Bioavailability of nutrients and harmful elements in ash

Biomass and Bioenergy 100, 92-97 DOI: 10.1016/j.biombioe.2017.03.019

Citation Report

#	Article	IF	CITATIONS
1	Phosphorus fertilising potential of fly ash and effects on soil microbiota and crop. Resources, Conservation and Recycling, 2018, 134, 262-270.	5.3	21
2	Experiments and modelling of potassium release behavior from tablet biomass ash for better recycling of ash as eco-friendly fertilizer. Journal of Cleaner Production, 2018, 170, 379-387.	4.6	24
3	Fertilizer properties of ash from corn-stover pellets using the sequential extraction and matrix expression. Waste Management, 2018, 82, 111-117.	3.7	7
4	The Use of Ca- and Mg-Rich Fly Ash as a Chemical Precipitant in the Simultaneous Removal of Nitrogen and Phosphorus—Recycling and Reuse. Recycling, 2019, 4, 14.	2.3	7
5	New Nitrogen-Containing Recycled Fertilizers: Bioavailability of Nutrients and Harmful Elements. Recycling, 2019, 4, 17.	2.3	2
6	Preliminary screening of wood biomass ashes for partial resources replacements in cementitious materials. Journal of Cleaner Production, 2019, 229, 1045-1064.	4.6	55
7	Growth and metal accumulation of young forest trees and understorey plants on contaminated topsoil: influence of subsoil and time. Plant and Soil, 2019, 437, 375-395.	1.8	10
8	Synthesis of biomass-derived bottom waste ash based rigid biopolyurethane composite foams: Rheological behaviour, structure and performance characteristics. Composites Part A: Applied Science and Manufacturing, 2019, 117, 193-201.	3.8	26
9	Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Applied Soil Ecology, 2020, 147, 103360.	2.1	12
10	Improved anodic stripping voltammetric detection of zinc on a disposable screen-printed gold electrode. Ionics, 2020, 26, 2611-2621.	1.2	13
11	The effect of adhesive type and speed pan granulator on the properties of urea slow release fertilizer. IOP Conference Series: Materials Science and Engineering, 2020, 821, 012007.	0.3	0
12	Isolation and Characterization of Effective Microorganism from Oil Palm Rhizhopheric Soil and Evaluation of Their Potential as Biofertiliser. IOP Conference Series: Earth and Environmental Science, 2020, 515, 012040.	0.2	1
13	Granulated biofuel ash as a sustainable source of plant nutrients. Waste Management and Research, 2020, 39, 0734242X2094895.	2.2	11
14	Leaching Characteristics of Wood Biomass Fly Ash Cement Composites. Applied Sciences (Switzerland), 2020, 10, 8704.	1.3	11
15	Fertilizing Potential of Urine in Agriculture. Journal of the Institution of Engineers (India): Series E, 2020, , 1.	0.5	0
16	Correlation between physical and chemical properties of wood biomass ash and cement composites performances. Construction and Building Materials, 2020, 256, 119450.	3.2	44
17	Granulation processing variables on the physical properties of granule slow release urea fertilizer. AIP Conference Proceedings, 2020, , .	0.3	2
18	Environmental Application of Ash from Incinerated Biomass. Agronomy, 2020, 10, 482.	1.3	19

#	Article	IF	Citations
19	Use of fertilizers derived from urine as a plant growth regulator. Materials Today: Proceedings, 2020, 32, 504-509.	0.9	3
20	Utilization of Fly Ashes from Fluidized Bed Combustion: A Review. Sustainability, 2020, 12, 2988.	1.6	58
22	Biofuel ash granules as a source of soil and plant nutrients. Zemdirbyste, 2021, 108, 19-26.	0.3	4
23	Potential of Using Wood Biomass Ash in Low-Strength Composites. Materials, 2021, 14, 1250.	1.3	6
24	Chemical and mineralogical characterization and potential use of ash from Amazonian biomasses as an agricultural fertilizer and for soil amendment. Journal of Cleaner Production, 2021, 295, 126472.	4.6	17
25	Effect of biomass fly ashes from fast pyrolysis bio-oil production on soil properties and plant yield. Journal of Environmental Management, 2021, 298, 113479.	3.8	6
26	BIOMASS ASH UTILIZATION OPPORTUNITIES IN AGRICULTURE. , 0, , .		5
27	Pilot Scale Production of Precast Concrete Elements with Wood Biomass Ash. Materials, 2021, 14, 6578.	1.3	10
28	Utilization and recycling of wood ashes from industrial heat and power plants regarding fertilizer use. Waste Management, 2022, 141, 92-103.	3.7	6
29	Metal Accumulation and Biomass Production in Young Afforestations Established on Soil Contaminated by Heavy Metals. Plants, 2022, 11, 523.	1.6	5
30	Utilization of Wood Biomass Ash in Concrete Industry. , 0, , .		0
31	Development and Characterization of a Novel Soil Amendment Based on Biomass Fly Ash Encapsulated in Calcium Alginate Microspheres. International Journal of Molecular Sciences, 2022, 23, 9984.	1.8	4
32	Methods to Recommend Corrective Measures for Agricultural Soils: A Systematic Literature Study. Communications in Soil Science and Plant Analysis, 2023, 54, 1102-1133.	0.6	1
33	Usage of phosphoric acid plant's circulate pond waters in struvite precipitation—Effect of conditions. Water and Environment Journal, 0, , .	1.0	0
34	Carbonation of fly ash. , 2023, , 267-325.		0
35	Biomass ash-based soil improvers: Impact of formulation and stabilization conditions on materials' properties. Journal of Cleaner Production, 2023, 391, 136049.	4.6	3
36	The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy. Applied Sciences (Switzerland), 2023, 13, 3195.	1.3	5
37	Fertiliser Properties of Wastewater Sludge and Sludge Ash - A Case Study from the Finnish Forest Industry. Ecological Chemistry and Engineering S, 2023, 30, 63-78.	0.3	0

CITATION REPORT

#	Article	IF	CITATIONS
39	Restoring Historical Buildings Amid Climate Crisis: Hydraulic, Waste-Based Lime. RILEM Bookseries, 2023, , 359-373.	0.2	0