Designed formation of hollow particle-based nitrogen-onhigh-performance supercapacitors

Energy and Environmental Science 10, 1777-1783 DOI: 10.1039/c7ee00488e

Citation Report

#	Article	IF	CITATIONS
7	Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15065-15072.	5.2	146
8	Synthesis-cum-assembly toward hierarchical nanoarchitectures. Coordination Chemistry Reviews, 2017, 352, 291-305.	9.5	6
9	All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. Journal of Energy Chemistry, 2017, 26, 1260-1266.	7.1	62
10	MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22113-22119.	5.2	347
11	Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A, 2017, 5, 23085-23093.	5.2	158
12	Sensitive and Selective Differential Pulse Voltammetry Detection of Cd(II) and Pb(II) Using Nitrogen-Doped Porous Carbon Nanofiber Film Electrode. Journal of the Electrochemical Society, 2017, 164, H967-H974.	1.3	12
13	ZnO quantum dot-decorated carbon nanofibers derived from electrospun ZIF-8/PVA nanofibers for high-performance energy storage electrodes. Chemical Communications, 2017, 53, 11441-11444.	2.2	37
14	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
15	<i>In situ</i> nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23620-23627.	5.2	95
16	Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 21257-21265.	5.2	174
17	Highly porous nitrogen-doped carbon for superior electric double-layer capacitors. RSC Advances, 2017, 7, 44735-44742.	1.7	22
18	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule, 2017, 1, 77-107.	11.7	673
19	Anchoring Ultrafine ZnFe ₂ O ₄ /C Nanoparticles on 3D ZnFe ₂ O ₄ Nanoflakes for Boosting Cycle Stability and Energy Density of Flexible Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 26016-26028.	4.0	72
20	A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19036-19045.	5.2	18
21	A simple synthetic route of N-doped mesoporous carbon derived from casein extracted with cobalt ions for high rate performance supercapacitors. Electrochimica Acta, 2017, 250, 16-24.	2.6	14
22	Carbon-incorporated Janus-type Ni ₂ P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19054-19061.	5.2	183
23	Orange Peel Derived Activated Carbon for Fabrication of Highâ€Energy and Highâ€Rate Supercapacitors. ChemistrySelect, 2017, 2, 11384-11392.	0.7	103
24	Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. Journal of Power Sources, 2017, 371, 148-155.	4.0	104

#	Article	IF	CITATIONS
25	Nitrogen Self-Doped Porous Carbon Materials Derived from a New Biomass Source for Highly Stable Supercapacitors. International Journal of Electrochemical Science, 2017, 12, 12084-12097.	0.5	12
26	Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials, 2018, 1, 32-55.	9.9	92
27	N,P,S-Codoped Hierarchically Porous Carbon Spheres with Well-Balanced Gravimetric/Volumetric Capacitance for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 5265-5272.	3.2	120
28	Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo ₂ O ₄ (M = Mn, Ni, Cu, and Co). Journal of Materials Chemistry A, 2018, 6, 10674-10685.	5.2	266
29	Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries. Chemical Engineering Journal, 2018, 343, 78-85.	6.6	61
30	Nitrogen-doped bi-modal porous carbon nanostructure derived from glycine for supercapacitors. Journal of Industrial and Engineering Chemistry, 2018, 63, 112-116.	2.9	8
31	Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage. Small, 2018, 14, e1800639.	5.2	46
32	N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.	2.6	105
33	Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271, 591-598.	2.6	70
34	Excellent electrochemical performance of graphene oxide based strontium sulfide nanorods for supercapacitor applications. Electrochimica Acta, 2018, 273, 136-144.	2.6	70
35	Nitrogenâ€Doped Porous Carbon Structure from Melamineâ€Assisted Polyimide Sheets for Supercapacitor Electrodes. Advanced Sustainable Systems, 2018, 2, 1800007.	2.7	16
36	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160.	5.2	90
37	Thin and Small N-Doped Carbon Boxes Obtained from Microporous Organic Networks and Their Excellent Energy Storage Performance at High Current Densities in Coin Cell Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 3525-3532.	3.2	24
38	Batteryâ€like Supercapacitors from Vertically Aligned Carbon Nanofiber Coated Diamond: Design and Demonstrator. Advanced Energy Materials, 2018, 8, 1702947.	10.2	70
39	Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems. RSC Advances, 2018, 8, 6806-6813.	1.7	42
40	Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon, 2018, 130, 532-543.	5.4	164
41	Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials, 2018, 30, 1706054.	11.1	405
42	Sticky-note supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3355-3360.	5.2	28

#	Article	IF	CITATIONS
43	3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating. Energy Storage Materials, 2018, 13, 57-65.	9.5	115
44	KOH activation of biomass-derived nitrogen-doped carbons forÂsupercapacitor and electrocatalytic oxygen reduction. Electrochimica Acta, 2018, 261, 49-57.	2.6	345
45	Wearable Supercapacitors Printed on Garments. Advanced Functional Materials, 2018, 28, 1705571.	7.8	62
46	A review: Conventional and supercritical hydro/solvothermal synthesis of ultrafine particles as cathode in lithium battery. Ceramics International, 2018, 44, 4521-4537.	2.3	54
47	Cobalt@Nitrogenâ€Doped Porous Carbon Fiber Derived from the Electrospun Fiber of Bimetal–Organic Framework for Highly Active Oxygen Reduction. Small Methods, 2018, 2, 1800049.	4.6	100
48	Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for Nitrogen-Rich Hollow Carbon Shell Frameworks toward alkaline and neutral supercapacitors. Carbon, 2018, 136, 176-186.	5.4	74
49	Nitrogen and Sulfur Self-Doped Activated Carbon Directly Derived from Elm Flower for High-Performance Supercapacitors. ACS Omega, 2018, 3, 4724-4732.	1.6	122
50	Co-doped Ni ₃ S ₂ @CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. Journal of Materials Chemistry A, 2018, 6, 10490-10496.	5.2	93
51	Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers. Mikrochimica Acta, 2018, 185, 282.	2.5	23
52	Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chemical Engineering Journal, 2018, 350, 49-56.	6.6	107
53	Zeolite-templated nanoporous carbon for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10388-10394.	5.2	66
54	Layer-by-layer decoration of MOFs on electrospun nanofibers. RSC Advances, 2018, 8, 10509-10515.	1.7	20
55	Metal–organic framework derived hollow materials for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 6754-6771.	5.2	233
56	Nitrogen-rich hollow carbon spheres decorated with FeCo/fluorine-rich carbon for high performance symmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 7522-7531.	5.2	33
57	Flexible all-fiber electrospun supercapacitor. Journal of Power Sources, 2018, 384, 264-269.	4.0	77
58	Template-Free Preparation of 3D Porous Co-Doped VN Nanosheet-Assembled Microflowers with Enhanced Oxygen Reduction Activity. ACS Applied Materials & Interfaces, 2018, 10, 11604-11612.	4.0	47
59	Fe(CN) ₆ ^{3â^'} ion-modified MnO ₂ /graphene nanoribbons enabling high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 7649-7658.	5.2	60
60	Vertically Aligned Heteroatom Doped Carbon Nanosheets from Unzipped Self-Doped Carbon Tubes for High Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 6042-6051.	3.2	18

#	Article	IF	CITATIONS
61	Potassium chloride templated carbon preparation for supercapacitor. Journal of Power Sources, 2018, 384, 360-366.	4.0	32
62	Facile one-pot hydrothermal synthesis of particle-based nitrogen-doped carbon spheres and their supercapacitor performance. New Journal of Chemistry, 2018, 42, 6903-6909.	1.4	26
63	A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Research, 2018, 11, 4535-4548.	5.8	51
64	Plumage-like MnO2@NiCo2O4 core–shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 "scaffold―and ultrathin NiCo2O4 "fluff― Ionics, 2018, 24, 3227-3235.	1.2	4
65	Boosting lithium-ion storage performance by synergistically coupling Zn0.76Co0.24S with N-/S-doped carbon and carbon nanofiber. Chemical Engineering Journal, 2018, 346, 376-387.	6.6	40
66	Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors. Fuel Processing Technology, 2018, 175, 10-16.	3.7	35
67	Recent advances in energy materials by electrospinning. Renewable and Sustainable Energy Reviews, 2018, 81, 1825-1858.	8.2	212
68	Fabrication and Engineering of Nanostructured Supercapacitor Electrodes Using Electromagnetic Fieldâ€Based Techniques. Advanced Materials Technologies, 2018, 3, 1700168.	3.0	12
69	Gas bubble templated synthesis of Mn3O4-embedded hollow carbon nanospheres in ethanol flame for elastic supercapacitor. Journal of Alloys and Compounds, 2018, 731, 210-221.	2.8	28
70	Doping and controllable pore size enhanced electrochemical performance of free-standing 3D graphene films. Applied Surface Science, 2018, 427, 598-604.	3.1	11
71	A highly conducting flower like Au nanoparticles interconnected functionalized CNFs and its enhanced electrocatalytic activity towards hydrazine through direct electron transfer. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 64-74.	2.7	22
72	Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance. Journal of Materials Chemistry A, 2018, 6, 1028-1036.	5.2	103
73	Surfactant-dependent flower- and grass-like Zn _{0.76} Co _{0.24} S/Co ₃ S ₄ for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22830-22839.	5.2	60
74	Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. Journal of Materials Chemistry A, 2018, 6, 24979-24987.	5.2	39
75	Ultralight Flexible Asymmetric Supercapacitors Based On Manganese Dioxide–Polyaniline Nanocomposite and Reduced Graphene Oxide Electrodes Directly Deposited on Foldable Cellulose Papers. Journal of Physical Chemistry C, 2018, 122, 27156-27168.	1.5	59
76	Confining Redox Electrolytes in Functionalized Porous Carbon with Improved Energy Density for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 42494-42502.	4.0	66
77	Shape-controlled synthesis of porous carbons for flexible asymmetric supercapacitors. Nanoscale, 2018, 10, 22848-22860.	2.8	23
78	N-Doped Mesoporous Carbon Sheets/Hollow Carbon Spheres Composite for Supercapacitors. Langmuir, 2018, 34, 15665-15673.	1.6	24

#	Article	IF	CITATIONS
79	Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN4 for High Performance Electrochemical Capacitors. Polymers, 2018, 10, 1339.	2.0	17
80	Synthesis of coaxial carbon@NiMoO ₄ composite nanofibers for supercapacitor electrodes. RSC Advances, 2018, 8, 32979-32984.	1.7	19
81	Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. Journal of Power Sources, 2018, 402, 281-295.	4.0	160
82	Free‣tanding Electrodes Derived from Metal–Organic Frameworks/ Nanofibers Hybrids for Membrane Capacitive Deionization. Advanced Materials Technologies, 2018, 3, 1800135.	3.0	41
83	Asphaltene-Based Porous Carbon Nanosheet as Electrode for Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 15708-15719.	3.2	113
84	High-Performance Fiber-Shaped Flexible Asymmetric Microsupercapacitor Based on Ni(OH) ₂ Nanoparticles-Decorated Porous Dendritic Ni–Cu Film/Cu Wire and Reduced Graphene Oxide/Carbon Fiber Electrodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 14574-14588.	3.2	44
85	Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogen-doped carbons. Electrochimica Acta, 2018, 292, 942-950.	2.6	46
86	Nitrogen-Doped Microporous Carbons Derived from Pyridine Ligand-Based Metal–Organic Complexes as High-Performance SO ₂ Adsorption Sorbents. ACS Applied Materials & Interfaces, 2018, 10, 37407-37416.	4.0	31
87	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 37046-37056.	4.0	38
88	CoSe ₂ Nanoparticles Encapsulated by Nâ€Doped Carbon Framework Intertwined with Carbon Nanotubes: Highâ€Performance Dualâ€Role Anode Materials for Both Li―and Naâ€Ion Batteries. Advanced Science, 2018, 5, 1800763.	5.6	215
89	Acid-Assisted Strategy Combined with KOH Activation to Efficiently Optimize Carbon Architectures from Green Copolymer Adhesive for Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 14838-14846.	3.2	16
90	Recent Advances in Nanowireâ€Based, Flexible, Freestanding Electrodes for Energy Storage. Chemistry - A European Journal, 2018, 24, 18307-18321.	1.7	29
91	Self-Templated Synthesis of Hierarchically Porous N-Doped Carbon Derived from Biomass for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 13932-13939.	3.2	58
92	MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18891-18897.	5.2	80
93	Metal–organic framework assisted synthesis of nitrogen-doped hollow carbon materials for enhanced supercapacitor performance. New Journal of Chemistry, 2018, 42, 17389-17395.	1.4	20
94	Bioinspired Highly Crumpled Porous Carbons with Multidirectional Porosity for High Rate Performance Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 12716-12726.	3.2	31
95	Embedding Co ₂ P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2018, 57, 13019-13025.	1.8	21
96	Controlled Airâ€Etching Synthesis of Porousâ€Carbon Nanotube Aerogels with Ultrafast Charging at 1000 A g ^{â^'1} . Small, 2018, 14, e1802394.	5.2	37

#	Article	IF	Citations
97	All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage. Journal of Materials Chemistry A, 2018, 6, 18276-18285.	5.2	72
98	A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. Carbon, 2018, 140, 404-412.	5.4	102
99	Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors. Electrochimica Acta, 2018, 281, 459-465.	2.6	36
100	A Highâ€Performance Sodiumâ€Ion Hybrid Capacitor Constructed by Metal–Organic Framework–Derived Anode and Cathode Materials. Advanced Functional Materials, 2018, 28, 1800757.	7.8	205
101	Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chemical Engineering Journal, 2018, 350, 79-88.	6.6	169
102	Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. Journal of Colloid and Interface Science, 2018, 527, 230-240.	5.0	56
103	Electrochemical Double‣ayer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie, 2018, 130, 8346-8350.	1.6	13
104	Electrochemical Double‣ayer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 8214-8218.	7.2	59
105	Recent Progress in Biomassâ€Đerived Electrode Materials for High Volumetric Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801007.	10.2	213
106	Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 762, 301-311.	2.8	87
107	One-pot synthesis of covalently functionalized reduced graphene oxide–polyaniline nanocomposite for supercapacitor applications. Clean Technologies and Environmental Policy, 2018, 20, 2025-2035.	2.1	10
108	Facile preparation of nitrogen-enriched hierarchical porous carbon nanofibers by Mg(OAc)2-assisted electrospinning for flexible supercapacitors. Applied Surface Science, 2018, 456, 827-834.	3.1	29
109	Stringed "tube on cube―nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381.	15.6	255
110	Nitrogen-enriched carbon spheres coupled with graphitic carbon nitride nanosheets for high performance supercapacitors. Dalton Transactions, 2018, 47, 9724-9732.	1.6	19
111	Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors. Applied Surface Science, 2018, 456, 568-576.	3.1	110
112	Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications. Energy, 2018, 159, 151-159.	4.5	36
113	NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors. Journal of Alloys and Compounds, 2018, 766, 149-156.	2.8	35
114	ZIF-67 as Continuous Self-Sacrifice Template Derived NiCo ₂ O ₄ /Co,N-CNTs Nanocages as Efficient Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 10021-10029.	3.2	90

