	65
1898	Rich-oxygen-doped FeSe2 nanosheets with high pseudocapacitance capacity as a highly stable anode for sodium ion battery. Chemical Engineering Journal, 2022, 428, 132637.	6.6	35
1899	Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chemical Engineering Journal, 2022, 429, 132396.	6.6	60
1900	Cathode materials for aqueous zinc-ion batteries: A mini review. Journal of Colloid and Interface Science, 2022, 605, 828-850.	5.0	92
1901	A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chemical Engineering Journal, 2022, 428, 131780.	6.6	39
1902	A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 1024-1030.	5.0	11
1903	Perovskite fluoride KMF3 (MÂ=ÂNi or Co)@reduced graphene oxide anode for Na-based dual-ion batteries. Journal of Alloys and Compounds, 2022, 891, 161905.	2.8	4
1904	Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage. Chemical Engineering Journal, 2022, 428, 130990.	6.6	30
1905	3D MoS2 foam integrated with carbon paper as binder-free anode for high performance sodium-ion batteries. Journal of Energy Chemistry, 2022, 65, 26-33.	7.1	42

#	Article	IF	Citations
" 1906	Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. Journal of Colloid and Interface Science, 2022, 607, 1109-1119.	5.0	4
1907	Sb nanosheet modified separator for Li–S batteries with excellent electrochemical performance. RSC Advances, 2021, 11, 6798-6803.	1.7	5
1908	New approach to the fire risk and firefighting in small ships, as consequence of latest developments in Industry 4.0 for the use of hybrid propulsion Procedia Computer Science, 2021, 180, 4-12.	1.2	4
1909	Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Journal of Polytechnic, 0, , .	0.4	0
1910	Dual-carbon Na-ion capacitors: progress and future prospects. Journal of Materials Chemistry A, 2021, 9, 9431-9450.	5.2	23
1911	Phase-transfer-assisted confined growth of mesoporous MoS ₂ @graphene van der Waals supraparticles for unprecedented ultrahigh-rate sodium storage. Journal of Materials Chemistry A, 2021, 9, 10714-10721.	5.2	14
1912	Na ₂ Fe ₂ F ₇ : a fluoride-based cathode for high power and long life Na-ion batteries. Energy and Environmental Science, 2021, 14, 1469-1479.	15.6	16
1913	Industry 4.0 tools in lean production: A systematic literature review. Procedia Computer Science, 2021, 180, 394-403.	1.2	28
1914	Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7595-7605.	3.2	11
1915	Structure–property relationships in organic battery anode materials: exploring redox reactions in crystalline Na- and Li-benzene diacrylate using combined crystallography and density functional theory calculations. Materials Advances, 2021, 2, 1024-1034.	2.6	7
1916	Amorphization driven Na-alloying in Si _{<i>x</i>} Ge _{1â^'<i>x</i>} alloy nanowires for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20626-20634.	5.2	12
1917	Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5834-5863.	15.6	42
1918	A microscopic spatially confined strategy to realize completely reversible self-healing lattice restoration of MoS ₂ for ultrastable reversible sodium-ion storage. New Journal of Chemistry, 2021, 45, 18575-18583.	1.4	2
1919	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
1920	Manganese Tetraphosphide (MnP ₄) as a High Capacity Anode for Lithiumâ€ion and Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003609.	10.2	34
1921	An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 18283-18299.	1.3	3
1922	Co ₂ GeO ₄ nanocomposites with reduced graphene oxide and carbon nanotubes as high-performance anodes for Na-ion batteries. RSC Advances, 2021, 11, 13004-13013.	1.7	3
1923	lonic conductivity and dielectric properties of bulk SPP-PEG hydrogels as Na ⁺ ion-based SPE materials for energy storage applications. Materials Chemistry Frontiers, 2021, 5, 5857-5866.	3.2	16

#	Article	IF	CITATIONS
1924	Progress in the Use of Metal Chalcogenides for Batteries. , 2021, , .		1
1925	Nanoscale anodes for rechargeable batteries: Fundamentals and design principles. , 2021, , 91-157.		2
1926	P2-Na _{0.67} Mn _{0.85} Al _{0.15} O ₂ and NaMn ₂ O ₄ Blend as Cathode Materials for Sodium-Ion Batteries Using a Natural β-MnO ₂ Precursor. ACS Omega, 2021, 6, 1064-1072.	1.6	15
1927	Low in-plane atomic density phosphorene anodes for lithium-/sodium-ion batteries. Journal of Materials Chemistry C, 2021, 9, 6802-6814.	2.7	8
1928	Manganese phosphoxide/Ni ₅ P ₄ hybrids as an anode material for high energy density and rate potassium-ion storage. Journal of Materials Chemistry A, 2021, 9, 13936-13949.	5.2	5
1929	Research Progress of Organic Carbonyl Compounds on Sodium-Ion Battery. Material Sciences, 2021, 11, 717-731.	0.0	0
1930	Recent progress in â€~water-in-salt' and â€~water-in-salt'-hybrid-electrolyte-based high voltage rechargeable batteries. Sustainable Energy and Fuels, 2021, 5, 1619-1654.	2.5	27
1931	The rational design of inorganic and organic material based nanocomposite hybrids as Na-ion battery electrodes. Materials Advances, 2021, 2, 5006-5046.	2.6	7
1932	Sodium-Ion Batteries: Current Understanding of the Sodium Storage Mechanism in Hard Carbons. Johnson Matthey Technology Review, 2022, 66, 44-60.	0.5	3
1933	First-Principles Study of Na Intercalation and Diffusion Mechanisms at 2D MoS ₂ /Graphene Interfaces. Journal of Physical Chemistry C, 2021, 125, 2276-2286.	1.5	23
1934	Progress and Challenges for Allâ€Solidâ€State Sodium Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000057.	2.8	49
1935	Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor. Journal of Materials Chemistry A, 2021, 9, 23607-23618.	5.2	19
1936	Prediction of chemically ordered dual transition metal carbides (MXenes) as high-capacity anode materials for Na-ion batteries. Nanoscale, 2021, 13, 7234-7243.	2.8	20
1937	Tunnelâ€Type Sodium Manganese Oxide Cathodes for Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 798-811.	1.7	26
1938	Blowing Iron Chalcogenides into Two-Dimensional Flaky Hybrids with Superior Cyclability and Rate Capability for Potassium-Ion Batteries. ACS Nano, 2021, 15, 2506-2519.	7.3	79
1939	Fewâ€Layer Bismuthene with Anisotropic Expansion for Highâ€Arealâ€Capacity Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807874.	11.1	165
1940	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
1941	General Oneâ€Pot Synthesis of Transitionâ€Metal Phosphide/Nitrogenâ€Doped Carbon Hybrid Nanosheets as Ultrastable Anodes for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2018, 24, 1253-1258.	1.7	26

#	Article	IF	CITATIONS
1942	Carbon Nanofibers with Embedded Sb ₂ Se ₃ Nanoparticles as Highly Reversible Anodes for Naâ€lon Batteries. Small, 2021, 17, e2006016.	5.2	54
1943	Rationally designed nitrogen-doped yolk-shell Fe7Se8/Carbon nanoboxes with enhanced sodium storage in half/full cells. Carbon, 2020, 166, 175-182.	5.4	39
1944	NaTi2(PO4)3/C LiMn2O4 rechargeable battery operating with Li+/Na+-mixed aqueous electrolyte exhibits superior electrochemical performance. Electrochimica Acta, 2017, 255, 220-229.	2.6	25
1945	Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Materials, 2018, 12, 69-78.	9.5	135
1946	Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Storage Materials, 2020, 30, 42-51.	9.5	62
1947	Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. Energy Storage Materials, 2020, 31, 274-309.	9.5	38
1948	N, S co-doped modified graphene/Fe2O3 composites synthesized via microwave-assisted method for Na-ion batteries. Inorganic Chemistry Communication, 2020, 121, 108188.	1.8	13
1949	A novel self-branching MnCo2O4/ nanographene hybrid composites on macroporous electrically conductive network as bifunctional electrodes for boosting miniature supercapacitors and sodium ion batteries. Journal of Alloys and Compounds, 2020, 846, 155720.	2.8	24
1950	Monitoring the Sodiation Mechanism of Anatase TiO ₂ Nanoparticle-Based Electrodes for Sodium-Ion Batteries by <i>Operando</i> XANES Measurements. ACS Applied Energy Materials, 2021, 4, 164-175.	2.5	9
1951	Microsphere Na _{0.65} [Ni _{0.17} Co _{0.11} Mn _{0.72}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 44534-44541.	4.0	46
1952	From Lithium to Sodium and Potassium Batteries. , 2019, , 181-219.		1
1953	A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment. Materiaux Et Techniques, 2019, 107, 503.	0.3	16
1954	Electrochemical analysis of Na0.7Co1-xNbxO2(x = 0, 0.05) as cathode materials in sodium-ion batteries. AIP Conference Proceedings, 2020, , .	0.3	1
1955	First principles study of Mo2N monolayer as potential anode material for na-ion batteries. AIP Conference Proceedings, 2020, , .	0.3	3
1956	Boosting the lithium and sodium storage performance of graphene-based composite via pore engineering and surface protection. Nanotechnology, 2021, 32, 105402.	1.3	2
1957	Nanoconstruction and nanoeffect of phosphate-based cathode materials for advanced sodium-ion batteries. Nano Futures, 2020, 4, 042001. Possible high-potential ilmenite type <mml:math< td=""><td>1.0</td><td>9</td></mml:math<>	1.0	9
1958	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">N <mml:msub> <mml:mi mathvariant="normal">a <mml:mn> 1</mml:mn> </mml:mi </mml:msub> <mml:mi> M</mml:mi> <mml:msub> <m li=""></m></mml:msub></mml:mi </mml:mrow>	nl:mi ml:mo> <r< td=""><td>2 nml:mi>M</td></r<>	2 nml:mi>M
1959	mathyariant="normal">O <mml:mn>3</mml:mn> <mml:mo>Â</mml:mo> Â(xmlns:mml="nttp://www.W3.org/1998/Math/Math/ML mathyariant="normal">N <mml:msub><mml:mi mathyariant="normal">a<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:mi mathyariant="normal">S<mml:mn>2</mml:mn><mml:mi mathyariant="normal">S<mml:msub><mml:mi< td=""><td>0.9</td><td>10</td></mml:mi<></mml:msub></mml:mi </mml:mi 	0.9	10
	mathvariant="normal">i <mmitmn>2</mmitmn> <mmitmsub><mmitmi mathvariant</mmitmi </mmitmsub>		

#	Article	IF	CITATIONS
1960	Electrochemical Performance Enhancement of Sodium-Ion Batteries Fabricated With NaNi1/3Mn1/3Co1/3O2 Cathodes Using Support Vector Regression-Simplex Algorithm Approach. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	1.1	14
1961	Modeling Costs and Benefits of Energy Storage Systems. Annual Review of Environment and Resources, 2020, 45, 445-469.	5.6	19
1962	Editors' Choice—Review—Conductive Forms of MoS ₂ and Their Applications in Energy Storage and Conversion. Journal of the Electrochemical Society, 2020, 167, 126517.	1.3	46
1963	Review—Open-Framework Structure Based Cathode Materials Coupled with Metallic Anodes for Rechargeable Multivalent Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160530.	1.3	4
1964	High-Capacity P2-Type Na _x Li _{0.25} Mn _{0.75} O ₂ Cathode Enabled by Anionic Oxygen Redox. Journal of the Electrochemical Society, 2019, 166, A4136-A4140.	1.3	18
1965	An Overview on the Development of Electrochemical Capacitors and Batteries – part II. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200800.	0.3	3
1967	Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance. Frontiers in Energy Research, 2020, 8, .	1.2	26
1968	Effect of Vinylene Carbonate Electrolyte Additive on the Surface Chemistry and Pseudocapacitive Sodium-Ion Storage of TiO2 Nanosheet Anodes. Batteries, 2021, 7, 1.	2.1	12
1969	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. Research, 2020, 2020, 1469301.	2.8	33
1970	3.ã,¤,ªãf³æ¶²ä¼2"ä¸ã«ãŠãʿã,‹é‡ʿ属Naæžå‡ºæº¶è§£æŒ™å‹•ãëãf‡ãf³ãf‰ãf©ã,¤f^æ^长Šʿå^¶ã®å•èf½æ€§	. Doeno ki Kaj	gaku, 2018, (
1971	Binders for sodium-ion batteries: progress, challenges and strategies. Chemical Communications, 2021, 57, 12406-12416.	2.2	26
1972	The electrostatic origins of specific ion effects: quantifying the Hofmeister series for anions. Chemical Science, 2021, 12, 15007-15015.	3.7	44
1973	Heterochelation boosts sodium storage in ï€-d conjugated coordination polymers. Energy and Environmental Science, 2021, 14, 6514-6525.	15.6	24
1974	Facile in Situ Synthesis of Dual-Heteroatom-Doped High-Rate Capability Carbon Anode for Rechargeable Seawater-Batteries‫. SSRN Electronic Journal, 0, , .	0.4	0
1975	Enhancing the performance of hard carbon for sodium-ion batteries by coating with silicon nitride/oxycarbide nanoparticles. Materials Advances, 2021, 2, 7956-7966.	2.6	4
1976	Analysis of the Ordering Effects in Anthraquinone Thin Films and Its Potential Application for Sodium Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 3745-3757.	1.5	14
1977	Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. EScience, 2021, 1, 13-27.	25.0	194
1978	Boosting the Redox Kinetics of Highâ€Voltage P2â€Type Cathode by Radially Oriented {010} Exposed Nanoplates for Highâ€Power Sodiumâ€Ion Batteries. Small Structures, 2022, 3, 2100123.	6.9	29

#	Article	IF	CITATIONS
1979	Solar Photovoltaics. , 2021, , 60-71.		0
1980	Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as â€~Litmus Test'. , 2021, , 7-38.		0
1981	Synthesis of MAuAg (M = Ni, Pd, or Pt) and NiAuCu Heterotrimetallic Complexes Ligated by a Tritopic Carbanionic N-Heterocyclic Carbene. Inorganic Chemistry, 2021, 60, 16035-16041.	1.9	3
1982	Rivalry at the Interface: Ion Desolvation and Electrolyte Degradation in Model Ethylene Carbonate Complexes of Li ⁺ , Na ⁺ , and Mg ²⁺ with PF ₆ ^{â€"} on the Li ₄ Ti ₅ O ₁₂ (111) Surface. ACS Omega. 2021. 6. 29735-29745.	1.6	4
1983	Ceria-Spiderweb Nanosheets Unlock the Energy-Storage Properties in the "Sleeping―Triplite (Mn2(PO4)F). ACS Applied Energy Materials, 0, , .	2.5	2
1984	Bismuth Nanoparticles Anchored on Ti ₃ C ₂ T _x MXene Nanosheets for Highâ€Performance Sodiumâ€lon Batteries. Chemistry - an Asian Journal, 2021, 16, 3774-3780.	1.7	17
1985	Cr-Doped Fe _{1–<i>x</i>} Cr _{<i>x</i>} F ₃ ·0.33H ₂ O Nanomaterials as Cathode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48653-48660.	4.0	3
1987	Decarbonisation Strategies and Economic Opportunities in Australia. , 2021, , 203-236.		0
1989	Hydropower. , 2021, , 125-138.		0
1990	Transitioning to a Prosperous, Resilient and Carbon-Free Economy. , 2021, , .		1
1991	Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review. Ionics, 2022, 28, 27-52.	1.2	13
1992	Potassium ion anode versus sodium ion anode: Potato starch residue derived carbon material as a case study. Journal of Solid State Electrochemistry, 0, , 1.	1.2	0
1993	Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. Nanomaterials, 2021, 11, 2691.	1.9	10
1994	Oneâ€pot synthesis of SnS ₂ Nanosheets supported on gâ€C ₃ N ₄ as high capacity and stable cycling anode for sodiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 3233-3248.	2.2	6
1998	Financing the Transition. , 2021, , 621-645.		0
2000	Upcycling Plastic Waste into High Valueâ€Added Carbonaceous Materials. Macromolecular Rapid Communications, 2022, 43, e2100467.	2.0	46
2001	Degradation by Kinking in Layered Cathode Materials. ACS Energy Letters, 2021, 6, 3960-3969.	8.8	33
2002	MXene/TiO ₂ Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 51028-51038.	4.0	36

#	Article	IF	CITATIONS
2003	The role of oxygen vacancies in metal oxides for rechargeable ion batteries. Science China Chemistry, 2021, 64, 1826-1853.	4.2	33
2004	Forests. , 2021, , 462-500.		0
2006	Solar Thermal Energy. , 2021, , 72-104.		1
2007	Improving the Governance of Governments. , 2021, , 591-620.		2
2008	Ultrafast synthesis of hard carbon anodes for sodium-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
2009	Trade and Climate Change. , 2021, , 571-590.		1
2013	Industry and Manufacturing. , 2021, , 408-438.		0
2017	Buildings and Precincts. , 2021, , 301-337.		0
2018	Preparation and sodium ions storage performance of vanadium pentoxide/titanium dioxide composite. Ionics, 2021, 27, 5179.	1.2	1
2019	Scalable fabrication of antimony nanoparticles confined in a porous carbon framework for high-performance sodium-ion batteries. ChemPhysMater, 2022, 1, 112-118.	1.4	2
2020	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	6.6	96
2021	Chemical Preintercalation of H ₂ V ₃ O ₈ â€reduced Graphene Oxide Composites for Improved Naâ€and Liâ€ion Battery Cathodes. ChemElectroChem, 2021, 8, 4223-4232.	1.7	7
2022	Aqueous Zn-MnO2 battery: Approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms. Journal of Energy Chemistry, 2022, 67, 225-232.	7.1	31
2023	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie, 2021, 133, 27292-27300.	1.6	17
2024	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 27086-27094.	7.2	63
2025	Recent Advances in Heterostructured Carbon Materials as Anodes for Sodiumâ€lon Batteries. Small Structures, 2021, 2, .	6.9	80
2028	Land Use. , 2021, , 441-461.		0
2029	Social Movements for Change. , 2021, , 646-667.		0

#	Article	IF	Citations
2030	Decarbonisation Strategies and Economic Opportunities in Indonesia. , 2021, , 237-268.		0
2031	Mining, Metals, Oil and Gas. , 2021, , 529-568.		0
2032	The Hydrogen Economy. , 2021, , 173-200.		0
2033	National Climate Change Adaptation Case Study: Early Adaptation to Climate Change through Climate-Compatible Development and Adaptation Pathways. , 2021, , 365-388.		1
2034	Urban Water. , 2021, , 338-364.		0
2035	Boosting Electrolytic MnO ₂ –Zn Batteries by a Bromine Mediator. Nano Letters, 2021, 21, 8863-8871.	4.5	46
2036	Ultrastable Na-TiS2 battery enabled by in situ construction of gel polymer electrolyte. Journal of Power Sources, 2021, 516, 230653.	4.0	4
2037	Na-ion conductivity of \hat{l}^2 -NaFeO2 synthesized from an EDTA chelate complex. Inorganic Chemistry Communication, 2021, 134, 108913.	1.8	2
2038	Graphene and Its Derivatives for Secondary Battery Application. Carbon Nanostructures, 2019, , 53-80.	0.1	4
2039	Chapter 3. Intercalation-based Layered Materials for Rechargeable Sodium-ion Batteries. RSC Smart Materials, 2019, , 71-94.	0.1	0
2040	Introduction for Sodium Ion Batteries. , 2019, , 1-6.		0
2042	Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes. ACS Nano, 2021, 15, 17232-17246.	7.3	42
2043	Biredoxâ€lonic Anthraquinoneâ€Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Liâ€Organic Batteries. Advanced Science, 2022, 9, e2103632.	5.6	8
2044	Few-layered MoS2 with S-vacancies anchored on N-doped carbon flower for high performance sodium storage. Journal of Alloys and Compounds, 2022, 895, 162514.	2.8	14
2045	CuFeS2 anchored in ethylenediamine-modified reduced graphene oxide as an anode material for sodium ion batteries. Materials Letters, 2022, 308, 131164.	1.3	7
2046	Study of the performance of SnxSbySz/carbon nanofibers composite as anode of sodium-ion batteries. MRS Advances, 2020, 5, 2917-2927.	0.5	1
2047	Improved Na storage performance of Na ₃ V ₂ (PO ₄) ₃ cathode material for sodium-ion batteries by K-Cl co-doping. Journal Physics D: Applied Physics, 2021, 54, 104002.	1.3	5
2048	Review of Multivalent Metal Ion Transport in Inorganic and Solid Polymer Electrolytes. Batteries, 2021, 7, 3.	2.1	17

#	Article	IF	CITATIONS
2049	MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27234-27251.	5.2	33
2050	Advanced cobalt-free cathode materials for sodium-ion batteries. Chemical Society Reviews, 2021, 50, 13189-13235.	18.7	109
2051	Phase-structure-dependent Na ion transport in yttrium-iodide sodium superionic conductor Na ₃ YI ₆ . Journal of Materials Chemistry A, 2021, 9, 26256-26265.	5.2	13
2052	Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation. , 2022, , 399-440.		1
2053	Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107, 64-69.	5.6	50
2054	Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions. Nanoscale, 2021, 13, 19291-19305.	2.8	29
2055	A Density Functional Theory (DFT) Investigation on the Structure and Spectroscopic Behavior of 2-Aminoterephthalic Acid and Its Sodium Salts. Green and Sustainable Chemistry, 2020, 10, 39-55.	0.8	1
2057	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
2058	Interfacial Covalent Bonding Endowing Ti ₃ C ₂ â€ 6 b ₂ S ₃ Composites High Sodium Storage Performance. Small, 2022, 18, e2104293.	5.2	30
2059	Advanced Characterization Techniques Paving the Way for Commercialization of Low ost Prussian Blue Analog Cathodes. Advanced Functional Materials, 2022, 32, 2108616.	7.8	35
2060	Dual Enhancement of Sodium Storage Induced through Both S-Compositing and Co-Doping Strategies. ACS Applied Materials & Interfaces, 2021, 13, 54043-54058.	4.0	3
2061	Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive. Journal of Alloys and Compounds, 2022, 895, 162656.	2.8	15
2062	Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Materials, 2022, 45, 1153-1164.	9.5	43
2063	One-Step Construction of V ₅ S ₈ Nanoparticles Embedded in Amorphous Carbon Nanorods for High-Capacity and Long-Life Potassium Ion Half/Full Batteries. ACS Applied Materials & Interfaces, 2021, 13, 54308-54314.	4.0	12
2064	Self-Standing, Collector-Free Maricite NaFePO ₄ /Carbon Nanofiber Cathode Endowed with Increasing Electrochemical Activity. Energy & Fuels, 2021, 35, 18768-18777.	2.5	7
2065	Hierarchical hollow mixed metal sulfides microspheres assembly from NiS nanoparticles anchored on MoS2 nanosheets and coated with N-doped carbon for enhanced sodium storage. Journal of Alloys and Compounds, 2022, 895, 162594.	2.8	8
2066	Solution Synthesis of Sb2S3 and Na3SbS4 Solid-State Electrolyte. Journal of the Electrochemical Society, 0, , .	1.3	1
2067	Effects of the calcination atmosphere and pre-heating treatment on the characteristics of sodium titanate nanorods synthesized from titanium tetraisopropoxide-sodium chloride precursors assisted by organic templates. Journal of the Ceramic Society of Japan, 2020, 128, 415-423.	0.5	4

