Iron-Catalyzed Câ€"H Bond Activation

Chemical Reviews 117, 9086-9139

DOI: 10.1021/acs.chemrev.6b00772

Citation Report

#	Article	IF	CITATIONS
1	Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development. Accounts of Chemical Research, 2017, 50, 1281-1292.	15.6	65
2	Manganese(I)-Catalyzed C–H 3,3-Difluoroallylation of Pyridones and Indoles. Organic Letters, 2017, 19, 3159-3162.	4.6	82
3	Palladium-Catalyzed Removable 8-Aminoquinoline Assisted Chemo- and Regioselective Oxidative <i>sp</i> ² -C–H/ <i>sp</i> >spC–H Cross-Coupling of Ferrocene with Toluene Derivatives. Organic Letters, 2017, 19, 5960-5963.	4.6	40
4	Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature. Journal of Contaminant Hydrology, 2017, 206, 10-17.	3.3	13
5	Palladium-catalyzed direct sulfonylation of Câ€"H bonds with the insertion of sulfur dioxide. Chemical Communications, 2017, 53, 12548-12551.	4.1	62
6	Iron-Catalyzed Regioselective Anti-Markovnikov Addition of C–H Bonds in Aromatic Ketones to Alkenes. Journal of the American Chemical Society, 2017, 139, 14849-14852.	13.7	72
7	Iron(<scp>iii</scp>)-catalyzed chelation assisted remote Câ€"H bond oxygenation of 8-amidoquinolines. Organic and Biomolecular Chemistry, 2017, 15, 9200-9208.	2.8	24
8	Cyclic ureas (DMI, DMPU) as efficient, sustainable ligands in iron-catalyzed C(sp2)–C(sp3) coupling of aryl chlorides and tosylates. Green Chemistry, 2017, 19, 5361-5366.	9.0	46
9	Substrate-Dependent Two-State Reactivity in Iron-Catalyzed Alkene [2+2] Cycloaddition Reactions. Journal of the American Chemical Society, 2017, 139, 15564-15567.	13.7	52
10	Câ^'H Bond Functionalization by Mechanochemistry. Chemistry - A European Journal, 2017, 23, 17157-17165.	3.3	121
10	Câ^'H Bond Functionalization by Mechanochemistry. Chemistry - A European Journal, 2017, 23, 17157-17165. Ironâ€Catalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981.	3.3 6.8	95
	Ironâ€Catalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10,		
11	Ironâ€Catalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981. Regioselective Access to Structurally Diverse Coumarin Analogues through Ironâ€Catalysed	6.8	95
11	Ironâ€Catalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981. Regioselective Access to Structurally Diverse Coumarin Analogues through Ironâ€Catalysed Annulation Reactions. European Journal of Organic Chemistry, 2017, 2017, 5566-5571. Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand ⟨i⟩meta⟨ i⟩â€Substitution.	6.8	95 17
11 12 13	Ironâ€Catalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981. Regioselective Access to Structurally Diverse Coumarin Analogues through Ironâ€Catalysed Annulation Reactions. European Journal of Organic Chemistry, 2017, 2017, 5566-5571. Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand ⟨i⟩meta⟨ i⟩â€Substitution. Angewandte Chemie - International Edition, 2017, 56, 14197-14201. Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand ⟨i⟩meta⟨ i⟩â€Substitution.	6.8 2.4 13.8	95 17 129
11 12 13	Ironâ€Catalyzed Câ°'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981. Regioselective Access to Structurally Diverse Coumarin Analogues through Ironâ€Catalysed Annulation Reactions. European Journal of Organic Chemistry, 2017, 2017, 5566-5571. Asymmetric Ironâ€Catalyzed Câ°'H Alkylation Enabled by Remote Ligand ⟨i⟩meta⟨ i⟩â€Substitution. Angewandte Chemie - International Edition, 2017, 56, 14197-14201. Asymmetric Ironâ€Catalyzed Câ°'H Alkylation Enabled by Remote Ligand ⟨i⟩meta⟨ i⟩â€Substitution. Angewandte Chemie, 2017, 129, 14385-14389. Catalytic C(sp⟨sup⟩3⟨ sup⟩)â€"H Alkylation via an Iron Carbene Intermediate. Journal of the American	6.8 2.4 13.8 2.0	95 17 129 104
11 12 13 14	Ironâ€Catalyzed Câ^O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981. Regioselective Access to Structurally Diverse Coumarin Analogues through Ironâ€Catalysed Annulation Reactions. European Journal of Organic Chemistry, 2017, 2017, 5566-5571. Asymmetric Ironâ€Catalyzed Câ^H Alkylation Enabled by Remote Ligand <i>meta</i> hi>â€Substitution. Angewandte Chemie - International Edition, 2017, 56, 14197-14201. Asymmetric Ironâ€Catalyzed Câ^H Alkylation Enabled by Remote Ligand <i>meta</i> hi>â€Substitution. Angewandte Chemie, 2017, 129, 14385-14389. Catalytic C(sp ³)â€"H Alkylation via an Iron Carbene Intermediate. Journal of the American Chemical Society, 2017, 139, 13624-13627. Manganese-Catalyzed Directed Methylation of C(sp2)â€"H Bonds at 25 °C with High Catalytic Turnover.	6.8 2.4 13.8 2.0	95 17 129 104 71

#	Article	IF	CITATIONS
19	Computational studies on the Rh-catalyzed carboxylation of a C(sp ²)â€"H bond using CO ₂ . Catalysis Science and Technology, 2017, 7, 3539-3545.	4.1	16
20	MnCl ₂ â€Catalyzed Câ^'H Alkylations with Alkyl Halides. Chemistry - A European Journal, 2017, 23, 11524-11528.	3.3	57
21	Hydroboration of Alkynes Catalyzed by Pyrrolide-Based PNP Pincer–Iron Complexes. Organic Letters, 2017, 19, 4323-4326.	4.6	86
22	Directed Iron-Catalyzed <i>ortho </i> -Alkylation and Arylation: Toward the Stereoselective Catalytic Synthesis of 1,2-Disubstituted Planar-Chiral Ferrocene Derivatives. Organometallics, 2017, 36, 4979-4989.	2.3	59
23	Ironâ€Catalyzed C(sp ²)–C(sp ³) Crossâ€Coupling of Alkyl Grignard Reagents with Polyaromatic Tosylates. European Journal of Organic Chemistry, 2017, 2017, 7271-7276.	2.4	18
24	Nâ€Heterocyclic Carbene Iron Silyl Hydride Complexes. Israel Journal of Chemistry, 2017, 57, 1216-1221.	2.3	11
25	Palladium-Catalyzed Direct C–H Functionalization of Indoles with the Insertion of Sulfur Dioxide: Synthesis of 2-Sulfonated Indoles. Organic Letters, 2017, 19, 6638-6641.	4.6	71
26	Bromide-Mediated C–H Bond Functionalization: Intermolecular Annulation of Phenylethanone Derivatives with Alkynes for the Synthesis of 1-Naphthols. Organic Letters, 2017, 19, 6344-6347.	4.6	39
27	Electrochemical Cobalt-Catalyzed C–H Oxygenation at Room Temperature. Journal of the American Chemical Society, 2017, 139, 18452-18455.	13.7	298
28	Direct alkylheteroarylation of alkenes <i>via</i> photoredox mediated Câ€"H functionalization. Chemical Communications, 2017, 53, 12946-12949.	4.1	35
29	Iron and Single Electron Transfer: All is in the Ligand. Israel Journal of Chemistry, 2017, 57, 1160-1169.	2.3	2
30	Cu- and Ni-Grafted Functionalized Mesoporous Silica as Active Catalyst for Olefin Oxidation. ChemistrySelect, 2017, 2, 10157-10166.	1.5	7
31	C–H Activation of π-Arene Ruthenium Complexes. Organometallics, 2017, 36, 4376-4381.	2.3	14
32	Introduction: CH Activation. Chemical Reviews, 2017, 117, 8481-8482.	47.7	264
33	Tri-Substituted Triazole-Enabled C–H Activation of Benzyl and Aryl Amines by Iron Catalysis. Organic Letters, 2017, 19, 3795-3798.	4.6	51
34	Iron-Catalyzed <i>ortho</i> -Selective C–H Borylation of 2-Phenylpyridines and Their Analogs. Organic Letters, 2017, 19, 3450-3453.	4.6	44
35	Iron-Catalyzed Regiospecific Intermolecular Radical Cyclization of Anilines: Strategy for Assembly of 2,2-Disubstituted Indolines. Organic Letters, 2018, 20, 1404-1408.	4.6	29
36	Direct synthesis of anthracenes from o-tolualdehydes and aryl iodides through Pd(II)-Catalyzed sp C H arylation and electrophilic aromatic cyclization. Tetrahedron, 2018, 74, 2048-2055.	1.9	28

#	ARTICLE	IF	CITATIONS
37	A theoretical mechanistic study for C H and C C bond activations of cyclohexane catalyzed by NiAl + in the gas phase. Computational and Theoretical Chemistry, 2018, 1129 , $48-56$.	2.5	3
38	Solution Synthesis of <i>N</i> , <i>N</i> êDimethylformamideâ€Stabilized Ironâ€Oxide Nanoparticles as an Efficient and Recyclable Catalyst for Alkene Hydrosilylation. ChemCatChem, 2018, 10, 2378-2382.	3.7	37
39	Synthesis, Characterization, and Reactivity of a <i>High-Spin</i> Iron(II) Hydrido Complex Supported by a PNP Pincer Ligand and Its Application as a Homogenous Catalyst for the Hydrogenation of Alkenes. Inorganic Chemistry, 2018, 57, 3183-3191.	4.0	35
40	Rhodium-catalyzed NH-indole-directed ortho C H coupling of 2-arylindoles with diazo compounds via metal carbene migratory insertion. Tetrahedron Letters, 2018, 59, 1568-1572.	1.4	15
41	2â∈Methyltetrahydrofuran: A Green Solvent for Ironâ€Catalyzed Crossâ€Coupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	6.8	44
42	Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2018, 73, 149-153.	0.7	0
43	Iron-catalyzed <i>ortho</i> trifluoromethylation of anilines <i>via</i> picolinamide assisted photoinduced C–H functionalization. Organic and Biomolecular Chemistry, 2018, 16, 2214-2218.	2.8	27
44	C4–H indole functionalisation: precedent and prospects. Chemical Science, 2018, 9, 4203-4216.	7.4	138
45	Fickle Reactivity of Allenes in Transitionâ€Metal atalyzed Câ^'H Functionalizations. Asian Journal of Organic Chemistry, 2018, 7, 1151-1163.	2.7	62
46	Ironâ€Catalyzed Synthesis of Indenones through Cyclization of Carboxamides with Alkynes. Asian Journal of Organic Chemistry, 2018, 7, 1327-1329.	2.7	25
47	Bulky Diamine Ligand Promotes Crossâ€Coupling of Difluoroalkyl Bromides by Iron Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6921-6925.	13.8	65
48	Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	3.3	42
49	Bulky Diamine Ligand Promotes Crossâ€Coupling of Difluoroalkyl Bromides by Iron Catalysis. Angewandte Chemie, 2018, 130, 7037-7041.	2.0	6
50	Isolation and identification of the pre-catalyst in iron-catalyzed direct arylation of pyrrole with phenylboronic acid. Inorganica Chimica Acta, 2018, 478, 139-147.	2.4	13
51	Mechanochemical Cobalt atalyzed Câ^'H Bond Functionalizations by Ball Milling. Advanced Synthesis and Catalysis, 2018, 360, 1800-1804.	4.3	74
52	Directingâ€Groupâ€mediated Câ^'Hâ€Alkynylations. Chemistry - an Asian Journal, 2018, 13, 1231-1247.	3.3	68
53	Manganese Nâ€Heterocyclic Carbene Complexes for Catalytic Reduction of Ketones with Silanes. ChemCatChem, 2018, 10, 2734-2740.	3.7	51
54	Cpâ $$ —Co(III)-catalyzed ortho C H amidation of 2-pyridinyl ferrocenes with 1,4,2-dioxazol-5-ones. Journal of Catalysis, 2018, 361, 393-397.	6.2	43

#	Article	IF	Citations
55	Salicylateâ€Directed Câ^'O Bond Cleavage: Ironâ€Catalyzed Allylic Substitution with Grignard Reagents. Asian Journal of Organic Chemistry, 2018, 7, 914-917.	2.7	13
56	To "Rollover―or Not? Stereoelectronically Guided C–H Functionalization Pathways from Rhodium–Abnormal NHC Intermediates. ACS Omega, 2018, 3, 1614-1620.	3.5	22
57	Direct C-Li/C-H coupling of pentafluorophenyl lithium with azines - An atom- and step-economical strategy for the synthesis of polyfluoroaryl azaaromatics. Journal of Organometallic Chemistry, 2018, 867, 278-283.	1.8	8
58	C(sp ²)–H functionalization of aldehyde-derived hydrazones ⟨i>via a radical process. Organic and Biomolecular Chemistry, 2018, 16, 1227-1241.	2.8	28
59	Supported iron catalysts for Michael addition reactions. Molecular Catalysis, 2018, 447, 65-71.	2.0	10
60	Inert C–H Bond Transformations Enabled by Organometallic Manganese Catalysis. Accounts of Chemical Research, 2018, 51, 816-827.	15.6	250
61	Metal-free synthesis of secondary amines by the reaction of tosyl triazene and aryl boronic acid. Synthetic Communications, 2018, 48, 656-662.	2.1	5
62	Mechanistic DFT Study on Rhodium(III)â€Catalyzed Double Câ^'H Activation for Oxidative Annulations of 2â€Substituted Imidazoles and Alkynes. Asian Journal of Organic Chemistry, 2018, 7, 586-591.	2.7	9
63	Palladium atalyzed Câ^'H Silylation through Palladacycles Generated from Aryl Halides. Angewandte Chemie - International Edition, 2018, 57, 3233-3237.	13.8	119
64	Cobalt(II)-Catalyzed Acyloxylation of C–H Bonds in Aromatic Amides with Carboxylic Acids. Organic Letters, 2018, 20, 1062-1065.	4.6	58
65	Palladium atalyzed Câ^'H Silylation through Palladacycles Generated from Aryl Halides. Angewandte Chemie, 2018, 130, 3287-3291.	2.0	25
66	Synthesis of Quinazolines via an Iron-Catalyzed Oxidative Amination of N–H Ketimines. Journal of Organic Chemistry, 2018, 83, 2395-2401.	3.2	26
67	Walking Metals for Remote Functionalization. ACS Central Science, 2018, 4, 153-165.	11.3	398
68	Regioselective Câ^'H Alkylation via Carboxylateâ€Directed Hydroarylation in Water. Chemistry - A European Journal, 2018, 24, 4537-4541.	3.3	38
69	A concise synthesis of indene-based polycyclic compounds via FeCl3-catalyzed cascade cyclization. Organic Chemistry Frontiers, 2018, 5, 1165-1169.	4.5	12
70	Synthesis of 1,2-Dihydroquinolines by Co(III)-Catalyzed $[3 + 3]$ Annulation of Anilides with Benzylallenes. ACS Catalysis, 2018, 8, 1880-1883.	11.2	57
71	Rhodiumâ€Catalyzed Regioselective <i>Ortho</i> Câ^H Olefination of 2â€Arylindoles via NHâ€Indoleâ€Directed Câ^H Bond Cleavage. Advanced Synthesis and Catalysis, 2018, 360, 972-984.	4.3	30
72	Sulfonium Salts as Alkylating Agents for Palladium-Catalyzed Direct Ortho Alkylation of Anilides and Aromatic Ureas. Organic Letters, 2018, 20, 676-679.	4.6	36

#	ARTICLE	IF	Citations
73	Regioselective direct arylation of indoles on the benzenoid moiety. Chemical Communications, 2018, 54, 1676-1685.	4.1	132
74	Elucidating the structure of a high-spin σ-phenyliron(iii) species in a live FeCl3–PhZnCl reaction system. Chemical Communications, 2018, 54, 1481-1484.	4.1	2
75	Utilising Sodiumâ€Mediated Ferration for Regioselective Functionalisation of Fluoroarenes via Câ^'H and Câ^'F Bond Activations. Angewandte Chemie, 2018, 130, 193-197.	2.0	9
76	Electrochemical Câ^'H/Nâ^'H Activation by Waterâ€Tolerant Cobalt Catalysis at Room Temperature. Angewandte Chemie, 2018, 130, 2407-2411.	2.0	68
77	Cobalt(<scp>ii</scp>)-catalyzed chelation-assisted Câ€"H iodination of aromatic amides with I ₂ . Chemical Communications, 2018, 54, 1359-1362.	4.1	37
78	A Sixâ€Oxidase Cascade for Tandem Câ^'H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angewandte Chemie, 2018, 130, 727-731.	2.0	15
79	Electrochemical Câ^'H/Nâ^'H Activation by Waterâ€Tolerant Cobalt Catalysis at Room Temperature. Angewandte Chemie - International Edition, 2018, 57, 2383-2387.	13.8	219
80	1,4â€lron Migration for Expedient Allene Annulations through Ironâ€Catalyzed Câ^'H/Nâ^'H/Câ^'O/Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2018, 57, 7719-7723.	13.8	71
81	Co(II)-catalyzed regioselective clean and smooth synthesis of 2-(aryl/alkyl-thio)phenols via sp2 C H bond activation. Molecular Catalysis, 2018, 452, 260-263.	2.0	12
82	1,4â€ŀron Migration for Expedient Allene Annulations through Ironâ€Catalyzed Câ^'H/Nâ^'H/Câ^'O/Câ^'H Functionalizations. Angewandte Chemie, 2018, 130, 7845-7849.	2.0	10
83	Pd(II)-Catalyzed Catellani-Type Domino Reaction Utilizing Arylboronic Acids as Substrates. ACS Catalysis, 2018, 8, 3775-3779.	11.2	56
84	Case for Lithium Tetramethylpiperidide-Mediated Ortholithiations: Reactivity and Mechanisms. Journal of the American Chemical Society, 2018, 140, 4877-4883.	13.7	19
85	Iron-Catalyzed Acyl Migration of Tertiary \hat{l} ±-Azidyl Ketones: Synthetic Approach toward Enamides and Isoquinolones. Organic Letters, 2018, 20, 1875-1879.	4.6	38
86	Decarboxylative Cross-Coupling of Cinnamic Acids Catalyzed by Iron-Based Covalent Organic Frameworks. Topics in Catalysis, 2018, 61, 689-698.	2.8	17
87	Benign catalysis with iron: facile assembly of cyclobutanes and cyclohexenes <i>via</i> intermolecular radical cation cycloadditions. Green Chemistry, 2018, 20, 1743-1747.	9.0	28
88	Cobalt-catalyzed C(sp ²)â€"H/C(sp ³)â€"H coupling <i>via</i> directed Câ€"H activation and 1,5-hydrogen atom transfer. Organic Chemistry Frontiers, 2018, 5, 582-585.	4.5	10
89	Iron atalyzed Aerobic Oxidation of Aldehydes: Single Component Catalyst and Mechanistic Studies. Chinese Journal of Chemistry, 2018, 36, 15-19.	4.9	30
90	Utilising Sodiumâ€Mediated Ferration for Regioselective Functionalisation of Fluoroarenes via Câ^'H and Câ^'F Bond Activations. Angewandte Chemie - International Edition, 2018, 57, 187-191.	13.8	41