#	Article	IF	CITATIONS
115	Electrospinning preparation of Sn4+-doped BiFeO3 nanofibers as efficient visible-light-driven photocatalyst for O2 evolution. Journal of Alloys and Compounds, 2018, 766, 274-283.	2.8	37
116	Conductive nanofinishes for textiles. , 2018, , 241-263.		1
117	Synthesis of bimetallic NixCo1-xP hollow nanocages from metal-organic frameworks for high performance hybrid supercapacitors. Electrochimica Acta, 2018, 285, 192-201.	2.6	67
118	Supercapacitive performance analysis of low cost and environment friendly potato starch based electrolyte system with anodized aluminium and teflon coated carbon cloth as electrode. Electrochimica Acta, 2018, 283, 1551-1559.	2.6	21
119	N,S Co-Doped Carbon Nanofibers Derived from Bacterial Cellulose/Poly(Methylene blue) Hybrids: Efficient Electrocatalyst for Oxygen Reduction Reaction. Catalysts, 2018, 8, 269.	1.6	16
120	Microporosity ontrolled Synthesis of Heteroatom Codoped Carbon Nanocages by Wrapâ€Bake‧ublime Approach for Flexible Allâ€Solidâ€Stateâ€Supercapacitors. Advanced Functional Materials, 2018, 28, 1803786.	7.8	92
121	Metal-organic coordination polymer/multi-walled carbon nanotubes composites to prepare N-doped hierarchical porous carbon for high performance supercapacitors. Electrochimica Acta, 2018, 284, 69-79.	2.6	23
122	Facile synthesis of 2D nitrogen-containing porous carbon nanosheets induced by graphene oxide for high-performance supercapacitors. Sustainable Energy and Fuels, 2018, 2, 2494-2501.	2.5	6
123	Coaxial α-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. Journal of Materials Chemistry A, 2018, 6, 15797-15806.	5.2	65
124	Nacre-like laminate nitrogen-doped porous carbon/carbon nanotubes/graphene composite for excellent comprehensive performance supercapacitors. Nanoscale, 2018, 10, 15229-15237.	2.8	19
125	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Advanced Energy Materials, 2018, 8, 1801257.	10.2	242
126	High temperature thermochromic polydiacetylene supported on polyacrylonitrile nanofibers. Polymer, 2018, 149, 106-116.	1.8	36
127	Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor. Applied Surface Science, 2018, 440, 606-613.	3.1	18
128	Nitrogen-Enriched Hollow Porous Carbon Nanospheres with Tailored Morphology and Microstructure for All-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2018, 1, 4293-4303.	2.5	72
129	Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chemical Engineering Journal, 2018, 349, 376-387.	6.6	91
130	High-performance double ion-buffering reservoirs of asymmetric supercapacitors based on flower-like Co ₃ O ₄ -G>N-PEGm microspheres and 3D rGO-CNT>N-PEGm aerogels. Nanoscale, 2018, 10, 17293-17303.	2.8	26
131	Biomass-derived C/N co-doped Ni(OH) ₂ /Ni _x S _y with a sandwich structure for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17417-17425.	5.2	37
132	A novel hierarchical precursor of densely integrated hydroxide nanoflakes on oxide microspheres toward high-performance layered Ni-rich cathode for lithium ion batteries. Materials Chemistry Frontiers, 2018, 2, 1822-1828.	3.2	14

#	Article	IF	CITATIONS
133	Highâ€Performance Flexible Quasiâ€Solidâ€State Supercapacitors Realized by Molybdenum Dioxide@Nitrogenâ€Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures. Advanced Science, 2018, 5, 1800733.	5.6	156
134	lsostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors. Journal of Materials Chemistry A, 2018, 6, 18938-18947.	5.2	14
135	Nitrogen-doped ZnO/Carbon hollow rhombic dodecahedral for photoelectrochemical sensing glutathione. Applied Surface Science, 2018, 458, 872-879.	3.1	17
136	Nitrogen Codoped Unique Carbon with 0.4 nm Ultraâ€Micropores for Ultrahigh Areal Capacitance Supercapacitors. Small, 2018, 14, e1801897.	5.2	40
137	Designed synthesis of SiC nanowire-derived carbon with dual-scale nanostructures for supercapacitor applications. Journal of Materials Chemistry A, 2018, 6, 12724-12732.	5.2	49
138	Effect of Graphene Oxide Thin Film on Growth and Electrochemical Performance of Hierarchical Zinc Sulfide Nanoweb for Supercapacitor Applications. ChemElectroChem, 2018, 5, 2636-2644.	1.7	26
139	N-doping and ultramicroporosity-controlled crab shell derived carbons for enhanced CO2 and CH4 sorption. Microporous and Mesoporous Materials, 2018, 272, 92-100.	2.2	27
140	Organic Nanostructures on Inorganic Ones: An Efficient Electrochromic Display by Design. ACS Applied Nano Materials, 2018, 1, 3715-3723.	2.4	37
141	Fabrication of porous carbon nitride foams/acrylic resin composites for efficient oil and organic solvents capture. Chemical Engineering Journal, 2019, 355, 299-308.	6.6	36
142	A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19939-19949.	5.2	71
143	Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. Journal of Alloys and Compounds, 2019, 806, 983-991.	2.8	94
144	A high performance all-organic thermoelectric fiber generator towards promising wearable electron. Composites Science and Technology, 2019, 182, 107767.	3.8	70
145	Ni,Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. Journal of Power Sources, 2019, 437, 226941.	4.0	48
146	Construction of CoO/Coâ€Cuâ€S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. Angewandte Chemie, 2019, 131, 15587-15593.	1.6	80
147	Construction of CoO/Co uâ€S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. Angewandte Chemie - International Edition, 2019, 58, 15441-15447.	7.2	346
148	In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon, 2019, 155, 1-8.	5.4	48
149	Carbonized wood-supported hollow NiCo2S4 eccentric spheres for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 811, 151858.	2.8	20
150	Quantum capacitance tuned flexible supercapacitor by UV-ozone treated defect engineered reduced graphene oxide forest. Nanotechnology, 2019, 30, 435404.	1.3	10

#	Article	IF	CITATIONS
151	Programmed Design of a Lithium–Sulfur Battery Cathode by Integrating Functional Units. Advanced Science, 2019, 6, 1900711.	5.6	44
152	Extraordinary cycling stability of Ni3(HITP)2 supercapacitors fabricated by electrophoretic deposition: Cycling at 100,000 cycles. Chemical Engineering Journal, 2019, 378, 122150.	6.6	66
153	Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities. Carbon, 2019, 153, 225-233.	5.4	98
154	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter, 2019, 1, 90-114.	5.0	266
155	N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy, 2019, 64, 103879.	8.2	110
156	Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. Nanomaterials, 2019, 9, 1045.	1.9	103
157	Unveiling highly ambient-stable multilayered 1T-MoS ₂ towards all-solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19152-19160.	5.2	71
158	Polyacrylonitrile-Based Nitrogen-Doped Carbon Materials with Different Micro-morphology Prepared by Electrostatic Field for Supercapacitors. Journal of Electronic Materials, 2019, 48, 5264-5272.	1.0	6
159	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids. , 2019, 1, 290-296.		20
160	Diffusion-determined assembly of all-climate supercapacitors <i>via</i> bioinspired aligned gels. Journal of Materials Chemistry A, 2019, 7, 19753-19760.	5.2	25
161	Hierarchically Porous Nanostructured Nickel Phosphide with Carbon Particles Embedded by Dielectric Barrier Discharge Plasma Deposition as a Binder-Free Electrode for Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 14805-14814.	3.2	24
162	Hierarchical "tube-on-fiber―carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale, 2019, 11, 13996-14009.	2.8	57
163	Tiâ€rich TiO ₂ Tubular Nanolettuces by Electrochemical Anodization for Allâ€Solidâ€State Highâ€Rate Supercapacitor Devices. ChemSusChem, 2019, 12, 4064-4073.	3.6	33
164	Fabrication and electrochemical properties of well-dispersed molybdenum oxide nanoparticles into nitrogen-doped ordered mesoporous carbons for supercapacitors. Materials Research Express, 2019, 6, 105088.	0.8	3
165	N-doped porous carbons with increased yield and hierarchical pore structures for supercapacitors derived from an N-containing phenyl-riched copolymer. Journal of Industrial and Engineering Chemistry, 2019, 80, 568-575.	2.9	9
166	Decoration of Hollow Mesoporous Carbon Spheres by NiCo ₂ S ₄ Nanoparticles as Electrode Materials for Asymmetric Supercapacitors. ACS Applied Energy Materials, 2019, 2, 8079-8089.	2.5	41
167	Controlled Design of a Robust Hierarchically Porous and Hollow Carbon Fiber Textile for Highâ€Performance Freestanding Electrodes. Advanced Science, 2019, 6, 1900762.	5.6	29
168	Electrospun composite nanofibre supercapacitors enhanced with electrochemically 3D printed current collectors. Journal of Energy Storage, 2019, 26, 100993.	3.9	8

#	Article	IF	CITATIONS
169	Nitrogen-rich hierarchical porous carbon materials with interconnected channels for high stability supercapacitors. New Journal of Chemistry, 2019, 43, 1864-1873.	1.4	6
170	Controlled growth of hierarchical FeCo2O4 ultrathin nanosheets and Co3O4 nanowires on nickle foam for supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 31780-31789.	3.8	26
171	Porous Carbon Hollow Rod for Supercapacitors with High Energy Density. Industrial & Engineering Chemistry Research, 2019, 58, 22124-22132.	1.8	19
172	Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance. Scientific Reports, 2019, 9, 16782.	1.6	27
173	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
174	An Assembly and Interfacial Templating Route to Carbon Supercapacitors with Simultaneously Tailored Meso- and Microstructures. ACS Applied Materials & Interfaces, 2019, 11, 43509-43519.	4.0	3
175	Macroscopic synthesis of ultrafine N–doped carbon nanofibers for superior capacitive energy storage. Science Bulletin, 2019, 64, 1617-1624.	4.3	66
176	Ultralight and Resilient Electrospun Fiber Sponge with a Lamellar Corrugated Microstructure for Effective Low-Frequency Sound Absorption. ACS Applied Materials & Interfaces, 2019, 11, 35333-35342.	4.0	66
177	Enhancement of adsorption and energy storage capacity of biomass-based N-doped porous carbon via cyclic carbothermal reduction triggered by nitrogen dopants. Carbon, 2019, 155, 403-409.	5.4	56
178	High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. Journal of Materials Research, 2019, 34, 3030-3039.	1.2	68
179	Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 808, 151737.	2.8	35
180	Cr ₃ C ₂ Nanoparticle-Embedded Carbon Nanofiber for Artificial Synthesis of NH ₃ through N ₂ Fixation under Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2019, 11, 35764-35769.	4.0	43
181	Rational design of MnO2-nanosheets-decroated hierarchical porous carbon nanofiber frameworks as high-performance supercapacitor electrode materials. Electrochimica Acta, 2019, 324, 134891.	2.6	26
182	High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons. ACS Omega, 2019, 4, 15904-15911.	1.6	91
183	Significantly enhanced dielectric and energy storage properties of plate-like BN@BaTiO3 composite nanofibers filled polyimide films. Materials Research Bulletin, 2019, 120, 110573.	2.7	21
184	Low-temperature preparation of crystallized graphite nanofibers for high performance perovskite solar cells. Solar Energy, 2019, 193, 205-211.	2.9	5
185	Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019, 119, 11042-11109.	23.0	309
186	Scalable, Large-Area Printing of Pore-Array Electrodes for Ultrahigh Power Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 37859-37866.	4.0	14

#	Article	IF	CITATIONS
187	Ultrathin Ni0.85Se nanosheets supported by Ni skeleton with high performance toward hybrid supercapacitors. Journal of Energy Storage, 2019, 26, 100972.	3.9	7
188	Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. Nanoscale, 2019, 11, 2492-2500.	2.8	62
189	Self-assembled and well separated B andÂN co-doped hierarchical carbon structures as high-capacity, ultra-stable, LIB anode materials. Sustainable Energy and Fuels, 2019, 3, 478-487.	2.5	6
190	Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 816-826.	5.2	134
191	Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3298-3306.	5.2	73
192	From ZIF nanoparticles to hierarchically porous carbon: toward very high surface area and high-performance supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2019, 6, 32-39.	3.0	14
193	Ultrahigh energy density of aÂN, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1177-1186.	5.2	188
194	Using inorganic dynamic porogens for preparing high-surface-area capacitive carbons with tailored micropores. Journal of Materials Chemistry A, 2019, 7, 687-692.	5.2	27
195	Carbon-coated MoO ₂ nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors. Dalton Transactions, 2019, 48, 285-295.	1.6	28
196	A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte. Journal of Materials Chemistry A, 2019, 7, 4110-4118.	5.2	51
197	An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene Oxide Scrolls. Nanomaterials, 2019, 9, 148.	1.9	63
198	Zn-MOFs derived porous carbon nanofiber for high performance lithium-ion batteries. Surface and Coatings Technology, 2019, 359, 384-389.	2.2	28
199	Nontemplating Porous Carbon Material from Polyphosphamide Resin for Supercapacitors. IScience, 2019, 12, 204-215.	1.9	9
200	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	11.1	188
201	Flexible carbon nano-films as self-sustained ultralight electrodes for supercapacitor. Materials Research Bulletin, 2019, 113, 109-114.	2.7	7
202	Hierarchical NiSe ₂ spheres composed of tiny nanoparticles for high performance asymmetric supercapacitors. CrystEngComm, 2019, 21, 994-1000.	1.3	48
203	Multi-layered zeolitic imidazolate framework based self-templated synthesis of nitrogen-doped hollow porous carbon dodecahedrons as robust substrates for supercapacitors. New Journal of Chemistry, 2019, 43, 2171-2178.	1.4	15
204	Synergistic effect of the Pd–Ni bimetal/carbon nanofiber composite catalyst in Suzuki coupling reaction. Organic Chemistry Frontiers, 2019, 6, 352-361.	2.3	38