#	Article	IF	CITATIONS
2068	In Situ X-Ray Diffraction and Alkali Ion (A = Li, Na, K) Intercalation Behavior of Na2FeP2O7 Pyrophosphate. , 2021, , 125-131.		0
2069	Comparative Studies on Crystalline and Amorphous Vinylidene Fluoride Based Fibrous Polymer Electrolytes for Sodium-Ion Batteries. , 2021, , 55-64.		0
2070	Investigation of Parameters Influencing the Producibility of Anodes for Sodium-Ion Battery Cells. Lecture Notes in Production Engineering, 2021, , 171-181.	0.3	2
2072	Energiespeicher. , 2021, , 15-32.		0
2073	The organic sodium salts/reduced graphene oxide composites as sustainable anode for solid-state sodium ion batteries. Journal of Power Sources, 2022, 517, 230722.	4.0	6
2074	In-situ construction of a NaF-rich cathode–electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery. Materials Today Energy, 2022, 23, 100898.	2.5	36
2075	Simultaneous optimization of K/Co co-substituted Na3V2(PO4)3/C nano particles enwrapped on lamellar rGO substrate with high performance for asymmetric sodium ion full cell. Applied Surface Science, 2022, 578, 152000.	3.1	14
2076	Tinâ€Based Anode Materials for Stable Sodium Storage: Progress and Perspective. Advanced Materials, 2022, 34, e2106895.	11.1	68
2077	Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. Journal of Advanced Ceramics, 2022, 11, 158-171.	8.9	35
2078	Reviewing the Safe Shipping of Lithium-Ion and Sodium-Ion Cells: A Materials Chemistry Perspective. Energy Material Advances, 2021, 2021, .	4.7	41
2079	Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density. Journal of Alloys and Compounds, 2022, 898, 162952.	2.8	7
2080	Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Materials, 2022, 45, 142-181.	9.5	29
2081	Physico-Chemical Properties of NaV3O8 Prepared by Solid-State Reaction. Materials, 2021, 14, 6976.	1.3	5
2082	A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries. Journal of Colloid and Interface Science, 2022, 608, 3013-3021.	5.0	19
2083	Sodium-ion battery technology: Advanced anodes, cathodes and electrolytes. Journal of Physics: Conference Series, 2021, 2109, 012004.	0.3	5
2084	Suppressing the P2Ââ^'ÂO2 phase transformation and Na+/vacancy ordering of high-voltage manganese-based P2-type cathode by cationic codoping. Journal of Colloid and Interface Science, 2022, 611, 752-759.	5.0	18
2085	Rapid Microwaveâ€Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodiumâ€Ion Batteries. Small Methods, 2021, 5, e2101016.	4.6	7
2086	Energy Harvesting and Storing Materials. , 2022, , 507-555.		4

	CHATION I	KEPORT	
#	Article	IF	CITATIONS
2087	Progress and prospects of reversible solid oxide fuel cell materials. IScience, 2021, 24, 103464.	1.9	51
2088	Fast Intercalation in Locally Ordered Carbon Nanocrystallites for Superior Potassium Ions Storage. Advanced Functional Materials, 2022, 32, 2109672.	7.8	18
2089	Air/water/temperature-stable cathode for all-climate sodium-ion batteries. Cell Reports Physical Science, 2021, 2, 100665.	2.8	86
2090	An Ultrahighâ€Power Mesocarbon Microbeads Na ⁺ â€Diglyme Na ₃ V ₂ (PO ₄) ₃ Sodiumâ€Ion Battery. Advanced Materials, 2022, 34, e2108304.	11.1	50
2091	NiP2/C nanocomposite as a high performance anode for sodium ion batteries. Electrochimica Acta, 2022, 403, 139686.	2.6	7
2092	ZIFs derived multiphase CoSe2 nanoboxes induced and fixed on CoAl-LDH nanoflowers for high-performance hybrid supercapacitor. Chemical Engineering Science, 2022, 252, 117241.	1.9	15
2093	Inhibiting electrochemical phase transition of NaCrO2 with long-cycle stability by surface fluorination treatment. Electrochimica Acta, 2022, 403, 139641.	2.6	4
2094	Implications of Na-ion solvation on Na anode–electrolyte interphase. Trends in Chemistry, 2022, 4, 48-59.	4.4	26
2095	Constructing Sb O C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy, 2022, 93, 106764.	8.2	68
2096	Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. Journal of Energy Chemistry, 2022, 67, 787-796.	7.1	28
2097	A First-Principles study of monolayer and heterostructure antimonene as potential anode materials for Magnesium-ion batteries. Applied Surface Science, 2022, 577, 151880.	3.1	11
2098	Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chemical Engineering Journal, 2022, 433, 133557.	6.6	6
2099	Na Diffusion in Hard Carbon Studied with Positive Muon Spin Rotation and Relaxation. ACS Physical Chemistry Au, 2022, 2, 98-107.	1.9	7
2100	Investigation of Electronic Structure and Electrochemical Properties of Na2MnSiO4 as a Cathode Material for Na Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 25968-25982.	1.5	6
2101	Regulating Steric Hindrance in Redoxâ€Active Porous Organic Frameworks Achieves Enhanced Sodium Storage Performance. Small, 2022, 18, e2105927.	5.2	10
2102	Surface Engineering Suppresses the Failure of Biphasic Sodium Layered Cathode for High Performance Sodiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, 2109319.	7.8	35
2103	Ultrafast and Ultrastable Heteroarchitectured Porous Nanocube Anode Composed of CuS/FeS ₂ Embedded in Nitrogenâ€Doped Carbon for Use in Sodiumâ€Ion Batteries. Small, 2022, 18, e2105310.	5.2	43
2104	Copper-Stabilized P′2-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58665-58673.	4.0	24

#	Article	IF	CITATIONS
2105	Comprehensive characterization of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells. Electrochimica Acta, 2022, 403, 139670.	2.6	20
2106	Inverse Design of Mxenes for High-Capacity Battery Materials Using Multi-Target Machine Learning. SSRN Electronic Journal, 0, , .	0.4	1
2107	Multi-Layered Fluorinated Graphene Cathode Materials for Lithium and Sodium Primary Batteries: Effect of Interlayer Distance on Rate Capability. SSRN Electronic Journal, 0, , .	0.4	0
2108	Efficient Na+-storage in a Li4Ti5O12 anode to expand the voltage-window for full SIBs of high energy density. RSC Advances, 2021, 11, 37700-37707.	1.7	1
2109	Thermodynamic Studies on Energy Density of Batteries. , 2022, , 275-285.		0
2110	On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling approach. Sustainable Energy and Fuels, 2021, 5, 6414-6429.	2.5	30
2111	Plasma-Promoted Surface Regulation of a Novel Integrative Carbon Network for Boosting the Long-Cycle Capability of Sodium-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
2112	Constructing Sb-O-C Bond to Improve the Alloying Reaction Reversibility of Free-Standing Sb ₂ Se ₃ Nanorods Anode for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2113	Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries. Acta Chimica Sinica, 2021, 79, 1461.	0.5	6
2114	An advanced BiPO4/super P anode material for high-performance potassium-ion batteries. Chemical Communications, 2021, 57, 13178-13181.	2.2	1
2115	Atomic layer deposition of thin-film sodium manganese oxide cathode materials for sodium ion batteries. Dalton Transactions, 2021, 50, 18128-18142.	1.6	7
2116	Elucidating the charge storage mechanism of carbonaceous and organic electrode materials for sodium ion batteries. Chemical Communications, 2021, 57, 13465-13494.	2.2	9
2117	Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 3515-3525.	4.0	27
2118	Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1252-1261.	2.5	21
2119	Free-Standing Petal-Shaped Metallic 1T-Phase Molybdenum Sulfide Anchored on a Nitrogen-Doped Carbon Cloth for High Rate Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1106-1113.	2.5	3
2120	Binder and conductive diluents free NaVPO ₄ F based free-standing positive electrodes for sodium-ion batteries. Journal of the Electrochemical Society, 2022, 169, 010512.	1.3	2
2121	Metastable FeCN ₂ @nitrogen-doped carbon with high pseudocapacitance as an anode material for sodium ion batteries. Nanoscale, 2022, 14, 780-789.	2.8	7
2122	Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries. Energy Storage Materials, 2022, 46, 175-181.	9.5	63

#	Article	IF	CITATIONS
2123	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	5.2	63
2124	Three-dimensional nitrogen-doped dual carbon network anode enabling high-performance sodium-ion hybrid capacitors. Electrochimica Acta, 2022, 405, 139791.	2.6	5
2125	Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review. Journal of Power Sources, 2022, 521, 230930.	4.0	35
2126	Physics-based modeling of sodium-ion batteries part II. Model and validation. Electrochimica Acta, 2022, 404, 139764.	2.6	3
2127	Sodium ion conducting flame-retardant gel polymer electrolyte for sodium batteries and electric double layer capacitors (EDLCs). Journal of Energy Storage, 2022, 46, 103899.	3.9	17
2128	Copper sulfides and their composites for high-performance rechargeable batteries. Materials Today Chemistry, 2022, 23, 100675.	1.7	4
2129	Nb2O5 quantum dots confined in multi-chamber yeast carbon for sodium ion hybrid capacitors. Journal of Alloys and Compounds, 2022, 896, 163128.	2.8	13
2130	Structural design of Ni-silicate/CNT hybrid films as anode materials for highly reversible lithium and sodium storage. Sustainable Materials and Technologies, 2022, 31, e00375.	1.7	6
2131	Design and synthesis of Mo2C/N, S co-doped porous carbon composites with enhanced electrochemical performance for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 901, 163618.	2.8	6
2132	Facile in situ synthesis of dual-heteroatom-doped high-rate capability carbon anode for rechargeable seawater-batteries. Carbon, 2022, 189, 251-264.	5.4	7
2133	Metallic penta-Graphene/penta-BN2 heterostructure with high specific capacity: A novel application platform for Li/Na-ion batteries. Journal of Alloys and Compounds, 2022, 901, 163538.	2.8	8
2135	Preliminary Study of Synthesis of Sodium Manganese Oxide Using Sol-Gel Method as Sodium Ion Battery Material. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 2020, 11, 28-34.	0.1	1
2136	A Business Model Using Salt Water Battery and PV Panels for Continuity of Supply. , 2020, , .		0
2137	Facile Preparation of V ₂ O ₃ /Black Fungus-Derived Carbon Composite with Hierarchical Porosity as a Promising Electrode for Lithium/Sodium Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2138	Laboratory Studies in Different Battery Technologies for Application in Transportable Energy Storage Systems. , 2021, , .		0
2139	Redox Hyperactive MOF for Li+, Na+ and Mg2+ Storage. Molecules, 2022, 27, 586.	1.7	2
2140	Carbon Encapsulated and rGO Wrapped Mo ₂ C: an Anode Material with Enhanced Sodium Storage Capacity. ChemElectroChem, 2022, 9, .	1.7	3
2142	Surface engineering of anode materials for improving sodium-ion storage performance. Journal of Materials Chemistry A, 2022, 10, 3889-3904.	5.2	20

#	Article	IF	CITATIONS
2143	Superstructure MOF as a framework to composite MoS ₂ with rGO for Li/Na-ion battery storage with high-performance and stability. Dalton Transactions, 2022, 51, 3472-3484.	1.6	8
2144	Introduction of amorphous TiO2 coating layer to improve the lithium storage of SiO2 nanospheres anode. Ionics, 2022, 28, 1081-1089.	1.2	8
2146	Improvement of structural stability of cathode by manganese additive in electrolyte for zincâ€ion batteries. International Journal of Energy Research, 2022, 46, 8464-8470.	2.2	6
2147	Exploration of NaLiTi ₃ O ₇ Decorated with Biocarbon as Anode Material for Lithium and Sodium Ion Batteries. Energy & Fuels, 2022, 36, 1081-1090.	2.5	5
2148	Yolk–Shell Antimony/Carbon: Scalable Synthesis and Structural Stability Study in Sodium Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	14
2149	Understanding doping effects on P2 <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Na</mml:mi> <mml:m< td=""><td>ni>x<td>mi></td></td></mml:m<></mml:msub></mml:mrow></mmi:math 	ni>x <td>mi></td>	mi>

#	Article	IF	CITATIONS
2162	A superior Na3V2(PO4)3-based cathode enhanced by Nb-doping for high-performance sodium-ion battery. APL Materials, 2022, 10, .	2.2	9
2163	Insights into the sodium storage mechanism of Bi ₂ Te ₃ nanosheets as superior anodes for sodium-ion batteries. Nanoscale, 2022, 14, 1755-1766.	2.8	18
2164	Oxide cathodes for sodiumâ€ion batteries: Designs, challenges, and perspectives. , 2022, 4, 170-199.		76
2165	Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. ACS Nano, 2022, 16, 453-461.	7.3	24
2166	Necklaceâ€Like Sn@C Fiber Selfâ€Supporting Electrode for Highâ€Performance Sodiumâ€Ion Battery. Energy Technology, 2022, 10, .	1.8	7
2167	Mechanochemical Synthesis of Pyrite Ni _{1â^'} <i>_x</i> Fe <i>_xElectrode for All-solid-state Sodium Battery. Electrochemistry, 2022, 90, 037011-037011.</i>	kg tpS <su	b>2
2168	Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl) Tj ETQq0 0 0 rg	BT /Qverlo 2.8	ck 10 Tf 50 5
2169	High-energy sodium-ion hybrid capacitors through nanograin-boundary-induced pseudocapacitance of Co3O4 nanorods. Journal of Energy Chemistry, 2022, 69, 338-346.	7.1	19
2170	Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery. Engineering, 2022, 11, 87-94.	3.2	18
2171	lce-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Nano Letters, 2022, 22, 1302-1310.	4.5	68
2172	Polymorphism, polytypism and modular aspect of compounds with the general formula <i>A</i> ₂ <i>M</i> ₃ (<i>T</i> O ₄) ₄ (<i>A</i> = Na, Rb, Cs, Ca;) Tj ET order–disorder, topological description and DFT calculations. Acta Crystallographica Section B:	Qq0 0 0 rg 0.5	gBT /Overloc 3
2173	Structural Science, Crystal Engineering and Materials, 2022, 78, 61-69. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO ₃ in Sodium-Ion Batteries: An In Operando XAS Investigation. ACS Applied Materials & amp; Interfaces, 2022, 14, 7856-7868.	4.0	10
2174	An Advanced Highâ€Entropy Fluorophosphate Cathode for Sodiumâ€Ion Batteries with Increased Working Voltage and Energy Density. Advanced Materials, 2022, 34, e2110108.	11.1	125
2175	Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
2176	Vanadiumâ€based metalâ€organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat, 2022, 3, 384-416.	6.4	51
2177	Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithiumâ€lon Batteries. ChemistryOpen, 2022, 11, e202100209.	0.9	10
2178	Enhanced surface capacitive sodium storage by pores regulation in carbon/carbon composite nanofibers. Microporous and Mesoporous Materials, 2022, 332, 111706.	2.2	7
2179	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/Kâ€Metal Batteries. Advanced Materials, 2022, 34, e2109439.	11.1	73

#	Article	IF	Citations
2180	Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chemical Engineering Journal, 2022, 434, 134738.	6.6	28
2181	Sodium ion based supercapacitor development with high capacity and stability. Materials Letters, 2022, 313, 131767.	1.3	1
2182	Preferentially engineering edge–nitrogen sites in porous hollow spheres for ultra–fast and reversible potassium storage. Chemical Engineering Journal, 2022, 435, 134821.	6.6	24
2183	Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage. Chemical Engineering Journal, 2022, 435, 134633.	6.6	30
2184	Low-cost layered oxide cathode involving cationic and anionic redox with a complete solid-solution sodium-storage behavior. Energy Storage Materials, 2022, 47, 44-50.	9.5	39
2185	Plasma-promoted surface regulation of a novel integrative carbon network for boosting the long-cycle capability of sodium-ion storage. Carbon, 2022, 191, 112-121.	5.4	6
2186	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. Journal of Materials Science and Technology, 2022, 115, 156-165.	5.6	18
2187	Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. Journal of Energy Chemistry, 2022, 68, 721-751.	7.1	58
2188	Fe-Based metal–organic frameworks as functional materials for battery applications. Inorganic Chemistry Frontiers, 2022, 9, 827-844.	3.0	24
2189	Preparation of Mesocarbon Microbeads as Anode Material for Sodium-Ion Batteries by Thermal Polymerization of Coal Tar Pitch with Blending of Biomass Tar Pitch. SSRN Electronic Journal, 0, , .	0.4	1
2190	Designing of Carbon Cloth supported 3D Porous Nickel Oxide Composite as High-Performance Flexible Anode for Sodium and Lithium-Ion Batteries. Journal of Materials Research and Technology, 2022, , .	2.6	1
2191	A micron-size carbon-free K3V2O2(PO4)2F cathode with high-rate performance for potassium-ion batteries. Chemical Engineering Journal, 2022, 436, 135235.	6.6	12
2192	Descriptor and Scaling Relations for Ion Mobility in Crystalline Solids. Jacs Au, 2022, 2, 463-471.	3.6	19
2193	Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2022, 14, 23033-23055.	4.0	12
2194	Role of Sodium-Ion Dynamics and Characteristic Length Scales in Ion Conductivity in Aluminophosphate Glasses Containing Na ₂ SO ₄ . Journal of Physical Chemistry C, 2022, 126, 3276-3288.	1.5	6
2195	Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries. Journal of Electroanalytical Chemistry, 2022, 909, 116126.	1.9	14
2196	Investigations on the Electrochemical and Mechanical Properties of Sb ₂ O ₃ Nanobelts by In Situ Transmission Electron Microscopy. Small Methods, 2022, 6, e2101416.	4.6	5
2197	Kinetic and thermodynamic synergy of spongiform nanostructure and alien dopants enables promoted sodium-ion transfer for high-performance sodium storage. Chemical Engineering Journal, 2022, 433, 133555.	6.6	3

#	Article	IF	CITATIONS
2198	Understanding the Structural Phase Transitions in Na ₃ V ₂ (PO ₄) ₃ Symmetrical Sodiumâ€Ion Batteries Using Synchrotronâ€Based Xâ€Ray Techniques. Small Methods, 2022, 6, e2100888.	4.6	10
2199	Interface-Driven Pseudocapacitance Endowing Sandwiched CoSe ₂ /N-Doped Carbon/TiO ₂ Microcubes with Ultra-Stable Sodium Storage and Long-Term Cycling Stability. ACS Applied Materials & Interfaces, 2021, 13, 61555-61564.	4.0	27
2200	Zif-Derived Twisted Wedge-Shaped Cos2/Nc Nanoporous Architectures Pinned to Graphene Foam as Anode for Lithium and Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2201	Synthesis of sodium iron oxide from sodium carbonate and ilmenite-based iron hydroxide via a wet milling method. AIP Conference Proceedings, 2022, , .	0.3	0
2202	Ultralong Cycle Life and High Rate Sodium-Ion Batteries Enabled by Surface-Dominated Storage of 3d Hollow Carbon Spheres. SSRN Electronic Journal, 0, , .	0.4	0
2203	A new method of synthesis of Sb ₂ Se ₃ /rGO as a high-rate and low-temperature anode for sodium–ion batteries. Materials Advances, 2022, 3, 3554-3561.	2.6	2
2204	Study of Sodium Storage and Diffusion Over Phosphorene Using Density Functional Theory. Springer Proceedings in Physics, 2022, , 329-337.	0.1	1
2205	Carboxylate-Derived Conductive, Sodium-Ion Storable Surface of Prussian Blue with a Stable Cathode-Electrolyte Interface. SSRN Electronic Journal, 0, , .	0.4	0
2206	Regulating the Sodium Storage Sites in Nitorgen-Doped Carbon Materials by Sulfur-Doping Engineering for Sodium Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2207	Regulation of Dual-Ion Batteries Via the Defects Design in Carbon Electrode Based on the Different Storage Behaviors of Pf6- and Li+. SSRN Electronic Journal, 0, , .	0.4	0
2208	Bimetallic Bi–Sn microspheres as high initial coulombic efficiency and long lifespan anodes for sodium-ion batteries. Chemical Communications, 2022, 58, 5140-5143.	2.2	15
2209	A quasi-3D Sb ₂ S ₃ /reduced graphene oxide/MXene (Ti ₃ C ₂ T _{<i>x</i>>}) hybrid for high-rate and durable sodium-ion batteries. Nanoscale, 2022, 14, 5529-5536.	2.8	6
2210	Exploring a novel two-dimensional metallic Y ₄ C ₃ sheet applied as an anode material for sodium-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 8859-8866.	1.3	7
2211	Implementation of Structural and Surface Engineering Strategies to Copper Sulfide for Enhanced Sodium Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
2212	Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na _{4/7} [â—¡ _{1/7} Ti _{1/7} Mn _{5/7}]O ₂ in sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 9941-9953.	5.2	25
2213	Synthesis of Nani0.5mn0.5o2 Cathode Materials for Sodium-Ion Batteries Via Spray Pyrolysis Method. SSRN Electronic Journal, 0, , .	0.4	0
2214	Metal–organic framework-derived nitrogen-doped carbon-confined CoSe ₂ anchored on multiwalled carbon nanotube networks as an anode for high-rate sodium-ion batteries. Dalton Transactions, 2022, 51, 5184-5194.	1.6	14
2215	Polyanionic insertion hosts for aqueous rechargeable batteries. Journal of Materials Chemistry A, 2022, 10, 6376-6396.	5.2	14