#	Article	IF	CITATIONS
91	Ambireactive (R ₃ P) ₂ BH ₂ Groups Facilitating Temperatureâ€6witchable Bond Activation by an Iron Complex. Chemistry - A European Journal, 2018, 24, 1358-1364.	3.3	6
92	Synthesis of sulfonated naphthols <i>via</i> Câ€"H bond functionalization with the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2018, 5, 371-375.	4.5	51
93	Synthesis of 1,1′―and 2,2′â€Bicarbazole Alkaloids by Iron(III)â€Catalyzed Oxidative Coupling of 2―and 1â€Hydroxycarbazoles. Chemistry - A European Journal, 2018, 24, 458-470.	3.3	34
94	Synthesis of Benzamide Derivatives by the Reaction of Arenes and Isocyanides through a C–H Bond Activation Strategy. Synlett, 2018, 29, 94-98.	1.8	4
95	Ligand Exchange on and Allylic C–H Activation by Iron(0) Fragments: π-Complexes, Allyliron Species, and Metallacycles. Organometallics, 2018, 37, 729-739.	2.3	26
96	Palladiumâ€Catalyzed Intermolecular Acylation of Aryl Diazoesters with <i>ortho</i> â€Bromobenzaldehydes. Angewandte Chemie, 2018, 130, 325-329.	2.0	13
97	Oxidative coupling of benzoic acids with alkynes: Catalyst design and selectivity. Journal of Organometallic Chemistry, 2018, 867, 14-24.	1.8	44
98	A Sixâ€Oxidase Cascade for Tandem Câ^'H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 719-723.	13.8	73
99	Conversion of Olefins into Ketones by an Ironâ€Catalyzed Wackerâ€type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie - International Edition, 2018, 57, 1222-1226.	13.8	47
100	Rhodiumâ€Catalyzed Alkenyl Câ^H Activation and Oxidative Coupling with Allylic Alcohols. Asian Journal of Organic Chemistry, 2018, 7, 240-247.	2.7	16
101	Hochselektive Mangan(I)/Lewisâ€Säreâ€cokatalysierte direkte Câ€Hâ€Propargylierung unter Verwendung von Bromallenen. Angewandte Chemie, 2018, 130, 445-449.	2.0	17
102	Iron-Catalyzed Remote Arylation of Aliphatic C–H Bond via 1,5-Hydrogen Shift. ACS Catalysis, 2018, 8, 8-11.	11.2	34
103	Palladiumâ€Catalyzed Intermolecular Acylation of Aryl Diazoesters with <i>ortho</i> å€Bromobenzaldehydes. Angewandte Chemie - International Edition, 2018, 57, 319-323.	13.8	46
104	Highly Selective Manganese(I)/Lewis Acid Cocatalyzed Direct Câ^'H Propargylation Using Bromoallenes. Angewandte Chemie - International Edition, 2018, 57, 437-441.	13.8	69
105	Chemistry: A Bridge between Molecular World and Real World. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1232-1246.	0.1	1
106	Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands. Organic and Biomolecular Chemistry, 2018, 16, 8064-8071.	2.8	14
107	One-step construction of molecular complexity by tert-butyl nitrite (TBN)-initiated cascade α,β-sp3 C–H bond difunctionalization and C–N bond cleavage. Chemical Communications, 2018, 54, 13232-13235.	4.1	34
108	Reusable Immobilized Iron(II) Nanoparticle Precatalysts for Ligand-Free Kumada Coupling. ACS Applied Nano Materials, 2018, 1, 6950-6958.	5.0	10

#	Article	IF	Citations
109	Visibleâ€Lightâ€Driven Photochemical Activation of sp 3 Câ^'H Bond for Hemiaminal Formation. Asian Journal of Organic Chemistry, 2018, 7, 2464-2467.	2.7	5
110	Exceedingly Fast, Direct Access to Dihydroisoquinolino[1,2- <i>>b</i>)quinazolinones through a Ruthenium(II)-Catalyzed Redox-Neutral C–H Allylation/Hydroamination Cascade. Organic Letters, 2018, 20, 7107-7112.	4.6	40
111	Cobalt-catalyzed C–H activation: recent progress in heterocyclic chemistry. Catalysis Science and Technology, 2018, 8, 5983-6018.	4.1	90
112	Cobaltâ€Catalyzed Hiyamaâ€Type Câ^'H Activation with Arylsiloxanes: Versatile Access to Highly <i>ortho</i> å€Decorated Biaryls. Chemistry - A European Journal, 2019, 25, 2213-2216.	3.3	27
113	Mapping out the key carbon–carbon bond-forming steps in Mn-catalysed C–H functionalization. Nature Catalysis, 2018, 1, 830-840.	34.4	61
114	Cobalt(<scp>iii</scp>)-catalyzed site-selective C–H amidation of pyridones and isoquinolones. RSC Advances, 2018, 8, 32659-32663.	3.6	27
115	B(C 6 F 5) 3 /Amine atalyzed C(sp)â^'H Silylation of Terminal Alkynes with Hydrosilanes: Experimental and Theoretical Studies. Angewandte Chemie, 2018, 130, 15442-15446.	2.0	9
116	B(C ₆ F ₅) ₃ /Amineâ€Catalyzed C(sp)â^'H Silylation of Terminal Alkynes with Hydrosilanes: Experimental and Theoretical Studies. Angewandte Chemie - International Edition, 2018, 57, 15222-15226.	13.8	47
117	Regioselective indole C2-alkylation using \hat{l}^2 -CF ₃ -substituted enones under redox neutral Rh(<scp>iii</scp>) catalysis. Organic Chemistry Frontiers, 2018, 5, 3133-3137.	4.5	28
118	Direct C(sp3)-H functionalization of 2-methylazaarenes using 4-substituted-TEMPO. Tetrahedron Letters, 2018, 59, 4454-4457.	1.4	1
119	Copper(II)-catalyzed-α-C(sp3)-H activation of cyclic amines: A simple and efficient strategy for the synthesis of fused pyrazole derivatives. Tetrahedron Letters, 2018, 59, 4161-4164.	1.4	11
120	Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals. Open Chemistry, 2018, 16, 1001-1058.	1.9	39
121	Iron-Catalyzed Directed Alkylation of Carboxamides with Olefins via a Carbometalation Pathway. ACS Catalysis, 2018, 8, 11478-11482.	11.2	24
122	Transition metal-free oxidative and deoxygenative C–H/C–Li cross-couplings of 2 <i>H</i> i>imidazole 1-oxides with carboranyl lithium as an efficient synthetic approach to azaheterocyclic carboranes. Beilstein Journal of Organic Chemistry, 2018, 14, 2618-2626.	2.2	18
123	Use of Cyclopropane as C1 Synthetic Unit by Directed Retro-Cyclopropanation with Ethylene Release. Journal of the American Chemical Society, 2018, 140, 15425-15429.	13.7	25
124	Synthesis of 5 <i>H</i> -Dibenzo[<i><</i> , <i>g</i>]chromen-5-ones via FeCl ₃ -Mediated Tandem C–O Bond Cleavage/6π Electrocyclization/Oxidative Aromatization. Organic Letters, 2018, 20, 5718-5722.	4.6	10
125	FeCl ₃ -promoted tandem 1,4-conjugate addition/6- <i>endo-dig</i> cyclization/oxidation of propargylamines and benzoylacetonitriles/malononitriles: direct access to functionalized 2-aryl-4 <i>H</i> -chromenes. Organic and Biomolecular Chemistry, 2018, 16, 7191-7202.	2.8	20
126	Rhodium(<scp>iii</scp>)-catalysed decarbonylative annulation through C–H activation: expedient access to aminoisocoumarins by weak coordination. Chemical Communications, 2018, 54, 11889-11892.	4.1	20

#	Article	IF	CITATIONS
127	Activation of Molecular Hydrogen and Oxygen by PSiP Complexes of Cobalt. European Journal of Inorganic Chemistry, 2018, 2018, 4481-4493.	2.0	21
128	Iron-catalysed carbene-transfer reactions of diazo acetonitrile. Organic and Biomolecular Chemistry, 2018, 16, 7129-7133.	2.8	24
129	Metal-Catalyzed Aromatic C-O Bond Activation/Transformation. Topics in Organometallic Chemistry, 2018, , 103-140.	0.7	12
130	One-Pot C–H Formylation Enabled by Relay Catalysis of Manganese(I) and Iron(III). ACS Catalysis, 2018, 8, 10036-10042.	11.2	35
131	Acid-promoted iron-catalysed dehydrogenative $[4 + 2]$ cycloaddition for the synthesis of quinolines under air. RSC Advances, 2018, 8, 31603-31607.	3.6	12
132	Pharmaceuticalâ€Oriented Ironâ€Catalyzed Ethoxylation of Aryl C(<i>sp</i> ²)â€H Bonds with Co–Catalyst. ChemistrySelect, 2018, 3, 9803-9806.	1.5	4
133	Hydroarylations by cobalt-catalyzed C–H activation. Beilstein Journal of Organic Chemistry, 2018, 14, 2266-2288.	2.2	39
134	Gold atalyzed Site‧elective Câ^³H Bond Functionalization with Diazo Compounds. Asian Journal of Organic Chemistry, 2018, 7, 2015-2025.	2.7	52
135	Synthesis of Esomeprazole and Related Proton Pump Inhibitors through Iron-Catalyzed Enantioselective Sulfoxidation. ACS Catalysis, 2018, 8, 9738-9743.	11.2	28
136	Thiyl radical promoted chemo- and regioselective oxidation of C bonds using molecular oxygen via iron catalysis. Green Chemistry, 2018, 20, 4521-4527.	9.0	43
137	Mechanistic insights into the SN2-type reactivity of aryl-Co(iii) masked-carbenes for C–C bond forming transformations. Chemical Science, 2018, 9, 5736-5746.	7.4	14
138	Visible-light-induced C(sp3)–H activation for a C–C bond forming reaction of 3,4-dihydroquinoxalin-2(1H)-one with nucleophiles using oxygen with a photoredox catalyst or under catalyst-free conditions. RSC Advances, 2018, 8, 19580-19584.	3.6	25
139	Nickel (II)-Catalyzed efficient aminocarbonylation of unreactive alkanes with formanilidesâ€"Exploiting the deformylation behavior of imides. Tetrahedron, 2018, 74, 3712-3718.	1.9	6
140	Manganeseâ€Catalyzed Câ^'H Amidation of Heteroarenes in Water. Advanced Synthesis and Catalysis, 2018, 360, 2801-2805.	4.3	24
141	Transition Metal Mediated C–H Activation of 2â€Pyrones, 2â€Pyridones, 2â€Coumarins and 2â€Quinolones. European Journal of Organic Chemistry, 2018, 2018, 6068-6082.	2.4	57
142	Merging " <i>Anti</i> -Baldwin―3- <i>Exo-Dig</i> Cyclization with 1,2-Alkynyl Migration for Radical Alkylalkynylation of Unactivated Olefins. Organic Letters, 2018, 20, 3596-3600.	4.6	39
143	Cu ^{II} Complex of a 1,10â€Phenanthrolineâ€Based Pincer as an Efficient Catalyst for Oxidative Cross Dehydrogenative Coupling of Carboxylic Acids with Unactivated Alkanes. Asian Journal of Organic Chemistry, 2018, 7, 1681-1688.	2.7	9
144	In Vitro Analysis of Cyanobacterial Nonheme Iron-Dependent Aliphatic Halogenases WelO5 and AmbO5. Methods in Enzymology, 2018, 604, 389-404.	1.0	6

#	Article	IF	CITATIONS
145	Ironâ€Catalyzed Dehydrogenative Borylation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 3649-3654.	4.3	36
146	One-Pot Sequential Kinetic Profiling of a Highly Reactive Manganese Catalyst for Ketone Hydroboration: Leveraging Ïf-Bond Metathesis via Alkoxide Exchange Steps. Journal of the American Chemical Society, 2018, 140, 9244-9254.	13.7	53
147	Kupferâ€katalysierte dehydrierende <i>ortho</i> â€Aminomethylierung von Phenolen. Angewandte Chemie, 2018, 130, 11981-11985.	2.0	6
148	Synthesis of Heterocyclic Compounds Based on Transition-Metal-Catalyzed Carbene Coupling Reactions. , 2018, , 129-191.		1
149	Metalâ€Catalyzed C–H Functionalization Processes with "Clickâ€â€Triazole Assistance. European Journal of Organic Chemistry, 2018, 2018, 6034-6049.	2.4	21
150	Oxidation of active sp ³ C–H bonds initiated consecutive intermolecular/intramolecular cyclization between glycine derivatives and <i>o</i> benzofuroquinoline skeleton. Organic Chemistry Frontiers, 2018, 5, 2479-2483.	4.5	7
151	Cuâ€Catalyzed Crossâ€Dehydrogenative ortho â€Aminomethylation of Phenols. Angewandte Chemie - International Edition, 2018, 57, 11807-11811.	13.8	52
152	Threeâ€Dimensional Heterocycles by Ironâ€Catalyzed Ringâ€Closing Sulfoxide Imidation. Angewandte Chemie, 2018, 130, 12229-12232.	2.0	11
153	Nickel-catalyzed direct C–H bond sulfenylation of acylhydrazines. Organic and Biomolecular Chemistry, 2018, 16, 6047-6056.	2.8	27
154	Activation mechanism of hydrogen peroxide by a divanadium–substituted polyoxometalate [ĵ³â€"PV2W10O38(ĵ¼â€"OH)2]3–: A computational study. Journal of Molecular Graphics and Modelling, 2018, 85, 56-67.	, 2.4	3
155	Ligand and solvent control of selectivity in the C–H activation of a pyridylimine-substituted 1-naphthalene; a combined synthetic and computational study. Dalton Transactions, 2018, 47, 11680-11690.	3.3	3
156	Threeâ€Dimensional Heterocycles by Ironâ€Catalyzed Ringâ€Closing Sulfoxide Imidation. Angewandte Chemie - International Edition, 2018, 57, 12053-12056.	13.8	47
157	A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chemical Society Reviews, 2018, 47, 6603-6743.	38.1	1,272
158	Investigation of active sites for C H functionalization on carbon-based catalyst: Effect of nitrogen-containing functional groups and radicals. Journal of Catalysis, 2018, 365, 344-350.	6.2	15
159	N-Heterocyclic carbene–chromium-catalyzed alkylative cross-coupling of benzamide derivatives with aliphatic bromides. Chemical Communications, 2018, 54, 9325-9328.	4.1	24
160	From Mechanisms in Homogeneous Metal Catalysis to Applications in Chemical Synthesis. Inorganics, 2018, 6, 19.	2.7	2
161	Manganese-Catalyzed <i>ortho</i> -C-H Amidation of Weakly Coordinating Aromatic Ketones. Organic Letters, 2018, 20, 4495-4498.	4.6	35
162	Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catalysis, 2018, 8, 8115-8120.	11.2	113