#	Article	IF	Citations
205	Ethylenediamine-Catalyzed Preparation of Nitrogen-Doped Hierarchically Porous Carbon Aerogel under Hypersaline Condition for High-Performance Supercapacitors and Organic Solvent Absorbents. Nanomaterials, 2019, 9, 771.	1.9	9
206	In situ fabrication of nitrogen doped porous carbon nanorods derived from metal-organic frameworks and its application as supercapacitor electrodes. Journal of Solid State Chemistry, 2019, 277, 100-106.	1.4	21
207	Freeâ€standing nitrogenâ€doped grapheneâ€carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithiumâ€ion batteries. Journal of Chemical Technology and Biotechnology, 2019, 94, 3793-3799.	1.6	15
208	One-step synthesis of N, S-codoped porous graphitic carbon derived from lotus leaves for high-performance supercapacitors. Ionics, 2019, 25, 4891-4903.	1.2	17
209	Synthesis of Diverse Green Carbon Nanomaterials through Fully Utilizing Biomass Carbon Source Assisted by KOH. ACS Applied Materials & Interfaces, 2019, 11, 24205-24211.	4.0	42
210	Fabrication of nitrogen-rich three-dimensional porous carbon composites with nanosheets and hollow spheres for efficient supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 2082-2089.	3.0	12
211	Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy, 2019, 63, 103836.	8.2	178
212	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	4.6	31
213	Biomass-Based N, P, and S Self-Doped Porous Carbon for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	19
214	Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 17386-17399.	5.2	72
215	Biomassâ€Derived Porous Carbon Prepared from Egg White for Highâ€performance Supercapacitor Electrode Materials. ChemistrySelect, 2019, 4, 7358-7365.	0.7	32
216	Fabrication of nitrogen-doped porous carbons derived from ammoniated copolymer precursor: Record-high adsorption capacity for indole. Chemical Engineering Journal, 2019, 374, 1005-1012.	6.6	24
217	Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt―gel electrolyte. Journal of Materials Chemistry A, 2019, 7, 15801-15811.	5.2	130
218	Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale, 2019, 11, 11086-11092.	2.8	46
219	Core–shell assembly of carbon nanofibers and a 2D conductive metal–organic framework as a flexible free-standing membrane for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1824-1830.	3.0	70
220	Creating a Polar Surface in Carbon Frameworks from Single-Source Metal–Organic Frameworks for Advanced CO2 Uptake and Lithium–Sulfur Batteries. Chemistry of Materials, 2019, 31, 4258-4266.	3.2	17
221	Hierarchical double-shelled frameworks of polyaniline@N-doped porous carbon for supercapacitors. Applied Surface Science, 2019, 486, 490-498.	3.1	17
222	Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped–Carbon Composites Derived from in Situ Carbonization of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 10847-10854.	3.2	159

#	Article	IF	Citations
223	High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5â€V gel-type electrolyte. Chemical Engineering Journal, 2019, 372, 1216-1225.	6.6	103
224	Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. Journal of Materials Chemistry A, 2019, 7, 13743-13750.	5.2	112
225	Nitrogen-doped carbon/NiMoO4 nanospheres assembled by nanosheets and ultrasmall nanoparticles for supercapacitors. Chemical Physics Letters, 2019, 728, 215-223.	1.2	22
226	Trimodally porous N-doped carbon frameworks with an interconnected pore structure as selenium immobilizers for high-performance Li-Se batteries. Materials Characterization, 2019, 151, 590-601.	1.9	16
227	Boosting the pseudocapacitance of nitrogen-rich carbon nanorod arrays for electrochemical capacitors. Journal of Materials Chemistry A, 2019, 7, 12086-12094.	5.2	32
228	Facile synthesis of nitrogen-doped carbon materials with hierarchical porous structures for high-performance supercapacitors in both acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2019, 7, 13154-13163.	5.2	50
229	Layer-by-layer printing of multi-layered heterostructures using Li4Ti5O12 and Si for high power Li-ion storage. Nano Energy, 2019, 61, 96-103.	8.2	30
230	N-doping carbon sheet and core–shell mesoporous carbon sphere composite for high-performance supercapacitor. Journal of Industrial and Engineering Chemistry, 2019, 76, 450-456.	2.9	15
231	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
232	3D cross-linking N-doped graphene framework for high sulfur nanocrystal storage. Journal Physics D: Applied Physics, 2019, 52, 295502.	1.3	6
233	Nitrogen-doped 3D web-like interconnected porous carbon prepared by a simple method for supercapacitors. Ionics, 2019, 25, 4333-4340.	1.2	8
234	Controllable construction of N-enriched hierarchically porous carbon nanosheets with enhanced performance for CO2 capture. Chemical Engineering Journal, 2019, 371, 414-423.	6.6	33
235	Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. Journal of Alloys and Compounds, 2019, 790, 760-771.	2.8	69
236	AÂN, S dual doping strategy <i>via</i> electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9040-9050.	5.2	112
237	From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. Nanoscale, 2019, 11, 6610-6619.	2.8	24
238	Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustainable Energy and Fuels, 2019, 3, 1201-1214.	2.5	49
239	T-Nb ₂ O ₅ embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors. Sustainable Energy and Fuels, 2019, 3, 1055-1065.	2.5	23
240	Tannic Acid-Assisted Fabrication of N/B-Codoped Hierarchical Carbon Nanofibers from Electrospun Zeolitic Imidazolate Frameworks as Free-Standing Electrodes for High-Performance Supercapacitors. Journal of Electronic Materials, 2019, 48, 3050-3058.	1.0	17

#	Article	IF	CITATIONS
241	Electrospun cobalt-ZIF micro-fibers for efficient water oxidation under unique pH conditions. Catalysis Science and Technology, 2019, 9, 1847-1856.	2.1	43
242	Battery-like MnCo2O4 electrode materials combined with active carbon for hybrid supercapacitors. Electrochimica Acta, 2019, 306, 599-609.	2.6	81
243	Metal Organic Frameworks Derived Nano Materials for Energy Storage Application. International Journal of Electrochemical Science, 2019, 14, 2345-2362.	0.5	17
244	Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chemical Engineering Journal, 2019, 370, 1008-1018.	6.6	131
245	Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction. Electrochimica Acta, 2019, 306, 466-476.	2.6	25
246	Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts <i>via</i> a molecule-mediated interfacial co-assembly strategy. Journal of Materials Chemistry A, 2019, 7, 8975-8983.	5.2	55
247	Facile fabrication of nanoporous BCN with excellent charge/discharge cycle stability for high-performance supercapacitors. Materials Letters, 2019, 246, 28-31.	1.3	25
248	Three-dimensional honeycomb-like porous carbon derived from tamarisk roots via a green fabrication process for high-performance supercapacitors. Ionics, 2019, 25, 4315-4323.	1.2	14
249	Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V ₂ O ₅ /PEDOT Nanocable-Based Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 16647-16655.	4.0	57
250	Biligand metal-organic coordination polymer to prepare high N-doped content and structure controllable porous carbon with high-electrochemical performance. Electrochimica Acta, 2019, 308, 263-276.	2.6	8
251	Biomass-Derived Porous Carbon Materials for Supercapacitor. Frontiers in Chemistry, 2019, 7, 274.	1.8	162
252	Bifunctional Oxygen Electrocatalysis of N, S-Codoped Porous Carbon with Interspersed Hollow CoO Nanoparticles for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16720-16728.	4.0	99
253	Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon, 2019, 149, 105-116.	5.4	241
254	The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochimica Acta, 2019, 308, 121-130.	2.6	68
255	Waste bones derived nitrogen–doped carbon with high micropore ratio towards supercapacitor applications. Journal of Colloid and Interface Science, 2019, 547, 92-101.	5.0	100
256	Rational design of metal organic framework derived hierarchical structural nitrogen doped porous carbon coated CoSe/nitrogen doped carbon nanotubes composites as a robust Pt-free electrocatalyst for dye-sensitized solar cells. Journal of Power Sources, 2019, 422, 122-130.	4.0	27
257	Micromesoporous Nitrogen-Doped Carbon Materials Derived from Direct Carbonization of Metal–Organic Complexes for Efficient CO ₂ Adsorption and Separation. Inorganic Chemistry, 2019, 58, 5345-5355.	1.9	6
258	Metalâ€containing Ionic Liquid/Polyacrylonitrileâ€derived Carbon Nanofibers for Oxygen Reduction Reaction and Flexible Zn–Air Battery. Chemistry - an Asian Journal, 2019, 14, 2008-2017.	1.7	18

#	Article	IF	CITATIONS
259	Porous Carbon Nitride Frameworks Derived from Covalent Triazine Framework Anchored Ag Nanoparticles for Catalytic CO ₂ Conversion. Chemistry - A European Journal, 2019, 25, 8560-8569.	1.7	43
260	Enhancing oxygen reduction reaction of supercapacitor microbial fuel cells with electrospun carbon nanofibers composite cathode. Chemical Engineering Journal, 2019, 371, 544-553.	6.6	65
261	Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 788, 240-247.	2.8	90
262	A green approach to prepare hierarchical porous carbon nanofibers from coal for high-performance supercapacitors. RSC Advances, 2019, 9, 6184-6192.	1.7	22
263	Asymmetric supercapacitor based on reduced graphene oxide/MnO2 and polypyrrole deposited on carbon foam derived from melamine sponge. Journal of Physics and Chemistry of Solids, 2019, 130, 100-110.	1.9	29
264	Nitrogen-doped graphene/multiphase nickel sulfides obtained by Ni-C3N3S3 (metallopolymer) assisted synthesis for high-performance hybrid supercapacitors. Electrochimica Acta, 2019, 301, 332-341.	2.6	22
265	N-Doped Porous Carbon Derived by Direct Carbonization of Metal–Organic Complexes Crystal Materials for SO ₂ Adsorption. Crystal Growth and Design, 2019, 19, 1973-1984.	1.4	27
266	Nitrogen-Doped Carbon Polyhedra Nanopapers: An Advanced Binder-Free Electrode for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 5240-5248.	3.2	30
267	A confinement strategy to prepare N-doped reduced graphene oxide foams with desired monolithic structures for supercapacitors. Nanoscale, 2019, 11, 4362-4368.	2.8	25
268	Low-temperature fabrication of carbon nanofibers with improved graphitization via incorporating carbonaceous inclusions. Polyhedron, 2019, 164, 13-16.	1.0	4
269	A protective roasting strategy for preparation of stable mesoporous hollow CeO ₂ microspheres with enhanced catalytic activity for one-pot synthesis of imines from benzyl alcohols and anilines. Inorganic Chemistry Frontiers, 2019, 6, 829-836.	3.0	22
270	Oxygen-vacancy Bi ₂ O ₃ nanosheet arrays with excellent rate capability and CoNi ₂ S ₄ nanoparticles immobilized on N-doped graphene nanotubes as robust electrode materials for high-energy asymmetric supercapacitors. Journal of Materials Chemistry A, 2019. 7, 7918-7931.	5.2	92
271	Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. Journal of Power Sources, 2019, 418, 112-121.	4.0	54
272	A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Mikrochimica Acta, 2019, 186, 191.	2.5	49
273	Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 45805-45817.	4.0	25
274	Fabrication of uniform urchin-like N-doped NiCo2O4@C hollow nanostructures for high performance supercapacitors. RSC Advances, 2019, 9, 42110-42119.	1.7	11
275	A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode. Nanoscale, 2019, 11, 20715-20724.	2.8	37
276	Activation of carbon fiber for enhancing electrochemical performance. Inorganic Chemistry Frontiers, 2019, 6, 3583-3597.	3.0	28

#	Article	IF	CITATIONS
277	Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry A, 2019, 7, 24400-24407.	5.2	68
278	Engineering MoS2 Nanosheets Anchored on Metal Organic Frameworks Derived Carbon Polyhedra for Superior Lithium and Potassium Storage. Frontiers in Energy Research, 2019, 7, .	1.2	18
279	Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance. Journal of Colloid and Interface Science, 2019, 533, 297-303.	5.0	39
280	Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions. Journal of Colloid and Interface Science, 2019, 533, 578-587.	5.0	63
281	Synthesis and characterization of carbon supported V2O5 nanotubes and their electrochemical properties. Journal of Alloys and Compounds, 2019, 772, 429-437.	2.8	9
282	Nickel nanoparticles incorporated into N-doped porous carbon derived from N-containing nickel-MOF for high-performance supercapacitors. Journal of Alloys and Compounds, 2019, 782, 905-914.	2.8	27
283	Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100â€⁻000 Cycles Stability with 1% Capacity Fade. ACS Sustainable Chemistry and Engineering, 2019, 7, 2867-2877.	3.2	38
284	Hollow Co3S4/C anchored on nitrogen-doped carbon nanofibers as a free-standing anode for high-performance Li-ion batteries. Electrochimica Acta, 2019, 299, 173-181.	2.6	81
285	Tuning Confined Nanospace for Preparation of Nâ€doped Hollow Carbon Spheres for High Performance Supercapacitors. ChemSusChem, 2019, 12, 303-309.	3.6	39
286	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
287	Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline–Acidic Electrolyte. Advanced Science, 2019, 6, 1801665.	5.6	124
288	All Hierarchical Core–Shell Heterostructures as Novel Binderâ€Free Electrode Materials for Ultrahighâ€Energyâ€Density Wearable Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1801379.	5.6	70
289	Hydrothermal Carbonization for Hydrochar Production and Its Application. , 2019, , 275-294.		27
290	Graphene Oxide Induced Growth of Nitrogenâ€Doped Carbon Nanotubes as a 1D/2D Composite for Highâ€Performance Lithiumâ€ S ulfur Batteries. ChemElectroChem, 2019, 6, 1115-1121.	1.7	13
291	Metal–Organic Gelâ€Derived Fe <i>_x</i> O <i>_y</i> /Nitrogenâ€Doped Carbon Films for Enhanced Lithium Storage. Small, 2019, 15, e1804058.	5.2	31
292	N/P Codoped Porous Carbon/One-Dimensional Hollow Tubular Carbon Heterojunction from Biomass Inherent Structure for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 1337-1346.	3.2	66
293	N-doped porous carbon derived from walnut shells with enhanced electrochemical performance for supercapacitor. Functional Materials Letters, 2019, 12, 1950042.	0.7	16
294	Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability, 2019, 11, 414.	1.6	163