	CITA	TION REPORT	
#	Article	IF	CITATIONS
2216	Status of Li(Na)-based anionic redox materials for better batteries. , 2023, , 6-45.		4
2217	Iron-chalcogenide-based electrode materials for electrochemical energy storage. Journal of Materials Chemistry A, 2022, 10, 7517-7556.	5.2	20
2218	Facile surface engineering of bio-waste derived amorphous carbon with SnO ₂ nanowires to enhance the efficacy of Li/Na storage. Energy Advances, 0, , .	1.4	0
2219	Enhanced Electrochemical Performance of O3-Type Nani0.5mn0.3co0.2o2 Cathodes for Sodium-Ion Batteries Via Al-Doping. SSRN Electronic Journal, 0, , .	0.4	0
2220	Copper nanowire-derived one-dimensional hollow copper sulfides as electrode materials for sodium-ion batteries. CrystEngComm, 2022, 24, 3355-3362.	1.3	2
2221	Ultra-stable potassium storage and hybrid mechanism of perovskite fluoride KFeF ₃ /rGO. Nanoscale, 2022, 14, 5347-5355.	2.8	4
2222	Copper Nanowires-Derived One-Dimensional Hollow Copper Sulfides as Electrode Materials for Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2223	Origin of multiple voltage plateaus in P2-type sodium layered oxides. Materials Horizons, 2022, 9, 1460-1467.	6.4	5
2224	Investigation of structural and electrical properties of a biopolymer materials with its potential application in solid-state batteries. Polymer Bulletin, 2023, 80, 1463-1476.	1.7	4
2225	Development of Nonaqueous Electrolytes for High-Voltage K-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 569-581.	2.0	14
2226	Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Advanced Composites and Hybrid Materials, 2022, 5, 2651-2674.	9.9	32
2227	Utilization of symmetric electrode materials in energy storage application: A review. International Journal of Energy Research, 2022, 46, 8590-8624.	2.2	8
2229	Mainstream Optimization Strategies for Cathode Materials of Sodiumâ€lon Batteries. Small Structures, 2022, 3, .	6.9	84
2230	Stabilization of Sb nanoparticles using metal–organic frameworks to obtain stable performance of anode material for sodium-ion batteries. Rare Metals, 2022, 41, 1406-1409.	3.6	6
2231	Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano Materials Science, 2023, 5, 189-201.	3.9	32
2232	A Combined Sodium Intercalation and Copper Extrusion Mechanism in the Thiophosphate Family: CuCrP ₂ S ₆ as Anode Material in Sodiumâ€lon Batteries. ChemElectroChem, 20 9, .	022, 1.7	4
2233	MXene based Heterostructures for electrode materials of Batteries: A Review. IOP Conference Series: Materials Science and Engineering, 2022, 1225, 012018.	0.3	3
2235	Hierarchical Nanocapsules of Cu-Doped MoS ₂ @H-Substituted Graphdiyne for Magnesium Storage. ACS Nano, 2022, 16, 3955-3964.	7.3	28

2228Advanced fiexble electrode materials and structural designs for sodium ion batteries. Journal of7.18.72229An all Prussian blue analogiefbased aprotic sodium/aGion battery, 2022, 1,1132220Mg (sup) 2+ ((sup) - Doping Constructed a Continuous and Homogeneous Cathode Electrolyte interphase Film on Nascub 3,12 (sub) 5 (sub) 2 (sub) 2 (sub) 2 (sub) 2 (sub) 2 (sub) 2 (sub) 3 (sub) 2 (sub) 4 (#	Article	IF	CITATIONS
2238Mgr.sup.24-(kup.2-Doping Constructed a Continuous and Homogeneous Cathode-Electrolyte Interphase Film on Na.sub.3.12.(sub.26.sub.26.sub.24.(sub.26.sub.24.(sub.26.sub.27.(sub.2).(sub.22.(sub.22.(sub.22.(sub.22.csub.27.(sub.2).2.(sub.22.(sub.22.csub.27.(sub.2).2.(sub.22.csub.27.(sub.22.csub.22.csub.22.csub.22.csub.22.csub.22.csub.22.csub.22.csub.27.(sub.22.cs	2236		7.1	37
2238 Inferphase Film on Na Sub 5.12 (slub Feesub 2.44 (slub) (Pesub 2.4(slub) Casub 2.4(slub) 2.43) 4.0 11 2239 Inferphase Film on Na Sub 5.12 (slub Feesub 2.44 (slub) (Pesub 2.4(slub) Casub 2.4(slub) 2.43) 4.0 11 2239 The Role of Hydrothermal Carbonization in Sustainable Sodium&Gon Battery Anodes. Advanced Energy 10.2 61 2240 Small, 2022, 12, . 10.423514263. 5.2 14 2241 Introducing the Solvent Co&Ghetrecalation Mechanism for Hard Carbon with Ultrafast Sodium Storage. 5.2 14 2242 High&Cperformance Sn&&esed anode with robust lignin&Galerived lard carbon support for sodium&Gon 0.8 10 2243 High&Cperformance Sn&&esed anode with robust lignin&Galerived lard carbon support for sodium&Gon 0.8 10 2244 High&Cperformance Sn&&esed anode with robust lignin&Galerived lard carbon support for sodium&Gon 0.8 10 2244 High&Cperformance Sn&&Ckssed anode with robust lignin&Galerived lard carbon asteries. 1.6 12 2243 High&Cperformance Sn&&Ckssed anode with robust lignin&Galerived lard carbon asteries. 7.2 48 2244 High&Cperformance Sn&&Ckssed anode with soluce Centres for Quasi&Cbold Proton&Clon Batteries. 7.2 48 2244	2237	An all Prussian blue analogâ€based aprotic sodiumâ€ion battery. , 2022, 1, .		13
2229 Materials, 2022, 12, . 102 102 102 2240 Introducing the Solvent CodeEntercalation Mechanism for Hard Carbon with Ultrafast Sodium Storage. 5.2 14 2241 Introducing the Solvent CodeEntercalation Mechanism for Hard Carbon support for sodium360n 0.8 10 2242 HigháCperformance Snáčkased anode with robust ligninåEderived hard carbon support for sodium360n 0.8 10 2242 HigháCpotential Cathodes with Nitrogen Active Centres for QuasiaE6olid ProtonaE6on Batteries. 1.6 12 2243 HigháCPotential Cathodes with Nitrogen Active Centres for QuasiaE6olid ProtonaE6on Batteries. 7.2 48 2244 Effect of Eliminating Water in Prussian Blue Cathode for Sodium366on Batteries. Advanced Functional 7.8 66 2245 Solid E6tate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Materials, 2022, 32, 202, 18, e2200716 5.2 24 2246 Cercoming Ion Transport Barrier by Plasma Heterointerface Engineering: Epitaxial Titanium Materias, 2002, 18, e2200716 5.2 11 2247 Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano Materials, 2002, 5, 6100977. 5.2 11 2248 Today Erergy, 2022, 5, 100374. 2.6 7 7	2238	Interphase Film on Na _{3.12} Fe _{2.44} (P ₂ O ₇) ₂ with Superior and Stable High-Temperature Performance for Sodium-Ion Storage. ACS Applied	4.0	11
2240 Small, 2022, 18, e2108092. 3.2 14 2241 HighäCperformance Snäckbased anode with robust ligninäCderived hard carbon support for sodiumäCion 0.8 10 2242 HighäCperformance Snäckbased anode with robust ligninäCderived hard carbon support for sodiumäCion 0.8 10 2244 HighäCPotential Cathodes with Nitrogen Active Centres for QuasiäCEolid ProtonäCion Batteries. 1.6 12 2243 HighäCPotential Cathodes with Nitrogen Active Centres for QuasiäCEolid ProtonäCion Batteries. 7.2 48 2244 Effect of Eliminating Water in Prussian Blue Cathode for SodiumäCion Batteries. Advanced Functional 7.8 66 2245 SolidäC6State Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced 5.2 24 2246 Overcoming Ion Transport Barrier by Plasma Heterointerface Engineering: Epitaxial Titanium 5.2 11 2247 Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano 2.4 16 2248 From spent lithium-ion batteries to high performance sodium-ion Batteries. ACS Applied Nano 2.4 16 2249 EgetLike Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano 2.4 16 2241 Ca	2239		10.2	61
2241 batteries. Asia-Pacific Journal of Chemical Engineering, 2022, 17, . 0.5 10 2242 Highá@Potential Cathodes with Nitrogen Active Centres for Quasia@Eolid Protona@Eon Batteries. 1.6 12 2243 Angewandte Chemie, 2022, 134, . 1.6 12 2244 Highá@Potential Cathodes with Nitrogen Active Centres for Quasia@Eolid Protona@Eon Batteries. 7.2 48 2244 Effect of Eliminating Water in Prussian Blue Cathode for Sodiuma@Eon Batteries. Advanced Functional 7.8 66 2245 Solida@Ebtate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced 6.2 24 Naternals, 2022, 32, . 6.2 24 0.2 6.2 24 2246 Solida@Ebtate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced 6.2 24 2246 Solida@Ebtate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced 6.2 24 2246 Overcoming on Transport Barrier by Plasma Heterointerface Engineering: Epitaxial Titanium 6.2 11 2247 Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano 2.4 16 2248 From spent Lithum-ion batteries to high performance sodium-i	2240		5.2	14
2242 Angewandte Chemie, 2022, 134,	2241		0.8	10
Angewandte Chemie - International Edition, 2022, 61, .International Edition, 2022, 61, .International Edition, 2022, 61, .2244Effect of Eliminating Water in Prussian Blue Cathode for Sodiumâ€ion Batteries. Advanced Functional7.8662245Solidà€Etate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Na/Na <sub3 <="" sub3=""> (sub > 2 < < (sub > 2 < (sub > 2 < < (sub > 2 < < (sub > 2 < (sub > 2 < < (sub > 2 < (sub > 2 < < (</sub3>	2242		1.6	12
2244 Materials, 2022, 32, . 7.8 66 2245 SolidàGEGtate Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Na/Na < sub>3 2 2 PO < sub>12 interface. Small, 2022, 18, e2200716. 5.2 24 2246 Overcoming Ion Transport Barrier by Plasma Heterointerface Engineering: Epitaxial Titanium Carbonitride on NitrogenàEDoped TiO < sub>2 12 12 5.2 11 2247 Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 4833-4840. 2.4 16 2248 From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials Today Energy, 2022, 26, 100997. 2.5 7 2249 High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 24 2250 Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, . 53 53 2251 Reversible Sodiation of Electrochemically Deposited BinderàE-and Conducting AdditiveàEFree SiàC ^{en} OàC ^{en} C Composite Layers. Energy Technology, 0, , 2101164. 16 2251 Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for 16	2243		7.2	48
2243 Na/Na ₃ 2 Si < sub> 2 Si < sub> 2 12 12 Interface. Small, 2022, 18, e2200716. 5.2 24 2246 Overcoming Ion Transport Barrier by Plasma Heterointerface Engineering: Epitaxial Titanium Carbonitride on Nitrogenâ & Doped TiO < sub> 2 for Highâ & Performance Sodiumã & Kon Batteries. Small, 2022, 18, e2200694. 5.2 11 2247 Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 4833-4840. 2.4 16 2248 From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials 2.5 7 2249 High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 10 24 2250 Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material 4.7 53 2251 Reversible Sodiation of Electrochemically Deposited Binderâ& and Conducting Additiveâ& Free Siâ& Oâ& Ca 1.8 1 2251 Reversible Sodiation of Electrochemically Deposited Binderâ& and Conducting Additiveâ 1.8 1 2251 Reversible Sodiation of Electrochemically Deposited Binderâ& and Conducting Additiveâ 1.8 1 2251 Reversible Sodiation of Electrochemically Deposited Binderâ& and Conducting Additiveâ	2244		7.8	66
2246Carbonitride on Nitrogenâ€Doped ŤiO ₂ for Highâ€Performance Sodiumâ€kon Batteries. Small, 2022, 18, e2200694.5.2112247Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 4833-4840.2.4162248From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials Today Energy, 2022, 26, 100997.2.572249High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 15784-15798.4.0242250Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, .4.7532251Reversible Sodiation of Electrochemically Deposited Binder〕and Conducting Additiveã€Free Si〓O〓C Composite Layers. Energy Technology, 0, , 2101164.14	2245		5.2	24
2247 Materials, 2022, 5, 4833-4840. 2.4 16 2248 From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials 2.5 7 2248 From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials 2.5 7 2249 High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 24 2250 Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, . 4.7 53 2251 Reversible Sodiation of Electrochemically Deposited Binder―and Conducting Additiveâ€Free Si–O–C 1.8 1 2251 Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for 64 64	2246	Carbonitride on Nitrogenâ€Doped ŤiO ₂ for Highâ€Performance Sodiumâ€Ion Batteries. Small,	5.2	11
2248 Today Energy, 2022, 26, 100997. 2.5 7 2249 High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 15784-15798. 4.0 24 2250 Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, . 4.7 53 2251 Reversible Sodiation of Electrochemically Deposited Binder―and Conducting Additiveâ€Free Si–O–C Composite Layers. Energy Technology, 0, , 2101164. 1.8 1	2247	Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 4833-4840.	2.4	16
2249 Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 15784-15798. 4.0 24 2250 Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, . 4.7 53 2251 Reversible Sodiation of Electrochemically Deposited Binder―and Conducting Additiveâ€Free Si–O–C 1.8 1 Peterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for 6.6 06	2248		2.5	7
2250 Advances, 2022, 2022, . 4.7 53 2251 Reversible Sodiation of Electrochemically Deposited Binder―and Conducting Additiveâ€Free Si–O–C 1.8 1 2251 Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for 6.6 6.6	2249	Fluoro(sulfonyl)imide Based Ionic Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14,	4.0	24
2231 Composite Layers. Energy Technology, Ø, , 2101164. 1.8 1 Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for	2250		4.7	53
Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for 6.6 36	2251	Reversible Sodiation of Electrochemically Deposited Binder―and Conducting Additiveâ€Free Si–O–C Composite Layers. Energy Technology, 0, , 2101164.	1.8	1
nigh-performance Liviva storage. Chemical Engineering Journal, 2022, 443, 136080.	2252	high-performance Li/Na storage. Chemical Engineering Journal, 2022, 443, 136080.	6.6	36
overflow="scroll"> <mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi </mml:mrow></mml:mrow><mml:mn>5</mml:mn></mml:msub> <mml:mrow><mml:mrow><!--<br-->2253 mathvariant="normal">N</mml:mrow></mml:mrow> : A Promising Building 1.5 5 Block for the Anode of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mrow></mml:mrow></mml:math> : A Promising Building 1.5 5	2253	mathvariant="normal">C5 <mml:mrow mathvariant="normal">N : A Promising Building</mml:mrow 		

#	Article	IF	CITATIONS
2254	Progress in the Use of Biosourced Phenolic Molecules for Electrode Manufacturing. Frontiers in Materials, 2022, 9, .	1.2	6
2255	A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at â^'25°C. Cell Reports Physical Science, 2022, 3, 100805.	2.8	10
2256	Bismuth and its nanocomposite: Reaction mechanism and rational nanocomposite fabrication process for superior sodiumâ€ion battery anodes. International Journal of Energy Research, 2022, 46, 9486-9497.	2.2	3
2257	Improvement of ionic conductivity and densification of Na3Zr2Si2PO12 solid electrolyte rapidly prepared by microwave sintering. Ceramics International, 2022, 48, 18999-19005.	2.3	14
2258	A comprehensive review on batteries and supercapacitors: Development and challenges since their inception. Energy Storage, 2023, 5, .	2.3	63
2259	Regulation of dual-ion batteries via the defects design in carbon electrode based on the different storage behaviors of PF6â [~] and Li+. Journal of Power Sources, 2022, 527, 231169.	4.0	6
2260	Challenges and Perspectives of Organic Multivalent Metalâ€Ion Batteries. Advanced Materials, 2022, 34, e2200662.	11.1	46
2261	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	14.4	79
2262	Mechanisms of Ionic Diffusion and Stability of the Na ₄ MnCr(PO ₄) ₃ Cathode. , 2022, 4, 860-867.		13
2264	Integrating Superlattice to Regulate P2â€O2 Phase Transition and Improve Cycling Stability in Sodiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	2.4	1
2265	Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients. Advanced Science, 2022, 9, e2201209.	5.6	16
2266	Interlayer-Expanded MoS ₂ Nanoflowers Vertically Aligned on MXene@Dual-Phased TiO ₂ as High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16300-16309.	4.0	30
2267	Superior diffusion kinetics and electrochemical properties of α/β–type NaMn0.89Co0.11O2 as cathode for sodium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 1231-1239.	1.2	3
2269	Two Birds with One Stone: A NaCl-Assisted Strategy toward MoTe2 Nanosheets Nanoconfined in 3D Porous Carbon Network for Sodium-Ion Battery Anode. Energy Storage Materials, 2022, 47, 591-601.	9.5	23
2270	Realization of high cycle life bismuth oxychloride Na-ion anode in glyme-based electrolyte. Journal of Power Sources, 2022, 529, 231227.	4.0	4
2271	A dynamic polyanion framework with anion/cation co-doping for robust Na/Zn-ion batteries. Journal of Power Sources, 2022, 530, 231257.	4.0	13
2272	Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Materials, 2022, 47, 515-525.	9.5	60
2273	Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem, 2022, 33, 100351.	2.8	9

# 2274	ARTICLE Tungsten and oxygen co-doped stable tetragonal phase Na3SbS4 with ultrahigh ionic conductivity for all-solid-state sodium batteries. Applied Materials Today, 2022, 27, 101448.	IF 2.3	Citations
2275	Triglyme-based solvate ionic liquid gelled in a polymer: A novel electrolyte composition for sodium ion battery. Materials Today Communications, 2022, 31, 103392.	0.9	5
2276	Sodium tert-butoxide as stable electrode material in aprotic electrolyte for high cycle stability organic sodium-ion batteries. Journal of Power Sources, 2022, 532, 231361.	4.0	3
2277	Unveiling the Na-ions storage mechanism and sodiation-induced brittleness of multiwalled carbon nanotubes. Journal of Power Sources, 2022, 532, 231357.	4.0	6
2278	Facile preparation of V2O3/black fungus-derived carbon composite with hierarchical porosity as a promising electrode for lithium/sodium ion batteries. Journal of Alloys and Compounds, 2022, 905, 164258.	2.8	21
2279	Flexible electrode material of V2O5 carbon fiber cloth for enhanced zinc ion storage performance in flexible zinc-ion battery. Journal of Power Sources, 2022, 533, 231358.	4.0	23
2280	Nickel‑cobalt selenide@N-doped carbon towards high-performance anode materials for sodium-ion batteries. Journal of Energy Storage, 2022, 51, 104522.	3.9	19
2281	Metal-organic framework for lithium and sodium-ion batteries: Progress and perspectivez. Fuel, 2022, 319, 123856.	3.4	16
2282	An efficient Se-doping strategy to boost sodium storage capacity of anatase TiO2 nanospheres. Scripta Materialia, 2022, 215, 114705.	2.6	6
2283	Controlling the metal work function through atomic-scale surface engineering. Applied Surface Science, 2022, 589, 152932.	3.1	2
2284	Towards rechargeable Na-SexSy batteries: From fundamental insights to improvement strategies. Chemical Engineering Journal, 2022, 442, 136189.	6.6	5
2285	Overview of batteries and battery management for electric vehicles. Energy Reports, 2022, 8, 4058-4084.	2.5	184
2286	A Titanium Oxy-phosphate Na ₄ TiO(PO ₄) ₂ as High-performance Electrode Material for Sodium-ion Batteries. , 2021, , .		0
2287	O3-Type Na _{2/3} Ni _{1/3} Ti _{2/3} O ₂ Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 677-683.	4.0	6
2288	Elucidating the Synergistic Behavior of Orientationâ€Controlled SnS Nanoplates and Carbon Layers for Highâ€Performance Lithium―and Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	25
2289	Electronic Effect and Regiochemistry of Substitution in Pre-sodiation Chemistry. Journal of Physical Chemistry Letters, 2021, 12, 11968-11979.	2.1	7
2290	Metallic Mo ₂ C Quantum Dots Confined in Functional Carbon Nanofiber Films toward Efficient Sodium Storage: Heterogeneous Interface Engineering and Charge-Storage Mechanism. ACS Applied Energy Materials, 2022, 5, 1114-1125.	2.5	16
2291	Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & Interfaces, 2022, 14, 826-833.	4.0	4

#	Article	IF	CITATIONS
2292	Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. EScience, 2021, 1, 203-211.	25.0	103
2293	Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	81
2294	Nitrogen and Oxygen Coâ€Doped Porous Hard Carbon Nanospheres with Coreâ€Shell Architecture as Anode Materials for Superior Potassiumâ€Ion Storage. Small, 2022, 18, e2104296.	5.2	33
2295	Biphasic α/β-Type NaMn _{0.89} Fe _{0.11} O ₂ as a Cathode for Sodium-Ion Batteries: Structural Insight and High-Performance Relation. ACS Applied Energy Materials, 2022, 5, 116-125.	2.5	5
2296	Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. EScience, 2022, 2, 10-31.	25.0	151
2298	S and P Dual-Doped Carbon Nanospheres as Anode Material for High Rate Performance Sodium-Ion Batteries. Applied Sciences (Switzerland), 2021, 11, 12007.	1.3	6
2299	Symmetric Aqueous Batteries of Titanium Hexacyanoferrate in Na+, K+, and Mg2+ Media. Batteries, 2022, 8, 1.	2.1	3
2300	Synthesis of Sb2S3 NRs@rGO Composite as High-Performance Anode Material for Sodium-Ion Batteries. Materials, 2021, 14, 7521.	1.3	5
2301	Electrochemical Formation of a Covalent–lonic Stage-1 Graphite Intercalation Compound with Trifluoroacetic Acid. Chemistry of Materials, 2022, 34, 217-231.	3.2	6
2302	Moderate Specific Surface Areas Help Three-Dimensional Frameworks Achieve Dendrite-Free Potassium-Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 900-909.	4.0	16
2303	Activating the Extra Redox Couple of Co ²⁺ /Co ³⁺ for a Synergistic K/Co Co-Substituted and Carbon Nanotube-Enwrapped Na ₃ V ₂ (PO ₄) ₃ Cathode with a Superior Sodium Storage Property. ACS Applied Materials & amp; Interfaces, 2022, 14, 611-621.	4.0	23
2304	Hard Carbon Anode with a Sodium Carborane Electrolyte for Fast-Charging All-Solid-State Sodium-Ion Batteries. ACS Energy Letters, 2022, 7, 145-149.	8.8	22
2305	Biphenylene monolayer: a novel nonbenzenoid carbon allotrope with potential application as an anode material for high-performance sodium-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 10712-10716.	1.3	22
2306	Inorganic Graphenylene Based on Silicon Carbide as Anode Material for Na Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2307	Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques. Membranes, 2022, 12, 416.	1.4	17
2308	A physicochemical elucidation of sodium perchlorate incorporated alginate biopolymer: toward all-solid-state sodium-ion battery. Journal of Materials Science, 2022, 57, 8211-8224.	1.7	9
2309	Hysteresis‣uppressed Reversible Oxygenâ€Redox Cathodes for Sodiumâ€ŀon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	42
2310	Renewable waste biomass-derived carbon materials for energy storage. Journal Physics D: Applied Physics, 2022, 55, 313002.	1.3	14