#	ARTICLE	IF	CITATIONS
163	Copperâ€Catalyzed Monoorganylation of Trialkyl Borates with Functionalized Organozinc Pivalates. ChemCatChem, 2018, 10, 4253-4257.	3.7	3
164	Triorganoindium Reagents in Rh-Catalyzed C–H Activation/C–C Cross-Coupling Reactions of 2-Arylpyridines. Molecules, 2018, 23, 1582.	3.8	3
165	Ironâ€Catalyzed Directed Câ^'H Silylation of Pivalophenone Nâ^'H Imines. Asian Journal of Organic Chemistry, 2018, 7, 1351-1354.	2.7	12
166	Cobaltâ€Catalyzed C(sp ³)â^'H Functionalization Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1193-1205.	2.7	80
167	Challenges in cyclometalation: steric effects leading to competing pathways and li- ¹ ,l- ² -cyclometalated iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2018, 47, 13046-13051.	3.3	4
168	Total synthesis of lithospermic acid using Fe-catalyzed Cross-Dehydrogenative-Coupling reaction and Pd-catalyzed ester-directed C H olefination. Tetrahedron, 2018, 74, 5950-5954.	1.9	4
169	Multinuclear iron–phenyl species in reactions of simple iron salts with PhMgBr: identification of Fe4(μ-Ph)6(THF)4 as a key reactive species for cross-coupling catalysis. Chemical Science, 2018, 9, 7931-7939.	7.4	34
170	Imidazolium-Based Ionic Liquid: An Efficient, Normalized, and Recyclable Platform for Rh(III)-Catalyzed Directed Câ€"H Carbenoid Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 13473-13479.	6.7	23
171	FeCl ₃ -Catalyzed Regio-Divergent Carbosulfenylation of Unactivated Alkenes: Construction of a Medium-Sized Ring. Journal of Organic Chemistry, 2018, 83, 10985-10994.	3.2	19
172	Asymmetric Allylic C–H Alkylation via Palladium(II)/ <i>cis</i> <arsox 10658-10662.<="" 140,="" 2018,="" american="" catalysis.="" chemical="" journal="" of="" society,="" td="" the=""><td>13.7</td><td>79</td></arsox>	13.7	79
173	Nickel catalyzed site selective C–H functionalization of α-aryl-thioamides. Organic and Biomolecular Chemistry, 2018, 16, 6405-6409.	2.8	7
174	Ligand-Enforced Switch of the Coordination Mode in Low-Valent Group 6 Carbonyl Complexes Containing Pyrimidine-Based Bisphosphines. Organometallics, 2018, 37, 1919-1926.	2.3	8
175	Cobalt-catalyzed directed <i>ortho</i> -methylation of arenes with methyl tosylate. Organic Chemistry Frontiers, 2018, 5, 2214-2218.	4.5	22
176	Facile and practical synthesis of \hat{l}^2 -carbolinium salts and \hat{l}^3 -carbolinium salts <i>via</i> rhodium-catalyzed three-component reactions. Organic and Biomolecular Chemistry, 2018, 16, 5021-5026.	2.8	12
177	Beyond Friedel and Crafts: Directed Alkylation of Câ^'H Bonds in Arenes. Angewandte Chemie - International Edition, 2019, 58, 7202-7236.	13.8	94
178	Asymmetric Reactions involving Lewis Base Catalyst Tethered Dearomatized Intermediates. Chemistry - A European Journal, 2019, 25, 1607-1613.	3 . 3	29
179	A New Avenue to the Synthesis of Symmetrically Substituted Pyridines Catalyzed by Magnetic Nano–Fe 3 O 4 : Methyl Arenes as Sustainable Surrogates of Aryl Aldehydes. ChemistrySelect, 2019, 4, 9241-9246.	1.5	6
180	Theoretical insight into a feasible strategy of capturing, storing and releasing toxic HCN at the surface of doped BN-sheets by charge modulation. Applied Surface Science, 2019, 496, 143714.	6.1	15

#	Article	IF	CITATIONS
181	Is Fe-catalyzed <i>ortho</i> C–H Arylation of Benzamides Sensitive to Steric Hindrance and Directing Group?. Organic Letters, 2019, 21, 6471-6475.	4.6	12
182	Electronic and Structural Comparisons between Iron(II/III) and Ruthenium(II/III) Imide Analogs. Inorganic Chemistry, 2019, 58, 11699-11715.	4.0	8
183	Density Functional Theory Study of the Mechanisms of Ironâ€Catalyzed Regioselective Antiâ€Markovnikov Addition of Câ€H Bonds in Aromatic Ketones to Alkenes. Applied Organometallic Chemistry, 2019, 33, e5183.	3.5	9
184	BPO-promoted direct oxidative C–H functionalization of unactivated alkanes into 6-alkyl-6 <i>H</i> -benzo[<i><</i>)chromenes under transition-metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 7715-7722.	2.8	15
185	Ruthenium Catalyzed C–H Selenylations of Aryl Acetic Amides and Esters via Weak Coordination. Organic Letters, 2019, 21, 6310-6314.	4.6	22
186	Ligand Effect on Iron atalyzed Cross oupling Reactions: Evaluation of Amides as O oordinating Ligands. ChemCatChem, 2019, 11, 5733-5737.	3.7	9
187	Iron(III)-Mediated Bicyclization of 1,2-Allenyl Aryl Ketones: Assembly of Indanone-Fused Polycyclic Scaffolds and Dibenzo[<i>a</i> , <i>e</i>)pentalene Derivatives. Organic Letters, 2019, 21, 5957-5961.	4.6	11
188	Identification and Reactivity of Cyclometalated Iron(II) Intermediates in Triazole-Directed Iron-Catalyzed C–H Activation. Journal of the American Chemical Society, 2019, 141, 12338-12345.	13.7	39
189	Iridium-Catalyzed Alkene-Selective Transfer Hydrogenation with 1,4-Dioxane as Hydrogen Donor. Organic Letters, 2019, 21, 5867-5872.	4.6	22
190	Regioselective Ringâ€Opening of Glycidol to Monoalkyl Glyceryl Ethers Promoted by an [OSSO]â€Fe ^{Ill} Triflate Complex. ChemSusChem, 2019, 12, 3448-3452.	6.8	14
191	Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C–H Activation: A Regioselective Approach to Isoindolinones. Organic Letters, 2019, 21, 6264-6269.	4.6	21
192	Iron-Catalyzed Regioselective Remote C(sp ²)-H Carboxylation of Naphthyl and Quinoline Amides. Journal of Organic Chemistry, 2019, 84, 10481-10489.	3.2	19
193	Manganeseâ€Catalysed Câ^'H Activation: A Regioselective Câ^'H Alkenylation of Indoles and other (hetero)aromatics with 4â€Hydroxyâ€2â€Alkynoates Leading to Concomitant Lactonization. Advanced Synthesis and Catalysis, 2019, 361, 4933-4940.	4.3	32
194	Synthesis, crystal structure and immobilization of a new cobalt(ii) complex with a 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand on modified magnetic nanoparticles as a catalyst for the oxidation of alkanes. New Journal of Chemistry, 2019, 43, 12020-12031.	2.8	13
195	Lewis acidic FeCl3 promoted 2-aza-Cope rearrangement to afford \hat{l}_{\pm} -substituted homoallylamines in dimethyl carbonate. RSC Advances, 2019, 9, 18013-18017.	3.6	7
196	Cobalt-Catalyzed Oxidative Annulation of Benzothiophene-[<i>>b</i>)]-1,1-dioxide through Diastereoselective Double C–H Activation. Organic Letters, 2019, 21, 9806-9811.	4.6	18
197	Low-Temperature Spectra and Density Functional Theory Modeling of Ru(II)-Bipyridine Complexes with Cyclometalated Ancillary Ligands: The Excited State Spin–Orbit Coupling Origin of Variations in Emission Efficiencies. Journal of Physical Chemistry A, 2019, 123, 9431-9449.	2.5	8
198	Carboxy Group as a Remote and Selective Chelating Group for Câ^'H Activation of Arenes. Angewandte Chemie - International Edition, 2019, 58, 18502-18507.	13.8	55

#	Article	IF	CITATIONS
199	NHC Ligand-Enabled, Palladium-Catalyzed Non-Directed C(sp ³)â€"H Carbonylation To Access Indanone Cores. ACS Catalysis, 2019, 9, 10299-10304.	11.2	33
200	lridium complex immobilization on covalent organic framework for effective C—H borylation. APL Materials, 2019, 7, .	5.1	24
202	Iron-Catalyzed Meerwein Carbooxygenation of Electron-Rich Olefins: Studies with Styrenes, Vinyl Pyrrolidinone, and Vinyl Oxazolidinone. ACS Omega, 2019, 4, 18918-18929.	3. 5	9
203	Advances in amide and thioamide assisted C(sp3) H functionalization. Tetrahedron Letters, 2019, 60, 151338.	1.4	10
204	Rhodiumâ€katalysierte Anellierung von Benzoesären mit α,βâ€ungesätigten Ketonen durch Câ€Hâ€, COâ€Ol-Câ€C‷Bindungsspaltung. Angewandte Chemie, 2019, 131, 6501-6505.	Hâ €• und 2.0	3
205	Carboxy Group as a Remote and Selective Chelating Group for Câ^'H Activation of Arenes. Angewandte Chemie, 2019, 131, 18673-18678.	2.0	13
206	Ironâ€Electrocatalyzed Câ^'H Arylations: Mechanistic Insights into Oxidationâ€Induced Reductive Elimination for Ferraelectrocatalysis. Chemistry - A European Journal, 2019, 25, 16382-16389.	3.3	48
207	Ironâ€Catalyzed Selective <i>N</i> â€Methylation and <i>N</i> â€Formylation of Amines with CO ₂ . Advanced Synthesis and Catalysis, 2019, 361, 5098-5104.	4.3	48
208	Pd-Catalyzed Heck-Type Reaction: Synthesizing Highly Diastereoselective and Multiple Aryl-Substituted P-Ligands. Organic Letters, 2019, 21, 7138-7142.	4.6	15
210	C–H and N–H bond annulation of aryl amides with unactivated olefins by merging cobalt(iii) and photoredox catalysis. Chemical Communications, 2019, 55, 11626-11629.	4.1	45
211	Three-component difluoroalkylamination of alkenes mediated by photoredox and iron cooperative catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8541-8545.	2.8	18
212	Palladium-Catalyzed Aerobic Benzannulation of Amines, Benzaldehydes, and \hat{l}^2 -Dicarbonyls. Organic Letters, 2019, 21, 7489-7492.	4.6	19
213	Ruthenium-Catalyzed Enantioselective Câ€"H Functionalization: A Practical Access to Optically Active Indoline Derivatives. Journal of the American Chemical Society, 2019, 141, 15730-15736.	13.7	89
214	Solvent-free cyanosilylation of aromatic and heteroaryl aldehydes catalyzed by a cationic iron N-heterocyclic carbene complex at ambient temperature under UV irradiation. Inorganica Chimica Acta, 2019, 495, 119003.	2.4	4
215	Dealkylative intercepted rearrangement reactions of sulfur ylides. Chemical Communications, 2019, 55, 338-341.	4.1	37
216	Hypervalent Iodine(III)â∈Mediated Counteranion Controlled Intramolecular Annulation of Exocyclic βâ∈Enaminone to Carbazolone and Imidazo[1,2â∈xi>a) pyridine Synthesis. Chemistry - A European Journal, 2019, 25, 5934-5939.	3.3	25
217	Fe(III)-Catalyzed direct C3 chalcogenylation of indole: The effect of iodide ions. Tetrahedron, 2019, 75, 1258-1266.	1.9	25
218	Hydrosilylation of alkenes catalyzed by Fe powder. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 1-4.	1.6	1

#	Article	IF	CITATIONS
219	Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O ₂ Model Systems to Organometallic Transformations. Chemical Reviews, 2019, 119, 2954-3031.	47.7	201
221	Effects of terminal substituents on electrochemical reduction of X-PhCH=NPhCH=CHPh-Y. Microchemical Journal, 2019, 146, 729-734.	4.5	2
222	Unveiling the mechanism and regioselectivity of iron-dipyrrinato-catalyzed intramolecular C(sp ³)–H amination of alkyl azides. Catalysis Science and Technology, 2019, 9, 1279-1288.	4.1	11
223	Rutheniumâ€Catalyzed Câ€H Bond Activation/Arylation Accelerated by Biomassâ€Derived Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 2844-2852.	2.0	7
224	Base Metal Catalysis in Directed C(<i>sp</i> ³)â^'H Functionalisation. Advanced Synthesis and Catalysis, 2019, 361, 3662-3682.	4.3	24
225	Eisenkatalysierte Câ€Hâ€Aktivierung mit Propargylacetaten: Mechanistische Einblicke in Eisen(II) durch Experiment, Kinetik, Mössbauer‧pektroskopie und Berechnung. Angewandte Chemie, 2019, 131, 13006-13010.	2.0	4
226	Ironâ€Catalyzed Câ^'H Activation with Propargyl Acetates: Mechanistic Insights into Iron(II) by Experiment, Kinetics, M¶ssbauer Spectroscopy, and Computation. Angewandte Chemie - International Edition, 2019, 58, 12874-12878.	13.8	30
227	Tunable Functionalization of Saturated C–C and C–H Bonds of <i>N,N′</i> -Diarylpiperazines Enabled by <i>tert</i> -Butyl Nitrite (TBN) and NaNO ₂ Systems. Organic Letters, 2019, 21, 5030-5034.	4.6	39
228	A nanoscale iron catalyst for heterogeneous direct $\langle i \rangle N \langle i \rangle$ - and $\langle i \rangle C \langle i \rangle$ -alkylations of anilines and ketones using alcohols under hydrogen autotransfer conditions. Chemical Communications, 2019, 55, 8490-8493.	4.1	29
229	N â€Methoxybenzamide: A Versatile Directing Group for Palladiumâ€, Rhodiumâ€and Rutheniumâ€Catalyzed Câ^'H Bond Activations. Advanced Synthesis and Catalysis, 2019, 361, 4149-4195.	4.3	42
230	Synthesis of Ti-Al binary oxides and their catalytic application for C-H halogenation of phenols, aldehydes and ketones. Molecular Catalysis, 2019, 475, 110460.	2.0	5
231	Ironâ€Catalyzed <i>Ortho</i> àê€Selective Câ^'H Alkylation of Aromatic Ketones with <i>N</i> àê€Alkenylindoles and Partial Indolylation via 1,4â€Iron Migration. Asian Journal of Organic Chemistry, 2019, 8, 1115-1117.	2.7	21
232	Reaching Green: Heterocycle Synthesis by Transition Metalâ€Catalyzed Câ^'H Functionalization in Sustainable Medium. Chemistry - A European Journal, 2019, 25, 9366-9384.	3.3	52
233	Recent Advances in Oxidative R ¹ -H/R ² -H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chemical Reviews, 2019, 119, 6769-6787.	47.7	539
234	Controlled functionalization of <i>>o</i> -carborane <i>>via</i> transition metal catalyzed B–H activation. Chemical Society Reviews, 2019, 48, 3660-3673.	38.1	189
235	Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Transactions, 2019, 48, 9851-9905.	3.3	33
236	Enantioselective Câ^'H Activation with Earthâ€Abundant 3d Transition Metals. Angewandte Chemie - International Edition, 2019, 58, 12803-12818.	13.8	330
237	Enantioselektive Câ€Hâ€Aktivierung mit natürlich vorkommenden 3dâ€Ãœbergangsmetallen. Angewandte Chemie, 2019, 131, 12934-12949.	2.0	107

#	Article	IF	CITATIONS
238	Enantioselective C H Bond Functionalizations by 3d Transition-Metal Catalysts. Trends in Chemistry, 2019, 1, 471-484.	8.5	177
239	Pd(<scp>ii</scp>)-Catalyzed C8–H alkoxycarbonylmethylation of 1-naphthylamides with α-chloroalkyl esters. Organic and Biomolecular Chemistry, 2019, 17, 4865-4868.	2.8	12
240	General Oxidative Aryl C–P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with P(O)H Compounds. Organic Letters, 2019, 21, 3198-3203.	4.6	27
241	Cobalt-Catalyzed Annulation Reactions of Alkylidenecyclopropanes: Access to Spirocyclopropanes at Room Temperature. Organic Letters, 2019, 21, 3871-3875.	4.6	45
242	Recent advances of allenes in the first-row transition metals catalyzed C H activation reactions. Chinese Chemical Letters, 2019, 30, 1495-1502.	9.0	45
243	PdCl ₂ (CH ₃ CN) ₂ -catalyzed regioselective C–H olefinations of 2-amino biaryls with vinylsilanes as unactivated alkenes. Chemical Communications, 2019, 55, 6229-6232.	4.1	16
244	In Situ Generated Cobalt Catalyst for the Dehydrogenative Coupling of Alcohols and Amines into Imines. ChemCatChem, 2019, 11, 2707-2712.	3.7	20
245	Mössbauer and mass spectrometry support for iron(<scp>ii</scp>) catalysts in enantioselective C–H activation. Dalton Transactions, 2019, 48, 5135-5139.	3.3	26
246	Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. Trends in Chemistry, 2019, 1, 63-76.	8.5	174
247	Nickel-Catalyzed Reaction of Benzamides with Bicylic Alkenes: Cleavage of C–H and C–N Bonds. Organic Letters, 2019, 21, 1774-1778.	4.6	42
248	Manganeseâ€Catalyzed ortho―Alkenylation of Aromatic Amidines with Alkynes via Câ^'H Activation. ChemCatChem, 2019, 11, 5292-5295.	3.7	20
249	Unified Protocol for Fe-Based Catalyzed Biaryl Cross-Couplings between Various Aryl Electrophiles and Aryl Grignard Reagents. Journal of Organic Chemistry, 2019, 84, 5176-5186.	3.2	14
250	Iron-Catalyzed Aerobic Dehydrogenative Kinetic Resolution of Cyclic Secondary Amines. Journal of the American Chemical Society, 2019, 141, 6318-6324.	13.7	34
251	Homocoupling-free iron-catalysed twofold C–H activation/cross-couplings of aromatics via transient connection of reactants. Nature Catalysis, 2019, 2, 400-406.	34.4	53
252	A Freeâ€Radical Reduction and Cyclization of Alkyl Halides Mediated by FeCl 2. ChemCatChem, 2019, 11, 2438-2442.	3.7	4
253	Cp*Co(<scp>iii</scp>)-catalyzed annulation of azines by C–H/N–N bond activation for the synthesis of isoquinolines. Organic and Biomolecular Chemistry, 2019, 17, 3489-3496.	2.8	31
254	Stereospecific Iron-Catalyzed Carbon(sp ²)–Carbon(sp ³) Cross-Coupling with Alkyllithium and Alkenyl Iodides. Organic Letters, 2019, 21, 2546-2549.	4.6	15
255	Scope and Limitations of TBA[Fe]â€Catalyzed Carbene Transfer to Xâ^'Hâ€bonds â€" Indication of a Mechanistic Dichotomy. ChemCatChem, 2019, 11, 5260-5263.	3.7	11