#	Article	IF	CITATIONS
295	Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors. Chemical Engineering Journal, 2019, 364, 70-78.	6.6	69
296	Engineering nanohaired 3D cobalt hydroxide wheels in electrospun carbon nanofibers for high-performance supercapacitors. Chemical Engineering Journal, 2019, 361, 1225-1234.	6.6	50
297	Carbon Nanotube@Nâ€Ðoped Mesoporous Carbon Composite Material for Supercapacitor Electrodes. Chemistry - an Asian Journal, 2019, 14, 634-639.	1.7	31
298	Design and synthesis of mint leaf-like polyacrylonitrile and carbon nanosheets for flexible all-solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2019, 362, 600-608.	6.6	16
299	Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochimica Acta, 2019, 299, 549-559.	2.6	69
300	In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor. Applied Surface Science, 2019, 469, 446-455.	3.1	88
301	Preparation of La0.7Sr0.3CoO3-l̂´ (LSC)@MnO2 core/shell nanorods as high-performance electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 17-25.	1.1	26
302	Highly porous carbon nanofoams synthesized from gas-phase plasma for symmetric supercapacitors. Chemical Engineering Journal, 2019, 360, 1310-1319.	6.6	33
303	Yolk@Shell SiO /C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Materials, 2019, 19, 299-305.	9.5	167
304	In Situ Encapsulation of Iron Complex Nanoparticles into Biomassâ€Derived Heteroatomâ€Enriched Carbon Nanotubes for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2019, 9, 1803221.	10.2	86
305	Nitrogen-doped carbon materials as a promising platform toward the efficient catalysis for hydrogen generation. Applied Catalysis A: General, 2019, 571, 25-41.	2.2	61
306	Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon, 2019, 141, 748-757.	5.4	108
307	Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon, 2019, 142, 115-122.	5.4	57
308	Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. Arabian Journal of Chemistry, 2020, 13, 2995-3007.	2.3	35
309	Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor. Journal of Alloys and Compounds, 2020, 812, 152138.	2.8	53
310	Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Materials, 2020, 25, 731-739.	9.5	122
311	The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Applied Catalysis B: Environmental, 2020, 261, 118224.	10.8	43
312	NiCoSe2/Ni3Se2 lamella arrays grown on N-doped graphene nanotubes with ultrahigh-rate capability and long-term cycling for asymmetric supercapacitor. Science China Materials, 2020, 63, 229-239.	3.5	40

#	ARTICLE	IF	Citations
313	Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. Carbon, 2020, 157, 106-112.	5.4	48
314	Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chemical Engineering Journal, 2020, 383, 123150.	6.6	224
315	Enhanced dielectric and energy storage properties of BaTiO3 nanofiber/polyimide composites by controlling surface defects of BaTiO3 nanofibers. Applied Surface Science, 2020, 501, 144243.	3.1	49
316	New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. CheM, 2020, 6, 19-40.	5.8	511
317	Sub-5†nm octahedral platinum-copper nanostructures anchored on nitrogen-doped porous carbon nanofibers for remarkable electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 560, 161-168.	5.0	27
318	Green Synthesis and Engineering Applications of Metal–Organic Frameworks. , 2020, , 139-162.		3
319	Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.	6.6	81
320	Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors. Chemical Engineering Journal, 2020, 382, 122979.	6.6	76
321	Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Materials, 2020, 24, 304-311.	9.5	44
322	Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Materials, 2020, 24, 439-449.	9.5	121
323	Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon, 2020, 158, 456-464.	5.4	72
324	Hierarchical porous nanofibers of carbon@nickel oxide nanoparticles derived from polymer/block copolymer system. Chinese Chemical Letters, 2020, 31, 2202-2206.	4.8	2
325	Sugar-templated conductive polyurethane-polypyrrole sponges for wide-range force sensing. Chemical Engineering Journal, 2020, 383, 123103.	6.6	41
326	Polymer/MOF-derived multilayer fibrous membranes for moisture-wicking and efficient capturing both fine and ultrafine airborne particles. Separation and Purification Technology, 2020, 235, 116183.	3.9	64
327	Pearl Necklace Fibrous Carbon Sharing Fe–N/Fe–P Dual Active Sites as Efficient Oxygen Reduction Catalyst in Broad Media and for Liquid/Solidâ€State Rechargeable Zn–Air Battery. Energy Technology, 2020, 8, 1901263.	1.8	16
328	Pressure difference-induced synthesis of P-doped carbon nanobowls for high-performance supercapacitors. Chemical Engineering Journal, 2020, 385, 123858.	6.6	60
329	Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti ₃ C ₂ (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 586-596.	2.5	40
330	Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 2773-2782.	4.0	17

#	Article	IF	CITATIONS
331	Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review. ACS Omega, 2020, 5, 57-67.	1.6	45
332	Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber. Journal of Power Sources, 2020, 449, 227514.	4.0	50
333	The influence of facile pre-reaction on the morphology and electrochemical performance of MnO(OH)/Co(OH)2 composite for supercapacitor. Ionics, 2020, 26, 2071-2079.	1.2	2
334	Engineering nano-heterostructured electrodes based on polypyrrole nanowires@Ni3S2 nanosheets and MoO2 nanoparticles-decorated N-doped carbon nanotubes towards high-performance solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 820, 153364.	2.8	12
335	Layer-by-layer growth of ZIF-8 on electrospun carbon nanofiber membranes for high-performance supercapacistor electrode. Journal of Energy Chemistry, 2020, 47, 221-224.	7.1	14
336	High sulfur content and volumetric capacity promised by a compact freestanding cathode for high-performance lithium–sulfur batteries. Energy Storage Materials, 2020, 27, 435-442.	9.5	39
337	High electrochemical performance carbon nanofibers with hierarchical structure derived from metal-organic framework with natural eggshell membranes. Journal of Colloid and Interface Science, 2020, 560, 811-816.	5.0	9
338	In situ nitrogen-doped carbon nano-onions for ultrahigh-rate asymmetric supercapacitor. Electrochimica Acta, 2020, 331, 135363.	2.6	39
339	A Oneâ€Pot Method to Synthesize a Coâ€Based Grapheneâ€Like Structure Doped Carbon Material for the Oxygen Reduction Reaction. ChemElectroChem, 2020, 7, 131-138.	1.7	4
340	Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization. Electrochimica Acta, 2020, 331, 135420.	2.6	33
341	Porous Carbon-Based Supercapacitors Directly Derived from Metal–Organic Frameworks. Materials, 2020, 13, 4215.	1.3	13
342	Metal-Organic Powder Thermochemical Solid-Vapor Architectonics toward Gradient Hybrid Monolith with Combined Structure-Function Features. Matter, 2020, 3, 879-891.	5.0	22
343	Metal-organic framework derived α-Fe2O3 nano-octahedron with oxygen vacancies for realizing outstanding energy storage performance. Vacuum, 2020, 182, 109692.	1.6	19
344	Wheat Bran Derived Carbon toward Cost-Efficient and High Performance Lithium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 15898-15905.	3.2	11
345	A novel porous organic polymer-derived hierarchical carbon for supercapacitors with ultrahigh energy density and durability. Journal of Electroanalytical Chemistry, 2020, 876, 114723.	1.9	14
346	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
347	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. Nano-Micro Letters, 2020, 12, 183.	14.4	45
348	Hollow Ni _{0.85} Se/Co _{0.85} Se/Co(OH) ₂ hexagonal plates for high-performance hybrid supercapacitors. Sustainable Energy and Fuels, 2020, 4, 6174-6180.	2.5	6

#	Article	IF	CITATIONS
349	A ternary B, N, P-Doped carbon material with suppressed water splitting activity for high-energy aqueous supercapacitors. Carbon, 2020, 170, 127-136.	5.4	62
350	Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes. Electrochimica Acta, 2020, 362, 137154.	2.6	20
351	Electrospun nitrogen-doped carbon nanofibers for electrocatalysis. Sustainable Materials and Technologies, 2020, 26, e00221.	1.7	11
352	Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horizons, 2020, 5, 1586-1595.	4.1	45
353	Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Materials, 2020, 32, 167-177.	9.5	228
354	Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. Journal of Materials Chemistry A, 2020, 8, 17257-17265.	5.2	61
355	Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 2020, 168, 499-507.	5.4	110
356	Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chemical Engineering Journal, 2020, 402, 126189.	6.6	136
357	Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chemical Engineering Journal, 2020, 402, 126294.	6.6	67
358	Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon, 2020, 168, 701-709.	5.4	118
359	Effective strategy to fabricate ZIF-8@ZIF-8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125292.	2.3	41
360	Fabrication of Ordered Macroâ€Microporous Singleâ€Crystalline MOF and Its Derivative Carbon Material for Supercapacitor. Advanced Energy Materials, 2020, 10, 1903750.	10.2	137
361	Nitrogenâ€Rich Hierarchical Porous Carbon Prepared by Solâ€Gel Assisted Inorganic Template Methods for Supercapacitors. Batteries and Supercaps, 2020, 3, 1165-1171.	2.4	8
362	High-performance solid-state hybrid supercapacitor enabled by metal–organic framework-derived multi-component hybrid electrodes of Co–N–C nanofibers and Co _{2â°x} Fe _x P–N–C micropillars. Journal of Materials Chemistry A, 2020, 8, 26158-26174.	5.2	53
363	Waffle-Like Carbons Combined with Enriched Mesopores and Highly Heteroatom-Doped Derived from Sandwiched MOF/LDH/MOF for High-Rate Supercapacitor. Nanomaterials, 2020, 10, 2388.	1.9	17
364	Self-standing porous N doped carbon/carbon foam for high-performance supercarpacitor. Diamond and Related Materials, 2020, 110, 108138.	1.8	11
365	In-situ growth of graphene on carbon nanofiber from lignin. Carbon, 2020, 169, 446-454.	5.4	30
366	In-situ template cooperated with urea to construct pectin-derived hierarchical porous carbon with optimized pore structure for supercapacitor. Electrochimica Acta, 2020, 355, 136801.	2.6	57

# 367	ARTICLE A hierarchical porous P-doped carbon electrode through hydrothermal carbonization of pomelo valves for high-performance supercapacitors. Nanoscale Advances, 2020, 2, 3284-3291.	IF 2.2	Citations
368	Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery. Frontiers in Chemistry, 2020, 8, 635.	1.8	32
369	3D hierarchical carbons composed of cross-linked porous carbon nanosheets for supercapacitors. Journal of Power Sources, 2020, 474, 228698.	4.0	23
370	Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nature Communications, 2020, 11, 3884.	5.8	152
371	Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries. Journal of Materials Chemistry A, 2020, 8, 18079-18086.	5.2	40
372	Fabrication of a vanadium nitride/N-doped carbon hollow nanosphere composite as an efficient electrode material for asymmetric supercapacitors. Nanoscale Advances, 2020, 2, 3865-3871.	2.2	27
373	Structurally designed heterochain polymer derived porous carbons with high surface area for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147296.	3.1	20
374	Electrospun Inorganic Nanofibers for Oxygen Electrocatalysis: Design, Fabrication, and Progress. Advanced Energy Materials, 2020, 10, 1902115.	10.2	111
375	Preparation and Electrochemical Properties of Porous Carbon Nanofiber Electrodes Derived from New Precursor Polymer: 6FDA-TFMB. Polymers, 2020, 12, 1851.	2.0	11
376	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	4.6	15
377	Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry. Advanced Functional Materials, 2020, 30, 2004650.	7.8	29
378	Cucurbit[6]urilâ€Ðerived Subâ€4Ânm Poresâ€Ðominated Hierarchical Porous Carbon for Supercapacitors: Operating Voltage Expansion and Pore Size Matching. Small, 2020, 16, e2002718.	5.2	34
379	Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO ₂ /PEDOT:PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode. Journal of Materials Chemistry A, 2020, 8, 19588-19602.	5.2	59
380	Metal-Induced Self-Assembly Template for Controlled Growth of ZIF-8 Nanorods. Chemistry of Materials, 2020, 32, 7941-7950.	3.2	31
381	Organic Molecular Electrode with Ultrahigh Rate Capability for Supercapacitors. Energy & Fuels, 2020, 34, 13079-13088.	2.5	17
382	Progress of Improving Mechanical Strength of Electrospun Nanofibrous Membranes. Macromolecular Materials and Engineering, 2020, 305, 2000230.	1.7	43
383	Facile synthesis of a covalent organic framework (COF) based on the reaction of melamine and trimesic acid incorporated electrospun nanofiber and its application as an electrochemical tyrosinamide aptasensor. New Journal of Chemistry, 2020, 44, 14922-14927.	1.4	28
384	Transformation of hollow ZnFe-ZIF-8 nanocrystals into hollow ZnFe–N/C electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 21183-21191.	1.4	4