#	Article	IF	CITATIONS
2311	Achieving long cycle sodium-ion storage by an "top-down―size control strategy on Sn-based anode. Electrochimica Acta, 2022, 419, 140401.	2.6	1
2312	Influence of synthesis route on the structure and electrochemical performance of biphasic (O'3/O3) NaNi0.815Co0.15Al0.035O2 cathode for sodium-ion batteries. Electrochimica Acta, 2022, 419, 140403.	2.6	11
2313	Enhanced Cycling Stability in the Anion Redox Material P3â€Type Znâ€Substituted Sodium Manganese Oxide. ChemElectroChem, 2022, 9, .	1.7	6
2314	Firstâ€principles insights on anion redox activity in Na <i>_x</i> Fe _{1/8} Ni _{1/8} Mn _{3/4} O ₂ : Toward efficient highâ€energy cathodes for Naâ€ion batteries. Journal of the American Ceramic Society, 2023, 106, 109-119.	1.9	5
2315	Sodium-ion battery from sea salt: a review. Materials for Renewable and Sustainable Energy, 2022, 11, 71-89.	1.5	13
2316	3D Flower-like Tin Monosulfide/Carbon Nanocomposite Anodes for Sodium-Ion Batteries. Nanomaterials, 2022, 12, 1351.	1.9	0
2317	The Hazards of Electric Car Batteries and Their Recycling. IOP Conference Series: Earth and Environmental Science, 2022, 1011, 012026.	0.2	3
2318	Bronzeâ€Phase TiO ₂ as Anode Materials in Lithium and Sodiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	53
2319	Hard Carbons for Use as Electrodes in Li-S and Li-ion Batteries. Nanomaterials, 2022, 12, 1349.	1.9	8
2320	Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage. Journal of Alloys and Compounds, 2022, 911, 164979.	2.8	9
2321	Expanded solid-solution behavior and charge-discharge asymmetry in NaxCrO2 Na-ion battery electrodes. Journal of Power Sources, 2022, 535, 231317.	4.0	8
2325	Highâ€Voltage, Highly Reversible Sodium Batteries Enabled by Fluorineâ€Rich Electrode/Electrolyte Interphases. Small Methods, 2022, 6, e2200209.	4.6	22
2326	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	23.0	126
2327	Correlation of the crystal structure and ion storage behavior of MoO ₃ electrode materials for aluminum-ion energy storage studied using <i>in situ</i> X-ray spectroscopy. Nanoscale, 2022, 14, 7502-7515.	2.8	3
2329	An insight into the sodium-ion and lithium-ion storage properties of CuS/graphitic carbon nitride nanocomposite. RSC Advances, 2022, 12, 12383-12395.	1.7	10
2330	N-Doped Graphitic Carbon Coated Fe2o3 Using Dopamine as an Anode Material for Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2331	Tailoring the surface chemistry of hard carbon towards high-efficiency sodium ion storage. Nanoscale, 2022, 14, 8959-8966.	2.8	10
2332	Recent Advances in Layered Metalâ€Oxide Cathodes for Application in Potassiumâ€Ion Batteries. Advanced Science, 2022, 9, e2105882.	5.6	35

#	Article	IF	CITATIONS
2333	Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability. Journal of the American Chemical Society, 2022, 144, 8286-8295.	6.6	112
2334	Cellulose nanofiberâ€derived carbon aerogel for advanced roomâ€ŧemperature sodium–sulfur batteries. , 2023, 5, .		15
2335	Recent Advances in SnSe Nanostructures beyond Thermoelectricity. Advanced Functional Materials, 2022, 32, .	7.8	28
2336	High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification. Chemistry of Materials, 2022, 34, 4153-4165.	3.2	47
2337	Na3Zr2(SiO4)2PO4 NASICON-type solid electrolyte: Influence of milling duration on microstructure and ionic conductivity mechanism. Ceramics International, 2022, 48, 22106-22113.	2.3	13
2338	Hardâ€Carbon Anodes for Sodiumâ€ion Batteries: Recent Status and Challenging Perspectives. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	27
2339	Metal–Organic Framework Derived Copper Chalcogenides arbon Composites as Highâ€Rate and Stable Storage Materials for Na Ions. Advanced Sustainable Systems, 2022, 6, .	2.7	14
2341	Preparation of Zn0.76Co0.24S@C yolk-shell sphere with phenonic resin derived carbon layer and its high electrochemical performance for sodium-ion batteries. Powder Technology, 2022, 404, 117422.	2.1	1
2342	Improved performances of Cr2N monolayer as electrode of lithium ion battery through surface termination: A first-principles calculation. Journal of Physics and Chemistry of Solids, 2022, 168, 110794.	1.9	5
2343	Low temperature plasma-enhanced atomic layer deposition of sodium phosphorus oxynitride with tunable nitrogen content. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 032403.	0.9	5
2344	Low-Cost Al-Doped Layered Cathodes with Improved Electrochemical Performance for Rechargeable Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 23465-23473.	4.0	11
2345	Unveiling the Complementary Manganese and Oxygen Redox Chemistry for Stabilizing the Sodium″on Storage Behaviors of Layered Oxide Cathodes. Advanced Functional Materials, 2022, 32, .	7.8	34
2346	Microspherical copper tetrathiovanadate with stable binding site as ultra-rate and extended longevity anode for sodium-ion half/full batteries. Chemical Engineering Journal, 2022, 446, 136772.	6.6	14
2347	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	4.6	55
2348	Structural and Electrochemical Properties of Layered P2-Na0.8Co0.8Ti0.2O2 Cathode in Sodium-Ion Batteries. Energies, 2022, 15, 3371.	1.6	3
2349	Na uptake at TiO2 anatase surfaces under electric field control: A first-principles study. Journal of Materials Research, 2022, 37, 3216-3226.	1.2	6
2350	Facile construction of N-doped porous carbon nanosheets derived from melamine cyanurate/xylitol for advanced sodium-ion batteries. Diamond and Related Materials, 2022, 126, 109064.	1.8	2
2351	Electrochemical performance of ZIF-derived Co3SnC0.7/Co3Sn2@NC with heterostructure as anode material for sodium-ion batteries. Solid State Ionics, 2022, 380, 115927.	1.3	2

#	Article	IF	CITATIONS
2352	Flexible 3D porous boron nitride interconnected network as a high-performance Li-and Na-ion battery electrodes. Electrochimica Acta, 2022, 421, 140491.	2.6	9
2353	Rational nanostructured FeSe2 wrapped in nitrogen-doped carbon shell for high-rate capability and long cycling sodium-ion storage. Journal of Colloid and Interface Science, 2022, 622, 840-848.	5.0	19
2354	Interconnected MnCO3 nanostructures anchored on carbon fibers with enhanced potassium storage performance. Materials Today Chemistry, 2022, 25, 100904.	1.7	3
2355	Electrodeposition vs Slurry Casting: How Fabrication Affects Electrochemical Reactions of Sb Electrodes in Sodium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 050537.	1.3	4
2356	Progress in Gel Polymer Electrolytes for Sodiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	19
2357	Glass-ceramic route to NASICON-type Na Ti2(PO4)3 electrodes for Na-ion batteries. Ceramics International, 2022, 48, 24758-24764.	2.3	2
2358	Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next eneration Rechargeable Batteries. ChemSusChem, 2022, 15, .	3.6	22
2359	A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage. Chinese Chemical Letters, 2023, 34, 107526.	4.8	2
2360	Combining Experimental and Theoretical Techniques to Gain an Atomic Level Understanding of the Defect Binding Mechanism in Hard Carbon Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	38
2361	Adjusting morphological properties of organic electrode material for efficient Sodium-ion batteries by isomers strategy. Journal of Colloid and Interface Science, 2022, 623, 637-645.	5.0	5
2362	Mo ₂ C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables Highâ€Energy and Highâ€Power Sodium Ion Capacitors. Small, 2022, 18, e2200805.	5.2	20
2363	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41
2364	Phosphate-based cathode materials to boost the electrochemical performance of sodium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 3114-3147.	2.5	21
2365	Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode. Nano Energy, 2022, 99, 107390.	8.2	18
2366	Insights into Synergistic Effect of g-C ₃ N ₄ /Graphite Heterostructures for Boosting Sodium Ion Storage with Long Cycle Stability. ACS Applied Energy Materials, 2022, 5, 7308-7316.	2.5	8
2367	Amorphous and Crystalline Vanadium Orthophosphate and Oxidized Multiwalled Carbon Nanotube Composites as Anode Materials in Sodiumâ€ion Batteries. ChemElectroChem, 2022, 9, .	1.7	1
2368	Organic Small Molecules with Electrochemicalâ€Active Phenolic Enolate Groups for Readyâ€to harge Organic Sodiumâ€ion Batteries. Small Methods, 2022, 6, .	4.6	15
2369	Effects of Flexible Group Length of Phosphonate Monomers on the Performance of Gel Polymer Electrolytes for Sodium-Ion Batteries with Ultralong Cycling Life. ACS Sustainable Chemistry and Engineering, 2022, 10, 7158-7168.	3.2	5

#	Article	IF	CITATIONS
2370	Synthesis of carbon-modified cobalt disphosphide as anode for sodium-ion storage. Electrochimica Acta, 2022, 423, 140611.	2.6	4
2371	Molybdenum chalcogenides based anode materials for alkali metal ions batteries: Beyond lithium ion batteries. Energy Storage Materials, 2022, 50, 308-333.	9.5	46
2372	Treatment dependent sodium-rich Prussian blue as a cathode material for sodium-ion batteries. Dalton Transactions, 2022, 51, 9622-9626.	1.6	10
2373	Construction of Cos-Encapsulated in Ultrahigh Nitrogen Doped Carbon Nanofibers from Energetic Metal-Organic Frameworks for Superior Sodium Storage. SSRN Electronic Journal, 0, , .	0.4	0
2374	Unraveling the diffusion kinetics of honeycomb structured Na ₂ Ni ₂ TeO ₆ as a high-potential and stable electrode for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15460-15473.	5.2	18
2375	Mechanisms for selfâ€ŧemplating design of micro/nanostructures toward efficient energy storage. Exploration, 2022, 2, .	5.4	11
2376	Inverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learning. Chemistry of Materials, 2022, 34, 4964-4974.	3.2	21
2377	Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. Energies, 2022, 15, 4052.	1.6	9
2378	Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy & Sustainability, 2022, 9, 183-197.	1.3	22
2379	Phase Relations in a NaFeO2-SnO2 (0–50 mol.% SnO2) System and the Crystal Structure and Conductivity of Na0.8Fe0.8Sn0.2O2. Materials, 2022, 15, 3612.	1.3	0
2380	First-principles calculations of bulk WX ₂ (X = Se, Te) as anode materials for Na ion battery. Journal of Physics Condensed Matter, 2022, 34, 324001.	0.7	5
2381	Promising aqueous dispersions of carbon black for semisolid flow battery application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129376.	2.3	5
2382	Unfolding the structural features of NASICON materials for sodiumâ€ion full cells. , 2022, 4, 776-819.		39
2383	Carbon-coated MoSe2/MXene heterostructures as active materials for high-performance Na+ batteries. Materials Today Communications, 2022, 31, 103740.	0.9	7
2384	Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochimica Acta, 2022, 424, 140645.	2.6	20
2385	Layered iron dichalcogenides with high ion mobility and capacity as promising anode materials for alkali metal-ion batteries: A first-principles study. Computational Materials Science, 2022, 211, 111523.	1.4	0
2386	Development of high-performance ScS2 monolayer as cathode material: A DFT analysis. Solid State Communications, 2022, 352, 114828.	0.9	13
2387	Kinetics of polysulfide on metal-sulfur batteries. , 2022, , 679-713.		0

#	Article	IF	CITATIONS
2388	DFT study of N,S co-doped graphene anodes for Na-ion storage and diffusion. New Journal of Chemistry, 2022, 46, 13866-13873.	1.4	3
2389	Green Fabrication of Amorphous Fepo4/Carbon Nanotube Electrodes Via Electrophoretic Deposition for Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2390	<i>In situ</i> imaging the dynamics of sodium metal deposition and stripping. Journal of Materials Chemistry A, 2022, 10, 14875-14883.	5.2	6
2391	Enhancing Structural Stability of Nacro2 by Nb-Substituting for Sodium-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
2392	Investigating performance of full-cell using NaFe0.45Cu0.05Co0.5O2 cathode and hard carbon anode. Science and Technology, 2022, 60, 203-215.	0.1	1
2393	Sn― Sb―and Biâ€Based Anodes for Potassium Ion Battery. Chemical Record, 2022, 22, .	2.9	13
2394	Recent Advances in Carbon Anodes for Sodiumâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	53
2395	Constructing Extended π-Conjugated Molecules with <i>o</i> -Quinone Groups as High-Energy Organic Cathode Materials. ACS Applied Materials & Interfaces, 2022, 14, 27994-28003.	4.0	20
2396	The prospect and challenges of sodiumâ€ion batteries for lowâ€temperature conditions. , 2022, 1, 373-395.		58
2397	A new telluriumâ€based Ni ₃ TeO ₆ â€carbon nanotubes composite anode for Naâ€ion battery. International Journal of Energy Research, 2022, 46, 16041-16049.	2.2	6
2398	Sustainable Freeâ€Standing Electrode from Biomass Waste for Sodiumâ€Ion Batteries. ChemElectroChem, 2022, 9, .	1.7	10
2399	Hierarchical Engineering for High-Energy-Oriented Sodium-Ion Batteries. Accounts of Materials Research, 2022, 3, 672-684.	5.9	14
2400	Preparation and electrochemical properties of Na ₃ V ₂ (PO ₄) ₃ /C cathode materials from spent electroless nickel plating bath. Materials Research Express, 0, , .	0.8	0
2401	First-principles study of sodium adsorption and diffusion on vacancies, N, S, and NS-codoped graphene. Materials Today Communications, 2022, 32, 103817.	0.9	2
2402	Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium. Journal of Energy Chemistry, 2022, 73, 400-406.	7.1	11
2403	Toward Emerging Sodiumâ€Based Energy Storage Technologies: From Performance to Sustainability. Advanced Energy Materials, 2022, 12, .	10.2	33
2404	Controlling Defects to Achieve Reproducibly High Ionic Conductivity in Na ₃ SbS ₄ Solid Electrolytes. Chemistry of Materials, 2022, 34, 5634-5643.	3.2	9
2405	Engineering carbon nanosheets with hexagonal ordered conical macropores as high-performance sodium-ion battery anodes. Journal of Colloid and Interface Science, 2022, 625, 978-989.	5.0	6

#	Article	IF	CITATIONS
2406	Sodium-Ion Solid-State Electrolyte. ACS Symposium Series, 0, , 275-294.	0.5	0
2407	Hard carbon derived for lignin with robust and low-potential sodium ion storage. Journal of Electroanalytical Chemistry, 2022, 919, 116526.	1.9	19
2408	Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Science China Chemistry, 2022, 65, 1291-1298.	4.2	16
2409	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
2410	Suppression of partially irreversible phase transition in O′3-Na3Ni2SbO6 cathode for sodium-ion batteries by interlayered structural modulation. Journal of Energy Chemistry, 2022, 73, 436-444.	7.1	7
2411	Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7, 718-725.	19.8	137
2412	Graphyne Nanotubes as Promising Sodium-Ion Battery Anodes. Catalysts, 2022, 12, 670.	1.6	4
2413	Synthesis of NaNiF3 and its composite with multi-walled carbon nanotubes as cathode materials for aqueous sodium-ion battery. Journal of Materials Science: Materials in Electronics, 2022, 33, 16987-17000.	1.1	1
2414	AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity. Chinese Physics B, 2022, 31, 116302.	0.7	2
2415	Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 28865-28872.	4.0	11
2416	Recent Progress of Carbonâ€Based Anode Materials for Potassium Ion Batteries. Chemical Record, 2022, 22, .	2.9	6
2417	Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Materials, 2022, 50, 760-782.	9.5	37
2418	Sodium vanadium hexacyanoferrate as a high-rate capability and long-life cathode material for Na-ion batteries. Journal of Energy Storage, 2022, 53, 105165.	3.9	6
2419	3-Trimethylsilyl-2-oxazolidinone, as a multifunctional additive to stabilize FEC-containing electrolyte for sodium metal batteries. Electrochimica Acta, 2022, 425, 140746.	2.6	9
2420	Extending nonhysteretic oxygen capacity in P2-type Ni-Mn binary Na oxides. Chemical Engineering Journal, 2022, 446, 137429.	6.6	6
2421	Mn3O4 nanoparticles in situ embedded in TiO2 for High-Performance Na-ion capacitor: Balance between 3D ordered hierarchically porous structure and heterostructured interfaces. Chemical Engineering Journal, 2022, 447, 137450.	6.6	15
2422	Designing of reinforced two-dimensional molybdenum sulfoselenide microspheres by SnS quantum flakes with N-doped carbon for high performance half/full lithium-ion batteries. Journal of Alloys and Compounds, 2022, 920, 165827.	2.8	3
2423	Enhanced rate performance and specific capacity in Ti-substituted P2-type layered oxide enabled by crystal structure and particle morphology modifications. Chemical Engineering Journal, 2022, 448, 137662.	6.6	10

ARTICLE IF CITATIONS Multi-Wall Carbon Nanotube-Induced Nanobelt Potassium Vanadate Composite as Cathode for 2424 0.4 0 Sodium-Ion Batteries. SSRN Electronic Journal, 0, , . Layered Double Hydroxide Derived Cobalt-Iron Sulfide Heterostructures with Enhanced Reaction 2425 0.4 Kinetics for Use in Sodium-Ion Batteries. SSRN Electronic Journal, 0, , . Challenges and Applications of In Situ TEM for Sodium-Ion Batteries., 0, 1, . 0 2426 Charge storage mechanisms of a ï€â€"d conjugated polymer for advanced alkali-ion battery anodes. 2427 Chemical Science, 2022, 13, 8161-8170. Rational design of double-shelled Cu₂MoS₄@N-doped carbon hierarchical nanoboxes toward fast and stable sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 2428 5.2 17 17185-17198. Black phosphorene/NP heterostructure as a novel anode material for Li/Na-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 19697-19704. 2429 1.3 Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau 2430 capacity for high performance sodium ion batteries. Journal of Materials Chemistry A, 2022, 10, 5.2 32 17225-17236. Constructing a novel heterostructure of NiSe₂/CoSe₂ nanoparticles with boosted sodium storage properties for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 5.2 34 10, 16268-16279. 3d Electronic Channels Wrapped Large-Sized Snse as Flexible Electrode for Sodium-Ion Batteries. SSRN 2432 0.4 0 Electronic Journal, 0, , . Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Science Bulletin, 4.3 2022, 67, 1589-1602. Recent Advances of Pore Structure in Disordered Carbons for Sodium Storage: A Mini Review. 2434 2.9 9 Chemical Record, 2022, 22, . Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage. 1.1 Frontiers of Materials Science, 2022, 16, . Chemical diffusion and ionic conductivity in nonstoichiometric nanocrystalline superionic 2436 1.2 2 NaxCu1.75S (x = 0.1, 0.15, 0.2, 0.25) materials. Ionics, 0, , . Construction of CoS-encapsulated in ultrahigh nitrogen doped carbon nanofibers from energetic 2437 5.4 19 metal-organic frameworks for superior sodium storage. Carbon, 2022, 198, 353-363. Electrochemical CO₂reduction to C₂₊products using Cu-based 2438 112 electrocatalysts: A review., 2022, 1, e9120021. 3D Hierarchical Grapheneâ€CNT Anode for Sodiumâ€Ion Batteries: a Firstâ€Principles Assessment. Advanced 2439 1.3 Theory and Simulations, 2022, 5, . Tunable electronic properties of silicon nanowires as sodiumâ€battery anodes. International Journal of 2440 2.21 Energy Research, 2022, 46, 17151-17162. Three-dimensional carbon network supported Li3V2(PO4)3/C and Na3V2(PO4)3/C composites for 2441 3.1 lithium/sodium storage. Applied Surface Science, 2022, 601, 154285.