#	Article	IF	CITATIONS
256	Exploration of Catalytic Activity of Trypsin for C(sp ³)â€H Functionalization and Consequent C Bond Formation. European Journal of Organic Chemistry, 2019, 2019, 2864-2868.	2.4	7
257	Iron-Catalyzed Intramolecular Amination of Aliphatic C–H Bonds of Sulfamate Esters with High Reactivity and Chemoselectivity. Organic Letters, 2019, 21, 2673-2678.	4.6	35
258	Catalytic Câ^'H Borylation Using Iron Complexes Bearing 4,5,6,7â€Tetrahydroisoindolâ€2â€ideâ€Based PNPâ€Typ Pincer Ligand. Chemistry - an Asian Journal, 2019, 14, 2097-2101.	e 3.3	24
259	FeCl2-Mediated Rearrangement of Allylic Alcohols. ACS Omega, 2019, 4, 6077-6083.	3.5	2
260	Visible light mediated, metal-free carbene transfer reactions of diazoalkanes with propargylic alcohols. Chemical Communications, 2019, 55, 4881-4884.	4.1	71
261	From Alkane to Alkene: The Inert Aliphatic C–H Bond Activation Presented by Binuclear Iron Stearoyl-CoA Desaturase with a Long di-Fe Distance of 6 Ã ACS Catalysis, 2019, 9, 4345-4359.	11.2	8
262	Reâ€Catalyzed Annulations of Weakly Coordinating <i>N</i> àâ€Carbamoyl Indoles/Indolines with Alkynes via Câ^H/Câ^N Bond Cleavage. Chemistry - A European Journal, 2019, 25, 8245-8248.	3.3	20
263	Ironâ€Catalyzed <i>ortho</i> Câ^'H Arylation and Methylation of Pivalophenone Nâ^'H Imines. ChemSusChem, 2019, 12, 3049-3053.	6.8	13
264	Temperature-Controlled Mono- and Diolefination of Arene Using Rh(III)/RTIL as an Efficient and Recyclable Catalytic System. ACS Sustainable Chemistry and Engineering, 2019, 7, 6068-6077.	6.7	11
265	Coordination-Controlled C–C Coupling Products via <i>ortho</i> -Site C–H Activation. ACS Nano, 2019, 13, 1385-1393.	14.6	25
266	Recent developments in enantioselective iron-catalyzed transformations. Coordination Chemistry Reviews, 2019, 386, 1-31.	18.8	40
267	Pd/Cu-Catalyzed Cascade C(sp3)–H Arylation and Intramolecular C–N Coupling: A One-Pot Synthesis of 3,4-2H-Quinolinone Skeletons. Organic Letters, 2019, 21, 1668-1671.	4.6	22
268	Understanding the differences between iron and palladium in cross-coupling reactions. Physical Chemistry Chemical Physics, 2019, 21, 9651-9664.	2.8	12
269	Iron-Catalyzed Dihydrosilylation of Alkynes: Efficient Access to Geminal Bis(silanes). Journal of the American Chemical Society, 2019, 141, 4579-4583.	13.7	98
270	Rhodiumâ€Catalyzed Annelation of Benzoic Acids with α,βâ€Unsaturated Ketones with Cleavage of Câ^'H, COâ^'OH, and Câ^'C Bonds. Angewandte Chemie - International Edition, 2019, 58, 6435-6439.	13.8	24
271	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	1.7	5
272	Ruthenium(II)-Catalyzed Distal Weak <i>O</i> -Coordinating Câ€"H Alkylation of Arylacetamides with Alkenes: Combined Experimental and DFT Studies. Journal of Organic Chemistry, 2019, 84, 3977-3989.	3.2	22
273	Copper-Catalyzed C–H Carbamoyloxylation of Aryl Carboxamides with CO ₂ and Amines at Ambient Conditions. Organic Letters, 2019, 21, 2013-2018.	4.6	13

#	Article	IF	CITATIONS
274	Ferrocene-Labeled Carbon-Encapsulated Iron Nanoparticles: The First Magnetic Nanocatalysts for C–H Arylation toward 1,1′-Biphenyl Formation. Organic Process Research and Development, 2019, 23, 409-415.	2.7	4
275	Cuâ€Catalyzed [4+1] Annulation toward Indolo[2,1â€ <i>a</i>]isoquinolines through Oxidative C(sp ³)/C(sp ²)â°'H Bond Bifunctionalization. Chemistry - an Asian Journal, 2019, 14, 1042-1049.	3.3	12
276	Recent advances in metal-free aerobic C–H activation. Organic and Biomolecular Chemistry, 2019, 17, 2865-2872.	2.8	40
277	Aerobic Oxidative Alkenylation of Weak <i>O</i> -Coordinating Arylacetamides with Alkenes via a Rh(III)-Catalyzed C–H Activation. Organic Letters, 2019, 21, 1320-1324.	4.6	67
278	Jenseits von Friedel und Crafts: dirigierte Alkylierung von Câ€Hâ€Bindungen in Arenen. Angewandte Chemie, 2019, 131, 7278-7314.	2.0	16
279	Aerobic conversion of benzylic sp ³ Câ€"H in diphenylmethanes and benzyl ethers to Cî€O bonds under catalyst-, additive- and light-free conditions. Organic Chemistry Frontiers, 2019, 6, 952-958.	4.5	13
280	Metal-catalyzed, bidentate directing group-assisted Câ°'H functionalization: Application to the synthesis of complex natural products. Studies in Natural Products Chemistry, 2019, 63, 81-112.	1.8	5
281	Cp*Co ^{III} -catalyzed formal [4+2] cycloaddition of benzamides to afford quinazolinone derivatives. Chemical Communications, 2019, 55, 13840-13843.	4.1	30
282	α-C–H Functionalization of π-Bonds Using Iron Complexes: Catalytic Hydroxyalkylation of Alkynes and Alkenes. Journal of the American Chemical Society, 2019, 141, 19594-19599.	13.7	41
283	Iron-catalysed 1,2-acyl migration of tertiary \hat{l} ±-azido ketones and 2-azido-1,3-dicarbonyl compounds. Green Chemistry, 2019, 21, 6097-6102.	9.0	12
284	Eisenporphyrinâ€katalysierte Câ€Hâ€Funktionalisierung von Indol mit Diazoacetonitril für die Synthese von Tryptaminen. Angewandte Chemie, 2019, 131, 3669-3673.	2.0	16
285	<i>N</i> â€Methylcaprolactam as a Dipolar Aprotic Solvent for Ironâ€Catalyzed Crossâ€Coupling Reactions: Matching Efficiency with Safer Reaction Media. ChemCatChem, 2019, 11, 1196-1199.	3.7	12
286	Computational Mechanistic Study on the Nickel-Catalyzed Câ€"H/Nâ€"H Oxidative Annulation of Aromatic Amides with Alkynes: The Role of the Nickel (0) Ate Complex. Organometallics, 2019, 38, 248-255.	2.3	25
287	Co(III)â€Catalyzed [4+1] Annulation of Amides with Allenes via Câ^'H Activation. Advanced Synthesis and Catalysis, 2019, 361, 1140-1145.	4.3	29
288	MnCl ₂ -Catalyzed C–H Alkylation on Azine Heterocycles. Organic Letters, 2019, 21, 571-574.	4.6	35
289	Synthesis and Electronic Structure of Neutral Square-Planar High-Spin Iron(II) Complexes Supported by a Dianionic Pincer Ligand. Inorganic Chemistry, 2019, 58, 1252-1266.	4.0	27
290	Cobalt-Catalyzed, Hydroxyl-Assisted C–H Bond Functionalization: Access to Diversely Substituted Polycyclic Pyrans. Journal of Organic Chemistry, 2019, 84, 1176-1184.	3.2	27
291	Tryptamine Synthesis by Iron Porphyrin Catalyzed Câ^3H Functionalization of Indoles with Diazoacetonitrile. Angewandte Chemie - International Edition, 2019, 58, 3630-3634.	13.8	92

#	Article	IF	CITATIONS
292	Oxidative Coupling Reactions Between Hydrocarbons and Organometallic Reagents (The Second) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50
293	Durch blaues Licht induzierte Carbentransferreaktionen von Diazoalkanen. Angewandte Chemie, 2019, 131, 1216-1220.	2.0	37
294	Blueâ€Lightâ€Induced Carbeneâ€Transfer Reactions of Diazoalkanes. Angewandte Chemie - International Edition, 2019, 58, 1203-1207.	13.8	186
295	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	47.7	1,666
296	Potassium Persulfateâ€Mediated Thiocyanation of 2 <i>H</i> â€Indazole under Iron atalysis. Advanced Synthesis and Catalysis, 2019, 361, 842-849.	4.3	72
297	Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Advanced Synthesis and Catalysis, 2019, 361, 265-282.	4.3	82
298	Arylation/Intramolecular Conjugate Addition of 1,6-Enynes Enabled by Manganese(I)-Catalyzed C–H Bond Activation. Organic Letters, 2019, 21, 5-9.	4.6	43
299	Rhodium-catalyzed direct alkylation of benzylic amines using alkyl bromides. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2019, 150, 127-138.	1.8	1
300	Radical Câ^'H Bond Oxidation Initiated Intramolecular Cyclization of Glycine Esters: Construction of Dihydroquinoline Skeletons. Asian Journal of Organic Chemistry, 2019, 8, 115-118.	2.7	5
301	Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coordination Chemistry Reviews, 2019, 380, 440-470.	18.8	31
302	Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catalysis, 2019, 9, 1962-1972.	11.2	25
303	Direct Functionalization of C(sp ²)â€"H Bond in Nonaromatic Azaheterocycles: Palladium-Catalyzed Cross-Dehydrogenative Coupling (CDC) of 2 <i>H</i> Imidazole 1-Oxides with Pyrroles and Thiophenes. ACS Omega, 2019, 4, 825-834.	3 . 5	19
304	Electro-Oxidative Câ€"C Alkenylation by Rhodium(III) Catalysis. Journal of the American Chemical Society, 2019, 141, 2731-2738.	13.7	111
305	Iron-Enhanced Reactivity of Radicals Enables C–H Tertiary Alkylations for Construction of Functionalized Quaternary Carbons. ACS Catalysis, 2019, 9, 1757-1762.	11.2	50
306	Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry - A European Journal, 2019, 25, 3405-3439.	3.3	169
307	π-Bond Character in Metal–Alkyl Compounds for C–H Activation: How, When, and Why?. Journal of the American Chemical Society, 2019, 141, 648-656.	13.7	46
308	Copper catalyzed/mediated direct B–H alkenylation/alkynylation in carboranes. Science China Chemistry, 2019, 62, 74-79.	8.2	54
309	Highly Efficient Construction of Pentacyclic Carbolineâ€Containing Salts via a [Cp*RhCl ₂] ₂ â€Catalyzed Tandem Reaction. Asian Journal of Organic Chemistry, 2019, 8, 191-195.	2.7	9

#	Article	IF	CITATIONS
310	Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chemical Reviews, 2019, 119, 2611-2680.	47.7	525
311	Modern Developments in the Chemistry of Homoenolates. European Journal of Organic Chemistry, 2019, 2019, 8-26.	2.4	68
312	Ironâ€Catalyzed C(sp 2)â^'C(sp 3) Crossâ€Coupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope, and Application. Advanced Synthesis and Catalysis, 2019, 361, 85-95.	4.3	17
313	Electrochemical Transitionâ€Metalâ€Catalyzed Câ^'H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. ChemSusChem, 2019, 12, 115-132.	6.8	63
314	FeF3-mediated tandem annulation: a highly efficient one-pot synthesis of functionalized N-methyl-3-nitro-4H-pyrimido $[2, 1-b]$ $[1, 3]$ benzothiazole-2-amine derivatives under neat conditions. Molecular Diversity, 2020, 24, 443-453.	3.9	3
315	Redox-Selective Iron Catalysis for α-Amino C–H Bond Functionalization via Aerobic Oxidation. Organic Letters, 2020, 22, 16-21.	4.6	47
316	Lemon juice catalyzed C–C bond formation via C–H activation of methylarene: a sustainable synthesis of chromenopyrimidines. Molecular Diversity, 2020, 24, 717-725.	3.9	11
317	Cascade Oneâ€Pot Synthesis of Orangeâ€Redâ€Fluorescent Polycyclic Cinnolino[2,3â€ <i>f</i>]phenanthridinâ€9â€ium Salts by Palladium(II)â€Catalyzed Câ^H Bond Activation of 2â€Azobiaryl Compounds and Alkenes. Angewandte Chemie - International Edition, 2020, 59, 689-694.	13.8	22
318	Carbene Bridging C–H Activation: Facile Isocoumarin Synthesis Through Palladiumâ€Catalyzed Reaction of 2â€Pseudohalobenzaldehydes with Aryl Diazoesters. European Journal of Organic Chemistry, 2020, 2020, 723-727.	2.4	24
319	Coligand driven diverse organometallation in benzothiazolyl-hydrazone derivatized pyrene: ortho vs. peri C–H activation. New Journal of Chemistry, 2020, 44, 1407-1417.	2.8	2
320	Rhodium assisted peri-C–H activation in benzothiazolyl-hydrazone derivatized pyrene. Polyhedron, 2020, 179, 114352.	2.2	2
321	Ag/Pd Cocatalyzed Direct Arylation of Fluoroarene Derivatives with Aryl Bromides. ACS Catalysis, 2020, 10, 2100-2107.	11.2	32
322	Recent trends in catalytic sp ³ C–H functionalization of heterocycles. Organic and Biomolecular Chemistry, 2020, 18, 606-617.	2.8	35
323	Site-Selective Rh-Catalyzed C-7 and C-6 Dual C–H Functionalization of Indolines: Synthesis of Functionalized Pyrrolocarbazoles. Journal of Organic Chemistry, 2020, 85, 2793-2805.	3.2	16
325	Iron-catalyzed regioselective alkylation of 1,4-quinones and coumarins with functionalized alkyl bromides. Organic and Biomolecular Chemistry, 2020, 18, 750-754.	2.8	19
326	Ironâ€Catalyzed Oxidative Câ^'C Crossâ€Coupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant**. Chemistry - A European Journal, 2020, 26, 2499-2508.	3.3	23
327	OrthoC H amidations enabled by a recyclable manganese-ionic liquid catalytic system. Tetrahedron Letters, 2020, 61, 151521.	1.4	5
328	Ironâ€porphyrin Catalyzed Carbene Transfer Reactions – an Evolution from Biomimetic Catalysis towards Chemistryâ€inspired Nonâ€natural Reactivities of Enzymes. ChemCatChem, 2020, 12, 2171-2179.	3.7	27

#	ARTICLE	IF	CITATIONS
329	Stoichiometric Photochemical Carbene Transfer by Bamford–Stevens Reaction. Chemistry - A European Journal, 2020, 26, 2586-2591.	3.3	60
330	Cascade Oneâ€Pot Synthesis of Orangeâ€Redâ€Fluorescent Polycyclic Cinnolino[2,3â€ <i>f</i>]phenanthridinâ€9â€ium Salts by Palladium(II)â€Catalyzed Câ^'H Bond Activation of 2â€Azobiaryl Compounds and Alkenes. Angewandte Chemie, 2020, 132, 699-704.	2.0	4
331	Metal-based surface active ionic liquids: Self-assembling characteristics and C C bond functionalization of tertiary amines with TMSCN in aqueous micellar solutions. Journal of Molecular Liquids, 2020, 299, 112157.	4.9	6
332	Synthesis of (E)â€3â€Alkylideneindolinâ€2â€ones by an Ironâ€Catalyzed Aerobic Oxidative Condensation of Csp –H Bonds of Oxindoles and Benzylamines. European Journal of Organic Chemistry, 2020, 2020, 7229-7237.	3 2.4	6
333	Iron based catalysts in biomass processing. Renewable and Sustainable Energy Reviews, 2020, 134, 110292.	16.4	24
334	Allenes in Manganese(I)-Catalyzed C–C Activation and a Strategy for Cascade Ring Expansion. Cell Reports Physical Science, 2020, 1, 100178.	5.6	3
335	Dual-Functional Enone-Directing Group/Electrophile for Sequential C–C Bond Formation with α-Diazomalonates: A Short Synthesis of Chiral 3,4-Fused Tricyclic Indoles. ACS Catalysis, 2020, 10, 11971-11979.	11.2	32
336	Chemoselectivity for B–O and B–H Bond Cleavage by Pincer-Type Phosphorus Compounds: Theoretical and Experimental Studies. Inorganic Chemistry, 2020, 59, 15636-15645.	4.0	6
337	Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chemical Communications, 2020, 56, 14937-14961.	4.1	17
338	The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory. Chemistry - A European Journal, 2020, 26, 15690-15699.	3.3	14
339	Theoretical Insight into Ni(0)-Catalyzed Hydroarylation of Alkenes and Arylboronic Acids. Journal of Organic Chemistry, 2020, 85, 13264-13271.	3.2	9
340	Recent Advances in Catalytic Synthesis of Benzosultams. Molecules, 2020, 25, 4367.	3.8	26
341	Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catalysis, 2020, 10, 9170-9196.	11.2	226
342	C(sp ²)â€"H Activation with Pyridine Dicarbene Iron Dialkyl Complexes: Hydrogen Isotope Exchange of Arenes Using Benzene- <i>d</i> 6 as a Deuterium Source. ACS Catalysis, 2020, 10, 8640-8647.	11.2	28
343	Catalytic oxyfunctionalization of saturated hydrocarbons by non-heme oxo-bridged diiron(III) complexes: role of acetic acid on oxidation reaction. Transition Metal Chemistry, 2020, 45, 583-588.	1.4	2
344	Rhodium-Catalyzed Directed C(sp ²)â€"H Bond Addition of 2-Arylindazoles to <i>N</i> -Sulfonylformaldimines and Activated Aldehydes. Journal of Organic Chemistry, 2020, 85, 15752-15759.	3.2	25
345	Enantioselective Iron-Catalyzed Cross-[4+4]-Cycloaddition of 1,3-Dienes Provides Chiral Cyclooctadienes. Journal of the American Chemical Society, 2020, 142, 19819-19824.	13.7	20
346	Harnessing hypervalent iodonium ylides as carbene precursors: C–H activation of <i>N</i> -methoxybenzamides with a Rh(<scp>iii</scp>)-catalyst. Chemical Communications, 2020, 56, 15462-15465.	4.1	49