#	Article	IF	CITATIONS
385	Nanoantenna Featuring Carbon Microtubes Derived from Bristle Fibers of Plane Trees for Supercapacitors in an Organic Electrolyte. ACS Applied Energy Materials, 2020, 3, 12627-12634.	2.5	9
386	Integrating Mixed Metallic Selenides/Nitrogen-Doped Carbon Heterostructures in One-Dimensional Carbon Fibers for Efficient Oxygen Reduction Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 8391-8401.	3.2	29
387	Targeted Synthesis of Polymer and Microporous Carbon Nanofibers via Temperatureâ€Dependent and Molecularlyâ€Triggered Interfacial Assembly. Advanced Materials Interfaces, 2020, 7, 2000381.	1.9	4
388	Influence of electrolyte ions on rechargeable supercapacitor for high value-added conversion of low-grade waste heat. Journal of Power Sources, 2020, 465, 228263.	4.0	20
389	Engineering ultrahigh-specific-capacity α-Fe2O3 nanoparticles and Ni(OH)2/Co0.85Se nanostructures separately anchored on N-doped graphene nanotubes toward alkaline rechargeable battery. Materials Characterization, 2020, 165, 110375.	1.9	6
390	Nitrogen-doped microporous carbon coated on carbon nanotubes for high performance supercapacitors. Microporous and Mesoporous Materials, 2020, 305, 110300.	2.2	23
391	Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale, 2020, 12, 13225-13248.	2.8	63
392	Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding. Chemical Engineering Journal, 2020, 400, 125322.	6.6	44
393	Three-dimensional hollow N-doped ZIF-8-derived carbon@MnO2 composites for supercapacitors. Applied Surface Science, 2020, 528, 146921.	3.1	38
394	Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 2283-2306.	3.2	25
395	Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Metals, 2020, 39, 680-687.	3.6	55
396	A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance supercapacitors. Chemical Engineering Journal, 2020, 399, 125788.	6.6	63
397	Hierarchically Porous Carbon Nanofibers with Controllable Porosity Derived from Iodinated Polyvinyl Alcohol for Supercapacitors. Advanced Materials Interfaces, 2020, 7, 2000513.	1.9	16
398	Chitosan-Derived Three-Dimensional Porous Graphene for Advanced Supercapacitors. Frontiers in Energy Research, 2020, 8, .	1.2	4
399	Achievement of high energy carbon based supercapacitors in acid solution enabled by the balance of SSA with abundant micropores and conductivity. Electrochimica Acta, 2020, 353, 136562.	2.6	9
400	Sulfur-deficient Co9S8/Ni3S2 nanoflakes anchored on N-doped graphene nanotubes as high-performance electrode materials for asymmetric supercapacitors. Science China Technological Sciences, 2020, 63, 675-685.	2.0	12
401	Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Industrial & amp; Engineering Chemistry Research, 2020, 59, 6347-6374.	1.8	132
402	Strategy for Constructing Nitrogen-Doped Graphene Structure by Patching Reduced Graphene Oxide under Low Temperature and Its Application in Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 7475-7484.	1.8	10

#	Article	IF	CITATIONS
403	In situ self-activation synthesis of binary-heteroatom co-doped 3D coralline-like microporous carbon nanosheets for high-efficiency energy storage in flexible all-solid-state symmetrical supercapacitors. Sustainable Energy and Fuels, 2020, 4, 2527-2540.	2.5	20
404	Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 7184-7191.	5.2	28
405	Construction of the NaTi2(PO4)3/C electrode with a one-dimensional porous hybrid structure as an advanced anode for sodium-ion batteries. Dalton Transactions, 2020, 49, 4680-4684.	1.6	4
406	B/N-Codoped Carbon Nanosheets Derived from the Self-Assembly of Chitosan–Amino Acid Gels for Greatly Improved Supercapacitor Performances. ACS Applied Materials & Interfaces, 2020, 12, 18692-18704.	4.0	98
407	Large-scale Synthesis of Carbon Fiber Sponges by Chemical Vapor Deposition. Chemistry Letters, 2020, 49, 542-545.	0.7	2
408	Nitrogen-doped carbon fibers embedding CoO _x nanoframes towards wearable energy storage. Nanoscale, 2020, 12, 8922-8933.	2.8	19
409	Synergizing Layered Carbon and Gel Electrolyte for Efficient Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 4207-4215.	3.2	19
410	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
411	Oriented Synthesis of Pyridinic-N Dopant within the Highly Efficient Multifunction Carbon-Based Materials for Oxygen Transformation and Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 10431-10443.	3.2	14
412	Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochimica Acta, 2020, 354, 136717.	2.6	44
413	Nanoparticles of Iron Nitride Encapsulated in Nitrogenâ€Doped Carbon Bulk Derived from Polyaniline/Fe ₂ O ₃ Blends and Its Electrochemical Performance. Particle and Particle Systems Characterization, 2020, 37, 2000132.	1.2	2
414	Poly(ionic liquid)-Based Conductive Interlayer as an Efficient Polysulfide Adsorbent for a Highly Stable Lithium–Sulfur Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 11396-11403.	3.2	25
415	Core–shell hybrid zeolitic imidazolate framework-derived hierarchical carbon for capacitive deionization. Journal of Materials Chemistry A, 2020, 8, 14653-14660.	5.2	41
416	The preparation of N, S, P self-doped and oxygen functionalized porous carbon via aerophilic interface reaction for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 12961-12972.	1.1	8
417	Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 16747-16789.	5.2	166
418	Biomass-derived wearable energy storage systems based on poplar tree-cotton fibers coupled with binary nickel–cobalt nanostructures. Sustainable Energy and Fuels, 2020, 4, 643-654.	2.5	29
419	Ultrathin 2D Metal–Organic Framework Nanosheets In situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device. Nano-Micro Letters, 2020, 12, 46.	14.4	105
420	Porous Graphitic Carbon Fibers for Fastâ€Charging Supercapacitor Applications. Energy Technology, 2020, 8, 2000050.	1.8	14

#	Article	IF	CITATIONS
421	Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents. Journal of Cleaner Production, 2020, 256, 120326.	4.6	61
422	Structurally Modulated Graphitic Carbon Nanofiber and Heteroatom (N,F) Engineering toward Metal-Free ORR Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 11438-11449.	4.0	44
423	Nitrogenâ€Doped Porous Graphene Coated with Fe ₃ O ₄ Nanoparticles for Advanced Supercapacitor Electrode Material with Improved Electrochemical Performance. Particle and Particle Systems Characterization, 2020, 37, 2000011.	1.2	11
424	Surface crosslinking of 6FDA-durene nanofibers for porous carbon nanofiber electrodes in electrochemical double layer capacitors. Nanotechnology, 2020, 31, 215404.	1.3	6
425	Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chemical Engineering Journal, 2020, 390, 124477.	6.6	90
426	Surface engineered carbon-cloth with broadening voltage window for boosted energy density aqueous supercapacitors. Carbon, 2020, 162, 136-146.	5.4	42
427	Hyaluronic Acid (HA)â€Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromolecular Bioscience, 2020, 20, e1900328.	2.1	110
428	Hierarchically porous carbon microfibers for solid-state supercapacitors. Journal of Materials Science, 2020, 55, 5510-5521.	1.7	7
429	Orderly and highly dense polyaniline nanorod arrays fenced on carbon nanofibers for all-solid-state flexible electrochemical energy storage. Electrochimica Acta, 2020, 338, 135846.	2.6	34
430	Nanosized FeS ₂ Particles Caged in the Hollow Carbon Shell as a Robust Polysulfide Adsorbent and Redox Mediator. ACS Sustainable Chemistry and Engineering, 2020, 8, 3261-3272.	3.2	26
431	Highly Efficient Oxygen Reduction Reaction Electrocatalysts FeCoâ^'Nâ^'C Derived from Two Metallomacrocycles and Nâ€doped Porous Carbon Materials. ChemElectroChem, 2020, 7, 865-872.	1.7	14
432	Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853.	4.6	403
433	Core-shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors. Electrochimica Acta, 2020, 338, 135896.	2.6	65
434	A universal strategy to obtain highly redox-active porous carbons for efficient energy storage. Journal of Materials Chemistry A, 2020, 8, 3717-3725.	5.2	79
435	1D MOFâ€Derived Nâ€Doped Porous Carbon Nanofibers Encapsulated with Fe ₃ C Nanoparticles for Efficient Bifunctional Electrocatalysis. European Journal of Inorganic Chemistry, 2020, 2020, 581-589.	1.0	16
436	Reducing Oxygen Evolution Reaction Overpotential in Cobaltâ€Based Electrocatalysts via Optimizing the "Microparticlesâ€inâ€Spider Web―Electrode Configurations. Small, 2020, 16, e1907029.	5.2	34
437	Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering Journal, 2020, 388, 124208.	6.6	75
438	Dandelion-like CuCo2O4 arrays on Ni foam as advanced positive electrode material for high-performance hybrid supercapacitors. Journal of Colloid and Interface Science, 2020, 566, 79-89.	5.0	43

#	ARTICLE	IF	CITATIONS
439	Novel synthesis route for preparation of porous nitrogen-doped carbons from lignocellulosic wastes for high performance supercapacitors. Journal of Alloys and Compounds, 2020, 827, 154116.	2.8	27
440	Rational Microstructure Design on Metal–Organic Framework Composites for Better Electrochemical Performances: Design Principle, Synthetic Strategy, and Promotion Mechanism. Small Methods, 2020, 4, 1900756.	4.6	45
441	Multi-scaled interconnected inter- and intra-fiber porous janus membranes for enhanced directional moisture transport. Journal of Colloid and Interface Science, 2020, 565, 426-435.	5.0	65
442	Facile preparation of porous carbons derived from orange peel via basic copper carbonate activation for supercapacitors. Journal of Alloys and Compounds, 2020, 823, 153747.	2.8	73
443	Assembly of GO Nanosheets–Coated Zeolitic Imidazolate Frameworkâ€67 Nanocubes via Electrospinning and Their Derivatives for Enhanced Lithiumâ€lon Storage Performance. Energy Technology, 2020, 8, 2000209.	1.8	5
444	Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. Journal of Materials Chemistry A, 2020, 8, 10269-10282.	5.2	47
445	Large-scale multirole Zn(II) programmed synthesis of ultrathin hierarchically porous carbon nanosheets. Science China Technological Sciences, 2020, 63, 1730-1738.	2.0	11
446	A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chemical Letters, 2020, 31, 2309-2313.	4.8	22
447	Graphene-like nitrogen-doped porous carbon nanosheets as both cathode and anode for high energy density lithium-ion capacitor. Electrochimica Acta, 2020, 349, 136303.	2.6	23
448	PtCo/N-doped carbon sheets derived from a simple pyrolysis of graphene oxide/ZIF-67/H2PtCl6 composites as an efficient catalyst for methanol electro-oxidation. International Journal of Hydrogen Energy, 2020, 45, 12766-12776.	3.8	24
449	Self-propelled nanoemulsion assembly of organosilane to the synthesis of high-surface-area hollow carbon spheres for enhanced energy storage. Chemical Engineering Journal, 2020, 400, 124973.	6.6	15
450	Tiny Ni0.85Se nanosheets modified by amorphous carbon and rGO with enhanced electrochemical performance toward hybrid supercapacitors. Journal of Energy Storage, 2020, 29, 101348.	3.9	14
451	A Honeycomb‣ike Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 19627-19632.	7.2	100
452	A Honeycombâ€Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie, 2020, 132, 19795-19800.	1.6	7
453	Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties. Microporous and Mesoporous Materials, 2020, 303, 110257.	2.2	43
454	Direct Dissolution of Cellulose in NaOH/Urea/α-Lipoic Acid Aqueous Solution to Fabricate All Biomass-Based Nitrogen, Sulfur Dual-Doped Hierarchical Porous Carbon Aerogels for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 21528-21538.	4.0	58
455	Ultrafast microwave synthesis of rambutan-like CMK-3/carbon nanotubes nanocomposites for high-performance supercapacitor electrode materials. Scientific Reports, 2020, 10, 6227.	1.6	15
456	Recent progress on MOFâ€derived carbon materials for energy storage. , 2020, 2, 176-202.		198

#	ARTICLE	IF	CITATIONS
457	Zeolitic imidazolate framework derived ZnCo ₂ O ₄ hollow tubular nanofibers for long-life supercapacitors. RSC Advances, 2020, 10, 13922-13928.	1.7	16
458	Wearable colorimetric sensing fiber based on polyacrylonitrile with PdO@ZnO hybrids for the application of detecting H ₂ leakage. Textile Reseach Journal, 2020, 90, 2198-2211.	1.1	26
459	Uniformly bimetal-decorated holey carbon nanorods derived from metalâ^'organic framework for efficient hydrogen evolution. Science Bulletin, 2021, 66, 170-178.	4.3	27
460	Carbon-containing electrospun nanofibers for lithium–sulfur battery: Current status and future directions. Journal of Energy Chemistry, 2021, 54, 254-273.	7.1	77
461	Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium-sulfur battery cathode. Journal of Alloys and Compounds, 2021, 851, 156289.	2.8	41
462	High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Chemistry - A European Journal, 2021, 27, 669-682.	1.7	22
463	Green supercapacitor assisted photocatalytic fuel cell system for sustainable hydrogen production. Chemical Engineering Journal, 2021, 403, 126368.	6.6	24
464	Laser-induced nitrogen-self-doped graphite nanofibers from cyanate ester for on-chip micro-supercapacitors. Chemical Engineering Journal, 2021, 404, 126375.	6.6	33
465	Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydrate Polymers, 2021, 251, 117107.	5.1	58
466	Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chemical Engineering Journal, 2021, 405, 126951.	6.6	139
467	New types of hybrid electrolytes for supercapacitors. Journal of Energy Chemistry, 2021, 57, 219-232.	7.1	106
468	Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors. Journal of Power Sources, 2021, 482, 228934.	4.0	28
469	Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters, 2021, 32, 1491-1496.	4.8	65
470	Rationally designed N, P Co-doped porous film via steam etching as self-supported binder-free anode for high-performance lithium-ion battery. Carbon, 2021, 171, 36-44.	5.4	13
471	Rambutanâ€like hierarchically porous carbon microsphere as electrode material for highâ€performance supercapacitors. , 2021, 3, 361-374.		25
472	Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials, 2021, 35, 630-660.	9.5	182
473	Etching strategy synthesis of hierarchical Ni-Mn hydroxide hollow spheres for supercapacitors. Journal of Energy Storage, 2021, 33, 102105.	3.9	29
474	The identification of specific N-configuration responsible for Li-ion storage in N-doped porous carbon nanofibers: An ex-situ study. Journal of Power Sources, 2021, 483, 229174.	4.0	17