#	Article	IF	CITATIONS
2442	Fully Active Bimetallic Phosphide Zn _{0.5} Ge _{0.5} P: A Novel High-Performance Anode for Na-Ion Batteries Coupled with Diglyme-Based Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 31803-31813.	4.0	48
2443	Disposing of excessive decomposition and destructive intercalation of solvated Li+ in CNT-based flexible 3D Si anode of flexible battery. Energy Storage Materials, 2022, 51, 361-371.	9.5	6
2444	The current status of sodium metal anodes for improved sodium batteries and its future perspectives. APL Materials, 2022, 10, .	2.2	7
2445	Energy storage systems: a review. Energy Storage and Saving, 2022, 1, 166-216.	3.0	160
2446	Implementation of structural and surface engineering strategies to copper sulfide for enhanced sodium-ion storage. Journal of Alloys and Compounds, 2022, , 166308.	2.8	4
2447	Stabilization of Multicationic Redox Chemistry in Polyanionic Cathode by Increasing Entropy. Advanced Science, 2022, 9, .	5.6	23
2448	Molecular Structure Evaluation and Image-Guided Atomistic Representation of Hard Carbon Electrodes. Journal of the Electrochemical Society, 2022, 169, 070517.	1.3	4
2449	Research progress on carbon materials as negative electrodes in sodium―and potassiumâ€ion batteries. , 2022, 4, 1182-1213.		55
2450	Sodium oordinated Polymeric Phthalocyanines as Stable High apacity Organic Anodes for Sodiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	1
2451	Yolkâ€Shell Spindleâ€Shaped FeSe ₂ @Nâ€Doped Carbon Decorated on rGO with Highâ€Rate Capability and Cycling Stability in a Wide Temperature Range for Sodium Ion Batteries**. ChemElectroChem, 2022, 9, .	1.7	2
2452	Mechanism of gelation in high nickel content cathode slurries for sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 627, 427-437.	5.0	12
2453	Architecture design of MXene-based materials for sodium-chemistry based batteries. Nano Energy, 2022, 101, 107590.	8.2	13
2454	Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries. Nature Communications, 2022, 13, .	5.8	35
2455	A Study on the Capacity Degradation in Na3.2V1.8Zn0.2(PO4)3 Cathode and Hard Carbon Anode Based Sodium-Ion Cells. Journal of the Electrochemical Society, 0, , .	1.3	0
2456	Recent advanced development of stabilizing sodium metal anodes. Green Energy and Environment, 2023, 8, 1279-1307.	4.7	10
2457	Sodium-based solid electrolytes and interfacial stability. Towards solid-state sodium batteries. Materials Today Communications, 2022, 32, 104009.	0.9	6
2458	Bimetallic sulfides SnS/FeS particles anchored on tremella-like carbon as advanced anode material for sodium ion storage. Journal of Power Sources, 2022, 542, 231804.	4.0	12
2459	Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage Materials, 2022, 51, 327-360.	9.5	19

#	Article	IF	CITATIONS
2460	In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2022, 51, 159-171.	9.5	26
2461	Lotus pollen-templated synthesis of C, N, P-self doped KTi2(PO4)3/TiO2 for sodium ion battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129605.	2.3	1
2462	Synthesis of NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries via spray pyrolysis method. Journal of Alloys and Compounds, 2022, 922, 166283.	2.8	3
2463	Effects of nitrogen and phosphorus co-doped layering on lithium/sodium-ion storage properties of biomass-derived carbonaceous electrode materials. Journal of Alloys and Compounds, 2022, 922, 166233.	2.8	8
2464	N-doped graphitic carbon coated Fe2O3 using dopamine as an anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 921, 166082.	2.8	6
2465	Boosting the energy density of organic cathode materials by designing planarized conjugated p-type polymer with multi-redox-active centers. Chemical Engineering Journal, 2022, 450, 137920.	6.6	8
2466	Perspective—Challenges and Benchmarking in Scale-Up of Ni-Rich Cathodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 070536.	1.3	1
2467	Inorganic graphenylene-like silicon carbide as anode material for Na batteries. FlatChem, 2022, 35, 100410.	2.8	7
2468	ZIF-derived twisted wedge-shaped CoS2/NC nanoporous architectures pinned to graphene foam as negative electrode for lithium and sodium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 921, 116657.	1.9	4
2469	Constructing nitrogen-doped porous carbon immobilized Co9S8 composite as high-performance anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 923, 166373.	2.8	7
2470	Progress in the development of solid-state electrolytes for reversible room-temperature sodium–sulfur batteries. Materials Advances, 2022, 3, 6415-6440.	2.6	26
2471	Study of New Consequences on Small Ferries Stability of Li-Po Batteries for Hybrid Propulsion. , 2022, ,		0
2472	Suppressing Vanadium Dissolution in "Water-in-Salt―Electrolytes for 3.2 V Aqueous Sodium-Ion Pseudocapacitors. ACS Applied Materials & Interfaces, 2022, 14, 35485-35494.	4.0	2
2473	Cuprous Chloride as a New Cathode Material for Room Temperature Chloride Ion Batteries. ChemElectroChem, 2022, 9, .	1.7	5
2474	Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes. Ionics, 2022, 28, 4641-4651.	1.2	11
2475	Catalytic Effects of Electrodes and Electrolytes in Metal–Sulfur Batteries: Progress and Prospective. Advanced Materials, 2022, 34, .	11.1	22
2476	Soft-phonon anharmonicity, floppy modes, and Na diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Na</mml:mi> <mml: mathvariant="normal">F <mml:mi>Y</mml:mi> </mml: </mml:msub></mml:mrow> <mml:mo>Â</mml:mo> <mml:mrow> <n< td=""><td></td><td></td></n<></mml:mrow></mml:math 		
2477	: <i>Ab initio</i> . Physical Review B, 2022, 106, . Ultrafine Nanocrystals SnS ₂ Confined on the Inner Wall of Hollow Mesoporous Carbon Nanospheres with Hybrid Storage Mechanism for Highâ€Performance Li ⁺ /Na ⁺ Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	7

#	Article	IF	CITATIONS
2478	Common elements, uncommon chemistry. Nature Chemistry, 2022, 14, 843-844.	6.6	0
2479	MoS2-intercalated carbon hetero-layers bonded on graphene as electrode materials for enhanced sodium/potassium ion storage. Nano Research, 2023, 16, 473-480.	5.8	9
2480	Coaxial Hard Carbon oated Carbon Nanotubes as Anodes for Sodiumâ€ion Batteries. ChemNanoMat, 2022, 8, .	1.5	1
2481	Phosphorusâ€Based Materials for Highâ€Performance Alkaline Metal Ion Batteries: Progress and Prospect. Small, 2022, 18, .	5.2	16
2482	Reclaimed δ-MnO2 from exhausted Zn/C primary cells as active cathode in secondary Zn2+ ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 2479-2489.	1.2	1
2483	Carbon-coated Sn-reduced graphene oxide composite synthesized using supercritical methanol and high-pressure free meniscus coating for Na-ion batteries. Journal of Supercritical Fluids, 2022, 189, 105720.	1.6	2
2484	Rechargeable Aqueous Aluminumâ€ion Battery: Progress and Outlook. Small, 2022, 18, .	5.2	31
2485	Synergetic Effect of Isovalent- and Aliovalent-Ion Dual-Doping in the Vanadium Site of Na ₃ V ₂ (PO ₄) ₃ for Wide-Temperature Operating Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 10473-10482.	2.5	9
2486	Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Chemical Papers, 2022, 76, 7465-7473.	1.0	6
2487	Correlating Structural Properties with Electrochemical Behavior of Non-graphitizable Carbons in Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 10667-10679.	2.5	3
2488	Fast Ion Transport Mechanism and Electrochemical Stability of Trivalent Metal Iodide-based Na Superionic Conductors Na ₃ XI ₆ (X = Sc, Y, La, and In). ACS Applied Materials & Interfaces, 2022, 14, 36864-36874.	4.0	6
2489	Bioinspired Freezeâ€Tolerant Soft Materials: Design, Properties, and Applications. Small, 2022, 18, .	5.2	29
2490	Highly Reversible Sodium Metal Battery Anodes via Alloying Heterointerfaces. Small, 2022, 18, .	5.2	14
2491	Theoretical Progress of 2D Sixâ€Memberedâ€Ring Inorganic Materials as Anodes for Nonâ€Lithiumâ€lon Batteries. Small, 2022, 18, .	5.2	6
2492	Na ion batteries: An India centric review. Heliyon, 2022, 8, e10013.	1.4	3
2493	Stabilizing Interfacial Reactions for Stable Cycling of Highâ€Voltage Sodium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	19
2494	P2-type layered high-entropy oxides as sodium-ion cathode materials. Materials Futures, 2022, 1, 035104.	3.1	25
2495	Ultrasmall NiS2 Nanocrystals Embedded in Ordered Macroporous Graphenic Carbon Matrix for Efficiently Pseudocapacitive Sodium Storage. Transactions of Tianjin University, 2023, 29, 89-100.	3.3	4

ARTICLE IF CITATIONS Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion 2496 25.0 62 battery. EScience, 2022, 2, 529-536. Molten Salts Etching Route Driven Universal Construction of MXene/Transition Metal Sulfides 2497 Heterostructures with Interfacial Electronic Coupling for Superior Sodium Storage. Advanced 10.2 58 Energy Materials, 2022, 12, . 3D Printing Flexible Sodiumâ€Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate 2498 11.1 27 Capability. Advanced Materials, 2022, 34, . Co-Co LDH-derived CoSe2 anchored on N-doped carbon nanospheres as high-performance anodes for 2499 sodium-ion batteries. Electrochimica Acta, 2022, 432, 141012. Interface and Defect Engineered Titaniumâ€Base Oxide Heterostructures Synchronizing Highâ€Rate and 2500 10.2 23 Ultrastable Sodium Storage. Advanced Energy Materials, 2022, 12, . Elucidation of the sodium kinetics in layered P-type oxide cathodes. Science China Chemistry, 2022, 65, 4.2 2005-2014. National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, 2502 1.6 2 USA, and European Countries. Sustainability, 2022, 14, 10014. Insights into Electrochemical Processes of Hollow Octahedral Co₃Se₄@rGO 2503 4.0 for High-Rate Sodium Ion Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 37689-37698. Tug-of-War in the Selection of Materials for Battery Technologies. Batteries, 2022, 8, 105. 7 2504 2.1 Facile synthesis of Na0.23TiO2 nanoparticles anode wrapped within full carbon network with high-rate capability for sodium ion battery application. Materials Chemistry and Physics, 2022, 290, 126600. Toward high-performance sodium storage cathode: Construction and purification of carbon-coated 2506 7 4.0Na3V2(PO4)2F3 materials. Journal of Power Sources, 2022, 546, 231986. Heat generation and degradation mechanisms studied on Na3V2(PO4)3/C positive electrode material in 4.0 full pouch / coin cell assembly. Journal of Power Sources, 2022, 545, 231901. Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on 2508 4.0 3 sodiophilic zinc-metal-decorated hard carbons. Journal of Power Sources, 2022, 544, 231862. Porphyrin- and phthalocyanine-based systems for rechargeable batteries. Energy Storage Materials, 2022, 52, 495-513. 2509 Enhanced electrochemical performance of O3-type NaNi0.5Mn0.3Co0.2O2 cathodes for sodium-ion 2510 2.8 5 batteries via Al-doping. Journal of Alloys and Compounds, 2022, 924, 166444. Fast ionic conduction and rectification effect of NaCo0.5Fe0.5O2-CeO2 nanoscale heterostructure for LT-SOFC electrolyte application. Journal of Alloys and Compounds, 2022, 924, 166565. The secondary aqueous zinc-manganese battery. Journal of Energy Storage, 2022, 55, 105397. 2512 3.9 13

CITATION REPORT

2513	Enhancing structural stability of NaCrO2 by Nb-substituting for sodium-ion battery. Journal of Alloys and Compounds, 2022, 925, 166690.	2.8	2
------	---	-----	---

#

#	Article	IF	CITATIONS
2514	Cobalt hexacyanoferrate enhanced by common ion effect for aqueous potassium-ion batteries. Applied Surface Science, 2022, 604, 154654.	3.1	3
2515	Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis. Energy, 2022, 261, 125151.	4.5	12
2516	Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 628, 41-52.	5.0	7
2517	Cyclotriphosphazene-based flame-retardant polymer electrolytes for high performance sodium metal batteries. Chemical Engineering Journal, 2022, 450, 138385.	6.6	13
2518	Constructing Robust Solid Electrolyte Interface via ZrO2 Coating Layer for Hard Carbon Anode in Sodium-Ion Batteries. Batteries, 2022, 8, 115.	2.1	3
2519	" <scp>Winâ€Win</scp> ―Scenario of High Energy Density and Long Cycling Life in a Novel Na _{3.} <scp>₉MnCr₀</scp> _. <scp>₉Zr_{0Cathode. Energy and Environmental Materials, 2024, 7, .}</scp>	ub ⁊. ৪/scp>	• _{.1}
2520	Multi-wall carbon nanotube-induced nanobelt potassium vanadate composite as cathode for sodium-ion batteries. Electrochimica Acta, 2022, 430, 141128.	2.6	2
2521	Improved Na-ion kinetics of 1T MoS2 nanopatterned porous hard carbon as an ultra-long life anode. Electrochimica Acta, 2022, 432, 141130.	2.6	4
2522	Influence of low content metal intermixing on electrochemical stability and sodium ion transport in Na2(Mg2â^'Zn)TeO6 (xÂ=Â0.125, 1.875) for solid state sodium-ion batteries. Solid State Ionics, 2022, 385, 116006.	1.3	0
2523	Common ion effect enhanced cobalt hexacyanoferrate for aqueous Na-ion battery. Composites Part B: Engineering, 2022, 246, 110241.	5.9	7
2524	Assessment of the first commercial Prussian blue based sodium-ion battery. Journal of Power Sources, 2022, 548, 232036.	4.0	22
2525	Potential of potassium and sodium-ion batteries as the future of energy storage: Recent progress in anodic materials. Journal of Energy Storage, 2022, 55, 105625.	3.9	30
2526	Confining homogeneous Ni0.5Co0.5Se2 nanoparticles in Ti3C2T MXene architectures for enhanced sodium storage performance. Applied Surface Science, 2022, 605, 154847.	3.1	18
2527	Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives. Energy Storage Materials, 2022, 53, 79-135.	9.5	49
2528	Assembly and electrochemical testing of renewable carbon-based anodes in SIBs: A practical guide. Journal of Energy Chemistry, 2022, 75, 457-477.	7.1	9
2529	Bioconfined SnS2 N-doped carbon fibers with multiwall robust structure for boosting sodium storage. Applied Surface Science, 2022, 605, 154633.	3.1	7
2530	Layered double hydroxide derived cobalt-iron sulfide heterostructures with enhanced reaction kinetics for use in sodium-ion batteries. Journal of Alloys and Compounds, 2022, 927, 167088.	2.8	4
2531	3D electronic channels wrapped Large-Sized SnSe as flexible electrode for Sodium-Ion batteries. Applied Surface Science, 2022, 606, 154955.	3.1	2

#	Article	IF	CITATIONS
2532	3D ordered hierarchically porous carbon derived from colloidal crystal templates towards alkali metal-ion batteries. Carbon, 2023, 201, 76-99.	5.4	18
2533	Auxiliary thermodynamic analysis support capturing the differences in nanostructured FeVO4·nH2O electrodes between lithium and sodium ions storage mechanism. Chemical Engineering Journal, 2023, 452, 139310.	6.6	3
2534	<i>In situ</i> fabrication of MXene/CuS hybrids with interfacial covalent bonding <i>via</i> Lewis acidic etching route for efficient sodium storage. Journal of Materials Chemistry A, 2022, 10, 22135-22144.	5.2	22
2535	Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries. Chemical Science, 2022, 13, 11585-11593.	3.7	7
2536	<i>Ab initio</i> determination of a simultaneous dual-ion charging mechanism for Ni _{0.25} Mn _{0.75} O ₂ through redox reactions of Ni ²⁺ /Ni ⁴⁺ and O ^{2â^'} /O ^{â^'} . Journal of Materials Chemistry A, 2022, 10, 18916-18927.	5.2	1
2537	Bioinspired redox-coupled conversion reaction in FeOOH-acetate hybrid nanoplatelets for Na ion battery. Journal of Materials Chemistry A, 2022, 10, 17740-17751.	5.2	4
2538	Advances in the regulation of kinetics of cathodic H ⁺ /Zn ²⁺ interfacial transport in aqueous Zn/MnO ₂ electrochemistry. Nanoscale, 2022, 14, 14433-14454.	2.8	5
2539	Point defects and their impact on electrochemical performance in Na _{0.44} MnO ₂ for sodium-ion battery cathode application. Physical Chemistry Chemical Physics, 2022, 24, 22736-22745.	1.3	11
2540	Chitin as a Universal and Sustainable Electrode Binder for Electrochemical Capacitors. SSRN Electronic Journal, 0, , .	0.4	1
2541	High-Rate Formation Protocol Enables a High Ionic Conductivity Sei for Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2542	Cation binding of Li(<scp>i</scp>), Na(<scp>i</scp>) and Zn(<scp>ii</scp>) to cobalt and iron sulphide clusters – electronic structure study. Physical Chemistry Chemical Physics, 2022, 24, 20228-20238.	1.3	1
2543	Phase Transition Toward High Symmetry Above 40 GPA in Zero-Strain Li2tio3. SSRN Electronic Journal, 0, , .	0.4	Ο
2544	Spontaneous solid electrolyte interface formation in uncycled sodium half-cell batteries: using X-ray photoelectron spectroscopy to explore the pre-passivation of sodium metal by fluoroethylene carbonate before potentials are applied. Sustainable Energy and Fuels, 0, , .	2.5	0
2545	Carbon-Based Nanomaterials for Metal-Ion Batteries. Springer Series in Materials Science, 2022, , 209-226.	0.4	0
2546	Vanadium-free NASICON-type electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 21816-21837.	5.2	12
2547	Confining MoS ₂ nanodots in compact layered graphene blocks for high volumetric capacity, fast, and stable sodium storage. Journal of Materials Chemistry A, 2022, 10, 22638-22644.	5.2	6
2548	Potassium doping towards enhanced Na-ion diffusivity in a fluorophosphate cathode for sodium-ion full cells. Journal of Materials Chemistry A, 2022, 10, 22105-22113.	5.2	5
2549	Edge-enriched and S-doped carbon nanorods to accelerate electrochemical kinetics of sodium/potassium storage. Carbon, 2023, 201, 776-784.	5.4	10

#	Article	IF	CITATIONS
2550	Advanced layered oxide cathodes for sodium/potassium-ion batteries: Development, challenges and prospects. Chemical Engineering Journal, 2023, 452, 139438.	6.6	57
2551	Highly flexible MnO2@polyaniline core-shell nanowire film toward substantially expedited zinc energy storage. Chemical Engineering Journal, 2023, 452, 139408.	6.6	16
2552	Homogeneously distributed heterostructured interfaces in rice panicle-like SbBi-Bi2Se3-Sb2Se3 nanowalls for robust sodium storage. Chemical Engineering Journal, 2023, 452, 139363.	6.6	5
2553	In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. Journal of Energy Chemistry, 2023, 76, 146-164.	7.1	28
2554	Entropyâ€Change Driven Highly Reversible Sodium Storage for Conversionâ€Type Sulfide. Advanced Functional Materials, 2022, 32, .	7.8	17
2555	Amylopectin-Assisted Fabrication of In Situ Carbon-Coated Na ₃ V ₂ (PO ₄) ₂ F ₃ Nanosheets for Ultra-Fast Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 40812-40821.	4.0	10
2556	Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries. Proceedings of the Indian National Science Academy, 2022, 88, 430-438.	0.5	4
2557	Interspace and Vacancy Modulation: Promoting the Zinc Storage of an Alcoholâ€Based Organic–Inorganic Cathode in a Water–Organic Electrolyte. Advanced Materials, 2022, 34, .	11.1	17
2558	Dualâ€Use of Seawater Batteries for Energy Storage and Water Desalination. Small, 2022, 18, .	5.2	20
2559	Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Science China Materials, 2023, 66, 79-87.	3.5	44
2560	A Novel Pentanary Metal Oxide Cathode with P2/O3 Biphasic Structure for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	37
2561	Influence of the Cation on the Reaction Mechanism of Sodium Uptake and Release in Bivalent Transition Metal Thiophosphate Anodes: A Case Study of Fe ₂ P ₂ S ₆ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
2562	Synthetic Control of Electronic Property and Porosity in Anthraquinone-Based Conjugated Polymer Cathodes for High-Rate and Long-Cycle-Life Na–Organic Batteries. ACS Nano, 2022, 16, 14590-14599.	7.3	15
2563	Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 629, 1061-1067.	5.0	7
2564	Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries. Journal of Applied Electrochemistry, 2023, 53, 9-18.	1.5	3
2565	3D hierarchical architectures of CoSe ₂ nanoparticles embedded in riceâ€derived hard carbon for advanced sodium storage. , 2022, 1, 224-232.		6
2566	Dualâ€ion Intercalation Chemistry Enabling Hybrid Metalâ€ion Batteries. ChemSusChem, 2023, 16, .	3.6	7
	Structural and Electrochemical Sodium (De)intercalation Properties of Carbon oated		

2567 NASICONâ€Na_{3+<i>y</i>}V_{2â[^]<i>y</i>}Mn_{<i>y</i>}(PO₄)<sub>288/sub> 5 Cathodes for Naâ€Ion Batteries. Advanced Energy and Sustainability Research, 2022, 3, .

#	Article	IF	CITATIONS
2568	Directional Regulation of Surface Chemistry of Graphene Using Carbon Dots for Sodium-Ion Battery Anodes. ACS Applied Nano Materials, 2022, 5, 14912-14921.	2.4	11
2569	Enhanced High-Rate Capability and Long Cycle Stability of FeS@NCG Nanofibers for Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2022, 14, 44303-44316.	4.0	10
2570	Recent advances for SEI of hard carbon anode in sodium-ion batteries: A mini review. Frontiers in Chemistry, 0, 10, .	1.8	11
2571	Electrochemically Controllable Synthesis of Low-Valence Titanium Sulfides for Advanced Sodium Ion Batteries with Ultralong Cycle Life in a Wide Potential Window. ACS Applied Materials & Interfaces, 2022, 14, 42113-42122.	4.0	1
2572	Sb/Nâ€Ðoped Carbon Nanofiber as a Sodiumâ€ion Battery Anode. Energy Technology, 2022, 10, .	1.8	3
2573	Synergistic Modification of Fe-Based Prussian Blue Cathode Material Based on Structural Regulation and Surface Engineering. ACS Applied Materials & amp; Interfaces, 2022, 14, 43308-43318.	4.0	4
2574	Regulating Oxygen Configuration in Hierarchically Porous Carbon Nanosheets for Highâ€Rate and Durable Na ⁺ Storage. Chemistry - A European Journal, 2022, 28, .	1.7	3
2575	Toward Highâ€Arealâ€Capacity Electrodes for Lithium and Sodium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	28
2576	NaAlCl ₄ : New Halide Solid Electrolyte for 3 V Stable Cost-Effective All-Solid-State Na-Ion Batteries. ACS Energy Letters, 2022, 7, 3293-3301. Mechanism of Efficient Adsorption of Amplimath Amplity and Stable Cost-Effective All-Solid-State Na-Ion	8.8	23
2577	display="inline" overflow="scroll"> <mml:mi>Na</mml:mi> Atoms on Electron-Deficient Doped <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:misub><mml:mi>Mo</mml:mi><mml:mi mathvariant="normal">S<mml:mn>2</mml:mn></mml:mi </mml:misub></mml:math> for	1.5	3
2578	Battery Electrodes. Physical Review Applied, 2022. 18, . Na3Zr2Si2PO12 solid-state electrolyte with glass-like morphology for enhanced dendrite suppression. Rare Metals, 2022, 41, 4086-4093.	3.6	14
2579	Pilot‣cale Synthesis Sodium Iron Fluorophosphate Cathode with High Tap Density for a Sodium Pouch Cell. Small, 2022, 18, .	5.2	14
2580	Superstructure Variation and Improved Cycling of Anion Redox Active Sodium Manganese Oxides Due to Doping by Iron. Advanced Energy Materials, 2022, 12, .	10.2	13
2581	Effect of Vinylene Carbonate Electrolyte Additive on the Process of Insertion/Extraction of Na into Ge Microrods Formed by Electrodeposition. Batteries, 2022, 8, 109.	2.1	2
2582	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
2583	Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery. Nanomaterials, 2022, 12, 3345.	1.9	16
2584	Designing photocured macromolecular matrices for stable potassium batteries. Sustainable Materials and Technologies, 2022, 34, e00504.	1.7	11
2585	Boosting Charge Transfer Via Heterostructure Engineering of Ti ₂ CT <i>_x</i> /Na ₂ Ti ₃ O ₇ Nanobelts Array for Superior Sodium Storage Performance. Small, 2022, 18, .	5.2	8