#	Article	IF	CITATIONS
347	C–H Functionalization Reactions of Unprotected <i>N</i> Heterocycles by Gold-Catalyzed Carbene Transfer. ACS Catalysis, 2020, 10, 9925-9931.	11.2	59
348	AIBN for Ru-catalyzed <i>meta </i> -C < sub>Ar â€"H alkylation. Organic Chemistry Frontiers, 2020, 7, 2474-2479.	4.5	13
350	Tuning regioselective oxidation toward phenol via atomically dispersed iron sites on carbon. Green Chemistry, 2020, 22, 6025-6032.	9.0	9
351	Renewable resources for sustainable metallaelectro-catalysed C–H activation. Chemical Science, 2020, 11, 8657-8670.	7.4	69
352	New Strategy for Catalytic Oxidative C–H Functionalization: Efficient Combination of Transition-metal Catalyst and Electrochemical Oxidation. Chemistry Letters, 2020, 49, 1256-1269.	1.3	28
353	Ironâ€Catalyzed Crossâ€Coupling Reactions for the Construction of Carbonâ€Heteroatom Bonds. Asian Journal of Organic Chemistry, 2020, 9, 1519-1531.	2.7	23
354	Tris(4-bromophenyl)aminium Hexachloroantimonate-Initiated Oxidative Povarov-Type Reaction between Glycine Esters and (Cyclopropylidenemethyl)benzenes Using the Counterion as a Chlorine Donor. Organic Letters, 2020, 22, 6294-6298.	4.6	24
355	Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C–H Activation. Journal of Organic Chemistry, 2020, 85, 15287-15304.	3.2	34
356	Iron-catalyzed acylation-functionalization of unactivated alkenes with aldehydes. Chemical Communications, 2020, 56, 14637-14640.	4.1	22
357	Temperature-modulated selective C(sp ³)â€"H or C(sp ²)â€"H arylation through palladium catalysis. Chemical Science, 2020, 11, 11461-11467.	7.4	14
358	Direct C–H bond halogenation and pseudohalogenation of hydrocarbons mediated by high-valent 3d metal-oxo species. Dalton Transactions, 2020, 49, 14344-14360.	3.3	9
359	Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation. Journal of the American Chemical Society, 2020, 142, 16894-16902.	13.7	77
360	8-Aminoquinoline as a bidentate traceless directing group for Cu-catalyzed selective B(4,5)–H disulfenylation of <i>>o</i> -carboranes. Chemical Communications, 2020, 56, 12997-13000.	4.1	31
361	Self-Assembled Multilayer Iron(0) Nanoparticle Catalyst for Ligand-Free Carbon–Carbon/Carbon–Nitrogen Bond-Forming Reactions. Organic Letters, 2020, 22, 7244-7249.	4.6	18
362	Ironâ€Catalyzed Intermolecular Functionalization of Nonâ€Activated Aliphatic Câ^'H Bonds <i>via</i> Carbene Transfer. Advanced Synthesis and Catalysis, 2020, 362, 5116-5123.	4.3	5
363	Mechanism, bonding nature of metal-nitrenoid, and selectivity for a nitrene-participating three-component carboamination of dienes: A DFT study. Molecular Catalysis, 2020, 497, 111222.	2.0	2
364	Predicting Regioselectivity in Radical Câ^'H Functionalization of Heterocycles through Machine Learning. Angewandte Chemie, 2020, 132, 13355-13361.	2.0	14
365	Characterization of the Fe ^V =O Complex in the Pathway of Water Oxidation. Angewandte Chemie - International Edition, 2020, 59, 13502-13505.	13.8	21

#	Article	IF	CITATIONS
366	Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes <i>via</i> dynamic kinetic resolution: a computational study. Organic Chemistry Frontiers, 2020, 7, 1502-1511.	4.5	21
367	Iron-Catalyzed Synthesis, Structure, and Photophysical Properties of Tetraarylnaphthidines. Molecules, 2020, 25, 1608.	3.8	12
368	Characterization of the Fe ^V =O Complex in the Pathway of Water Oxidation. Angewandte Chemie, 2020, 132, 13604-13607.	2.0	10
369	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	38.1	150
370	Allenes for Versatile Iron-Catalyzed Câ \in "H Activation by Weak O-Coordination: Mechanistic Insights by Kinetics, Intermediate Isolation, and Computation. Journal of the American Chemical Society, 2020, 142, 13102-13111.	13.7	45
371	Iron catalysts with N-ligands for carbene transfer of diazo reagents. Chemical Society Reviews, 2020, 49, 4867-4905.	38.1	74
372	TMEDA in Ironâ€Catalyzed Hydromagnesiation: Formation of Iron(II)â€Alkyl Species for Controlled Reduction to Alkeneâ€Stabilized Iron(0). Angewandte Chemie - International Edition, 2020, 59, 17070-17076.	13.8	14
373	Ironâ€Promoted Domino Dehydrogenative Annulation of Deoxybenzoins and Alkynes Leading to βâ€Arylâ€Î±â€Naphthols. Advanced Synthesis and Catalysis, 2020, 362, 3190-3201.	4.3	6
374	Iron- and cobalt-catalyzed C(sp ³)–H bond functionalization reactions and their application in organic synthesis. Chemical Society Reviews, 2020, 49, 5310-5358.	38.1	119
375	Tetraalkylammonium-based ionic liquids for a RuCl3 catalyzed C–H activated homocoupling. Tetrahedron, 2020, 76, 131314.	1.9	8
376	Copper-catalyzed sp3-carbon radical/carbamoyl radical cross coupling: A direct strategy for carbamoylation of 1,3-dicarbonyl compounds. Tetrahedron, 2020, 76, 131342.	1.9	6
377	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	7.4	12
378	Iron-Catalyzed C(sp ²)–H Alkylation of Indolines and Benzo[<i>h</i>)quinoline with Unactivated Alkyl Chlorides through Chelation Assistance. ACS Catalysis, 2020, 10, 7312-7321.	11.2	40
379	Palladium-catalyzed intermolecular C–H silylation initiated by aminopalladation. Chemical Communications, 2020, 56, 7801-7804.	4.1	11
380	Copper-catalyzed <i>ortho</i> -C(sp ²)â€"H amination of benzamides and picolinamides with alkylamines using oxygen as a green oxidant. Organic and Biomolecular Chemistry, 2020, 18, 4802-4814.	2.8	10
381	4'-Methyl-2'-(quinolin-8-ylcarbamoyl)-biphenyl-4-carboxylic Acid Ethyl Ester. MolBank, 2020, 2020, M1132.	0.5	3
382	Rhodium(III)-Catalyzed Oxidative Annulation of 4-Aminoquinolines and Acrylate through Two Consecutive C(sp ²)–H Activations. Organic Letters, 2020, 22, 2657-2662.	4.6	4
383	Iron-Catalyzed Silylation of (Hetero)aryl Chlorides with Et ₃ SiBpin. Organic Letters, 2020, 22, 2816-2821.	4.6	22

#	Article	IF	Citations
384	C–O Bond Silylation Catalyzed by Iron: A General Method for the Construction of Csp ² –Si Bonds. Organic Letters, 2020, 22, 2669-2674.	4.6	28
385	On the Use of Iron in Organic Chemistry. Molecules, 2020, 25, 1349.	3.8	35
386	<i>Para</i> â€Selective Cyanation of Arenes by Hâ€Bonded Template. Chemistry - A European Journal, 2020, 26, 11558-11564.	3.3	36
387	Regioselective hydroarylation and arylation of maleimides with indazoles <i>via</i> a Rh(<scp>iii</scp>)-catalyzed Câ€"H activation. Organic and Biomolecular Chemistry, 2020, 18, 3093-3097.	2.8	37
388	Catalytic Alkyne Dimerization without Noble Metals. ACS Catalysis, 2020, 10, 4895-4905.	11.2	39
389	Light Runs Across Iron Catalysts in Organic Transformations. Chemistry - A European Journal, 2020, 26, 15052-15064.	3.3	47
390	New advances in the catalysis of organic reactions by iron compounds. Russian Chemical Reviews, 2020, 89, 824-857.	6.5	3
391	Fe(<scp>iii</scp>)-Catalyzed synthesis of steroidal imidazoheterocycles as potent antiproliferative agents. Organic and Biomolecular Chemistry, 2020, 18, 5571-5576.	2.8	25
392	TMEDA in Ironâ€Catalyzed Hydromagnesiation: Formation of Iron(II)â€Alkyl Species for Controlled Reduction to Alkeneâ€Stabilized Iron(0). Angewandte Chemie, 2020, 132, 17218-17224.	2.0	4
393	C-H Functionalization via Iron-Catalyzed Carbene-Transfer Reactions. Molecules, 2020, 25, 880.	3.8	43
394	Reactivity of a Two-Coordinate Cobalt(0) Cyclic (Alkyl)(amino)carbene Complex. Organometallics, 2020, 39, 729-739.	2.3	17
395	Iron-Catalysed C(sp2)-H Borylation Enabled by Carboxylate Activation. Molecules, 2020, 25, 905.	3.8	28
396	Cobalt atalyzed Oxidative Câ^'H Activation: Strategies and Concepts. ChemSusChem, 2020, 13, 3306-3356.	6.8	71
397	Chromium(III)-Catalyzed C(sp ²)â€"H Alkynylation, Allylation, and Naphthalenation of Secondary Amides with Trimethylaluminum as Base. Journal of the American Chemical Society, 2020, 142, 4883-4891.	13.7	35
398	Picolinate-Directed Arene <i>meta</i> -C–H Amination via FeCl ₃ Catalysis. Journal of the American Chemical Society, 2020, 142, 5266-5271.	13.7	45
399	Rh(III)â€Catalyzed Câ^'H Acylmethylation of 6â€Arylpurines Using Sulfoxonium Ylides as Carbene Precursors. ChemistrySelect, 2020, 5, 2465-2468.	1.5	9
400	Rutheniumâ€Catalyzed Double C(sp 2)â°'H Functionalizations of Fumaramides with Alkynes for the Divergent Synthesis of Pyridones and Naphthyridinediones. ChemCatChem, 2020, 12, 2538-2547.	3.7	11
401	Expedient iron-catalyzed stereospecific synthesis of triazines <i>via</i> cycloaddition of aziridines with diaziridines. Chemical Communications, 2020, 56, 3381-3384.	4.1	21

#	Article	IF	Citations
402	Synthesis and Application of Heterocyclic Germatranes via Rhodiumâ€Catalyzed Directed Câ^'H Activation/Annulation with Alkynyl Germatranes and Palladiumâ€Catalyzed Crossâ€Coupling. Advanced Synthesis and Catalysis, 2020, 362, 1706-1711.	4.3	17
403	<scp>Niâ€Catalyzed Chelationâ€Assisted</scp> Direct Functionalization of Inert C—H Bonds. Chinese Journal of Chemistry, 2020, 38, 635-662.	4.9	59
404	TEMPO-mediated cross dehydrogenative coupling aminomethylation of imidazopyridine. Tetrahedron Letters, 2020, 61, 151590.	1.4	2
405	Iron N-heterocyclic carbene complexes in homogeneous catalysis. Chemical Society Reviews, 2020, 49, 1209-1232.	38.1	74
406	Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization. ACS Catalysis, 2020, 10, 3059-3073.	11.2	16
407	Direct oxidative C(sp 3)─H/C(sp 2)─H coupling reaction using recyclable Srâ€doped LaCoO 3 perovskite catalyst. Applied Organometallic Chemistry, 2020, 34, e5515.	3.5	5
408	Predicting Regioselectivity in Radical Câ^'H Functionalization of Heterocycles through Machine Learning. Angewandte Chemie - International Edition, 2020, 59, 13253-13259.	13.8	65
409	Theoretical study on the activation of C-H bond in ethane by $PdX+(X = F, Cl, Br, H, and CH3)$ in the gas phase. Journal of Molecular Modeling, 2020, 26, 91.	1.8	0
410	<i>meta</i> å€Selective Câ^H Arylation of Fluoroarenes and Simple Arenes. Angewandte Chemie - International Edition, 2020, 59, 13831-13835.	13.8	50
411	Cobalt-Catalyzed Enantioselective Hydroarylation of 1,6-Enynes. Journal of the American Chemical Society, 2020, 142, 9510-9517.	13.7	94
412	Iron-Catalyzed C–H Functionalizations under Triazole-Assistance. Molecules, 2020, 25, 1806.	3.8	8
413	meta â€ S elective Câ^'H Arylation of Fluoroarenes and Simple Arenes. Angewandte Chemie, 2020, 132, 13935-13939.	2.0	13
414	Rate-Limiting Steps in the Intramolecular C–H Activation of Ruthenium N-Heterocyclic Carbene Complexes. Journal of Physical Chemistry A, 2020, 124, 3609-3617.	2.5	7
415	Nickel-catalyzed and Li-mediated regiospecific C–H arylation of benzothiophenes. Green Chemistry, 2020, 22, 3155-3161.	9.0	11
416	Small organic molecules with tailored structures: initiators in the transition-metal-free C–H arylation of unactivated arenes. RSC Advances, 2020, 10, 14500-14509.	3.6	9
417	Harnessing Photoexcited Redox Centers of Semiconductor Photocatalysts for Advanced Synthetic Chemistry. Solar Rrl, 2021, 5, 2000444.	5.8	11
418	Waste-minimized synthesis of C2 functionalized quinolines exploiting iron-catalysed C–H activation. Green Chemistry, 2021, 23, 490-495.	9.0	15
419	C–H Activation Catalyzed by Earth-Abundant Metals. Bulletin of the Chemical Society of Japan, 2021, 94, 404-417.	3.2	20

#	Article	IF	Citations
420	Multi Câ^'H Functionalization Reactions of Carbazole Heterocycles via Goldâ€Catalyzed Carbene Transfer Reactions. Chemistry - A European Journal, 2021, 27, 2628-2632.	3.3	24
421	Recent advances in the development of palladium nanocatalysts for sustainable organic transformations. Inorganic Chemistry Frontiers, 2021, 8, 499-545.	6.0	30
422	Efficient Amination of Activated and Nonâ€Activated C(sp ³)â^'H Bonds with a Simple Ironâ€"Phenanthroline Catalyst. Angewandte Chemie - International Edition, 2021, 60, 6314-6319.	13.8	30
423	Chromium-Catalyzed Ligand-Free Amidation of Esters with Anilines. Bulletin of the Chemical Society of Japan, 2021, 94, 762-766.	3.2	4
424	Efficient Amination of Activated and Nonâ€Activated C(sp ³)â^'H Bonds with a Simple Ironâ€"Phenanthroline Catalyst. Angewandte Chemie, 2021, 133, 6384-6389.	2.0	1
425	Iron-Based Catalyst for Borylation of Unactivated Alkyl Halides without Using Highly Basic Organometallic Reagents. Journal of Organic Chemistry, 2021, 86, 1948-1954.	3.2	9
426	Highly Robust Iron Catalyst System for Intramolecular C(sp 3)â^'H Amidation Leading to Î³â€Łactams. Angewandte Chemie, 2021, 133, 2945-2950.	2.0	8
427	Highly Robust Iron Catalyst System for Intramolecular C(sp ³)â^'H Amidation Leading to Î³â€Łactams. Angewandte Chemie - International Edition, 2021, 60, 2909-2914.	13.8	68
428	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	4.5	59
429	Oxidation of the inert sp ³ Câ€"H bonds of tetrahydroisoquinolines through Câ€"H activation relay (CHAR): construction of functionalized isoquinolin-1-ones. Chemical Communications, 2021, 57, 3347-3350.	4.1	8
430	Iron-catalyzed C–F bond silylation and borylation of fluoroarenes. Organic Chemistry Frontiers, 2021, 8, 5322-5327.	4.5	9
431	Recent advances in hydride transfer-involved C(sp ³)â€"H activation reactions. Organic Chemistry Frontiers, 2021, 8, 1364-1383.	4.5	66
432	Palladium-catalyzed directed synthesis of <i>ortho</i> organic and Biomolecular Chemistry, 2021, 19, 6244-6249.	2.8	2
433	Ligand-Controlled C _{sp} ² â€"H versus C _{sp} ³ â€"H Bond Formation in Cycloplatinated Complexes: A Joint Experimental and Theoretical Mechanistic Investigation. Inorganic Chemistry, 2021, 60, 1998-2008.	4.0	6
434	Experimental and computational studies of the mechanism of iron-catalysed C–H activation/functionalisation with allyl electrophiles. Chemical Science, 2021, 12, 9398-9407.	7.4	10
435	Palladium-catalyzed remote $\langle i \rangle$ para $\langle i \rangle$ -Câ \in "H activation of arenes assisted by a recyclable pyridine-based template. Chemical Science, 2021, 12, 4126-4131.	7.4	17
436	Iron-catalyzed oxidative cyclization of olefinic 1,3-dicarbonyls with ketone C(sp ³)–H bonds: facile access to 2,3-dihydrofurans. New Journal of Chemistry, 2021, 45, 13639-13643.	2.8	6
437	Double $\hat{l}\pm,\hat{l}\pm$ CH bond insertion into sp ³ CH ₂ moiety: synthesis of a Fe carbene bis-hydride dinitrogen complex. Dalton Transactions, 2021, 50, 9554-9559.	3.3	3