#	Article	IF	CITATIONS
475	Inherent Oxygen―and Nitrogenâ€Đoped Porous Carbon Derived from Biomass of Tamarind Leaf for Highâ€Performance Supercapacitor Application. Energy Technology, 2021, 9, .	1.8	10
476	Significantly improved electrochemical characteristics of nickel sulfide nanoplates using graphene oxide thin film for supercapacitor applications. Journal of Energy Storage, 2021, 33, 102091.	3.9	24
477	Microrecycling of waste flexible printed circuit boards for in-situ generation of O- and N-doped activated carbon with outstanding supercapacitance performance. Resources, Conservation and Recycling, 2021, 167, 105221.	5.3	13
478	Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor. Journal of Energy Storage, 2021, 33, 102150.	3.9	18
479	Hollow Carbonâ€Based Nanoarchitectures Based on ZIF: Inward/Outward Contraction Mechanism and Beyond. Small, 2021, 17, e2004142.	5.2	62
480	Facile Preparation of Low-Cost and Cross-Linked Carbon Nanofibers Derived from PAN/PMMA/Lignin as Supercapacitor Electrodes. Energy & Fuels, 2021, 35, 796-805.	2.5	29
481	Nitrogen, phosphorus and sulfur tri-doped hollow carbon nanocapsules derived from core@shell zeolitic imidazolate framework@poly(cyclotriphosphazene-co-4,4â€2-sulfonyldiphenol) for advanced supercapacitors. Electrochimica Acta, 2021, 367, 137507.	2.6	10
482	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117
483	Photocatalytic hydrogen evolution on CdS–based composites derived from in situ carbonization of a sulfonic azo dye complex. Inorganic Chemistry Communication, 2021, 125, 108370.	1.8	2
484	Optical characterizations and dielectric performance of 5,10,15,20-Tetrakis(pentafluorophenyl)-21H,23H-porphine palladium(II) for photodetector applications. Materials Chemistry and Physics, 2021, 258, 123989.	2.0	14
485	Coordination-assisted fabrication of N-doped carbon nanofibers/ultrasmall Co3O4 nanoparticles for enhanced lithium storage. Journal of Alloys and Compounds, 2021, 855, 157502.	2.8	10
486	Amalgamation of MnWO ₄ nanorods with amorphous carbon nanotubes for highly stabilized energy efficient supercapacitor electrodes. Dalton Transactions, 2021, 50, 5327-5341.	1.6	23
487	Investigation of the mechanism of small size effect in carbon-based supercapacitors. Nanoscale, 2021, 13, 12697-12710.	2.8	10
488	Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors. Journal of Materials Chemistry A, 2021, 9, 16824-16833.	5.2	64
489	Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2021, 5, 3125-3131.	3.2	24
490	Solvothermal preparation of spherical Bi ₂ O ₃ nanoparticles uniformly distributed on Ti ₃ C ₂ T _{<i>x</i>} for enhanced capacitive performance. Nanoscale Advances, 2021, 3, 5312-5321.	2.2	4
491	Polymer/carbon nanocoil nanocomposite: status and future directions. Polymer-Plastics Technology and Materials, 2021, 60, 816-829.	0.6	4
492	Carbon nanoflakes and nanofibers. , 2021, , 399-459.		0

#	Article	IF	CITATIONS
493	FeF ₃ ·0.33H ₂ O@carbon nanosheets with honeycomb architectures for high-capacity lithium-ion cathode storage by enhanced pseudocapacitance. Journal of Materials Chemistry A, 2021, 9, 16370-16383.	5.2	37
494	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
495	Controllable synthesis of porous tubular carbon by a Ag ⁺ -ligand-assisted Stöber-silica/carbon assembly process. Nanoscale, 2021, 13, 2534-2541.	2.8	2
496	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
497	Pyrolysis transformation of ZIF-8 wrapped with polytriazine to nitrogen enriched core-shell polyhedrons carbon for supercapacitor. Frontiers of Chemical Science and Engineering, 2021, 15, 944-953.	2.3	5
498	Electrospun Carbon-Based Nanocomposites as Anodes for Lithium Ion Batteries. Materials Horizons, 2021, , 393-423.	0.3	Ο
499	The synthesis and electrochemical properties of low-crystallinity iron silicate derived from reed leaves as a supercapacitor electrode material. Dalton Transactions, 2021, 50, 8917-8926.	1.6	10
500	Metal organic framework derived porous carbon materials excel as an excellent platform for high-performance packaged supercapacitors. Nanoscale, 2021, 13, 5570-5593.	2.8	53
501	Microporeâ€Rich Yolkâ€Shell Nâ€doped Carbon Spheres: An Ideal Electrode Material for Highâ€Energy Capacitive Energy Storage. ChemSusChem, 2021, 14, 1756-1762.	3.6	18
502	Optimization of redox-active anthraquinone as electrode and electrolyte materials in supercapacitors Electrochimica Acta, 2021, 370, 137809.	2.6	11
503	Engineering hydrophobic carbon sponge from metalâ^'organic complexes@melamine foam composite for advanced volatile organic compounds adsorption. Journal of Materials Science, 2021, 56, 9093-9105.	1.7	2
504	A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Materials, 2021, 36, 69-81.	2.9	98
505	Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters, 2021, 21, 1555-1565.	4.5	351
506	La0.7Sr0.3CoO3/Co3O4 nanofibers with hollow network porous structure by one-step electrospinning for hybrid supercapacitor. Ionics, 2021, 27, 2629-2638.	1.2	1
507	PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges. Journal of Materials Science, 2021, 56, 10745-10781.	1.7	23
508	Design of Metals Sulfides with Carbon Materials for Supercapacitor Applications: A Review. Energy Technology, 2021, 9, 2000987.	1.8	40
509	Nitrogen and oxygen coâ€doped carbon microspheres with partially graphitic structures: Integrated high volumetric capacitance, mass loadings and rate capability for supercapacitors. Nano Select, 2021, 2, 1788-1797.	1.9	5
510	1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2021, 13, 15939-15949.	4.0	54

#	Article	IF	CITATIONS
511	Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochimica Acta, 2021, 371, 137825.	2.6	44
512	Electrospinning as a tool in fabricating hydrated porous cobalt phosphate fibrous network as high rate OER electrocatalysts in alkaline and neutral media. International Journal of Hydrogen Energy, 2021, 46, 10366-10376.	3.8	29
514	Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy and Environment, 2023, 8, 548-558.	4.7	10
515	Electrospun nanofiber-based soft electronics. NPG Asia Materials, 2021, 13, .	3.8	127
516	Synergistics of Fe ₃ C and Fe on Mesoporous Fe–N–C Sulfur Host for Nearly Complete and Fast Lithium Polysulfide Conversion. ACS Applied Materials & Interfaces, 2021, 13, 17791-17799.	4.0	9
517	Rational design of meso-/micro-pores for enhancing ion transportation in highly-porous carbon nanofibers used as electrode for supercapacitors. Applied Surface Science, 2021, 545, 148933.	3.1	29
518	N-doped hollow carbon nanoparticles encapsulated fibers derived from ZIF-8 self-sacrificed template for advanced lithium–sulfur batteries. Microporous and Mesoporous Materials, 2021, 317, 111000.	2.2	13
519	Controllable preparation of nitrogen-doped hierarchical and honeycomb-like porous carbon/graphene based on composites of graphene oxide and polyaniline nanorod arrays for high performance supercapacitors. Journal of Energy Storage, 2021, 36, 102314.	3.9	13
520	Emergence of melanin-inspired supercapacitors. Nano Today, 2021, 37, 101075.	6.2	121
521	Improved Electrochemical Performances of Graphene Hybrids Embedded with Silica as the Functional Connection Layer for Supercapacitors. Journal of Energy Storage, 2021, 36, 102315.	3.9	6
522	NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries. Nano Energy, 2021, 82, 105764.	8.2	43
523	Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks. New Carbon Materials, 2021, 36, 322-335.	2.9	13
524	Keratin-derived heteroatoms-doped hierarchical porous carbon materials for all-solid flexible supercapacitors. Journal of Alloys and Compounds, 2021, 859, 157814.	2.8	19
525	Preparation and characterization of melamine-led nitrogen-doped carbon blacks at different pyrolysis temperatures. Journal of Solid State Chemistry, 2021, 296, 121972.	1.4	24
526	Flexible All-Solid-State Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Polyacrylonitrile Copolymer. ACS Applied Energy Materials, 2021, 4, 5830-5839.	2.5	4
527	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20102-20118.	7.2	123
528	Integrating the Essence of a Metal–Organic Framework with Electrospinning: A New Approach for Making a Metal Nanoparticle Confined N-Doped Carbon Nanotubes/Porous Carbon Nanofibrous Membrane for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2021, 13, 23732-23742.	4.0	43
529	Carbonâ€based nonprecious metal electrocatalysts derived from <scp>MOFs</scp> for oxygenâ€reduction reaction. International Journal of Energy Research, 2021, 45, 15676-15738.	2.2	16

#	Article	IF	CITATIONS
530	Transformation of Fibrous Membranes from Opaque to Transparent under Mechanical Pressing. Engineering, 2022, 19, 84-92.	3.2	11
531	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 20262-20278.	1.6	13
532	High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
533	Flexible Carbon Nanofibrous Membranes with Adjustable Hierarchical Porous Structure as Highâ€Capacity Anodes for Sodiumâ€ion Batteries. Energy Technology, 2021, 9, 2100049.	1.8	11
534	Metal–Organic Framework@Polyacrylonitrile-Derived Potassiophilic Nanoporous Carbon Nanofiber Paper Enables Stable Potassium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6245-6252.	2.5	23
535	A Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials for Supercapacitors. Electrochem, 2021, 2, 236-250.	1.7	21
536	A General Self-Sacrifice Template Strategy to 3D Heteroatom-Doped Macroporous Carbon for High-Performance Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2021, 13, 131.	14.4	40
537	Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4519-4529.	2.5	21
538	Design of a ductile carbon nanofiber/ZrB2 nanohybrid film with entanglement structure fabricated by electrostatic spinning. Ceramics International, 2021, 47, 15114-15120.	2.3	13
539	Wearable Helical Molybdenum Nitride Supercapacitors for Self-Powered Healthcare Smartsensors. ACS Applied Materials & Interfaces, 2021, 13, 29780-29787.	4.0	19
540	Flexible NiP2@hollow N-doped nanocapsules/carbon nanofiber as a freestanding electrode for glucose sensing. Composites Communications, 2021, 25, 100686.	3.3	15
541	Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO ₃ in Molten Salt. ACS Applied Materials & Interfaces, 2021, 13, 30668-30677.	4.0	18
542	Carbon substrates: a review on fabrication, properties and applications. Carbon Letters, 2021, 31, 557-580.	3.3	66
543	Promoting the energy density of lithium-ion capacitor by coupling the pore-size and nitrogen content in capacitive carbon cathode. Journal of Power Sources, 2021, 498, 229912.	4.0	36
544	One-step electrodeposition strategy for growing nickel cobalt hydroxysulfide nanosheets for supercapacitor application. Journal of Alloys and Compounds, 2021, 865, 158736.	2.8	27
545	Dynamic Behavior of Charged Particles at the Nanopipette Orifice. ACS Sensors, 2021, 6, 2330-2338.	4.0	12
546	Catalytic and Photocatalytic Electrospun Nanofibers for Hydrogen Generation from Ammonia Borane Complex: A Review. Polymers, 2021, 13, 2290.	2.0	9
547	Ni ₃ S ₂ Nanocomposite Structures Doped with Zn and Co as Long-Lifetime, High-Energy-Density, and Binder-Free Cathodes in Flexible Aqueous Nickel-Zinc Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34292-34300.	4.0	29

#	Article	IF	CITATIONS
548	Carbon Nanofibers-Assembled Tungsten Oxide as Unique Hybrid Electrode Materials for High-Performance Symmetric Supercapacitors. Energy & Fuels, 2021, 35, 11572-11579.	2.5	16
549	High capacity Li3VO4-Ga2O3/NC as durable anode for Li-ion batteries via robust pseudocapacitive charge storage. Journal of Alloys and Compounds, 2021, 868, 159115.	2.8	11
550	Designing Tubular Architectures Composed of Hollow Nâ€Doped Carbon Polyhedrons for Improved Supercapacitance. Advanced Materials Interfaces, 2021, 8, 2100805.	1.9	11
551	A facile dual-functional hydrothermal-assisted synthesis strategy of hierarchical porous carbon for enhanced supercapacitor performance. Sustainable Materials and Technologies, 2021, 28, e00265.	1.7	10
552	Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy, 2021, 85, 106031.	8.2	82
553	Recovering renewable carbon materials from automotive shredder residue (ASR) for micro-supercapacitor electrodes. Journal of Cleaner Production, 2021, 304, 127131.	4.6	16
554	Rational design of ZIF-8 assimilated hierarchical porous carbon nanofibers as binder-free electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 2021, 895, 115471.	1.9	9
555	A robust strategy of solvent choice to synthesize optimal nanostructured carbon for efficient energy storage. Carbon, 2021, 180, 135-145.	5.4	88
556	A phosphorus integrated strategy for supercapacitor: 2D black phosphorus–doped and phosphorus-doped materials. Materials Today Chemistry, 2021, 21, 100480.	1.7	18
557	Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Materials Science, 2021, 3, 241-267.	3.9	54
558	Hierarchical hollow microspheres of carbon nanorods with enhanced supercapacitor performance. Materials Today Communications, 2021, 28, 102500.	0.9	2
559	Couple of Nonpolarized/Polarized Electrodes Building a New Universal Electrochemical Energy Storage System with an Impressive Energy Density. ACS Applied Materials & Interfaces, 2021, 13, 45375-45384.	4.0	23
560	Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework. Journal of Power Sources, 2021, 506, 230224.	4.0	53
561	Confinement of transition metal phosphides in N, P-doped electrospun carbon fibers for enhanced electrocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 875, 159934.	2.8	16
562	Preparation of Fe/N Co-Doped Hierarchical Porous Carbon Nanosheets Derived From Chitosan Nanofibers for High-Performance Supercapacitors. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	1
563	A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 2021, 148, 111263.	8.2	192
564	Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports, 2021, 11, 18387.	1.6	20
565	Fabrication of defect-rich bifunctional hollow NiTe2 nanotubes for high performance hydrogen evolution electrocatalysts and supercapacitors. Journal of Energy Storage, 2021, 42, 103098.	3.9	20