#	Article	IF	CITATIONS
2586	NiCr-Cl LDH/rGO Composite as Anode Material for Sodium-Ion Batteries. Journal of Electronic Materials, 2022, 51, 6067-6075.	1.0	3
2587	Solvated Sodium Storage via a Coadsorptive Mechanism in Microcrystalline Graphite Fiber. Advanced Energy Materials, 2022, 12, .	10.2	19
2588	Effect of Cu substitution on anion redox behaviour in P3-type sodium manganese oxides. JPhys Energy, 2022, 4, 044006.	2.3	2
2589	Multifunctional 1D Nanostructures toward Future Batteries: A Comprehensive Review. Advanced Functional Materials, 2022, 32, .	7.8	18
2590	Structure and function of hard carbon negative electrodes for sodium-ion batteries. JPhys Energy, 2022, 4, 042001.	2.3	12
2591	MOF derived NiO thin film formed p-n heterojunction with BiVO4 photoelectrode for enhancement of PEC performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130282.	2.3	18
2592	Transition Metal Oxalate-Based Materials: An Emerging Material Family for Alkali-Ion Battery Cathodes. ACS Applied Energy Materials, 2022, 5, 11947-11963.	2.5	2
2593	Microwave-Assisted Synthesis of Sulfide Solid Electrolytes for All-Solid-State Sodium Batteries. ACS Applied Energy Materials, 2022, 5, 12592-12601.	2.5	5
2594	Structural, dielectric, electric, transport, and optical properties of a double perovskite: BaKFeMoO6. Chinese Journal of Physics, 2023, 85, 674-691.	2.0	2
2595	Versatile Electrospinning for Structural Designs and Ionic Conductor Orientation in All-Solid-State Lithium Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	21
2596	Sodium-Ion Storage Properties of Thermally Stable Anatase. Energy Material Advances, 2022, 2022, .	4.7	5
2597	Surface-engineered Ti ₃ C ₂ T _x MXene enabling rapid sodium/potassium ion storage. 2D Materials, 2023, 10, 014005.	2.0	23
2598	Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries. Ionics, 2022, 28, 5289-5319.	1.2	12
2599	Lowâ€Cost and Scalable Niâ€Prussian Blue Analogue//Functionalized Carbon Based Naâ€Ion Systems for all Climate Operations. ChemPhysChem, 2023, 24, .	1.0	3
2600	Reconfiguring Sodium Intercalation Process of TiS ₂ Electrode for Sodium-Ion Batteries by a Partial Solvent Cointercalation. ACS Energy Letters, 2022, 7, 3718-3726.	8.8	8
2601	Improved Electrochemical Performance of NTs-WS ₂ @C Nanocomposites for Lithium-Ion and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 46386-46400.	4.0	11
2602	Enhancement of electrical and electrochemical properties of sodium bromide incorporated with poly (ethylene oxide)/poly (vinylidene fluoride-hexafluoropropylene) solid blend polymer electrolytes for electrochemical double layer capacitors. Journal of Energy Storage, 2022, 55, 105726.	3.9	7
2603	Electrospun Bi-doped TiO2/C nanofibers as active materials for high-capacity and long-life-stability sodium-ion anodes. Journal of Electroanalytical Chemistry, 2022, 924, 116855.	1.9	3

#	Article	IF	CITATIONS
2604	Pseudocapacitive boosts nanoparticles composed of sea urchin structure Bi2S3-xSex@rGO with high rate and capacity for sodium ion battery anode. Materials Chemistry and Physics, 2022, 292, 126806.	2.0	2
2605	Enabling both ultrahigh initial coulombic efficiency and superior stability of Na ₂ Ti ₃ O ₇ anodes by optimizing binders. Journal of Materials Chemistry A, 2022, 10, 24178-24189.	5.2	6
2606	Development of polyanionic sodium-ion battery insertion materials. , 2022, , .		0
2607	Development of Vang Danh anthracite as a cost-effective anode for sodium-ion batteries through a heat-treatment process. RSC Advances, 2022, 12, 29900-29907.	1.7	2
2608	Headway towards contemporary 2D MXene-based hybrid electrodes for alkali-ion batteries. Energy Advances, 2022, 1, 950-979.	1.4	3
2609	Structural engineering of bimetallic selenides for high-energy density sodium-ion half/full batteries. Dalton Transactions, 2022, 51, 16898-16905.	1.6	4
2610	A fluorinated O3-type layered cathode for long-life sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 23639-23648.	5.2	12
2611	Perspectives on Lithium-Based Batteries and Post-Lithium Batteries for Electric Vehicles. , 2022, , .		0
2612	Biopolymer Based Materials as Alternative Greener Binders for Sustainable Electrochemical Energy Storage Applications. ChemistrySelect, 2022, 7, .	0.7	6
2613	Fabrication of Na _{0.4} MnO ₂ Microrods for Room-Temperature Oxidation of Sulfurous Gases. ACS Omega, 2022, 7, 37774-37781.	1.6	7
2614	A Practical Polymer Electrolyte for Lithium and Sodium Batteries: Poly(pentyl malonate). ACS Energy Letters, 2022, 7, 3791-3797.	8.8	10
2615	Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion. ACS Omega, 2022, 7, 39498-39519.	1.6	16
2616	Developing Highâ€Performance Metal Selenides for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	38
2617	Eliminating crystal water enables enhanced sodium storage performance in an oxalate-phosphate cathode material. Chinese Chemical Letters, 2023, 34, 107898.	4.8	2
2618	Recent Progress and Perspective: Na Ion Batteries Used at Low Temperatures. Nanomaterials, 2022, 12, 3529.	1.9	11
2619	Bimetallic Borate Ni ₂ FeBO ₅ as a High-Performance Anode for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 18636-18644.	1.5	3
2620	Engineering Microstructure of a Robust Polymer Anode by Moderate Pyrolysis for High-Performance Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 49641-49649.	4.0	2
2621	Multiscale-Designed Nanocomposite with a Fast Na ⁺ Diffusion Channel for Ultra-High Rate Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 13452-13460.	2.5	1

#	Article	IF	CITATIONS
2622	Single-Atom Yttrium Engineering Janus Electrode for Rechargeable Na–S Batteries. Journal of the American Chemical Society, 2022, 144, 18995-19007.	6.6	68
2623	Unraveling Atomicâ€5cale Origins of Selective Ionic Transport Pathways and Sodiumâ€Ion Storage Mechanism in Bi ₂ S ₃ Anodes. Small Methods, 2022, 6, .	4.6	10
2624	Study of Synergistic Effects of Cu and Fe on P2-Type Na _{0.67} MnO ₂ for High Performance Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 47863-47871.	4.0	9
2625	Green Fabrication of Amorphous FePO ₄ /Carbon Nanotube Electrodes via Electrophoretic Deposition for Sodium-Ion Batteries. Energy & Fuels, 2022, 36, 13408-13416.	2.5	2
2626	Prospective Sustainability Screening of Sodiumâ€ion Battery Cathode Materials. Advanced Energy Materials, 2022, 12, .	10.2	31
2627	One-Pot Spray Engineering to Design Na0.44MnO2 Cathode Electrodes for High-Rate and Cycle-Stable Na-Ion Batteries. Batteries, 2022, 8, 181.	2.1	1
2628	Bimetallic CuSbSe2: A potential anode material for sodium and lithiumâ€ion batteries with highâ€rate capability and longâ€term stability. Chemistry - A European Journal, 0, , .	1.7	0
2629	Defectâ€Induced Dense Amorphous/Crystalline Heterophase Enables Highâ€Rate and Ultrastable Sodium Storage. Advanced Science, 2022, 9, .	5.6	21
2630	V ₂ O ₅ as a versatile electrode material for postlithium energy storage systems. , 2023, 2, .		7
2631	Free-Standing, Self-Doped Porous Hard Carbon: Na-Ion Storage with Enhanced Initial Coulombic Efficiency. ACS Applied Materials & amp; Interfaces, 2022, 14, 47507-47516.	4.0	2
2632	Stability of Magnesium Binary and Ternary Compounds for Batteries Determined from First Principles. Journal of Physical Chemistry Letters, 2022, 13, 10092-10100.	2.1	4
2634	Hydration Structure of Na ⁺ and K ⁺ Ions in Solution Predicted by Data-Driven Many-Body Potentials. Journal of Physical Chemistry B, 2022, 126, 9349-9360.	1.2	10
2635	Recent advancement in rechargeable battery technologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	6
2636	Diffusion mechanism and electrochemical investigation of 1T phase Al–MoS2@rGO nano-composite as a high-performance anode for sodium-ion batteries. Chemical Engineering Journal, 2023, 454, 140140.	6.6	14
2637	Preparation of mesocarbon microbeads by thermal polymerization of the blended coal tar and biomass tar pitch as anode material for sodium-ion batteries. International Journal of Electrochemical Science, 0, , ArticleID:221150.	0.5	0
2638	PPy-derived carbon nanoparticles anchored on TiO2/C nanofibers as sodium-ion battery anodes with ultra-long cycle stability. Journal of Electroanalytical Chemistry, 2022, 926, 116949.	1.9	5
2639	A high-performance solid sodium battery enabled by a thin Na-Ti3C2Tx composite anode. Electrochimica Acta, 2022, 436, 141424.	2.6	4
2640	Are Na-ion batteries nearing the energy storage tipping point? – Current status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage. Journal of Energy Storage, 2022, 56, 105961.	3.9	17

#	Article	IF	CITATIONS
2641	Enhanced electrochemical performance of NASICON-type sodium ion cathode based on charge balance theory. Energy Storage Materials, 2022, 53, 881-889.	9.5	24
2642	Chitin as a universal and sustainable electrode binder for electrochemical capacitors. Journal of Power Sources, 2023, 553, 232300.	4.0	8
2643	High performance sodium-ion anodes based on FeSb2S4/Sb embedded within porous reduced graphene oxide/carbon nanotubes matrix. Journal of Alloys and Compounds, 2023, 931, 167576.	2.8	4
2644	Co3C/Mxene composites wrapped in N-rich carbon as stable-performance anodes for potassium/sodium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130332.	2.3	10
2645	Cu triggered phase transitions in Fe7S8@NS-C anode: A neglected factor affecting the electrochemical performance of sodium storage. Applied Surface Science, 2023, 609, 155407.	3.1	6
2646	Weak coulomb interaction between anions and Na+ during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries. Chemical Engineering Journal, 2023, 453, 139932.	6.6	7
2647	Nanoengineered Carbonâ€Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Advanced Materials Interfaces, 2023, 10, .	1.9	6
2648	High-rate formation protocol enables a high ionic conductivity SEI for sodium-ion batteries. Journal of Power Sources, 2023, 554, 232298.	4.0	10
2649	Recent advances of emerging oxyhydroxide for electrochemical energy storage applications. Journal of Power Sources, 2023, 554, 232309.	4.0	35
2650	Single-crystalline Mn2V2O7 anodes with high rate and ultra-stable capability for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 934, 168018.	2.8	7
2651	Longitudinally grown pyrolyzed quinacridones for sodium-ion battery anode. Chemical Engineering Journal, 2023, 453, 139805.	6.6	7
2652	lodine-Ion-Assisted Galvanic Replacement Synthesis of Bismuth Nanotubes for Ultrafast and Ultrastable Sodium Storage. ACS Nano, 2022, 16, 18746-18756.	7.3	16
2653	Dualâ€Function Presodiation with Sodium Diphenyl Ketone towards Ultraâ€stable Hard Carbon Anodes for Sodiumâ€ion Batteries. Angewandte Chemie, 0, , .	1.6	0
2654	Enhanced sodium storage performance by improving the utilization of NiS through electrode membrane 3D hierarchical porous structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130551.	2.3	1
2655	Fundamental Principles toward Designing High Na-Containing P2-Structured "Layered―Na-Transition Metal Oxides as High-Performance Cathode Materials for Na-Ion Batteries. Chemistry of Materials, 2022, 34, 10470-10483.	3.2	8
2656	Dualâ€Function Presodiation with Sodium Diphenyl Ketone towards Ultraâ€stable Hard Carbon Anodes for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	57
2657	Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2023, 34, 107978.	4.8	17
2658	Crumpling Carbonâ€Pillared Atomicâ€Thin Dichalcogenides and CNTs into Elastic Balls as Superior Anodes for Sodium/Potassiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24

#	Article	IF	CITATIONS
2659	Recent Advances on Heterojunctionâ€⊺ype Anode Materials for Lithiumâ€∤Sodiumâ€Ion Batteries. Small Methods, 2022, 6, .	4.6	28
2660	Carbon-Coated Flower-Like TiO ₂ Nanosphere as an Ultrastable Anode Material for Potassium-Ion Batteries: Structure Design and Mechanism Study. ACS Applied Energy Materials, 2022, 5, 15586-15596.	2.5	7
2661	Solid‣tate NMR Study on the Structure and Dynamics of Graphite Electrodes in Sodiumâ€ion Batteries with Solvent Coâ€intercalation. Batteries and Supercaps, 2023, 6, .	2.4	5
2662	MoS2/MoO2 nanosheets anchored on carbon cloth for high-performance magnesium- and sodium-ion storage. Journal of Materials Science and Technology, 2023, 143, 43-53.	5.6	8
2663	A density functional theory study of twin T-graphene as an anode material for Na-ion-based batteries. Journal of Applied Physics, 2022, 132, 194301.	1.1	7
2664	Towards High-Performance Sodium-Ion Batteries: Starting from Electrode Materials. , 0, 17, 273-281.		0
2665	Templated Synthesis of 2D Polyimide Covalent Organic Framework for Rechargeable Sodiumâ€ion Batteries. Macromolecular Rapid Communications, 2023, 44, .	2.0	12
2666	Interface and Structure Engineering of Tinâ€Based Chalcogenide Anodes for Durable and Fastâ€Charging Sodium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	28
2667	The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices. Nano Materials Science, 2022, , .	3.9	9
2668	Structural Stability Boosted in 3D Carbonâ€Free Iron Selenide through Engineering Heterointerfaces with SeP Bonds for Appealing Na ⁺ â€Storage. Advanced Functional Materials, 2023, 33, .	7.8	7
2669	Confined replacement synthesis of SnSe nanoplates in N-doped hollow carbon nanocages for high-performance sodium–ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 793-803.	3.0	9
2670	Enhanced electrochemical performance of sodium cathode materials with partial substitution of Zr. Electrochemistry Communications, 2023, 146, 107413.	2.3	2
2671	New family of layered N-based cathode materials for sodium-ion batteries. RSC Advances, 2022, 12, 34200-34207.	1.7	2
2672	Conformal carbon nitride thin film inter-active interphase heterojunction with sustainable carbon enhancing sodium storage performance. Journal of Materials Chemistry A, 2023, 11, 1439-1446.	5.2	4
2673	Constructing FeS2/TiO2 p-n heterostructure encapsulated in one-dimensional carbon nanofibers for achieving highly stable sodium-ion battery. Chemical Engineering Journal, 2023, 455, 140824.	6.6	14
2674	Correlation of phase (in)stability and lattice misfits for high-power-density Na cathodes. Journal of Materials Chemistry A, 2023, 11, 5104-5111.	5.2	2
2675	Na2Mn(CO3)2: A carbonate based prototype cathode material for Na-ion batteries with high rate capability — An ab-initio study. Electrochimica Acta, 2023, 439, 141687.	2.6	1
2676	Two-dimensional porous flake biomass carbon with large layer spacing as an anode material for sodium ion batteries. Diamond and Related Materials, 2023, 131, 109601.	1.8	5

#	Article	IF	CITATIONS
2677	Voltage hysteresis loop as a fingerprint of slow kinetics Co ²⁺ -to-Co ³⁺ transition in layered Na _{<i>x</i>} Co _{<i>x</i>/2} Ti _{1â^'<i>x</i>/2} O ₂ cathodes for sodium batteries. Journal of Materials Chemistry A, 2022, 11, 187-204.	5.2	3
2678	Aluminum functionalized few-layer silicene as anode material for alkali metal ion batteries. Molecular Systems Design and Engineering, 2023, 8, 379-387.	1.7	5
2679	Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Materials Today Chemistry, 2023, 27, 101294.	1.7	8
2680	Electrode/electrolyte additives for practical sodium-ion batteries: a mini review. Inorganic Chemistry Frontiers, 2022, 10, 37-48.	3.0	11
2681	Laminar-protuberant like p-FeS2 rooted in mesoporous carbon sheets as high capacity anode for Na-ion batteries. Electrochimica Acta, 2023, 439, 141650.	2.6	1
2682	Studies on sodium-ion batteries: Searching for the proper combination of the cathode material, the electrolyte and the working voltage. The role of magnesium substitution in layered manganese-rich oxides, and pyrrolidinium ionic liquid. Electrochimica Acta, 2023, 439, 141654.	2.6	2
2683	Boosting the multi-electron reaction capability of Na4MnCr(PO4)3 by a fluorine doping strategy for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 937, 168429.	2.8	7
2684	Construction of hollow core–shell Sb2S3/S@S-doped C composite based on complexation reaction for high performance anode of sodium-ion batteries. Applied Surface Science, 2023, 613, 156111.	3.1	4
2685	Carboxylate-derived conductive, sodium-ion storable surface of Prussian Blue with a stable cathode-electrolyte interface. Journal of Alloys and Compounds, 2023, 938, 168502.	2.8	3
2686	Biomass carbon combined antimony sulfide with various contents as anodes with improved cycle stability in the sodium ion batteries. Journal of Alloys and Compounds, 2023, 936, 168270.	2.8	2
2687	A stable anthraquinone-derivative cathode to develop sodium metal batteries: The role of ammoniates as electrolytes. Journal of Energy Chemistry, 2023, 77, 572-580.	7.1	1
2688	Clarification of underneath capacity loss for O3-type Ni, co free layered cathodes at high voltage for sodium ion batteries. Journal of Energy Chemistry, 2023, 77, 479-486.	7.1	11
2689	Bimetal Substitution Enabled Energetic Polyanion Cathode for Sodium-Ion Batteries. Nano Letters, 2022, 22, 9685-9692.	4.5	8
2690	Multi-layered fluorinated graphene cathode materials for lithium and sodium primary batteries. Rare Metals, 2023, 42, 940-953.	3.6	8
2691	Threeâ€Ðimensional Holey Graphene Modified Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇)/C as a Highâ€Performance Cathode for Rechargeable Sodiumâ€ion Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	1
2693	Enhanced Cycle Stability of Low ost Naâ€Rich Metallic NaCl Electrode for Advanced Naâ€Ion Batteries. Advanced Functional Materials, 0, , 2210370.	7.8	0
2694	Engineering Transition Metal Layers for Long Lasting Anionic Redox in Layered Sodium Manganese Oxide. Advanced Functional Materials, 2023, 33, .	7.8	12
2695	Ultraâ€Thin Singleâ€Particleâ€Layer Sodium Betaâ€Aluminaâ€Based Composite Polymer Electrolyte Membrane fo Sodiumâ€Metal Batteries. Advanced Functional Materials, 2023, 33, .	^r 7.8	15

#	Article	IF	Citations
2696	Bonding Heterogeneity Leads to Hierarchical and Ultralow Lattice Thermal Conductivity in Sodium Metavanadate. Journal of Physical Chemistry Letters, 2022, 13, 11160-11168.	2.1	2
2697	Electrochemical energy storage and conversion: An overview. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	6
2698	Hydrothermally synthesized nickel cobalt oxide for bifunctional electrochemical supercapacitor and nonenzymatic glucose biosensor. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
2699	Anode-Free Rechargeable Sodium-Metal Batteries. Batteries, 2022, 8, 272.	2.1	7
2700	Towards Commercialization of Graphite as an Anode for Na-ion Batteries: Evolution, Virtues, and Snags of Solvent Cointercalation. ACS Energy Letters, 2023, 8, 436-446.	8.8	7
2701	Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery. Applied Surface Science, 2023, 614, 156188.	3.1	6
2702	Significant Enhancement in the Electrochemical Performances of a Nanostructured Sodium Titanate Anode by Molybdenum Doping for Applications as Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 18591-18602.	2.4	8
2703	Tailoring solid-electrolyte interphase and solvation structure for subzero temperature, fast-charging, and long-cycle-life sodium-ion batteries. Energy Storage Materials, 2023, 55, 826-835.	9.5	8
2704	Understanding the Molecular-Level Structure and Dynamics of Sodium Ions in Water in Ionic Liquid Electrolytes by Molecular Dynamics Simulations. Journal of Chemical & Engineering Data, 2023, 68, 162-172.	1.0	2
2705	Intermolecular Crossâ€Linking Reinforces Polymer Binders for Durable Alloyâ€Type Anode Materials of Sodiumâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	22
2706	Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage. Coatings, 2022, 12, 1873.	1.2	1
2707	Naâ€Rich Na ₃ V ₂ (PO ₄) ₃ Cathodes for Long Cycling Rechargeable Sodium Full Cells. Advanced Energy Materials, 2023, 13, .	10.2	21
2708	Progress and perspective on rechargeable magnesium-ion batteries. Science China Chemistry, 2024, 67, 214-246.	4.2	5
2709	lsomeric Triptycene Triquinones as Universal Cathode Materials for High Energy Alkali Metal Batteries. Batteries and Supercaps, 2023, 6, .	2.4	1
2710	Unusual Dual-Site Substitution Adjusts the Degree of Stacking Disorder in Honeycomb Na ₃ Ni ₂ SbO ₆ Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 56715-56724.	4.0	2
2711	Firstâ€Principles Investigation of Charged GermaGraphene as a Novel Cathode Material for Dual arbon Batteries. ChemSusChem, 0, , .	3.6	0
2712	A Disordered Rubik's Cubeâ€inspired Framework for Sodiumâ€ion Batteries with Ultralong Cycle Lifespan. Angewandte Chemie - International Edition, 2023, 62, .	7.2	36
2713	Progress in electrode materials for the industrialization of sodium-ion batteries. Progress in Natural Science: Materials International, 2023, 33, 1-7.	1.8	29