#	ARTICLE	IF	CITATIONS
438	Synthesis of N-alkoxyphthalimide derivatives via PIDA-promoted cross dehydrogenative coupling reaction. RSC Advances, 2021, 11, 8051-8054.	3.6	4
439	Electron-deficient boron-based catalysts for C–H bond functionalisation. Chemical Society Reviews, 2021, 50, 1945-1967.	38.1	66
440	Metal-catalyzed silylation of sp ³ Câ€"H bonds. Chemical Society Reviews, 2021, 50, 5062-5085.	38.1	50
441	Recent advances and perspectives in manganese-catalyzed C–H activation. Catalysis Science and Technology, 2021, 11, 444-458.	4.1	36
442	C H Activation/Functionalization With Earth Abundant 3d Transition Metals., 2021,, 260-310.		1
443	Single-atom cobalt-fused biomolecule-derived nitrogen-doped carbon nanosheets for selective oxidation reactions. Physical Chemistry Chemical Physics, 2021, 23, 14276-14283.	2.8	12
444	Rhodium(<scp>i</scp>)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Organic Chemistry Frontiers, 2021, 8, 3320-3331.	4.5	7
445	A soluble iron(<scp>ii</scp>)-phthalocyanine-catalyzed intramolecular C(sp ³)–H amination with alkyl azides. Chemical Communications, 2021, 57, 10711-10714.	4.1	7
446	Ru(II)-Catalyzed Switchable C–H Alkylation and Spirocyclization of 2-Arylquinoxalines with Maleimides via ortho-C–H Activation. Journal of Organic Chemistry, 2021, 86, 2784-2795.	3.2	38
447	Homogeneous aluminum and iron catalysts for the synthesis of organic molecules and biodegradable polymers., 2021,, 3-43.		0
448	Hydroxymethylation of quinolines <i>via</i> iron promoted oxidative Câ€"H functionalization: synthesis of arsindoline-A and its derivatives. Organic and Biomolecular Chemistry, 2021, 19, 645-652.	2.8	9
449	Iron-Catalyzed Triazole-Enabled C–H Activation with Bicyclopropylidenes. ACS Catalysis, 2021, 11, 1053-1064.	11.2	14
450	Insights into the Mechanism of Low-Valent Cobalt-Catalyzed C–H Activation. ACS Catalysis, 2021, 11, 1505-1515.	11,2	32
451	Regioselective and Redoxâ€Neutral Cp*lr ^{lll} â€Catalyzed Allylic Câ^'H Alkynylation. Angewandte Chemie - International Edition, 2021, 60, 5688-5692.	13.8	14
452	<i>N</i> -Butylpyrrolidone (NBP) as a non-toxic substitute for NMP in iron-catalyzed C(sp ²)–C(sp ³) cross-coupling of aryl chlorides. Green Chemistry, 2021, 23, 7515-7521.	9.0	8
453	Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules, 2021, 26, 249.	3.8	39
454	N-Tosylhydrazone as an oxidizing directing group for the redox-neutral access to isoquinolines via Cpâ^—Co(III)-Catalyzed C–H/N–N activation. Journal of the Indian Chemical Society, 2021, 98, 100001.	2.8	5
455	Palladium-Catalyzed Dual Coupling Reaction of 2-lodobiphenyls with ⟨i>o⟨ i>-Bromoanilines through C–H Activation: An Approach for the Synthesis of Tribenzo[⟨i>b⟨ i>,⟨i>d⟨ i>,⟨i>f⟨ i>]azepines. Organic Letters, 2021, 23, 1239-1242.	4.6	30

#	Article	IF	CITATIONS
456	Enantioselective α-Arylation of Ketones via a Novel Cu(l)–Bis(phosphine) Dioxide Catalytic System. Journal of the American Chemical Society, 2021, 143, 3289-3294.	13.7	32
457	Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron, 2021, 82, 131947.	1.9	2
458	Co(III), Rh(III) & Direct Câ^'H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chemistry - an Asian Journal, 2021, 16, 443-459.	3.3	62
459	How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Organic Letters, 2021, 23, 1489-1494.	4.6	10
460	Copper-Catalyzed Aerobic Oxidative Cyclization of 2-Alkynylanilines with Nitrosoarenes: Synthesis of Organic Solid Mechanoluminescence Compounds of 4-Oxo-4 <i>H</i> -cinnolin-2-ium-1-ide. Organic Letters, 2021, 23, 1228-1233.	4.6	5
461	Copperâ€Catalyzed Crossâ€Dehydrogenative Coupling Reactions. European Journal of Organic Chemistry, 2021, 2021, 1776-1808.	2.4	21
462	Borylation of Unactivated C(sp ³)–H Bonds with Bromide as a Traceless Directing Group. Organic Letters, 2021, 23, 2948-2953.	4.6	15
463	A Tutorial on Selectivity Determination in C(sp ²)–H Oxidative Addition of Arenes by Transition Metal Complexes. Organometallics, 2021, 40, 813-831.	2.3	23
464	Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization of <i>o</i> -Carboranes. Bulletin of the Chemical Society of Japan, 2021, 94, 879-899.	3.2	63
465	Manganese(I)â€Catalyzed Siteâ€Selective C6â€Alkenylation of 2â€Pyridones Using Alkynes via Câ^'H Activation. Advanced Synthesis and Catalysis, 2021, 363, 2586-2593.	4.3	20
466	Iron-Catalyzed Ortho C–H Homoallylation of Aromatic Ketones with Methylenecyclopropanes. Journal of the American Chemical Society, 2021, 143, 4543-4549.	13.7	28
467	Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science, 2021, 7, 415-431.	11.3	335
468	AIBN initiated functionalization of the benzylic sp3 C H and C C bonds in the presence of dioxygen. Tetrahedron Letters, 2021, 66, 152806.	1.4	2
469	Iron-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Enynes To Access 1,3-Dienylsilanes. Organic Letters, 2021, 23, 2375-2379.	4.6	16
470	Debenzylative Sulfonylation of Tertiary Benzylamines Promoted by Visible Light. European Journal of Organic Chemistry, 2021, 2021, 1896-1900.	2.4	5
471	Experimental and Computational Studies of the Iron atalyzed Selective and Controllable Defluorosilylation of Unactivated Aliphatic <i>gem</i> â€Difluoroalkenes. Angewandte Chemie - International Edition, 2021, 60, 10211-10218.	13.8	42
472	Advances in C(<i>sp</i> ²)â^'H/C(<i>sp</i> ²)â^'H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Advanced Synthesis and Catalysis, 2021, 363, 1998-2022.	4.3	36
473	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Dehydrogenative Carbonylation of Amines to Oxalamides. Chemistry - A European Journal, 2021, 27, 5642-5647.	3.3	13

#	Article	IF	CITATIONS
474	Experimental and Computational Studies of the Ironâ€Catalyzed Selective and Controllable Defluorosilylation of Unactivated Aliphatic gem â€Difluoroalkenes. Angewandte Chemie, 2021, 133, 10299-10306.	2.0	4
475	Well-Defined Aryl-Fell Complexes in Cross-Coupling and C–H Activation Processes. Organometallics, 2021, 40, 1195-1200.	2.3	2
476	Calcium-mediated C(sp ³)–H Activation and Alkylation of Alkylpyridines. Inorganic Chemistry, 2021, 60, 5114-5121.	4.0	13
477	Iron-Catalyzed Tandem Cyclization of Diarylacetylene to a Strained 1,4-Dihydropentalene Framework for Narrow-Band-Gap Materials. Journal of the American Chemical Society, 2021, 143, 6823-6828.	13.7	10
478	C H Bond activation of 2-isobutylthiazole at C5 position catalysed by Pd-N-heterocyclic carbene complexes. Journal of Organometallic Chemistry, 2021, 937, 121730.	1.8	7
479	Traceless Directing Groups in Sustainable Metal-Catalyzed C–H Activation. Catalysts, 2021, 11, 554.	3.5	23
480	Aldehydeâ€Directed C(<i>sp</i> ²)â^'H Functionalization under Transitionâ€Metal Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 3868-3878.	4.3	17
481	Blue light-promoted cyclopropenizations of N-tosylhydrazones in water. Chinese Chemical Letters, 2021, 32, 3984-3987.	9.0	23
482	Stereospecific Iron-Catalyzed Carbon (sp ²)–Carbon (sp ²) Cross-Coupling of Aryllithium with Vinyl Halides. Organic Letters, 2021, 23, 4385-4390.	4.6	5
483	Chiralâ€atâ€Iron Catalyst for Highly Enantioselective and Diastereoselective Heteroâ€Dielsâ€Alder Reaction. Chemistry - A European Journal, 2021, 27, 8557-8563.	3.3	19
484	Fe-Catalyzed Intramolecular B–H/C–H Dehydrogenative Coupling: Synthesis of Carborane-Fused Nitrogen Heterocycles. Organic Letters, 2021, 23, 4163-4167.	4.6	15
485	Evolution of Earthâ€Abundant 3 dâ€Metallaelectroâ€Catalyzed Câ^'H Activation: From Chelationâ€Assistance Câ^'H Functionalization without Directing Groups. Chemical Record, 2021, 21, 2430-2441.	e to 5.8	12
486	Ironâ€Catalyzed Wackerâ€type Oxidation of Olefins at Room Temperature with 1,3â€Diketones or Neocuproine as Ligands**. Angewandte Chemie - International Edition, 2021, 60, 14083-14090.	13.8	29
487	Interweaving Visibleâ€Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angewandte Chemie, 2021, 133, 16562-16571.	2.0	5
488	Enzymeâ€like Supramolecular Iridium Catalysis Enabling Câ^'H Bond Borylation of Pyridines with ⟨i⟩meta⟨ i⟩â€Selectivity. Angewandte Chemie - International Edition, 2021, 60, 18006-18013.	13.8	66
489	Ironâ€Catalyzed Wackerâ€type Oxidation of Olefins at Room Temperature with 1,3â€Diketones or Neocuproine as Ligands**. Angewandte Chemie, 2021, 133, 14202-14209.	2.0	12
490	Enzymeâ€like Supramolecular Iridium Catalysis Enabling Câ^'H Bond Borylation of Pyridines with meta â€Selectivity. Angewandte Chemie, 2021, 133, 18154-18161.	2.0	12
491	Blue LED Induced Manganese (I) Catalysed Direct C2â^'H Activation of Pyrroles with Aryl Diazoesters. Advanced Synthesis and Catalysis, 2021, 363, 3521-3531.	4.3	9

#	Article	IF	CITATIONS
492	Interweaving Visibleâ€Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angewandte Chemie - International Edition, 2021, 60, 16426-16435.	13.8	67
493	Additive and Counterion Effects in Iron-Catalyzed Reactions Relevant to C–C Bond Formation. ACS Catalysis, 2021, 11, 8493-8503.	11.2	22
494	Feâ€Catalyzed Intramolecular Crossâ€Dehydrogenative Arylation (CDA), Efficient Synthesis of 1â€Arylnaphthalenes and 4â€Arylcoumarins. Helvetica Chimica Acta, 2021, 104, e2100056.	1.6	2
495	Stereogenic-at-Iron Catalysts with a Chiral Tripodal Pentadentate Ligand. ACS Catalysis, 2021, 11, 7467-7476.	11.2	9
496	Biaryl Formation via Base-Promoted Direct Coupling Reactions of Arenes with Aryl Halides. ACS Omega, 2021, 6, 15981-15987.	3.5	9
497	Pyridine-directed carbon–carbon single bond activation: Rhodium-catalyzed decarbonylation of aryl and heteroaromatic ketones. Tetrahedron Letters, 2021, 73, 153132.	1.4	4
498	Iron-Catalyzed Diborylation of Unactivated Aliphatic <i>gem</i> -Dihalogenoalkenes: Synthesis of 1,2-Bis(boryl)alkanes. Organic Letters, 2021, 23, 5565-5570.	4.6	15
499	Ironâ€Catalyzed Synthesis of Pyrrole Derivatives and Related Fiveâ€Membered Azacycles. European Journal of Organic Chemistry, 2021, 2021, 3837-3849.	2.4	8
501	Diastereoselective Template Synthesis on Iron and Uranium. Organometallics, 2021, 40, 2389-2393.	2.3	0
502	Ruâ€Catalyzed C(sp 2)â^'H Bond Arylation of Benzamides Bearing a Novel 4â€Aminoantipyrine as a Directing Group. European Journal of Organic Chemistry, 2021, 2021, 3598-3603.	2.4	0
503	Formylation and Bromination of Pyrrolo[2,1- <i>a</i>) isoquinoline Derivatives with Bromoisobutyrate and Dimethyl Sulfoxide. Journal of Organic Chemistry, 2021, 86, 10118-10128.	3.2	24
504	Iron-catalysed regioselective thienyl C–H/C–H coupling. Nature Catalysis, 2021, 4, 631-638.	34.4	33
505	Pincer Iron Hydride Complexes for Alkene Isomerization: Catalytic Approach to Trisubstituted (<i>Z</i>)-Alkenyl Boronates. ACS Catalysis, 2021, 11, 10138-10147.	11.2	22
506	Mechanistic Insights into Iron-Catalyzed C–H Bond Activation and C–C Coupling. Organometallics, 2021, 40, 2467-2477.	2.3	8
507	Deciphering the Role of Silver in Palladium-Catalyzed C–H Functionalizations. ACS Catalysis, 2021, 11, 9702-9714.	11.2	46
508	NHC Effects on Reduction Dynamics in Ironâ€Catalyzed Organic Transformations**. Chemistry - A European Journal, 2021, 27, 13651-13658.	3.3	2
509	Three-Component Carbosilylation of Alkenes by Merging Iron and Visible-Light Photocatalysis. Organic Letters, 2021, 23, 6510-6514.	4.6	38
510	<i>ortho</i> â€Allylation of 2â€Arylindazoles with Vinyl Cyclic Carbonate and Diallyl Carbonate <i>via</i> Manganeseâ€Catalyzed Câ^'H Bond Activation. Advanced Synthesis and Catalysis, 2021, 363, 4974-4981.	4.3	10

#	Article	IF	CITATIONS
511	Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp ²)â€"H Bond Functionalization. ACS Catalysis, 2021, 11, 12620-12631.	11.2	12
512	Recent advances of the site-specific direct methylation on aromatic rings. Tetrahedron, 2021, 96, 132402.	1.9	8
513	Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. Chinese Chemical Letters, 2022, 33, 1798-1816.	9.0	84
514	Functionalization of C(sp3)-H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron, 2021, 98, 132415.	1.9	11
515	Rh(<scp>iii</scp>)-Catalyzed multi-site-selective Câ€"H bond functionalization: condition-controlled synthesis of diverse fused polycyclic benzimidazole derivatives. Organic Chemistry Frontiers, 2021, 8, 2487-2493.	4.5	13
516	Iron-catalysed chemo- and <i>ortho</i> -selective C–H bond functionalization of phenols with α-aryl-α-diazoacetates. Organic Chemistry Frontiers, 2021, 8, 3770-3775.	4.5	21
517	<i>O</i> -Directed Câ€"H functionalization <i>via</i> cobaltacycles: a sustainable approach for Câ€"C and Câ€"heteroatom bond formations. Chemical Communications, 2021, 57, 3630-3647.	4.1	29
518	Iron-catalyzed <i>para</i> -selective C–H silylation of benzamide derivatives with chlorosilanes. Organic Chemistry Frontiers, 2021, 8, 2442-2448.	4.5	7
519	Green Chemistry on C–H Activation. Materials Horizons, 2021, , 181-200.	0.6	0
520	Fe-BPsalan complex catalyzed highly enantioselective Diels–Alder reaction of alkylidene β-ketoesters. Organic Chemistry Frontiers, 2021, 8, 1910-1917.	4.5	5
521	Effective fenton catalyst from controllable framework doping of Fe in porous silica spheres. Microporous and Mesoporous Materials, 2021, 312, 110704.	4.4	10
522	Regioselektive und redoxâ€neutrale Cp*Ir III â€katalysierte allylische Câ€Hâ€Alkinylierung. Angewandte Chemie, 2021, 133, 5752-5756.	2.0	2
523	Recent advances in Rh(<scp>iii</scp>)/Ir(<scp>iii</scp>)-catalyzed Câ€"H functionalization/annulation <i>via</i>) carbene migratory insertion. Organic and Biomolecular Chemistry, 2021, 19, 1438-1458.	2.8	77
524	Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chemical Society Reviews, 2021, 50, 243-472.	38.1	175
525	Conversion of Olefins into Ketones by an Ironâ€Catalyzed Wackerâ€type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie, 2018, 130, 1236-1240.	2.0	11
526	Ironâ€Catalyzed Radical Cleavage/Câ^'C Bond Formation of Acetalâ€Derived Alkylsilyl Peroxides. Chemistry - an Asian Journal, 2020, 15, 573-576.	3.3	22
527	First-Row d-Block Element-Catalyzed Carbon–Boron Bond Formation and Related Processes. Chemical Reviews, 2021, 121, 13238-13341.	47.7	163
528	Catalytic Direct α-Amination of Arylacetic Acid Synthons with Anilines. Journal of Organic Chemistry, 2020, 85, 13363-13374.	3.2	10

#	Article	IF	CITATIONS
529	Carboxyl-Assisted <i>meta</i> -Selective Câ€"H Functionalizations of Benzylsulfonamides. Organic Letters, 2020, 22, 7791-7796.	4.6	15
530	Nickel-catalyzed oxidative C–H/N–H annulation of <i>N</i> -heteroaromatic compounds with alkynes. Chemical Science, 2019, 10, 3242-3248.	7.4	55
531	One-Step Synthesis of 4H-3,1-Benzoxazin-4-ones from Weinreb Amides and 1,4,2-Dioxazol-5-ones via Cobalt-Catalyzed C–H Bond Activation. Heterocycles, 2019, 99, 118.	0.7	13
532	Oxidative carbon–carbon bond cleavage of 1,2-diols to carboxylic acids/ketones by an inorganic-ligand supported iron catalyst. Green Chemistry, 2021, 23, 9140-9146.	9.0	10
533	Feâ€catalyzed Dehydrogenative Câ^S Bond Formation for Access to 3â€Alkylâ€2â€(N â€aroyl)iminoâ€benzo[d]thiazolines. Asian Journal of Organic Chemistry, 2021, 10, 3241.	2.7	0
534	DFT study about the effects of BX3 (X = H, F, Cl and Br) derivatives on the C–H acidity enhancement. Main Group Chemistry, 2021, , 1-14.	0.8	0
535	Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews, 2022, 122, 5682-5841.	47.7	237
536	Ni(II)â€Mediated Ortho C(sp2)â€H Amidation of Arenes to Synthesis Secondary Sulfonamides via Sulfonyl Azides. ChemistrySelect, 2021, 6, 10668-10670.	1.5	3
537	Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp ^{)3 "H Bonds. Chemical Reviews, 2021, 121, 14957-15074.}	47.7	262
538	Iron-Catalyzed One-pot Synthesis of Indole-tethered Tetrasubstituted Pyrroles and Their Transformations to Indolizino [8,7-b] indole Derivatives. Synthesis, 0, , .	2.3	6
539	Transition metal catalysed direct construction of 2-pyridone scaffolds through C–H bond functionalizations. Organic and Biomolecular Chemistry, 2021, 19, 10516-10529.	2.8	7
540	Chemically robust and readily available quinoline-based PNN iron complexes: application in C–H borylation of arenes. Chemical Communications, 2021, 57, 13246-13258.	4.1	8
541	CHAPTER 7. Open Shell Iron Catalysis: Mechanistic Challenges, Approaches and Pitfalls. RSC Catalysis Series, 2020, , 231-245.	0.1	0
542	Accessing Low Oxidation-state Iron Catalysts; Iron-catalysed Reductive Functionalisation. RSC Catalysis Series, 2020, , 246-260.	0.1	2
543	An Overview of Metal Clusters and Their Reactivity. , 2020, , 1-9.		0
544	C–H Bond Activation Facilitated by Bis(phosphinoamide) Heterobimetallic Zr/Co Complexes. Organometallics, 2021, 40, 3689-3696.	2.3	4
545	Recent Advances in Copperâ€Catalyzed Câ^'N Bond Formation Involving <i>N</i> â€Centered Radicals. ChemSusChem, 2021, 14, 5340-5358.	6.8	23
546	FeF3 as a green catalyst for the synthesis of dihydropyrimidines via Biginelli reaction. European Journal of Chemistry, 2020, 11, 206-212.	0.6	1