#	Article	IF	Citations
" 566	A mild method to prepare nitrogen-rich interlaced porous carbon nanosheets for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 381-389.	5.0	40
567	Construction of sugarcane bagasse-derived porous and flexible carbon nanofibers by electrospinning for supercapacitors. Industrial Crops and Products, 2021, 170, 113700.	2.5	33
568	Facile fabrication of novel heterostructured tin disulfide (SnS2)/tin sulfide (SnS)/N-CNO composite with improved energy storage capacity for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 899, 115695.	1.9	51
569	Constructing an efficient conductive network with carbon-based additives in metal hydroxide electrode for high-performance hybrid supercapacitor. Electrochimica Acta, 2021, 397, 139242.	2.6	10
570	NiMoO4 nanosheets grown on MOF-derived leaf-like Co3O4 nanosheet arrays for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160867.	2.8	30
571	Electrospun IrP2-carbon nanofibers for hydrogen evolution reaction in alkaline medium. Applied Surface Science, 2021, 565, 150461.	3.1	12
572	Laser synthesis of superhydrophilic O/S co-doped porous graphene derived from sodium lignosulfonate for enhanced microsupercapacitors. Journal of Power Sources, 2021, 513, 230558.	4.0	36
573	A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy, 2021, 90, 106500.	8.2	43
574	3D boron/nitrogen dual doped layered carbon for 2 V aqueous symmetric supercapacitors. Renewable Energy, 2021, 180, 683-690.	4.3	26
575	Electrospun MOF-based ZnSe nanocrystals confined in N-doped mesoporous carbon fibers as anode materials for potassium ion batteries with long-term cycling stability. Chemical Engineering Journal, 2021, 425, 131651.	6.6	35
576	Capacitive deionization of NaCl solution with hierarchical porous carbon materials derived from Mg-MOFs. Separation and Purification Technology, 2021, 277, 119618.	3.9	36
577	Electrospun carbon nanofibers functionalized with NiCo2S4 nanoparticles as lightweight, flexible and binder-free cathode for aqueous Ni-Zn batteries. Chemical Engineering Journal, 2021, 426, 130068.	6.6	29
578	Synthesis of a highly efficient bifunctional Co2P@N-doped carbon nanotubes electrocatalyst by GO-Induced assembly strategy for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2022, 889, 161628.	2.8	7
579	Historical Background and Present Status of the Capacitors and Supercapacitor for High Bioenergy Storage Applications. , 2022, , 692-702.		0
580	A facile fabrication of a multi-functional and hierarchical Zn-based MOF as an efficient catalyst for CO ₂ fixation at room-temperature. Inorganic Chemistry Frontiers, 2021, 8, 3085-3095.	3.0	31
581	Fabrication, functionalization and advanced applications of magnetic hollow materials in confined catalysis and environmental remediation. Nanoscale, 2021, 13, 10967-11003.	2.8	18
582	Vacancy-engineered MoO ₃ and Na ⁺ -preinserted MnO ₂ <i>in situ</i> grown N-doped graphene nanotubes as electrode materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 20794-20806.	5.2	15
583	Polydopamine assists the continuous growth of zeolitic imidazolate framework-8 on electrospun polyacrylonitrile fibers as efficient adsorbents for the improved removal of Cr(<scp>vi</scp>). New Journal of Chemistry, 2021, 45, 15503-15513.	1.4	8

#	Article	IF	CITATIONS
584	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
585	Insights of Heteroatoms Dopingâ€Enhanced Bifunctionalities on Carbon Based Energy Storage and Conversion. Advanced Functional Materials, 2021, 31, 2009109.	7.8	58
586	The Advanced Designs of Highâ€Performance Platinumâ€Based Electrocatalysts: Recent Progresses and Challenges. Advanced Materials Interfaces, 2018, 5, 1800486.	1.9	55
587	Constructing Hierarchical Porous Carbon of Highâ€Performance Capacitance through a Twoâ€Step Nitrogenâ€Fixation Method. Energy Technology, 2020, 8, 2000107.	1.8	3
588	Fishnet‣ike, Nitrogenâ€Doped Carbon Films Directly Anchored on Carbon Cloths as Binderâ€Free Electrodes for Highâ€Performance Supercapacitor. Global Challenges, 2020, 4, 1900086.	1.8	11
589	Characteristics of Carbon Nanofibers. Springer Series in Materials Science, 2020, , 215-245.	0.4	27
590	Effective removal of particles down to 15Ânm using scalable metal-organic framework-based nanofiber filters. Applied Materials Today, 2020, 20, 100653.	2.3	19
591	Structural engineering of porous N-doped carbon-coated Fe3O4 framework by controlling coordination for superior lithium-ion full-cell. Applied Surface Science, 2020, 526, 146639.	3.1	12
592	Rationally designed nitrogen-doped yolk-shell Fe7Se8/Carbon nanoboxes with enhanced sodium storage in half/full cells. Carbon, 2020, 166, 175-182.	5.4	39
593	Locking metal sulfide nanoparticles in interconnected porous carbon nanofibers with protective macro-porous skin as freestanding anodes for lithium ion batteries. Chemical Engineering Journal, 2020, 397, 125271.	6.6	19
594	Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples. Journal of Colloid and Interface Science, 2018, 514, 59-69.	5.0	45
595	Laser induced porous electrospun fibers for enhanced filtration of xylene gas. Journal of Hazardous Materials, 2020, 399, 122976.	6.5	22
596	Dual-Doping of Sulfur on Mesoporous Carbon as a Cathode for the Oxygen Reduction Reaction and Lithium-Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 8537-8548.	3.2	21
597	Using thiourea as a catalytic redox-active additive to enhance the performance of pseudocapacitive supercapacitors. Sustainable Energy and Fuels, 2021, 5, 5733-5740.	2.5	4
598	Flexible electrodes with high areal capacity based on electrospun fiber mats. Nanoscale, 2021, 13, 18391-18409.	2.8	15
599	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
600	Selfâ€Assembled Carbon Superstructures Achieving Ultraâ€Stable and Fast Protonâ€Coupled Charge Storage Kinetics. Advanced Materials, 2021, 33, e2104148.	11.1	174
601	Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for highâ€performance flexible energy storage. Energy Storage Materials, 2022, 44, 250-262.	9.5	35

#	ARTICLE	IF	CITATIONS
602	Green synthesis of nitrogen-doped hierarchical porous carbon nanosheets derived from polyvinyl chloride towards high-performance supercapacitor. Journal of Power Sources, 2021, 515, 230629.	4.0	36
603	Metal-Organic Powder Thermochemical Solid-Vapor Architectonics Towards Gradient Hybrid Monolith with Combined Structure-Function Features. SSRN Electronic Journal, 0, , .	0.4	0
604	Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chemical Engineering Journal, 2022, 431, 133241.	6.6	23
605	Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter, 2021, 4, 4006-4021.	5.0	50
607	<i>In situ</i> encapsulation of metal sulfide into hierarchical nanostructured electrospun nanofibers as self-supported electrodes for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry C, 2022, 10, 542-548.	2.7	16
608	Metal-organic framework-based materials for flexible supercapacitor application. Coordination Chemistry Reviews, 2022, 452, 214300.	9.5	112
609	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
610	Controllable One-Dimensional Growth of Metal–Organic Frameworks Based on Uncarved Halloysite Nanotubes as High-Efficiency Solar-Fenton Catalysts. Journal of Physical Chemistry C, 2021, 125, 25565-25579.	1.5	11
611	A Pacman‣ike Titaniumâ€Đoped Cobalt Sulfide Hollow Superstructure for Electrocatalytic Oxygen Evolution. Small, 2022, 18, e2103106.	5.2	28
612	Anisotropic MOF-on-MOF Growth of Isostructural Multilayer Metal–Organic Framework Heterostructures. Research, 2021, 2021, 9854946.	2.8	6
613	ZIF-67-derived cobalt-based sulfate CoSO4/carbon nanotube nanocomposites as host material for high-performance lithium–sulfur battery cathode. Ionics, 2022, 28, 635-645.	1.2	6
614	Electrospinning of Neat Graphene Nanofibers. Advanced Fiber Materials, 2022, 4, 268-279.	7.9	31
615	Freestanding XMoO4 nanosheet arrays@hollow porous carbon submicrofiber composites for flexible all-solid-state symmetric supercapacitors. Journal of Alloys and Compounds, 2022, 898, 162834.	2.8	12
616	The Free-Standing Alloy Strategy to Improve the Electrochemical Performance of Potassium-Based Dual-Ion Batteries. ACS Energy Letters, 2021, 6, 4336-4344.	8.8	33
617	Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon microtubes with dielectric-magnetic synergy toward highly efficient microwave absorption. Chemical Engineering Journal, 2022, 433, 133640.	6.6	25
618	Boosted electrochemical properties of polyimide-based carbon nanofibers containing micro/mesopore for high-performance supercapacitors by thermal rearrangement. Journal of Energy Storage, 2022, 47, 103672.	3.9	11
619	3D interconnected porous carbon derived from spontaneous merging of the nano-sized ZIF-8 polyhedrons for high-mass-loading supercapacitor electrodes. Journal of Materials Chemistry A, 2022, 10, 2027-2034.	5.2	23
620	Polyvinyl alcohol/quaternary ammonium chitosan hydrogel electrolyte for sensing supercapacitors with excellent performance. Journal of Energy Storage, 2022, 46, 103918.	3.9	10

#	Article	IF	CITATIONS
621	Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chemical Engineering Journal, 2022, 431, 134099.	6.6	22
622	Fabrication of highly-conductive porous capacitor electrodes by the insertion of Cu-nanoparticles into N-doped flocculated carbon catalysts. Journal of Colloid and Interface Science, 2022, 610, 106-115.	5.0	1
623	A Novel Hybridized Needle-Like Co ₃ O ₄ /N-CNO Composite for Superior Energy Storage Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
624	A family of MOFs@Wood-Derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities. Materials Today Energy, 2022, 24, 100951.	2.5	28
625	Electrospun metal–organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges. Journal of Materials Chemistry A, 2022, 10, 1642-1681.	5.2	33
626	Green self-activation engineering of metal–organic framework derived hollow nitrogen-doped carbon spheres towards supercapacitors. Journal of Materials Chemistry A, 2022, 10, 2932-2944.	5.2	24
627	Boron and nitrogen co-doped carbon nanospheres for supercapacitor electrode with excellent specific capacitance. Nanotechnology, 2022, 33, 185403.	1.3	5
628	A universal constructing method for high performance DNA biosensors based on the optimized photoelectrode material and dual recycling amplification. Applied Surface Science, 2022, 585, 152661.	3.1	2
629	MOF-derived NiCo ₂ S ₄ and carbon hybrid hollow spheres compactly concatenated by electrospun carbon nanofibers as self-standing electrodes for aqueous alkaline Zn batteries. Journal of Materials Chemistry A, 2022, 10, 4100-4109.	5.2	21
630	Structural design and mechanism analysis of hierarchical porous carbon fibers for advanced energy and environmental applications. Journal of Materials Chemistry A, 2021, 10, 10-49.	5.2	23
631	Electrodeposited nickel nanocone/NiMoO4 nanocomposite designed as superior electrode materials for high performance supercapacitor. International Journal of Hydrogen Energy, 2022, 47, 5220-5229.	3.8	18
632	Modified KBBF-like Material for Energy Storage Applications: ZnNiBO ₃ (OH) with Enhanced Cycle Life. ACS Applied Materials & Interfaces, 2022, 14, 8025-8035.	4.0	20
633	Carbon-coated Si/N-doped porous carbon nanofibre derived from metal–organic frameworks for Li-ion battery anodes. Journal of Alloys and Compounds, 2022, 902, 163635.	2.8	21
634	A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Materials Horizons, 2022, 9, 1232-1242.	6.4	36
635	Enhancing Electric Double Layer Capacitance of Two-Dimensional Titanium Carbide (MXene) with Facile Synthesis and Accentuated Properties. Energy & Fuels, 2022, 36, 2811-2820.	2.5	9
636	An ultrahighâ€energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2â€sulfonic acid modified carbon felt electrode. International Journal of Energy Research, 2022, 46, 8042-8060.	2.2	26
637	Hollow nanospheres comprising amorphous NiMoS4 and crystalline NiS2 for all-solid-state supercapacitors. Chemical Engineering Journal, 2022, 436, 135231.	6.6	32
638	Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials. Renewable Energy, 2022, 188, 61-69.	4.3	23

#	Article	IF	CITATIONS
639	Hetero-Phase Amorphous Nimos4/Crystalline Nis2 Hollow Nanosphere for High-Performance All-Solid-State Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
640	Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. Journal of Materials Chemistry A, 2022, 10, 9837-9847.	5.2	47
641	Inner-OuterÂSynergistic Strategy: Embedding Nis Nanoflakes in Electrospun Carbon Fibers Encapsulated Nis Nanoparticles for Advanced Hybrid Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
642	Introduction of S-S Bond to Flexible Supercapacitors for High Mass Specific C Apacity and Stability. SSRN Electronic Journal, 0, , .	0.4	0
643	Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design. Chemical Communications, 2022, 58, 3578-3590.	2.2	14
644	An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO2 to ethanol. Fundamental Research, 2023, 3, 786-795.	1.6	3
645	Conductive Metal–Organic Frameworks for Supercapacitors. Advanced Materials, 2022, 34, e2200999.	11.1	101
646	Energetic influence of methylene blue on the electrochemical performance of activated carbon in a water-in-salt electrolyte. Ionics, 2022, 28, 2481-2488.	1.2	1
647	Review—Influencing Factors and Suppressing Strategies of the Self-Discharge for Carbon Electrode Materials in Supercapacitors. Journal of the Electrochemical Society, 2022, 169, 030504.	1.3	10
648	Electrospinning derivative fabrication of sandwich-structured CNF/Co3S4/MoS2 as self-supported electrodes to accelerate electron transport in HER. International Journal of Hydrogen Energy, 2022, 47, 14930-14941.	3.8	14
649	Co nanoparticles embedded in wheat-like porous carbon nanofibers as bifunctional electrocatalysts for rechargeable zinc-air batteries. Electrochimica Acta, 2022, 411, 140090.	2.6	2
650	Porous Carbon Material Derived from Steam-Exploded Poplar for Supercapacitor: Insights into Synergistic Effect of KOH and Urea on the Structure and Electrochemical Properties. Materials, 2022, 15, 2741.	1.3	3
651	Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. Microporous and Mesoporous Materials, 2022, 335, 111801.	2.2	7
652	3D juniperus sabina-like Ni/Co metal-organic framework as an enhanced electrode material for supercapacitors. Journal of Solid State Chemistry, 2022, 310, 123056.	1.4	7
653	Boosting capacitive performance of nitrogen-doped carbon by atomically dispersed iron. Journal of Power Sources, 2022, 532, 231335.	4.0	15
654	A novel hybridized needle-like Co3O4/N-CNO composite for superior energy storage asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 908, 164447.	2.8	16
655	Energetic MOF-derived hollow carbon tubes with interconnected channels and encapsulated nickel-cobalt alloy sites as bifunctional catalysts for Zn–air batteries with stable cycling over 600 cycles. Applied Surface Science, 2022, 591, 153070.	3.1	10
656	Applications of carbon-based conductive nanomaterials in biosensors. Chemical Engineering Journal, 2022, 442, 136183.	6.6	111