#	Article	IF	CITATIONS
2714	A disordered Rubik's cubeâ€inspired framework for sodiumâ€ion batteries with ultralong cycle lifespan. Angewandte Chemie, 0, , .	1.6	0
2716	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
2717	Chemical Speed Dating: The Impact of 52 Dopants in Na–Mn–O Cathodes. Chemistry of Materials, 2022, 34, 11047-11061.	3.2	6
2718	A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage. New Carbon Materials, 2022, 37, 1154-1160.	2.9	2
2720	Sodium Composite Oxide Cathode Materials:Phase Regulation, Electrochemical Performance and Reaction Mechanism. Batteries and Supercaps, 2023, 6, .	2.4	4
2722	Anion exchanged NiP2-xSx solid solution as an anode for sodium ion battery. Chemical Engineering Journal, 2023, 455, 140798.	6.6	3
2723	Preparation of Fe-doped Na2Mn3O7 and its Application as a Cathode Material for Sodium-ion Batteries. International Journal of Electrochemical Science, 2022, 17, 221234.	0.5	0
2724	Electrostatic Shielding Boosts Electrochemical Performance of Alloyâ€Type Anode Materials of Sodiumâ€Ion Batteries. Angewandte Chemie, 0, , .	1.6	1
2725	Enhanced Electrochemical Performance of the Na ₃ V ₂ (PO ₄) ₃ /C Cathode Material upon Doping with Mn/Fe for Na-Ion Batteries. ACS Omega, 2022, 7, 48192-48201.	1.6	4
2726	Preparation, transport and Na-storage properties of monoclinic – Na2FeSiO4 for Na-ion batteries. Solid State Ionics, 2022, 388, 116084.	1.3	0
2727	Electrostatic Shielding Boosts Electrochemical Performance of Alloyâ€Type Anode Materials of Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
2728	Next generation sodium-ion battery: A replacement of lithium. Materials Today: Proceedings, 2022, , .	0.9	4
2729	Oxygen-Tuned Na ₃ V ₂ (PO ₄) ₂ F _{3–2<i>y</i>} O _{2<i>y</i>< (0 ≤i>y < 1) as High-Rate Cathode Materials for Rechargeable Sodium Batteries. ACS Applied Energy Materials, 2022, 5, 15799-15808.}		9
2730	Quadrupolar 23Na+ NMR relaxation as a probe of subpicosecond collective dynamics in aqueous electrolyte solutions. Nature Communications, 2023, 14, .	5.8	7
2731	Unlocking High Capacity and Fast Na ⁺ Diffusion of H _{<i>x</i>} CrS ₂ by Protonâ€Exchange Pretreatment. Advanced Materials, 2023, 35, .	11.1	4
2732	Recent Advances in Surface Coatings of Layered Cathode Materials for Highâ€Performance Sodiumâ€Ion Batteries. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	8
2733	Substitutional effects on the Na-involved electrochemical properties of isomeric benzoquinones. Computational and Theoretical Chemistry, 2023, 1221, 114034.	1.1	0
2734	A D–A type polymer as an organic cathode material for sodium-based dual-ion batteries with 3.0 V output voltage. Journal of Materials Chemistry A, 2023, 11, 2711-2717.	5.2	8

#	Article	IF	CITATIONS
2735	Single-crystalline nanoflakes assembled CuS microspheres with improved sodium ion storage. Journal of Alloys and Compounds, 2023, 942, 168884.	2.8	1
2736	Azo-functionalised metal–organic framework for charge storage in sodium-ion batteries. Chemical Communications, 2023, 59, 1321-1324.	2.2	2
2737	Triggering reversible anion redox chemistry in O3-type cathodes by tuning Na/Mn anti-site defects. Energy and Environmental Science, 2023, 16, 584-597.	15.6	6
2738	Antimony Nanobelt Asymmetric Membranes for Sodium Ion Battery. Nanotechnology, 0, , .	1.3	0
2739	Quantification of Polysulfide Species in Aqueous Sulfur Thermocell. Chemistry Letters, 2023, 52, 197-201.	0.7	0
2740	Sodium/lithium 3d transition metalates for chemisorption of gaseous pollutants: a review. Materials Today Chemistry, 2023, 27, 101329.	1.7	2
2741	Multiâ€Level Modifications Enabling Chemomechanically Stable Niâ€Rich O3â€Layered Cathode toward Wideâ€Temperatureâ€Tolerance Quasiâ€Solidâ€State Naâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	11
2742	Anode-free Na metal batteries developed by nearly fully reversible Na plating on the Zn surface. Nanoscale, 2023, 15, 3255-3262.	2.8	11
2743	Defect formation and ambivalent effects on electrochemical performance in layered sodium titanate Na ₂ Ti ₃ O ₇ . Physical Chemistry Chemical Physics, 2023, 25, 3420-3431.	1.3	6
2744	Ultrathin CuF ₂ â€Rich Solidâ€Electrolyte Interphase Induced by Cationâ€Tailored Double Electrical Layer toward Durable Sodium Storage. Angewandte Chemie - International Edition, 2023, 62,	7.2	17
2745	Stable fast-charging sodium-ion batteries achieved by a carbomethoxy-modified disodium organic material. Cell Reports Physical Science, 2023, , 101240.	2.8	2
2746	Progress in Sodium Silicates for Allâ€Solidâ€State Sodium Batteries—a Review. Energy Technology, 2023, 11, .	1.8	4
2747	The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes. Energy and Environmental Science, 2023, 16, 535-545.	15.6	12
2748	Rechargeable sodium-ion battery based on a cathode of copper hexacyanoferrate. Journal of Solid State Electrochemistry, 0, , .	1.2	1
2749	Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries. Science Bulletin, 2023, 68, 180-191.	4.3	14
2750	Emerging organic electrodes for Na-ion and K-ion batteries. Energy Storage Materials, 2023, 56, 267-299.	9.5	41
2751	Dualâ€strategy modification on P2â€Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ realizes stable highâ€voltage cathode and high energy density full cell for sodiumâ€ion batteries. SusMat, 2023, 3, 58-71.	7.8	18
2752	Recent progress in the fabrication of nanostructured zinc-based ternary metal oxides for high-performance lithium-ion batteries. Journal of Applied Electrochemistry, 2023, 53, 1077-1107.	1.5	2

#	Article	IF	CITATIONS
2753	Chloride-doping, defect and interlayer engineering of copper sulfide for superior sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 4102-4110.	5.2	10
2754	Interface Engineering Enables High-Performance Sb Anode for Sodium Storage. Nanomaterials, 2023, 13, 254.	1.9	19
2755	Ultrathin CuF2â€Rich Solidâ€Electrolyte Interphase Induced by Cationâ€Tailored Double Electrical Layer toward Durable Sodium Storage. Angewandte Chemie, 0, , .	1.6	1
2756	Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries. Electrochimica Acta, 2023, 442, 141915.	2.6	3
2757	Design of Phosphide Anodes Harvesting Superior Sodium Storage: Progress, Challenges, and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	30
2758	Carbon shell-coated mackinawite FeS platelets as anode materials for high-performance sodium-ion batteries. Chemical Engineering Journal, 2023, 458, 141354.	6.6	4
2759	Dual Mechanism for Sodium based Energy Storage. Small, 2023, 19, .	5.2	11
2761	Double sites doping local chemistry Adjustment: A Multiple-Layer oriented P2-Type cathode with Long-life and Water/Air stability for sodium ion batteries. Chemical Engineering Journal, 2023, 458, 141384.	6.6	8
2762	Monolayer of B3O3 as a promising material in anode of magnesium-ion batteries: A theoretical study. Computational and Theoretical Chemistry, 2023, 1220, 114008.	1.1	3
2763	Wafer-biscuits-like few-graphene-layers carbon with N, P, S triple-doping for efficient and stable sodium-ion storage. Electrochimica Acta, 2023, 441, 141813.	2.6	4
2764	New insights into the critical role of inactive element substitution in improving the rate performance of sodium oxide cathode material. Energy Storage Materials, 2023, 56, 87-95.	9.5	11
2765	Construction of diphenic acid molecular welded Ti3C2 with enlarged and stable interlayer spacing towards high rate alkali metal ions storage. Electrochimica Acta, 2023, 440, 141755.	2.6	3
2766	Carbon-coated TiO2 anode with solid electrolyte interphase engineered by Ca(ClO4)2 as electrolyte additive towards superior sodium storage. Journal of Alloys and Compounds, 2023, 938, 168645.	2.8	1
2767	Sub-nanometric amorphous V–O clusters without grain boundaries bonded in yolk-shell carbon nanospheres for superior sodium-ion storage. Composites Part B: Engineering, 2023, 252, 110532.	5.9	6
2768	Fast ionic PEO-NaCF3SO3-Na3Zr2Si2P3O12 membranes for all-solid-state energy storage devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116252.	1.7	3
2769	In-situ synthesis of Fe7S8 on metal sites of MOFs as high-capacity and fast-kinetics anodes for sodium ion batteries. Journal of Alloys and Compounds, 2023, 940, 168854.	2.8	3
2770	Revealing the Phase Evolution in Na ₄ Fe _{<i>x</i>} P ₄ O _{12+<i>x</i>} (2 ≤(i>x ≤4) Cathode Materials. ACS Energy Letters, 2023, 8, 753-761.	8.8	20
2771	Novel Strategy for the Formulation of Highâ€Energyâ€Density Cathodes via Porous Carbon for Liâ€S Batteries. ChemSusChem, 0, , .	3.6	0

#	Article	IF	CITATIONS
2772	Interface Stability between Na3Zr2Si2PO12 Solid Electrolyte and Sodium Metal Anode for Quasi-Solid-State Sodium Battery. Batteries, 2023, 9, 8.	2.1	5
2774	Monolayer α-beryllene as an anode material for magnesium ion batteries with high capacity and low diffusion energy barrier. Physical Chemistry Chemical Physics, 2023, 25, 6519-6526.	1.3	4
2775	Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries. International Journal of Electrochemistry, 2023, 2023, 1-9.	2.4	2
2776	Beyond lithium: Solid-state sodium-ion batteries and their potential applications. , 2023, , 223-262.		0
2777	Integrating highly active graphite nanosheets into microspheres for enhanced lithium storage properties of silicon. RSC Advances, 2023, 13, 4102-4112.	1.7	1
2778	Intercalative Motifsâ€Induced Space Confinement and Bonding Covalency Enhancement Enable Ultrafast and Large Sodium Storage. Advanced Functional Materials, 2023, 33, .	7.8	15
2779	Sc2CX (X=N2, ON, O2) MXenes as a promising anode material: A first-principles study. Journal of Applied Physics, 2023, 133, .	1.1	5
2780	One-Pot Synthesis of NiSe2 with Layered Structure for Nickel-Zinc Battery. Molecules, 2023, 28, 1098.	1.7	0
2781	Noncrystalline Carbon Anodes for Advanced Sodiumâ€ion Storage. Small Methods, 2023, 7, .	4.6	13
2782	Recent advances in 3D printed electrode materials for electrochemical energy storage devices. Journal of Energy Chemistry, 2023, 81, 272-312.	7.1	16
2783	Sodium storage and capacity retention behavior derived from high-spin/low-spin Fe redox reaction in monoclinic Prussian blue based on operando Mössbauer characterization. Nano Energy, 2023, 109, 108256.	8.2	17
2784	Mitigating the Capacity Degradation by Ion-Electron-Conducting Dual-Layer Coating on a Layered Oxide Cathode Material for Sodium Ion Batteries. Energy & Fuels, 2023, 37, 4106-4122.	2.5	4
2785	Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 638, 758-767.	5.0	9
2786	S- and Cl-functionalized Nb ₂ C MXenes as novel anode materials for sodium-ion batteries: a first-principles study. New Journal of Chemistry, 2023, 47, 6412-6419.	1.4	0
2787	Development of a high-rate-capable O3-structured †layered' Na transition metal oxide by tuning the cation–oxygen bond covalency. Chemical Communications, 2023, 59, 4332-4335.	2.2	2
2788	First-principles study of sodium adsorption on defective graphene under propylene carbonate electrolyte conditions. RSC Advances, 2023, 13, 5627-5633.	1.7	4
2789	Excellent Structural Stability-Driven Cyclability in P2-Type Ti-Based Cathode for Na-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 2440-2447.	2.5	4
2790	Internal and External Coâ€Engineering of Stable Cathode Interface Improves Cycle Performance of Polymer Sodium Batteries. Advanced Functional Materials, 2024, 34, .	7.8	2

#	Article	IF	CITATIONS
2791	Designing Solvated Double‣ayer Polymer Electrolytes with Molecular Interactions Mediated Stable Interfaces for Sodium Ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
2792	Mixed ionic-electronic transport in Na2O doped glassy electrolytes: Promising candidate for new generation sodium ion battery electrolytes. Journal of Applied Physics, 2023, 133, .	1.1	5
2793	A concise review on cathode materials for Na-ion batteries. Materials Today: Proceedings, 2023, , .	0.9	0
2794	Facile and High-Efficiency Chemical Presodiation Strategy on the SnS ₂ /rGO Composite Anode for Stable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 18918-18927.	4.0	3
2795	Sulfur-grafted hard carbon with expanded interlayer spacing and increased defects for high stability potassium-ion batteries. Solid State Ionics, 2023, 393, 116172.	1.3	0
2796	Heteroatomic phosphorus selenides molecules encapsulated in porous carbon as a highly reversible anode for sodium-ion batteries. Materials Today Nano, 2023, 22, 100344.	2.3	0
2797	Preparation and sodium storage performance of 2D bilayered V2O5â‹nH2O nanomaterial with Zn2+ intercalation. Journal of Electroanalytical Chemistry, 2023, 937, 117416.	1.9	2
2798	Facile synthesis of hierarchical (NiCo)Se/(NiCo)Se2@C nanostructure via the synergistic effect of carbonization and selenization. Electrochimica Acta, 2023, 449, 142230.	2.6	3
2799	X-ray absorption spectromicroscopy of Na0.67Fe0.25Mn0.75O2 and Na0.67Li0.2Fe0.2Mn0.6O2 primary particles for Na-ion batteries. Journal of Physics and Chemistry of Solids, 2023, 177, 111272.	1.9	1
2800	A two-dimensional cation-deficient Ti0.87O2 artificial protection layer for stable sodium metal anodes. Materials Today Energy, 2023, 34, 101271.	2.5	1
2801	Boosting ion diffusion at Ni2P@3D nanostructure carbon network interface for superior and durable sodium-ion hybrid capacitor. Electrochimica Acta, 2023, 453, 142363.	2.6	1
2802	Exploring the electronic and mechanical properties of lithium-decorated silicon carbide nanowires for energy storage. Journal of Energy Storage, 2023, 62, 106840.	3.9	5
2803	Metal-organic-framework-derived cubic Co2P@NC for fast sodium-ion storage. Journal of Alloys and Compounds, 2023, 947, 169346.	2.8	6
2804	Synthesis of SnS2 nanoparticles@carbon nanotubes as anode for high-performance half/full sodium-ion batteries. Diamond and Related Materials, 2023, 136, 109903.	1.8	5
2805	Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy Chemistry, 2023, 81, 221-259.	7.1	27
2806	Tailored P2/O3 phase-dependent electrochemical behavior of Mn-based cathode for sodium-ion batteries. Journal of Energy Storage, 2023, 64, 107242.	3.9	6
2807	Enhanced energy density quasi-solid-state supercapacitor based on an ionic liquid incorporated aqueous gel polymer electrolyte with a redox-additive trimethyl sulfoxonium iodide. Journal of Energy Storage, 2023, 64, 107227.	3.9	9
2808	Effect of crown ether additive on the compatibility of electrolyte and hard carbon anode in sodium ion battery. Journal of Alloys and Compounds, 2023, 948, 169823.	2.8	6

#	Article	IF	CITATIONS
2809	Designing freestanding electrodes with Fe2O3-based conversion type anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 948, 169670.	2.8	6
2810	Restacking-free crumpled anatase TiO2 nanosheets synthesized by spray pyrolysis for high-performance Na-ion battery anodes. Journal of Alloys and Compounds, 2023, 941, 169028.	2.8	4
2811	Confined MoS2 nanosheets grown on 3D interconnected N, S co-doped carbon nanofibers as a free-standing anode for sodium-ion batteries. Journal of Solid State Chemistry, 2023, 323, 124046.	1.4	0
2812	Construction of superior performance Na3V2-xCrx(PO4)2F3/C cathode by homovalent doping strategy toward enhanced sodium ion storage. Journal of Power Sources, 2023, 571, 233080.	4.0	7
2813	NASICONsâ€ŧype solidâ€state electrolytes: TheÂhistory, physicochemical properties, and challenges. , 2023, 2, 91-110.		40
2814	In-situ pyrolysis preparation of Fe3O4@CNTs/CC as binder-free anode for sodium-ion batteries. Materials Chemistry and Physics, 2023, 297, 127403.	2.0	5
2815	Recent advance on NASICON electrolyte in solid-state sodium metal batteries. Energy Storage Materials, 2023, 56, 582-599.	9.5	17
2816	Hybrid Nano Flake-like Vanadium Diselenide Combined on Multi-Walled Carbon Nanotube as a Binder-Free Electrode for Sodium-Ion Batteries. Materials, 2023, 16, 1253.	1.3	9
2817	Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control. Communications Materials, 2023, 4, .	2.9	3
2818	High Entropy Enabling the Reversible Redox Reaction of V ⁴⁺ /V ⁵⁺ Couple in NASICONâ€Type Sodium Ion Cathode. Advanced Energy Materials, 2023, 13, .	10.2	22
2819	Hexaindium Heptasulfide/Nitrogen and Sulfur Coâ€Doped Carbon Hollow Microspindles with Ultrahighâ€Rate Sodium Storage through Stable Conversion and Alloying Reactions. Advanced Materials, 2023, 35, .	11.1	21
2820	Emulsion Binders with Multiple Crosslinked Structures for High-Performance Lithium-Sulfur Batteries. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1027-1036.	2.0	2
2821	Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries. Batteries, 2023, 9, 110.	2.1	4
2822	Nanodesigns for Na ₃ V ₂ (PO ₄) ₃ -based cathode in sodium-ion batteries: a topical review. Nanotechnology, 2023, 34, 202003.	1.3	6
2823	Recent progress of Mn-based NASICON-type sodium ion cathodes. Energy Storage Materials, 2023, 57, 69-80.	9.5	16
2824	Covalency modulation enables stable Na-rich layered oxide cathodes for Na-ion batteries. Electronic Structure, 2023, 5, 014004.	1.0	1
2825	Interfacial coupling metallic MoS2 nanosheets with wrinkled Ti3C2TX MXene for reversible and stable sodium storage. Materials Today Energy, 2023, 33, 101256.	2.5	3
2826	A Highâ€Energy NASICONâ€Type Na _{3.2} MnTi _{0.8} V _{0.2} (PO ₄) ₃ Cathode Material with Reversible 3.2â€Electron Redox Reaction for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition. 2023. 62.	7.2	18