#	ARTICLE	IF	CITATIONS
547	Iron-catalyzed synthesis of benzimidazoles: An overview. Journal of Organometallic Chemistry, 2022, 958, 122174.	1.8	7
548	Photoactive iron complexes: more sustainable, but still a challenge. Inorganic Chemistry Frontiers, 2022, 9, 206-220.	6.0	36
549	Ortho Câ^'H Functionalization of 2â€Arylimidazo[1,2―a]pyridines. Chemical Record, 2021, , .	5.8	12
550	Iron-Catalyzed Oxidative Amination of Benzylic C(sp ³)â€"H Bonds with Anilines. Journal of Organic Chemistry, 2021, 86, 17975-17985.	3.2	8
551	Câ€"H bond functionalization by dual catalysis: merging of high-valent cobalt and photoredox catalysis. Chemical Communications, 2021, 57, 13075-13083.	4.1	16
552	Ir-catalyzed proximal and distal C–H borylation of arenes. Chemical Communications, 2021, 57, 13059-13074.	4.1	44
553	Mechanochemical Câ^X/Câ^H Functionalization: An Alternative Strategic Access to Pharmaceuticals. European Journal of Organic Chemistry, 2022, 2022, .	2.4	23
554	Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chemistry, 2022, 24, 2296-2320.	9.0	20
555	Synthetic Applications of C–O and C–E Bond Activation Reactions. , 2022, , 347-420.		4
556	Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure. Inorganic Chemistry, 2022, 61, 1644-1658.	4.0	7
557	Recent advances on non-precious metal-catalyzed C–H functionalization of <i>N</i> -heteroarenes. Chemical Communications, 2021, 58, 10-28.	4.1	19
558	Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Organic Chemistry Frontiers, 2022, 9, 1742-1775.	4.5	23
560	Looking deep into Câ€"H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chemical Communications, 2022, 58, 3101-3121.	4.1	17
562	Fe ₂ O ₃ Nanocatalysts Supported on Zeolite-Y for the Selective Synthesis of C2 Di-Indolyl Indolones and Isatins. ACS Applied Nano Materials, 2022, 5, 1446-1459.	5.0	8
563	Density functional theory study on the reaction mechanism of Ni+-catalysed cyclohexane dehydrogenation. Structural Chemistry, 0, , 1.	2.0	1
564	Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Pyrazolones. ACS Omega, 2022, 7, 5274-5282.	3.5	5
565	Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chemical Science, 2022, 13, 2721-2728.	7.4	35
566	Iron-catalyzed domino coupling reactions of π-systems. Beilstein Journal of Organic Chemistry, 2021, 17, 2848-2893.	2.2	9

#	ARTICLE	IF	CITATIONS
567	A convergent paired electrolysis strategy enables the cross-coupling of methylarenes with imines. Organic Chemistry Frontiers, 2022, 9, 2193-2197.	4.5	6
568	Visibleâ€Lightâ€Induced, Singleâ€Metalâ€Catalyzed, Directed Câ°'H Functionalization: Metalâ€Substrateâ€Bound Complexes as Lightâ€Harvesting Agents. Angewandte Chemie, 2022, 134, .	2.0	2
569	Ironâ€Catalyzed Oxidative Câ^'O and Câ^'N Coupling Reactions Using Air as Sole Oxidant**. Chemistry - A European Journal, 2022, 28, .	3.3	13
570	Visibleâ€Lightâ€Induced, Singleâ€Metalâ€Catalyzed, Directed Câ^'H Functionalization: Metalâ€Substrateâ€Bound Complexes as Lightâ€Harvesting Agents. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
571	Visible Lightâ€Induced Hydrosilylation of Electronâ€Deficient Alkenes by Iron Catalysis. ChemSusChem, 2022, 15, .	6.8	15
572	Cucurbit[6]uril-Supported Fe ₃ O ₄ Magnetic Nanoparticles Catalyzed Green and Sustainable Synthesis of 2-Substituted Benzimidazoles via Acceptorless Dehydrogenative Coupling. ACS Omega, 2022, 7, 9754-9764.	3.5	19
573	Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catalysis, 2022, 12, 3452-3506.	11.2	72
574	Monodisperse CoPd nanoparticles supported on reduced graphene oxide as recyclable catalyst for the C(sp2)â°'H activation. Applied Catalysis A: General, 2022, 635, 118572.	4.3	O
575	DFT study on the mechanisms of αâ€C cross coupling of Ï€â€bonds catalyzed by iron complexes. Applied Organometallic Chemistry, 2022, 36, .	3.5	6
576	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
577	Facilitating Rh-Catalyzed C–H Alkylation of (Hetero)arenes and 6-Arylpurine Nucleosides (Nucleotides) with Electrochemistry. Journal of Organic Chemistry, 2022, 87, 6161-6178.	3.2	8
578	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	2
579	Cyclometallated Iron(II) Alkoxides in Iron-Catalyzed C–H Activations by Weak <i>O</i> Chelation. ACS Catalysis, 2022, 12, 4947-4960.	11.2	13
580	Cobalt-catalyzed tandem one-pot synthesis of polysubstituted imidazo[1,5- <i>a</i>) pyridines and imidazo[1,5- <i>a</i>) isoquinolines. Organic and Biomolecular Chemistry, 2022, 20, 4215-4223.	2.8	3
581	Recent advances in the synthesis of ferrocene derivatives <i>via</i> 3d transition metal-catalyzed C–H functionalization. Organic and Biomolecular Chemistry, 2022, 20, 4061-4073.	2.8	13
582	Iron-Catalyzed Allylic Defluorinative Ketone Olefin Coupling. Organic Letters, 2022, 24, 3211-3216.	4.6	22
583	Câ€H Deprotonation and C=C Hydrogenation of Nâ€heterocyclic Olefin with Calcium Hydride Complexes: Cooperative Caâ€Hâ€Ca Bridge versus Terminal Caâ€H bond. ChemCatChem, 0, , .	3.7	2
584	New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. Jacs Au, 2022, 2, 1200-1213.	7.9	23

#	Article	IF	Citations
585	Iron atalyzed Intramolecular Arene C(sp ²)â^'H Amidations under Mechanochemical Conditions. Angewandte Chemie, 2022, 134, .	2.0	4
586	Directed Ni-Catalyzed Reductive Arylation of Aliphatic C–H Bonds. Organic Letters, 2022, 24, 3313-3318.	4.6	8
587	Iron atalyzed Intramolecular Arene C(sp ²)â^'H Amidations under Mechanochemical Conditions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
588	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	6.7	20
589	An Efficient Route to 3,3'â€Biindolinylideneâ€diones by Ironâ€Catalyzed Dimerization of Isatins. Chemistry - an Asian Journal, 0, , .	3.3	2
590	Does an Enol Pathway Preclude High Stereoselectivity in Iron-Catalyzed Indole C–H Functionalization via Carbene Insertion?. Journal of Organic Chemistry, 2022, 87, 7919-7933.	3.2	10
592	Kinetic Evidence of Most Abundant Surface Intermediates Variation over Pt _n and Pt _p : Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production-II. ACS Catalysis, 2022, 12, 7248-7261.	11.2	3
593	Recent Advances in Cobaltâ€catalyzed Functionalization of Unactivated Olefins. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	4
594	Iron-catalysed hydroalumination of internal alkynes. Chemical Science, 2022, 13, 7873-7879.	7.4	6
595	Transition metal catalysed direct sulfanylation of unreactive C–H bonds: an overview of the last two decades. Organic and Biomolecular Chemistry, 2022, 20, 6072-6177.	2.8	11
596	Late-stage <i>ortho</i> -Câ€"H alkenylation of 2-arylindazoles in aqueous medium by Manganese(<scp>i</scp>)-catalysis. RSC Advances, 2022, 12, 19412-19416.	3.6	9
597	Research advances in palladium-catalysed intermolecular C–H annulation of aryl halides with various aromatic ring precursors. Organic and Biomolecular Chemistry, 2022, 20, 6275-6292.	2.8	10
598	Heterogeneous Asymmetric Î'-C-H Functionalization of Aldehydes Under O2ÂCatalyzed by Hydroxide-Layered Fe(Iii) Sites Synergistic with Confined Interlayer Amine. SSRN Electronic Journal, 0, , .	0.4	0
599	Pd(<scp>ii</scp>)-catalyzed <i>meta</i> -C–H bromination and chlorination of aniline and benzoic acid derivatives. Chemical Science, 2022, 13, 8686-8692.	7.4	11
600	Synthesis, Structures and Chemical Reactivity of Dithiolato-Bridged Ni-Fe Complexes as Biomimetics for the Active Site of [NiFe]-Hydrogenases. Inorganics, 2022, 10, 90.	2.7	1
601	Iridium-Catalyzed Borylation of 6-Fluoroquinolines: Access to 6-Fluoroquinolones. Journal of Organic Chemistry, 0, , .	3.2	4
602	Practical and Selective Bio-Inspired Iron-Catalyzed Oxidation of Si–H Bonds to Diversely Functionalized Organosilanols. ACS Catalysis, 2022, 12, 9143-9152.	11.2	10
603	Iron-Catalyzed Synthesis of Pyrrolo[2,1-a]isoquinolines via 1,3-Dipolar Cycloaddition/Elimination/Aromatization Cascade and Modifications. Synlett, 2022, 33, 1645-1654.	1.8	6

#	ARTICLE	IF	CITATIONS
604	Iron-Catalyzed Selective Bâ \in H Activation for 4/5-fold Methylation and Arylation of Carboranes. ACS Catalysis, 2022, 12, 8761-8767.	11.2	10
605	Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. Arabian Journal of Chemistry, 2022, 15, 104095.	4.9	3
606	<i>Ortho</i> Câ^'H Functionalizations of 2â€Arylâ€2 <i>H</i> â€Indazoles. Chemical Record, 2022, 22, .	5.8	3
607	Atomically Dispersed Fe–N ₅ Sites Anchored on 3D N-Doped Porous Carbon for Efficient Selective Oxidation of Aromatic Alkanes at Room Temperature. ACS Applied Materials & D, , .	8.0	2
608	Functionalization of alkyl groups adjacent to azoles: Application to the synthesis of alpha-functionalized carboxylic acids. Synlett, 0, , .	1.8	1
609	Iron-catalysed alkene and heteroarene H/D exchange by reversible protonation of iron-hydride intermediates. Chemical Science, 2022, 13, 10291-10298.	7.4	6
610	Can Second Coordination Sphere and Long-Range Interactions Modulate Hydrogen Atom Transfer in a Non-Heme Fe(II)-Dependent Histone Demethylase?. Jacs Au, 2022, 2, 2169-2186.	7.9	11
611	Direct Transformation of Nitrogen-Containing Methylheteroarenes to Heteroaryl Nitrile by Sodium Nitrite. Organic Letters, 0, , .	4.6	1
612	Comprehensive theoretical study of nickelâ€NHC atalyzed enantioselective intramolecular indole CH cyclization: Reaction mechanism, reactivity, regioselectivity, and electronic processes. Applied Organometallic Chemistry, 0, , .	3.5	0
613	Iron-catalyzed decarbonylative borylation enables the one-pot diversification of (Hetero)Aryl and alkyl carboxylic acids. Cell Reports Physical Science, 2022, 3, 100995.	5.6	7
614	Heterogeneous asymmetric \hat{l}^2 -C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. Journal of Catalysis, 2022, 414, 267-276.	6.2	3
615	Photochemical alkynylation of hydrosilanes by iron catalysis. Chemical Communications, 2022, 58, 10679-10682.	4.1	16
616	The role of the intermediate triplet state in iron-catalyzed multi-state C–H activation. Physical Chemistry Chemical Physics, 2022, 24, 20721-20727.	2.8	1
617	Binding of saturated and unsaturated C ₆ -hydrocarbons to the electrophilic anion [B ₁₂ Br ₁₁] ^{â^'} : a systematic mechanistic study. Physical Chemistry Chemical Physics, 2022, 24, 21759-21772.	2.8	5
618	Ligand-ligated Ni–Al bimetallic catalysis for C–H and C–C bond activation. Chemical Communications, 2022, 58, 12260-12273.	4.1	15
619	Transition-metal-catalyzed <i>ortho</i> C–H functionalization of 2-arylquinoxalines. Organic and Biomolecular Chemistry, 2022, 20, 7361-7376.	2.8	6
621	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
624	Sustainable Wacker‶ype Oxidations. Angewandte Chemie, 2022, 134, .	2.0	0

#	Article	IF	CITATIONS
626	Iron/Photosensitizer Hybrid System Enables the Synthesis of Polyaryl-Substituted Azafluoranthenes. Journal of the American Chemical Society, 2022, 144, 18450-18458.	13.7	11
635	Recent advances in non-noble metal-based oxide materials as heterogeneous catalysts for C–H activation. Dalton Transactions, 2022, 51, 17527-17542.	3.3	2
636	Native functional group directed distal C(sp ³) $\hat{a}\in H$ activation of aliphatic systems. Catalysis Science and Technology, 2023, 13, 11-27.	4.1	3
637	Fe–FeO _{<i>x</i>} nanoparticles encapsulated in N-doped carbon material: a facile catalyst for selective synthesis of quinazolines from alcohols in water. Catalysis Science and Technology, 0, , .	4.1	0
638	Organothianthrenium salts: synthesis and utilization. Chemical Science, 2022, 13, 13690-13707.	7.4	48
639	Iron-Catalyzed Borylation Reactions: An Overview. Journal of Organometallic Chemistry, 2022, , 122549.	1.8	3
640	Recent Advances in Copperâ€Catalyzed Functionalization of Unactivated C(sp3)â€H Bonds. Asian Journal of Organic Chemistry, 0, , .	2.7	0
641	Ironâ€Catalyzed Borylation of Propargylic Acetates for the Synthesis of Multisubstituted Allenylboronates. Chemistry - A European Journal, 2023, 29, .	3.3	6
642	Asymmetric Remote <i>meta </i> -Câ€"H Activation Controlled by a Chiral Ligand. ACS Catalysis, 2022, 12, 13435-13445.	11.2	7
643	Atroposelective Synthesis of 2,2′â€Bis(arylamino)â€1,1′â€biaryls by Oxidative Iron(III)―and Phosphoric Acidâ€Catalyzed Câ`'C Coupling of Diarylamines**. Chemistry - A European Journal, 2023, 29, .	3.3	7
644	Recent Advances on Radical-Mediated Cyanoalkylation/Cyanation using AIBN and Analogues as the Radical Sources. Synlett, 2023, 34, 106-123.	1.8	5
645	N, Si-codoped carbon-based iron catalyst for efficient, selective synthesis of pyrroles from nitroarenes: The role of Si doping. Journal of Catalysis, 2022, 416, 39-46.	6.2	5
646	Recent Advances in Carbon-Based Iron Catalysts for Organic Synthesis. Nanomaterials, 2022, 12, 3462.	4.1	4
647	Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coordination Chemistry Reviews, 2023, 475, 214851.	18.8	12
648	Transition metal pincer complexes: A series of potential catalysts in C H activation reactions. Coordination Chemistry Reviews, 2023, 475, 214915.	18.8	8
649	Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules. CheM, 2022, 8, 3175-3201.	11.7	18
650	Advances in Carbonâ€Carbon Bond Activation by Using Photocatalysts: A Mini Review. ChemistrySelect, 2022, 7, .	1.5	0
651	Iron-Catalyzed C–H Activation for Heterocoupling and Copolymerization of Thiophenes with Enamines. Journal of the American Chemical Society, 2022, 144, 21692-21701.	13.7	10