#	Article	IF	CITATIONS
657	Bifunctional Microwave-Assisted Molybdenum-Complex Carbon Sponge Production for Supercapacitor and Water-Splitting Applications. ACS Applied Materials & Interfaces, 2021, 13, 60966-60977.	4.0	10
658	Puffing Up Hollow Carbon Nanofibers with Highâ€Energy Metalâ€Organic Frameworks for Capacitiveâ€Dominated Potassiumâ€Ion Storage. Small, 2022, 18, e2105767.	5.2	13
659	Introduction of S-S bond to flexible supercapacitors for high mass specific capacity and stability. Journal of Alloys and Compounds, 2022, 911, 165080.	2.8	1
660	Facile and controllable in-situ nitridation of polyaniline electrode for high-performance flexible all-solid-state supercapacitors. Journal of Colloid and Interface Science, 2022, 620, 399-406.	5.0	9
662	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	23.0	126
663	Two-in-one template-assisted construction of hollow phosphide nanotubes for electrochemical energy storage. Inorganic Chemistry Frontiers, 0, , .	3.0	1
664	Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction. Chinese Chemical Letters, 2023, 34, 107458.	4.8	9
665	Molecular Bridging Enables Isolated Iron Atoms on Stereoassembled Carbon Framework To Boost Oxygen Reduction for Zincâ€Air Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	4
666	Water purification from chlorobenzenes using heteroatom-functionalized carbon nanofibers produced on self-organizing Ni-Pd catalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107873.	3.3	7
667	MnO2-graphene based composites for supercapacitors: Synthesis, performance and prospects. Journal of Alloys and Compounds, 2022, 914, 165343.	2.8	23
668	Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. Nanomaterials, 2022, 12, 1663.	1.9	8
669	Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous and Mesoporous Materials, 2022, 338, 111889.	2.2	21
670	Homogeneous Elongation of Nâ€Đoped CNTs over Nanoâ€Fibrillated Hollowâ€Carbonâ€Nanofiber: Mass and Charge Balance in Asymmetric Supercapacitors Is No Longer Problematic. Advanced Science, 2022, 9, e2200650.	5.6	32
671	In situ self-boosting catalytic synthesizing free-standing N, S rich transition metal sulfide/hierarchical CNF-CNT architectures enable high-performance lithium-sulfur batteries. Electrochimica Acta, 2022, 422, 140549.	2.6	13
672	Structure control of heteroatoms' self-doped porous carbon materials derived from cyclomatrix polyphosphazene for high-performance supercapacitor application. lonics, 0, , .	1.2	3
673	Construction of Cos-Encapsulated in Ultrahigh Nitrogen Doped Carbon Nanofibers from Energetic Metal-Organic Frameworks for Superior Sodium Storage. SSRN Electronic Journal, 0, , .	0.4	0
674	In-Situ Granulation Synthesis of Ni/Nio Nanosheets as High-Performance Catalysts for Alkaline Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
675	Bimetallic Heterojunction Effectively Constructs Porous Surface Engineering for High Performance Flexible Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
676	Design and synthesis of highly efficient nitrogen-doped carbon nano-onions for asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 918, 165609.	2.8	12
677	Glycerol-mediated synthesis of copper-doped zinc sulfide with ultrathin nanoflakes for flexible energy electrode materials. Journal of Alloys and Compounds, 2022, 919, 165701.	2.8	18
678	Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. Chemical Engineering Journal, 2022, 446, 137262.	6.6	66
679	The synthesis of MOF derived carbon and its application in water treatment. Nano Research, 2022, 15, 6793-6818.	5.8	39
680	Performance and potential of porous carbons derived of electrospun metal–organic frameworks for supercapacitor applications. Journal of Energy Chemistry, 2022, 73, 348-353.	7.1	10
681	Porous Hybrid Carbon Nanofibers Derived from Metal-Organic Frameworks for High-Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
682	CoFe Prussian blue analogues on 3D porous N-doped carbon nanosheets boost the intercalation kinetics for a high-performance quasi-solid-state hybrid capacitor. Journal of Materials Chemistry A, 2022, 10, 14501-14512.	5.2	18
683	A Water-Soluble Epoxy-Based Green Crosslinking System for Stabilizing PVA Nanofibers. Molecules, 2022, 27, 4177.	1.7	4
684	Construction of CoS-encapsulated in ultrahigh nitrogen doped carbon nanofibers from energetic metal-organic frameworks for superior sodium storage. Carbon, 2022, 198, 353-363.	5.4	19
685	Heteroatom-Doped Porous Carbon-Based Nanostructures for Electrochemical CO2 Reduction. Nanomaterials, 2022, 12, 2379.	1.9	18
686	Facile preparation of nitrogen-doped hierarchical porous carbon derived from lignin with KCl for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129622.	2.3	14
687	Enhanced electrochemical performance of the cobalt chloride carbonate hydroxide hydrate via micromorphology and phase transformation. Journal of Colloid and Interface Science, 2022, 626, 506-514.	5.0	4
688	High-performance dual carbon lithium-ion capacitors based on nitrogen-doped 2D carbon nanosheets as both anode and cathode. Electrochimica Acta, 2022, 428, 140921.	2.6	7
689	Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Science China Chemistry, 2022, 65, 1661-1669.	4.2	2
690	Surface Modification of Hollow Nanostructured Materials for Energy Storage. Crystal Growth and Design, 2022, 22, 5755-5769.	1.4	5
691	Atomically Dispersed Iron Active Sites Promoting Reversible Redox Kinetics and Suppressing Shuttle Effect in Aluminum–Sulfur Batteries. Nano-Micro Letters, 2022, 14, .	14.4	16
692	Coupling Atomically Dispersed Fe–N ₅ Sites with Defective Nâ€Đoped Carbon Boosts CO ₂ Electroreduction. Small, 2022, 18, .	5.2	18
693	High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower. Electrochimica Acta, 2022, 429, 141037.	2.6	11

#	Article	IF	CITATIONS
694	Nitrogen-doped hollow carbon polyhedron derived from metal-organic frameworks for supercapacitors. Journal of Energy Storage, 2022, 55, 105485.	3.9	11
695	Porous hybrid carbon nanofibers derived from metal-organic frameworks for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 925, 166766.	2.8	4
696	3D self-supported hierarchical lettuce-like Ni3S2 super architecture with an internal nanowire network for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 925, 166626.	2.8	6
697	Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon, 2023, 201, 49-59.	5.4	26
698	Modular assembly of MOF-derived carbon nanofibers into macroarchitectures for water treatment. Chemical Science, 2022, 13, 9159-9164.	3.7	11
699	Introducing mesoporous silica-protected calcination for improving the electrochemical performance of Cu@Fe–N–C composites in oxygen reduction reactions and supercapacitor applications. New Journal of Chemistry, 2022, 46, 18351-18365.	1.4	5
700	Core-Shell Ppy@N-Doped Porous Carbon Nanofiber-Based Electrodes for High-Property Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
701	Versatile Carbon Nanofiber-Based Sensors. ACS Applied Bio Materials, 2022, 5, 4086-4102.	2.3	14
702	Review on Recent Applications of Nitrogenâ€Đoped Carbon Materials in CO ₂ Capture and Energy Conversion and Storage. Energy Technology, 2022, 10, .	1.8	12
703	Sb/Nâ€Ðoped Carbon Nanofiber as a Sodiumâ€ion Battery Anode. Energy Technology, 2022, 10, .	1.8	3
704	Bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber composite: a high-performance oxygen reduction electrocatalyst for zinc-air batteries. Nano Research, 2023, 16, 545-554.	5.8	17
705	Electronically Modified Ce ³⁺ Ion Doped 2D NiFe-LDH Nanosheets over a 1D Microfiber: A High-Performance Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 12768-12781.	2.5	22
706	Synthesis of Different Manganese Tungstate Nanostructures for Enhanced Charge Storage Application: Theoretical support of the Experimental Findings. Physical Chemistry Chemical Physics, 0, ,	1.3	1
707	Synthesis of copper/chromium metal organic frameworks - Derivatives as an advanced electrode material for high-performance supercapacitors. Ceramics International, 2023, 49, 5119-5129.	2.3	33
708	Hierarchical Porous Carbon Fibers for Enhanced Interfacial Electron Transfer of Electroactive Biofilm Electrode. Catalysts, 2022, 12, 1187.	1.6	1
709	Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors. EnergyChem, 2022, 4, 100090.	10.1	22
710	MXene/carboxymethylcellulose-polyaniline (Ti3C2Tx/CMC-PANI) film as flexible electrode for high-performance asymmetric supercapacitors. Electrochimica Acta, 2022, 436, 141408.	2.6	13
711	Longitudinally grown pyrolyzed quinacridones for sodium-ion battery anode. Chemical Engineering Journal, 2023, 453, 139805.	6.6	7

#	Article	IF	CITATIONS
712	Structural design of electrospun nanofibers for electrochemical energy storage and conversion. Journal of Alloys and Compounds, 2023, 935, 167920.	2.8	8
713	The review of different dimensionalities based pristine metal organic frameworks for supercapacitor application. Journal of Energy Storage, 2022, 56, 105700.	3.9	13
714	Hydrophobic nanoporous carbon scaffolds reveal the origin of polarity-dependent electrocapillary imbibition. Chemical Science, 2023, 14, 1372-1385.	3.7	2
715	Synchronized partial metal leaching and amphoteric N–P modification in MnO ₂ and VO _{<i>x</i>} pseudocapacitor beyond its energy density limit. Journal of Materials Chemistry A, 2023, 11, 676-690.	5.2	3
716	Two-dimensional nanosheets of bimetallic chalcogenide-tagged nitrogen-doped carbon as a cathode for high-performance and durable zinc-ion capacitors. Journal of Materials Chemistry A, 2023, 11, 5112-5126.	5.2	5
717	Electrochemical performance and Cu2+ modification of nickel metal organic framework derived tellurides for application in aluminum ion batteries. Journal of Electroanalytical Chemistry, 2023, 928, 117014.	1.9	2
718	3D carbon nanotube-mesoporous carbon sponge with short pore channels for high-power lithium-ion capacitor cathodes. Carbon, 2023, 203, 479-489.	5.4	9
719	MOF derived metal oxide composites and their applications in energy storage. Coordination Chemistry Reviews, 2023, 477, 214949.	9.5	60
720	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.	14.8	54
721	Nanowires/nanohelices hybrid carbon aerogels as the lightweight and hydrophobic microwave absorbers with excellent electrothermal properties. Carbon, 2023, 204, 7-16.	5.4	17
722	A facile morphology tunable strategy of Zn-MOF derived hierarchically carbon materials with enhanced supercapacitive performance through the solvent effect. Dalton Transactions, 2022, 51, 18213-18223.	1.6	6
723	Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors. Small, 2023, 19, .	5.2	14
724	Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon. Journal of Fungi (Basel, Switzerland), 2023, 9, 43.	1.5	0
725	Carbon-based smart nanomaterials. , 2023, , 3-24.		1
726	Hierarchical Nickel–Cobalt Hydroxide Composite Nanosheets-Incorporated Nitrogen-Doped Carbon Nanotubes Embedded with Nickel–Cobalt Alloy Nanoparticles for Driving a 2 V Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2023, 15, 7263-7273.	4.0	11
727	Carbon nanofiber-based gas sensors. , 2023, , 105-126.		1
728	Trimetallic layered double hydroxides with a hierarchical heterostructure for high-performance supercapcitors. Journal of Energy Storage, 2023, 61, 106700.	3.9	6
729	Squeezing excess meso/macropores via self-assembly of zeolitic imidazolate framework units to synthesize dense carbon for high-volume supercapacitors. Journal of Power Sources, 2023, 563, 232786.	4.0	3

#	Article	IF	CITATIONS
730	Multi-channel cellular carbon fiber as electrode for Zn-ion hybrid capacitor with enhanced capacity and energy density. Journal of Power Sources, 2023, 566, 232935.	4.0	6
731	Nanoarchitectonics of fulvic acid based oxygen-rich hierarchical porous carbon with high specific surface area as supercapacitor electrodes. Materials Chemistry and Physics, 2023, 301, 127567.	2.0	1
732	Hierarchical porous carbon nanoarchitectonics with honeycomb-like and N, P co-doped features for flexible symmetric supercapacitors and high-efficiency dye removal. Journal of Energy Storage, 2023, 65, 107272.	3.9	5
733	Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2023, 641, 265-276.	5.0	6
734	Porous graphitic carbon nitride nanosheets with three-dimensional interconnected network as electrode for supercapacitors. Journal of Energy Storage, 2023, 63, 106935.	3.9	4
735	Core-shell Ppy@N-doped porous carbon nanofiber-based electrodes for high-property supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131056.	2.3	11
736	N/S co-doped carbon nanosheets derived from sugarcane processing by-products for flexible solid-state supercapacitors. Journal of Electroanalytical Chemistry, 2023, 932, 117217.	1.9	6
737	Thiourea-assisted nitrogen and sulfur dual-doped carbon nanofibers for enhanced supercapacitive energy storage. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	5
738	Insights into the storage mechanism of freestanding MoTe2/C nanofibers as binder-free anodes for high-performance sodium-ion batteries. Journal of Alloys and Compounds, 2023, 949, 169884.	2.8	7
739	Polymers/graphene derivative–based nanocomposites as electrode materials for supercapacitors. , 2023, , 451-474.		0
750	Functionalized Carbon and Its Derivatives Dedicated to Supercapacitors in Industrial Applications. Materials Horizons, 2024, , 569-598.	0.3	0
762	3D nitrogen-doped carbon frameworks with hierarchical pores and graphitic carbon channels for high-performance hybrid energy storages. Materials Horizons, 0, , .	6.4	1
773	Recent development in metal-organic frameworks and their derivatives for supercapacitors. , 2024, , 303-329.		0