2827 Alighted Energy, MASICON 67 Spectary South V (south) 2 (shuth) (south) 4 (shuth) (south) 3 (shuth) 3 (shuth) 1 (south) 3 (shuth) 3 (shuth) 1 (south) 3 (shuth)	#	Article	IF	CITATIONS
2222 (English Translation of Celistekhnika), 2022, 58, 334-354. 0 0 0 2228 Chenglish Translation of Celistekhnika), 2022, 58, 334-354. 1 1 2280 Orthorhik Na caub 3 (sub) Ca caub 2 (sub) BIO caub 5 (sub). Calcub) Caub 2 (sub) BIO caub 5 (sub). Calcub) Calcub) Calcub 2 (sub) BIO caub 5 (sub). Calcub) Calcub 2 (sub)) Calcu	2827	Na _{3.2} MnTi _{0.8} V _{0.2} (PO ₄) ₃ Cathode Material with Reversible 3.2â€Electron Redox Reaction for Sodiumâ€Ion Batteries. Angewandte Chemie,	1.6	7
2828 orthorhombic Naiceubb 3 (slubb Calcsubb 2 c(slubb > Dalton Transactions, 2023, 52, 1.6 1 2830 High-Voltage Cyclic Ether Based Electrolytes for Low-Temperature Sodium-ion Batteries. ACS Applied 4.0 9 2831 Invicoling fast and highly reversible sodium storage in Febased mixed polyanion cathodes for 6978-6985. 5.2 6 2838 Invicoling fast and highly reversible sodium storage in Febased mixed polyanion cathodes for 6978-6985. 5.2 6 2838 Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Elucitonal Materials. 7.8 8 2848 Gevest on 46Cp pendent Reaction Mechanisms of New Pseudocapacitive for Low-Temperature Site as Energing 2.4 4 2848 Electrode for Monovalentäetion Batteries. Advanced Science, 2023, 10, - 5.6 3 2848 Polycoxometalates (POMs) with hon/ElectronacEponge Properties and Abundant Active Sites as Energing 2.4 4 2849 Polycoxometalates (POMs) with hon/ElectronacEponge Properties and Abundant Active Sites as Energing 2.4 4 2848 Research, 2023, 62, 3602 3611. 58 0 2849 Polycoxometalates (POMs) with hon/ElectronacEponge Properties and Abundant Active Sites as Energing 2.4 4 2848 Research, 2023, 62, 3602 3611. 58 0	2828		0.2	0
2830 Materials & Amp; Interfaces, 2023, 15, 9517-9523. 1.0 1.0 9 2831 Low-cost and high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 5.2 6 2831 Low-cost and high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 5.2 6 2832 Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 7.8 8 2833 Cuest Lon&COpendent Reaction Mechanisms of New Pseudocapacitive 5.6 3 2834 Devices Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 7.8 8 2835 Cuest Lon&COpendent Reaction Mechanisms of New Pseudocapacitive 5.6 3 2838 Devices Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 7.8 8 2834 Polywornetralates (POMs) with Ion/Electron/d & Space Octoperties and Abundant. Active Sites as Emerging, 2.4 4 2835 MoO(sub>2/su	2829	orthorhombic Na ₃ Ca ₂ BiO ₆ . Dalton Transactions, 2023, 52,	1.6	1
2881 low-cost and high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 5.2 6 978-6985. Nitrogen as An Anionic Center/Dopant for Next&Generation High&CPerformance Lithium/Sodium&Gon Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 2023, 33. 7.8 8 2883 Guest Ion&Cobernation Mechanisms of New Pseudocapacitive Beteroide for Monovalent&Gon Batteries. Advanced Science, 2023, 10. 5.6 3 2883 Polycoometalates (POMs) with IonElectron&Copport Properties and Abundant Active Sites as Emerging Electrode Materials for Secondary Batteries: A Review. Batteries and Abundant Active Sites as Emerging Electrode Materials for Secondary Batteries: A Review. Batteries and Abundant Active Sites as Emerging Properties and Abundant Active Sites as Emerging 2.4 4 2885 Reconfiguring Hard Carbons with Emerging Sodium&Gon Batteries: A Perspective. Advanced Materials, 2023, 35., 11741-11755. 1.8 0 2884 Reconfiguring Hard Carbons with Emerging Sodium&Gon Batteries: A Perspective. Advanced Materials, 2023, 35., 11741-11755. 1.0 58 2885 Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials Kamp; Interfaces, 2023, 15., 11741-11755. 4.0 2 2886 Conductive Ticsub: 3 Subbity Casub > 2 (subb > Cisub > 2 (sub) > Cisub > 2 (sub) > (sub > revindes for improved rac capab	2830		4.0	9
2832 Battery Electrodes: key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 7.8 8 2023, 33,. Cuest Ion&CDependent Reaction Mechanisms of New Pseudocapacitive Electrode for Monovalent&Fon Batteries. Advanced Science, 2023, 10,. 5.6 3 2833 Mg(sub) X(sub) X(sub) X(sub) A((sub) P(O(sub) X(sub) S(sub) S(Sub)/Carbon Composite as Negative Electrode for Monovalent&Fon Batteries. Advanced Science, 2023, 10,. 5.6 3 2834 Polyoxometalates (POMs) with Ion/Electron&Eponge Properties and Abundant Active Sites as Emerging Electrode Materials for Secondary Batteries: A Review. Batteries and Supercaps, 2023, 6. 2.4 4 2835 MoO csub) 2 (sub) Particles on N-Doped Carbon Nanobundles. Industrial & ampt Engineering Chemistry Research, 2023, 62, 3602-3611. 1.8 0 2836 Reconfiguring Hard Carbons with Emerging Sodium-Action Batteries: A Perspective. Advanced Materials, 2023, 15, 1174-11755. 1.1 58 2837 Surface-Tethered Polyanion Layer for Sodium-Metal Batteries: ACS Applied Materials & ampt Interfaces, 2023, 15, 1174-11755. 4.0 2 2838 Materials & ampt, Interfaces, 2023, 15, 11552-11661. 4.0 0 2839 Naccusb 3 (sub) X (sub) 2 (sub) T (sub) X (sub) A (sub) (sub) 2 (sub) F carbodes for improved rate capability and low-temperature operation. Daton Transactions, 2023, 52, 4717-4727. 4.0 9 2840	2831	low-cost and high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11,	5.2	6
2833Mgr.sub.34.(sub.) V:sub.44.(sub.) (PO : sub.) 44.(sub.) i cub.) 46.(sub.) (Carbon Composite as Negative Electrode for Monovalentà&Eon Batteries. Advanced Science, 2023, 10, .5.632834Polyoxometalates (POMs) with Ion/Electronà&Eponge Properties and Abundant Active Sites as Emerging Electrode Materials for Secondary Batteries: A Review. Batteries and Supercaps, 2023, 6, .2.442835MoO : sub.22.(sub.) Particles on N-Doped Carbon Nanobundles. Industrial & amp; Engineering Chemistry Research, 2023, 62, 3602-3611.1.802840Reconfiguring Hard Carbons with Emerging Sodium&Elon Batteries: A Perspective. Advanced Materials, 2023, 35.11.1582837Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium. Hetal Batteries: ACS Applied Materials & amp; Interfaces, 2023, 15, 1174111755.4.022838Prolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 11652-11661.4.002840Conductive Ticsub.33 (sub.2C/sub.22(sub.) C/sub.2(sub.) (suc/)/sub.2(sub.) 2(sub.) 2(s	2832	Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials,	7.8	8
2839 Electrode Materials for Secondary Batteries: A Review. Batteries and Supercaps, 2023, 6, . 243 4 2835 (i)In Situ Concentrated Nonosub>2 Particles on N-Doped Carbon Nanobundles. Industrial & amp; Engineering Chemistry 1.8 0 2836 Reconfiguring Hard Carbons with Emerging Sodiumation Batteries: A Perspective. Advanced Materials, 2023, 35, . 11.1 58 2837 Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 11741-11755. 4.0 2 2838 Pyrolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. ACS Applied 4.0 0 0 2839 Nacsub>3 (sub> X < (sub> 2 / sub> 7 (sub> 1.6 1 2840 Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type 4.0 9 9 2841 Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Classes (M = V,) Tj ETQq0 0.0 gr gBT /Qverlock 2.0 2842 ARu-Doped VTi2.607.2 Anode with High Conductivity for Enhanced Sodium Storage. Coatings, 2023, 13, 1.2 0 2844 Porous bismuth nanocrystals with advanced sodium ion storage property. Progress in Natural 1.2 0	2833	Mg ₃ V ₄ (PO ₄) ₆ /Carbon Composite as Negative	5.6	3
2835 MoO csub>2.(sub> Particles on N-Doped Carbon Nanobundles. Industrial & amp; Engineering Chemistry 1.8 0 2836 Reconfiguring Hard Carbons with Emerging Sodiumâ€ion Batteries: A Perspective. Advanced Materials, 2023, 35, . 11.1 58 2837 Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 11741-11755. 4.0 2 2838 Pyrolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. ACS Applied 4.0 0 2839 Conductive Ti ₃ 2(sub> <tsub>2(sub><ti>(sub><ti>(sub><tsub>2) 4.0 0 2840 Conductive Ti<csub>3Csub>2(sub><ti>(sub><ti>(sub><tsub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub) 1.6 1 2840 Conductive Ti<csub>3Csub><tsub><ti>(sub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><ti>(sub><tsub><tsub><ti>(sub><tsub><ti>(sub><tsub><tsub><ti>(sub><tsub><ti>(sub><tsub><tsub><ti>(sub><tsub><tsub><tsub><ti>(sub><tsub><ti>(sub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><tsub><ts< td=""><td>2834</td><td>Polyoxometalates (POMs) with Ion/Electronâ€Sponge Properties and Abundant Active Sites as Emerging Electrode Materials for Secondary Batteries: A Review. Batteries and Supercaps, 2023, 6, .</td><td>2.4</td><td>4</td></ts<></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></tsub></ti></tsub></ti></tsub></tsub></tsub></ti></tsub></tsub></ti></tsub></ti></tsub></tsub></ti></tsub></ti></tsub></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></ti></ti></tsub></csub></ti></tsub></ti></tsub></ti></tsub></ti></tsub></tsub></ti></ti></csub></tsub></ti></ti></tsub>	2834	Polyoxometalates (POMs) with Ion/Electronâ€Sponge Properties and Abundant Active Sites as Emerging Electrode Materials for Secondary Batteries: A Review. Batteries and Supercaps, 2023, 6, .	2.4	4
2830 2023, 35, . 111 58 2831 Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 11741-11755. 4.0 2 2838 Pyrolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 11652-11661. 4.0 0 2839 Conductive Ticsub>3c/sub>Ccsub>2c/sub>Ccsub>2c/sub>(POcsub>4c/sub)/sub>2c/sub>Cesub>2c/sub>	2835	MoO ₂ Particles on N-Doped Carbon Nanobundles. Industrial & amp; Engineering Chemistry	1.8	0
2837 Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials & amp; Interfaces, 4.0 2 2 2838 Pyrolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. ACS Applied 4.0 0 0 2838 Conductive Ti _{3 /sub>C₂T_{ci>x> (i>x> (i>xx> (i>xx> (i>x> (i>xx> (i>xx<td>2836</td><td></td><td>11.1</td><td>58</td>}}	2836		11.1	58
2838 Materials & amp; Interfaces, 2023, 15, 11652-11661. 4.0 0 2839 Conductive Ti ₃ C ₂ T _{c(sub>2} T _{c(sub>2} T ₂ C ₂ T _{222<td>2837</td><td>Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials & amp; Interfaces,</td><td>4.0</td><td>2</td>}	2837	Surface-Tethered Polyanion Layer for Sodium-Metal Batteries. ACS Applied Materials & amp; Interfaces,	4.0	2
2839 Na < sub > 3 < / sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O < sub > 2 < / sub > O <	2838	Pyrolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. ACS Applied Materials & Interfaces, 2023, 15, 11652-11661.	4.0	0
2840 Layered Oxides. ACS Applied Materials & amp; Interfaces, 2023, 15, 11691-11702. 4.0 9 2841 Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V,) Tj ETQq0 0.0 rgBT /Qverlock 1.2 9 2842 A Ru-Doped VTi2.6O7.2 Anode with High Conductivity for Enhanced Sodium Storage. Coatings, 2023, 13, 1.2 0 2843 Porous bismuth nanocrystals with advanced sodium ion storage property. Progress in Natural 1.8 2	2839	Na ₃ V ₂ O ₂ (PO ₄) ₂ F cathodes for improved	1.6	1
A Ru-Doped VTi2.607.2 Anode with High Conductivity for Enhanced Sodium Storage. Coatings, 2023, 13, 490. Porous bismuth nanocrystals with advanced sodium ion storage property. Progress in Natural	2840		4.0	9
Porous bismuth nanocrystals with advanced sodium ion storage property. Progress in Natural	2841	Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V,) Tj ETQq	0 0 0 rgBT 1.2	/gverlock 1
	2842	A Ru-Doped VTi2.6O7.2 Anode with High Conductivity for Enhanced Sodium Storage. Coatings, 2023, 13, 490.	1.2	0
	2843	Porous bismuth nanocrystals with advanced sodium ion storage property. Progress in Natural Science: Materials International, 2023, 33, 92-99.	1.8	2

2844	Electrochemical Characterization of Charge Storage at Anodes for Sodiumâ€Ion Batteries Based on Corncob Wasteâ€Derived Hard Carbon and Binder. ChemElectroChem, 2023, 10, .	1	L.7	3
------	---	---	-----	---

# 2845	ARTICLE Recent developments of nanocomposites in energy-related applications. , 2023, , 111-127.	IF	CITATIONS 0
2846	Highâ€power and lowâ€cost sodiumâ€ion batteriesÂwith a wide operation temperature from â~'70 °C toÂ SmartMat, 2023, 4, .	130 Â 6.4	°C ₄
2847	Recent Progress on Honeycomb Layered Oxides as a Durable Cathode Material for Sodiumâ€Ion Batteries. Small Methods, 2023, 7, .	4.6	5
2848	Boosting Cycling Stability of Polymer Sodium Battery by "Rigid-Flexible―Coupled Interfacial Stress Modulation. Nano Letters, 2023, 23, 3630-3636.	4.5	7
2849	Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries, Electrochemical Energy Reviews, 2023, 6, .	13.1	32
2850	xmins:mmi="http://www.w3.org/1998/Math/Math/MathML" display="inline" overflow="scroll"> <mml:mi>Na</mml:mi> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi></mml:mi><mml:mn>3</mml:mn></mml:msub><mml:math< td=""><td>1.5</td><td>2</td></mml:math<></mml:math 	1.5	2
2851	Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Materials, 2023, 57, 471-496.	9.5	10
2852	Partial Modification Strategies of NASICON-Type Na ₃ V ₂ (PO ₄) ₃ Materials for Cathodes of Sodium-Ion Batteries: Progress and Perspectives. ACS Applied Energy Materials, 2023, 6, 2657-2679.	2.5	6
2853	Designing Solvated Double‣ayer Polymer Electrolytes with Molecular Interactions Mediated Stable Interfaces for Sodium Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
2854	From Waste Biomass to Hard Carbon Anodes: Predicting the Relationship between Biomass Processing Parameters and Performance of Hard Carbons in Sodium-Ion Batteries. Processes, 2023, 11, 764.	1.3	3
2855	MoSe2 Complex with N and B Dual-Doped 3D Carbon Nanofibers for Sodium Batteries. Metals, 2023, 13, 518.	1.0	0
2856	Comprehensively Strengthened Metalâ€Oxygen Bonds for Reversible Anionic Redox Reaction. Advanced Functional Materials, 2023, 33, .	7.8	15
2857	Monoclinic Na2VOP2O7: A 4V-class cost-effective cathode for sodium-ion batteries. Materials Today Physics, 2023, 33, 101038.	2.9	2
2858	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
2859	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie, 2023, 135, .	1.6	2
2860	Exploring Optimal Li-ion Substitution for High Na-content P2-Na _{0.67+a} [Li _{x } Ni _{0.33â^'y} Mn _{0.67â''z}]O ₂ Cathodes for Sodium-ion Batteries. Journal of the Electrochemical Society, 2023, 170, 030538.	1.3	3
2861	Recent progress of composite polyethylene separators for lithium/sodium batteries. Journal of Power Sources, 2023, 564, 232853.	4.0	16
2862	Unprecedented Cyclability and Moisture Durability of NaCrO ₂ Sodium-Ion Battery Cathode via Simultaneous Al Doping and Cr ₂ O ₃ Coating. ACS Applied Materials & Interfaces, 0, , .	4.0	1

#	Article	IF	CITATIONS
2863	Compacted mesoporous titania nanosheets anode for pseudocapacitanceâ€dominated, highâ€rate, and highâ€volumetric sodiumâ€ion storage. SmartMat, 2023, 4, .	6.4	2
2864	How NaFTA salt affects the structural landscape and transport properties of Pyrr1,3FTA ionic liquid. Journal of Chemical Physics, 2023, 158, .	1.2	1
2865	Exploiting Cation Intercalating Chemistry to Catalyze Conversion-Type Reactions in Batteries. ACS Nano, 2023, 17, 5570-5578.	7.3	5
2866	Rationally Integrating 2D Confinement and High Sodiophilicity toward SnO ₂ /Ti ₃ C ₂ T <i>_x</i> Composites for Highâ€Performance Sodiumâ€Metal Anodes. Small, 2023, 19, .	5.2	5
2867	Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters, 2023, 15, .	14.4	24
2868	Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries. Coatings, 2023, 13, 626.	1.2	2
2869	Bi ₂ S ₃ Nanorods Deposited on Reduced Graphene Oxide for Potassium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 6121-6132.	2.4	3
2870	Ternary NASICON-typed Na3.8MnV0.8Zr0.2(PO4)3 cathode with stable Mn2+/Mn3+ redox and fast sodiation/desodiation kinetics for Na-ion batteries. Energy Storage Materials, 2023, 58, 271-278.	9.5	14
2871	Design of High-Performance Defective Graphite-Type Anodes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3854-3861.	2.5	3
2873	Na ⁺ Migration Mediated Phase Transitions Induced by Electric Field in the Framework Structured Tungsten Bronze. Journal of Physical Chemistry Letters, 2023, 14, 3152-3159.	2.1	2
2874	Progress towards efficient phosphate-based materials for sodium-ion batteries in electrochemical energy storage. lonics, 2023, 29, 2099-2113.	1.2	1
2875	Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochemical Energy Reviews, 2023, 6, .	13.1	25
2876	Studying the variable energy band structure for energy storage materials in charge/discharge process. Chinese Chemical Letters, 2023, , 108380.	4.8	0
2877	Sawdust-derived hard carbon as a high-performance anode for sodium-ion batteries. Ionics, 0, , .	1.2	0
2878	Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature. Journal of Electrochemical Science and Engineering, 0, , .	1.6	0
2879	Predicting the Na ⁺ ion transport properties of NaSICON materials using density functional theory and Kinetic Monte Carlo. Journal of Materials Chemistry A, 2023, 11, 9160-9177.	5.2	2
2880	Electrospun Flexible Nanofibres for Batteries: Design and Application. Electrochemical Energy Reviews, 2023, 6, .	13.1	17
2881	The Anode Materials for Lithium″on and Sodium″on Batteries Based on Conversion Reactions: a Review. ChemElectroChem, 2023, 10, .	1.7	12

#	Article	IF	CITATIONS
2882	Antimony Oxidesâ€Based Anode Materials for Alkali Metalâ€Ion Storage. Chemistry - A European Journal, 0, , .	1.7	2
2883	Perspective on Biomass-Based Cotton-Derived Nanocarbon for Multifunctional Energy Storage and Harvesting Applications. ACS Applied Electronic Materials, 2023, 5, 1970-1991.	2.0	3
2884	Sodium Diffusion in Hard Carbon Studied by Small- and Wide-Angle Neutron Scattering and Muon Spin Relaxation. Journal of Physics: Conference Series, 2023, 2462, 012048.	0.3	0
2885	Cation–Oxygen Bond Covalency: A Common Thread and a Major Influence toward Air/Waterâ€Stability and Electrochemical Behavior of "Layered―Na–Transitionâ€Metalâ€Oxideâ€Based Cathode Materials. Advanced Energy Materials, 2023, 13, .	10.2	5
2886	The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries. Molecules, 2023, 28, 3134.	1.7	13
2887	Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Science China Chemistry, 2024, 67, 191-213.	4.2	10
2888	Sr-Doped NASICON-Structured Cathode with Enhanced Conductivity for Ultrafast and High-Stability Sodium-Ion Storage. ACS Applied Energy Materials, 0, , .	2.5	1
2889	Two-dimensional TiCl ₂ : a high-performance anode material for Na-ion batteries with high capacity and fast diffusion. Physical Chemistry Chemical Physics, 2023, 25, 11513-11521.	1.3	3
2890	Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Materials Today, 2023, 66, 221-244.	8.3	15
2891	Graphene-derivative decorated transition-metal oxide nanocomposites for battery applications. , 2023, , 515-536.		0
2892	Nitrogen and sulfur co-doped mesoporous hollow carbon spheres for high rate sodium ion storage. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
2893	Low-Concentration Electrolyte Enables High-Voltage Positive Electrode Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ with Good Cycle Stability. ACS Applied Energy Materials, 0, , .	2.5	1
2894	Evaluating Electrochemical Properties of Layered NaxMn0.5Co0.5O2 Obtained at Different Calcined Temperatures. ChemEngineering, 2023, 7, 33.	1.0	0
2895	Nitrogen-Doped Carbon Coated Na ₃ V ₂ (PO ₄) ₂ F ₃ Derived from Polyvinylpyrrolidone as a High-Performance Cathode for Sodium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 4453-4461.	2.5	8
2896	CuFeSe2/Cu2Se@C heterostructures as high-rate ultra-stable anodes for sodium ion half/full batteries. Materials Today Energy, 2023, , 101309.	2.5	0
2897	Modified metallic current collectors for sodium metal anodes. Journal of Solid State Electrochemistry, 2023, 27, 1345-1362.	1.2	1
2898	Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries. Journal of the American Chemical Society, 2023, 145, 9596-9606.	6.6	25
2899	Virtual screening of organic quinones as cathode materials for sodium-ion batteries. Energy Advances, 2023, 2, 820-828.	1.4	3

#	Article	IF	CITATIONS
2900	Enhanced reversible conversion of Cu2S anodes for Na-ion batteries enabled by carbon nanotubes. Journal of Alloys and Compounds, 2023, 953, 170161.	2.8	4
2901	Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. Journal of Materials Science and Technology, 2023, 160, 9-17.	5.6	16
2902	Ultra-fine SnO ₂ nanocrystals anchored on reduced graphene oxide as a high-performance anode material for sodium-ion batteries. Nanotechnology, 2023, 34, 325602.	1.3	4
2903	Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. Journal of Energy Chemistry, 2023, 83, 209-228.	7.1	8
2904	Reduced graphene oxide (rGO) integrated sodium titanate nanocomposite as a high-rate performance anode material for sodium ion batteries. Journal of Electroanalytical Chemistry, 2023, 939, 117485.	1.9	3
2916	Sodium systems – Low temperature (LIB equivalent) Sodium Systems Low Temperature: Overview. , 2023, , .		2
2921	Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Nanoscale, 2023, 15, 9256-9289.	2.8	5
2970	First-principles design of nanostructured electrode materials for Na-ion batteries: challenges and perspectives. Physical Chemistry Chemical Physics, 2023, 25, 18623-18641.	1.3	2
2971	Benchmarking the Performance of Moisture-Sensitive Battery Materials: the Importance of the Electrode Preparation Method. ACS Applied Energy Materials, 2023, 6, 6883-6889.	2.5	1
2975	Research progresses in O3-type Ni/Fe/Mn based layered cathode materials for sodium ion batteries. , 2023, 2, .		4
2989	Electrochemical performance of sodium titanate nanorods for sodium-ion battery anode applications. AIP Conference Proceedings, 2023, , .	0.3	0
2998	NaFePO4 particles via sol-gel method: A review on synthesis and characterization. AIP Conference Proceedings, 2023, , .	0.3	0
3007	Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chemical Society Reviews, 2023, 52, 4933-4995.	18.7	23
3027	Chemistry, electrochemistry, and electrochemical applications of sodium. , 2023, , .		0
3052	Novel and innovative ionic liquids based electrolytes and their applications in batteries. , 2023, , 313-335.		0
3058	Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries. Nano-Micro Letters, 2023, 15, .	14.4	11
3072	Small-molecule organic electrode materials for rechargeable batteries. Science China Chemistry, 2023, 66, 3070-3104.	4.2	6
3092	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	5.8	16

#	Article	IF	CITATIONS
3119	Density functional study on the adsorption of Na on zigzag graphene nano ribbon doped by B, N, P, and S. AIP Conference Proceedings, 2023, , .	0.3	0
3120	Timeline of Capacitive Deionization: The Path to a New Era. , 2023, , 1-22.		Ο
3132	Fabrication and Characterization of Mesocarbon Anode for Sodium-Ion Batteries. , 2023, , 38-45.		0
3156	Energiespeicher. , 2023, , 19-37.		0
3176	Basic guidelines of first-principles calculations for suitable selection of electrochemical Li storage materials: a review. Journal of Materials Chemistry A, 2023, 11, 24482-24518.	5.2	4
3178	Na ₂ Fe ₂ Se ₂ O: A Double Anti-perovskite with Prevalence of Anionic Redox Activity in Na-ion Batteries. Chemical Communications, 0, , .	2.2	0
3215	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		0
3228	Understanding the Redox Mechanism of Layered Transition Metal Oxide During Electrochemical Cycling in Sodium-Ion Batteries. Springer Proceedings in Materials, 2024, , 171-176.	0.1	0
3232	Modular preparation of functional bimetallic spinels from metal–organic frameworks: a deep exploration from macro and micro perspectives. Journal of Materials Chemistry A, O, , .	5.2	0
3256	Advances in Bismuth-Based Anodes for Potassium-Ion Batteries. Journal of Materials Chemistry A, O, , .	5.2	1
3302	Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries. Electrochemical Energy Reviews, 2024, 7, .	13.1	0
3304	Buffer solution induced highly crystalline sodium-rich Prussian blue for sodium storage. Chemical Communications, 2024, 60, 1603-1606.	2.2	0
3320	Improvement of cycle life for layered oxide cathodes in sodium-ion batteries. Energy and Environmental Science, 2024, 17, 1756-1780.	15.6	0
3346	Recent development in MOFs and their derivatives for battery electrodes. , 2024, , 259-301.		0
3359	Recent advances in all-solid-state batteries for commercialization. Materials Chemistry Frontiers, 2024, 8, 1861-1887.	3.2	0
3367	Synergetic impact of high-entropy microdoping modification in Na ₃ V ₂ (PO ₄) ₃ . Chemical Communications, 2024, 60, 2512-2515.	2.2	0
3370	Closed Battery Systems. The Materials Research Society Series, 2024, , 173-211.	0.2	0
3373	Techno-economics Analysis on Sodium-Ion Batteries: Overview and Prospective. The Materials Research Society Series, 2024, , 259-266.	0.2	0

#	Article	IF	CITATIONS
3401	Carbon Nanotubes for Metal-Ion Batteries. Engineering Materials, 2024, , 109-129.	 0.3	0
3411	Ionic Liquid-based Electrolytes for Rechargeable Batteries. , 2024, , 200-232.		0
3413	Na-ion Solid Electrolytes for Solid-state Batteries. , 2024, , 172-199.		0