#	Article	IF	CITATIONS
652	lodonium ylides: an emerging and alternative carbene precursor for C–H functionalizations. Organic and Biomolecular Chemistry, 2022, 21, 24-38.	2.8	11
653	Iron-catalysed reductive coupling for the synthesis of polyfluorinated compounds. Chemical Communications, 2022, 58, 13915-13918.	4.1	6
654	The recent advances in cobalt-catalyzed C(sp ³)–H functionalization reactions. Organic and Biomolecular Chemistry, 2023, 21, 673-699.	2.8	1
655	Formation of distinct iron hydrides <i>via</i> mechanistic divergence in directed C–H Bond activation of aryl ketones, esters and amides. Chemical Communications, 0, , .	4.1	0
656	μ-Oxo-bis[(octacosafluoro- <i>meso</i> -tetraphenylporphyrinato)iron(<scp>iii</scp>)] – synthesis, crystal structure, and catalytic activity in oxidation reactions. Chemical Science, 2023, 14, 257-265.	7.4	8
657	Manganese-catalyzed hydroarylation of multiple bonds. Organic and Biomolecular Chemistry, 2023, 21, 441-464.	2.8	4
660	Improving the Configurational Stability of Chiral-at-Iron Catalysts Containing Two <i>N</i> -(2-Pyridyl)-Substituted N-Heterocyclic Carbene Ligands. Organometallics, 2022, 41, 3852-3860.	2.3	2
661	1,3â€Diynes: A Versatile Precursor in Transitionâ€Metal Catalyzed (Mediated) Câ^'H Functionalizations. Chemical Record, 2023, 23, .	5.8	4
662	Synergism of Fe/Ti Enabled Regioselective Arene Difunctionalization. Journal of the American Chemical Society, 2023, 145, 1542-1547.	13.7	6
663	Triazole-enabled, iron-catalysed linear/branched selective C–H alkylations with alkenes. Organic and Biomolecular Chemistry, 2023, 21, 1264-1269.	2.8	2
664	Iron-Catalyzed Cross-Coupling of \hat{l} ±-Allenyl Esters with Grignard Reagents for the Synthesis of 1,3-Dienes. Organic Letters, 2023, 25, 120-124.	4.6	3
665	Organocalcium Hydride-Catalyzed Intramolecular C(sp ³)–H Annulation of Functionalized 2,6-Lutidines. Journal of Organic Chemistry, 0, , .	3.2	0
666	Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catalysis, 2023, 13, 1103-1124.	11.2	14
667	Iron-Catalyzed Regio- and Stereoselective C–H Alkenylation of Pivalophenone Derivatives with Unsymmetric Internal Alkynes. Journal of Organic Chemistry, 2023, 88, 1890-1897.	3.2	5
668	Chiral Iron Porphyrins Catalyze Enantioselective Intramolecular C(sp ³)â^'H Bond Amination Upon Visibleâ€Light Irradiation. Angewandte Chemie, 2023, 135, .	2.0	0
669	Chiral Iron Porphyrins Catalyze Enantioselective Intramolecular C(sp ³)â°'H Bond Amination Upon Visible‣ight Irradiation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
670	Breaking bonds and breaking rules: inert-bond activation by [(ⁱ Pr ₃ P)Ni] ₅ H ₄ and catalytic stereospecific norbornene dimerization. Chemical Communications, 0, , .	4.1	1
671	Cp*Co(III)-Catalyzed Regioselective [4 + 2]-Annulation of <i>N</i> -Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. Journal of Organic Chemistry, 2023, 88, 1578-1589.	3.2	10

#	Article	IF	Citations
672	Iron porphyrin-catalysed C(sp ³)â€"H amination with alkyl azides for the synthesis of complex nitrogen-containing compounds. Organic Chemistry Frontiers, 2023, 10, 1368-1374.	4.5	4
673	Functionalized nickel(<scp>ii</scp>)–iron(<scp>ii</scp>) dithiolates as biomimetic models of [NiFe]-H ₂ ases. Dalton Transactions, 2023, 52, 3755-3768.	3.3	0
674	Rh(III)â€Catalyzed Oxidative Annulation of 2â€Arylquinoxalines with Cyclic 2â€Diazoâ€1,3â€diketones by Câ^'H Bond Activation. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
675	Recent advances in carbosilylation of alkenes and alkynes. Organic and Biomolecular Chemistry, 2023, 21, 2272-2294.	2.8	7
676	Cp*Co(<scp>iii</scp>)-catalyzed C–H functionalization/spiroannulation for the synthesis of spiroindenes from 1,3-indandione and alkenes. Organic Chemistry Frontiers, 2023, 10, 1715-1720.	4.5	1
677	Biocatalytic stereoselective synthesis of methyl mandelates by engineering a cytochrome P450 hydroxylase. Green Synthesis and Catalysis, 2023, , .	6.8	3
678	Transition metal-catalyzed C–H/C–C activation and coupling with 1,3-diyne. Organic and Biomolecular Chemistry, 2023, 21, 2842-2869.	2.8	6
679	Ironâ€Catalyzed Deoxynitrogenation of Carboxylic Acids with Cyanamides to Access Nitriles. Chemistry - A European Journal, 2023, 29, .	3.3	4
680	Predicting Kinetics and Dynamics of Spin-Dependent Processes. Accounts of Chemical Research, 2023, 56, 856-866.	15.6	2
681	Iron/Photosensitizer-Catalyzed Directed C–H Activation Triggered by the Formation of an Iron Metallacycle. ACS Catalysis, 2023, 13, 4552-4559.	11.2	5
682	Manganese-Catalyzed ortho-Hydroalkylation of Aryl Substituted N-Heteroaromatic Compounds with Maleimides. Synthesis, $0, , .$	2.3	0
683	DFT Study on the Mechanisms of Iron-Catalyzed Ortho C–H Homoallylation of Aromatic Ketones with Methylenecyclopropanes. Organometallics, 2023, 42, 632-640.	2.3	1
684	Fe-Catalyzed Difunctionalization of Aryl Titanates Enabled by Fe/Ti Synergism. Organic Letters, 2023, 25, 2745-2749.	4.6	2
685	Redox-neutral C–H annulation strategies for the synthesis of heterocycles ⟨i>via⟨ i> high-valent Cp*Co(⟨scp⟩iii⟨ scp⟩) catalysis. Organic and Biomolecular Chemistry, 2023, 21, 3918-3941.	2.8	3
686	Trading Symmetry for Stereoinduction in Tetradentate, nonâ€ <i>C</i> ₂ â€Symmetric Fe(II)â€Complexes for Asymmetric Catalysis. Chemistry - A European Journal, 2023, 29, .	3.3	0
687	Opportunities and challenges in photochemical activation of π-bond system using common transition-metal-catalyzes as a seminal photosensitizer. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 55, 100589.	11.6	1
688	Synergistic Photoredox and Iron(II) Catalyzed Carbophosphorothiolation of Vinyl Arenes. Advanced Synthesis and Catalysis, 2023, 365, 2271-2278.	4.3	3
689	Fast and Selective β-C–H Borylation of N-Heterocycles with a Supramolecular Iridium Catalyst: Circumventing Deactivation Pathways and Mechanistic Insights. ACS Catalysis, 2023, 13, 7715-7729.	11.2	6

#	Article	IF	CITATIONS
690	Design of Stereogenicâ€atâ€iron Catalysts with a (3+2+1)â€Ligand Sphere. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	1
691	Metallaphotoredox catalysis for sp ³ C–H functionalizations through hydrogen atom transfer (HAT). Chemical Society Reviews, 2023, 52, 4099-4120.	38.1	16
692	Regioselective Iridiumâ€Catalyzed C8â€H Borylation of 4â€Quinolones via Transient <i>O</i> à€Borylated Quinolines. Chemistry - A European Journal, 2023, 29, .	3.3	1
693	Sustainable Synthesis of Nâ^'N Bond Bearing Organic Frameworks by Advanced Heterogeneous Metal Catalysis. European Journal of Organic Chemistry, 2023, 26, .	2.4	2
694	Amidyl Radical Directedγ (sp3)–H Functionalization with Silyl Enol Ethers via Photoredox Catalysis. European Journal of Organic Chemistry, 0, , .	2.4	0
695	C(sp ³)â \in C(sp ²) Reductive Elimination versus \hat{l}^2 -Hydride Elimination from Cobalt(III) Intermediates in Catalytic Câ \in H Functionalization. ACS Catalysis, 0, , 8700-8707.	11.2	0
696	2,2′â€Bis(arylamino)â€1,1′â€biaryls as Building Blocks for the Synthesis of Dibenzo[<i>d</i> , <i>f</i>][1,3]diazepines, Dibenzo[<i>d</i> , <i>f</i>][1,3]diazepinones, and Dibenzo[<i>c</i> , <i>e</i>][1,2,7]thiadiazepine 6â€Oxides. European Journal of Organic Chemistry, 2023, 26,	2.4	1
697	Insights into the effect of contact ion-pairs on C H bond activation for the synthesis of Ru(III)-NHC complexes: A combined experimental and computational study. Journal of Organometallic Chemistry, 2023, 998, 122802.	1.8	0
698	One-Pot Construction of \hat{l}^2 -Selective Quinolines with \hat{l}^3 -Quaternary Carbon from Vinylquinolines with Active Ylides via Pd/Sc/Br \tilde{A}_i nsted Acid Co-Catalysis. ACS Catalysis, 2023, 13, 6509-6517.	11.2	2
699	ortho-Heterobimetallic Arylene Complex: A New Platform for Regioselective Difunctionalization. Synlett, 0, , .	1.8	0
700	Iron-catalyzed intramolecular C–H amination for the synthesis of N–H carbazoles and indoles. Green Chemistry, 2023, 25, 4463-4468.	9.0	4
701	Development and mechanistic investigation of the dehydrogenation of alcohols with an iron(<scp>iii</scp>) salen catalyst. Organic and Biomolecular Chemistry, 2023, 21, 4794-4800.	2.8	1
702	Recent advances in iron-catalysed coupling reactions for the construction of the $C(sp < sup > 2 < /sup >)$ â \in " $C(sp < sup > 2 < /sup >)$ bond. Organic and Biomolecular Chemistry, 0, , .	2.8	0
703	Iron-Catalyzed Regioselective Thienyl C–H/C–H Homocoupling. Springer Theses, 2023, , 11-47.	0.1	0
705	<scp>Ironâ€Catalyzed</scp> Amide Bond Formation from Carboxylic Acids and Isocyanates ^{â€} . Chinese Journal of Chemistry, 2023, 41, 3268-3274.	4.9	0
706	Diastereoselective C–H Functionalizations. , 2023, , .		0
707	Transition-metal catalyzed C–H activation as a means of synthesizing complex natural products. Chemical Society Reviews, 2023, 52, 7461-7503.	38.1	3
708	Cooperative strategies for controlling selectivity in oxidative cleavage of C C bonds: Insights from nanoscale Ni-NiO-ZnO catalysis. Applied Catalysis A: General, 2023, 666, 119417.	4.3	0

#	Article	IF	CITATIONS
709	Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp ³)â€"H to construct Câ€"C bonds. Beilstein Journal of Organic Chemistry, 0, 19, 1259-1288.	2.2	0
710	NH ₄ OAc/DMSO-Promoted Benzylation of Pyrrolo[2,1- <i>a</i>) isoquinolines. Journal of Organic Chemistry, 2023, 88, 13598-13609.	3.2	1
711	Desulfurization and N ₂ Binding at an Iron Complex Derived from the C–S Activation of Benzothiophene. Organometallics, 2023, 42, 2019-2027.	2.3	0
712	2â€Hydroxypyridineâ€based Ligands as Promoter in Ruthenium(II) Catalyzed Câ€H Bond Activation/Arylation Reactions. Chemistry - an Asian Journal, 2023, 18, .	3.3	0
713	Catalytic cross-electrophile coupling of aryl chlorides with unactivated alkyl chlorides: The synergy of iron and Li. CheM, 2023, 9, 3623-3636.	11.7	4
714	Recent Advances in Nonprecious Metal Catalysis. Organic Process Research and Development, 0, , .	2.7	O
715	Iron-Catalyzed <i>para</i> -Selective C–H Allylation of Aniline Derivatives. Organic Letters, 0, , .	4.6	0
716	Molybdenum-Catalyzed Directed Activation of Aryl Chlorides and Fluorides. Synlett, 0, , .	1.8	O
717	Activation of Stable and Recyclable Phenylpropiolate Glycoside (PPG) Donors via Iron Catalysis. Synthesis, 0, , .	2.3	0
718	Iron-catalyzed regioselective C–H alkylation of indoles: an additive-free approach in renewable solvent. Green Chemistry, 2023, 25, 9733-9743.	9.0	1
719	Oneâ€pot Manganese (I)â€Catalyzed Oxidantâ€Controlled Divergent Functionalization of 2â€Arylindazoles. Chemistry - A European Journal, 0, , .	3.3	0
720	Iron-Catalyzed Synthesis of Peroxylpyrrolo[2,1- <i>a</i>]isoquinolines through Oxidative Dearomatization. Journal of Organic Chemistry, 2023, 88, 15326-15334.	3.2	O
721	Rhodium(III)-Catalyzed C–H Activation in Indole: A Comprehensive Report (2017–2022). Synthesis, 0, , .	2.3	0
722	å«ç¾§åŸªå…±ä»·æœ‰æœºéª¨æž¶çš"啿^åŠå…¶åœ¨é'Œå,¬åŒ−é,»ä½è‹"基 åŒ−å应ä¸çš"应用. Science China	M aterials,	, 2 023, 66,
723	Recent Progress in Transition-Metal-Catalyzed Reductive Cross-Coupling Reactions Using Diboron Reagents as Reductants. ACS Catalysis, 2023, 13, 15469-15480.	11.2	2
724	Modern Organometallic Câ^'H Functionalizations with Earthâ€Abundant Iron Catalysts: An Update. Chemistry - an Asian Journal, 0, , .	3.3	O
725	<scp>Iron atalyzed</scp> Reductive C(aryl)—Si <scp>Cross oupling</scp> of Diaryl Ethers with Chlorosilanes. Chinese Journal of Chemistry, 2024, 42, 578-584.	4.9	0
726	Facile synthesis of quinoxaline catalyzed by iron-based carbon material in water. Tetrahedron, 2024, 150, 133752.	1.9	O

#	ARTICLE	IF	CITATIONS
727	A magnetic Fe@PANI catalyst for the selective oxidation of sulphide under mild and green conditions. Materials Advances, 0 , , .	5.4	0
728	Recent Advancements in Strategies for the Synthesis of Imidazoles, Thiazoles, Oxazoles, and Benzimidazoles. ChemistrySelect, 2023, 8, .	1.5	0
729	Twofold Alkenylation of Thiophenes with <i>Nâ€</i> Vinylcarbazole via Ironâ€Catalyzed Regioselective Câ~H/Câ~H Coupling. Helvetica Chimica Acta, 2024, 107, .	1.6	0
730	Chelation-Assisted Iron-Catalyzed C–H Activations: Scope and Mechanism. Accounts of Chemical Research, 2024, 57, 10-22.	15.6	1
731	Organoâ€Photoredox Catalyzed C(sp3)â€H Bond Arylation of Aliphatic Amides. ChemSusChem, 0, , .	6.8	0
732	The Recent Advances in Ironâ€Catalyzed C(sp ³)â^'H Functionalization. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
733	Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins. Science China Chemistry, 2024, 67, 882-889.	8.2	0
734	Iron-Catalyzed 5-Endo-Dig Synthetic Approach to Indenes and Its Bidirectional Extension to Narrow Bandgap i€-Systems. ACS Catalysis, 2024, 14, 1375-1383.	11.2	0
735	Efficient iron-catalyzed direct acylation of amines with carboxylic acids and esters under oxygenated conditions. Catalysis Science and Technology, 2024, 14, 478-488.	4.1	0
736	Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar–H/Ar–H Coupling. Journal of the American Chemical Society, 2024, 146, 1224-1243.	13.7	0
737	Picolinamide-assisted <i>ortho</i> -Câ€"H functionalization of pyrenylglycine derivatives using aryl iodides. Organic and Biomolecular Chemistry, 2024, 22, 1279-1298.	2.8	0
738	Iron-Catalyzed Regioselective Reductive Fluoroalkylalkenylation of Unactivated Alkenes. ACS Catalysis, 2024, 14, 1575-1583.	11.2	0
739	Divergent Fe-Mediated C–H Activation Paths Driven by Alkali Cations. Jacs Au, 2024, 4, 512-524.	7.9	0
740	Mechanochemical Câ^'H Arylation and Alkylation of Indoles Using 3 d Transition Metal and Zeroâ€Valent Magnesium. Chemistry - A European Journal, 2024, 30, .	3.3	0
741	Iron-Based Catalysts with Oxygen Vacancies Obtained by Facile Pyrolysis for Selective Hydrogenation of Nitrobenzene. ACS Applied Materials & Samp; Interfaces, 2024, 16, 8603-8615.	8.0	1
742	Iron-catalyzed cascade C–C/C–O bond formation of 2,4-dienals with donor–acceptor cyclopropanes: access to functionalized hexahydrocyclopentapyrans. Chemical Communications, 2024, 60, 2788-2791.	4.1	0
743	Large-scale comparison of Fe and Ru polyolefin Câ€"H activation catalysts. Journal of Catalysis, 2024, 431, 115361.	6.2	0
744	Direct esterification of allylic C(sp ³)–H via iron nanoparticle–loaded kaolin-catalyzed cross dehydrogenative coupling. Green Chemistry Letters and Reviews, 2024, 17, .	4.7	0

#	Article	IF	CITATIONS
745	Covalent Organic Frameworks as a Versatile Platform for Ironâ€Catalyzed sp ³ Câ^'H Activation and Crossâ€Coupling via Decarboxylative Oxidation. European Journal of Inorganic Chemistry, 0, , .	2.0	0
746	Room temperature photo-promoted iron-catalysed arene C–H alkenylation without Grignard reagents. Nature Catalysis, 2024, 7, 273-284.	34.4	0
747	Visible Lightâ€Induced Synthesis of Fluorenes from <i>α</i> å€Biaryldiazoacetates. ChemistrySelect, 2024, 9, .	1.5	0
748	Expanding the Scope of Alkynes in C–H Activation: Weak Chelation-Assisted Cobalt-Catalyzed Synthesis of Indole C(4)-Acrylophenone <i>via</i> C–O Bond Cleavage of Propargylic Ethers. Organic Letters, 2024, 26, 2091-2096.	4.6	0
749	Light-Promoted Efficient Generation of Fe(I) to Initiate Amination. ACS Catalysis, 2024, 14, 4968-4974.	11.2	0
750	Silylarylation of Alkenes <i>via meta</i> -Selective C–H Activation of Arenes under Ruthenium/Iron Cooperative Catalysis: Mechanistic Insights from Combined Experimental and Computational Studies. ACS Catalysis, 2024, 14, 4510-4522.	11.2	O