Application of an improved spectral decomposition met scaling in Southern California

Journal of Geophysical Research: Solid Earth 122, 2890-2910 DOI: 10.1002/2017jb013971

Citation Report

CITATION REPORT	

#	Article	IF	CITATIONS
1	Low stress drops observed for aftershocks of the 2011 <i>M</i> _{<i>w</i>} 5.7 Prague, Oklahoma, earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 3813-3834.	1.4	56
2	Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 8021-8034.	1.4	44
3	The hidden simplicity of subduction megathrust earthquakes. Science, 2017, 357, 1277-1281.	6.0	86
4	Strong Correlation between Stress Drop and Peak Ground Acceleration for Recent MÂ1–4 Earthquakes in the San Francisco Bay Area. Bulletin of the Seismological Society of America, 2018, 108, 929-945.	1.1	70
5	Decomposing Leftovers: Event, Path, and Site Residuals for a Smallâ€Magnitude Anza Region GMPE. Bulletin of the Seismological Society of America, 2018, 108, 2478-2492.	1.1	31
6	Absolute Stress Fields in the Source Region of the 1992 Landers Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 8874-8890.	1.4	11
7	Diverse Volumetric Faulting Patterns in the San Jacinto Fault Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 5068-5081.	1.4	19
8	Frequencyâ€Dependent Attenuation of <i>P</i> and <i>S</i> Waves in Southern California. Journal of Geophysical Research: Solid Earth, 2018, 123, 5814-5830.	1.4	10
9	The Relation Between Ground Motion, Earthquake Source Parameters, and Attenuation: Implications for Source Parameter Inversion and Ground Motion Prediction Equations. Journal of Geophysical Research: Solid Earth, 2018, 123, 5886-5901.	1.4	21
10	Seismic Velocity Change Patterns Along the San Jacinto Fault Zone Following the 2010 <i>M</i> 7.2 El Mayor ucapah and <i>M</i> 5.4 Collins Valley Earthquakes. Journal of Geophysical Research: Solid Earth, 2019, 124, 7171-7192.	1.4	19
11	Peak Ground Displacement Saturates Exactly When Expected: Implications for Earthquake Early Warning. Journal of Geophysical Research: Solid Earth, 2019, 124, 4642-4653.	1.4	55
12	Earthquake Stress Drop and Arias Intensity. Journal of Geophysical Research: Solid Earth, 2019, 124, 3838-3852.	1.4	25
13	Comparing EGF Methods for Estimating Corner Frequency and Stress Drop From <i>P</i> Wave Spectra. Journal of Geophysical Research: Solid Earth, 2019, 124, 3966-3986.	1.4	69
14	Dynamic Rupture and Seismic Radiation in a Damage–Breakage Rheology Model. Pure and Applied Geophysics, 2019, 176, 1003-1020.	0.8	18
15	An Improved Method to Determine Codaâ€ <i>Q</i> , Earthquake Magnitude, and Site Amplification: Theory and Application to Southern California. Journal of Geophysical Research: Solid Earth, 2019, 124, 578-598.	1.4	14
16	Fast MW estimation of microearthquakes recorded around the underground gas storage in the Montello-Collalto area (Southeastern Alps, Italy). Journal of Seismology, 2020, 24, 1029-1043.	0.6	7
17	Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth and Planetary Science Letters, 2020, 551, 116582.	1.8	38
18	Reliability of Source Parameters for Small Events in Central Italy: Insights from Spectral Decomposition Analysis Applied to Both Synthetic and Real Data. Bulletin of the Seismological Society of America, 2020, 110, 3139-3157.	1.1	28

#	Article	IF	CITATIONS
19	Considering fault interaction in estimates of absolute stress along faults in the San Gorgonio Pass region, southern California. , 2020, 16, 751-764.		2
20	Earthquake Source Characteristics and S-Wave Propagation Attenuation in the Junction of the Northwest Tarim Basin and Kepingtage Fold-and-Thrust Zone. Frontiers in Earth Science, 2020, 8, .	0.8	2
21	Estimation of radiated energy using the KiK-net downhole records—old method for modern data. Geophysical Journal International, 2020, 221, 1029-1042.	1.0	17
22	Improved approach for stress drop estimation and its application to an induced earthquake sequence in Oklahoma. Geophysical Journal International, 2020, 223, 233-253.	1.0	23
23	Directivity Modes of Earthquake Populations with Unsupervised Learning. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018299.	1.4	16
24	Earthquake source properties from analysis of dynamic ruptures and far-field seismic waves in a damage-breakage model. Geophysical Journal International, 2021, 224, 1793-1810.	1.0	6
25	Calibrating Spectral Decomposition of Local Earthquakes Using Borehole Seismic Records—Results for the 1992 Big Bear Aftershocks in Southern California. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020561.	1.4	6
26	Cross Validation of Stress Drop Estimates and Interpretations for the 2011 Prague, OK, Earthquake Sequence Using Multiple Methods. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020888.	1.4	23
27	Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200131.	1.6	56
28	Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Letters, 2021, 92, 2477-2489.	0.8	10
29	Stress Drop Variations in the Region of the 2014 <i>M</i> _{<i>W</i>} 8.1 Iquique Earthquake, Northern Chile. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020112.	1.4	5
30	Stress Drop Derived from Spectral Analysis Considering the Hypocentral Depth in the Attenuation Model: Application to the Ridgecrest Region, California. Bulletin of the Seismological Society of America, 0, , .	1.1	11
31	Nucleation and Evolution of Sliding in Continental Fault Zones under the Action of Natural and Man-Made Factors: A State-of-the-Art Review. Izvestiya, Physics of the Solid Earth, 2021, 57, 439-473.	0.2	4
32	The Earth's Surface Controls the Depthâ€Dependent Seismic Radiation of Megathrust Earthquakes. AGU Advances, 2021, 2, e2021AV000413.	2.3	10
33	The relations between the corner frequency, seismic moment and source dynamic parameters derived from the spontaneous rupture of a circular fault. Geophysical Journal International, 2021, 228, 134-146.	1.0	1
34	Does Earthquake Stress Drop Increase With Depth in the Crust?. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022314.	1.4	25
35	Stress-Drop and Source Scaling of the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1859-1871.	1.1	29
36	Fault Interactions Enhance Highâ€Frequency Earthquake Radiation. Geophysical Research Letters, 2021, 48, e2021GL095271.	1.5	15

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Local and Moment Magnitude Analysis in the Ridgecrest Region, California: Impact on Interevent Ground-Motion Variability. Bulletin of the Seismological Society of America, 2021, 111, 339-355.	1.1	9
38	Stress drops of hydraulic fracturing induced microseismicity in the Horn River basin: challenges at high frequencies recorded by borehole geophones. Geophysical Journal International, 2021, 228, 2018-2037.	1.0	7
39	Resolving Differences in the Rupture Properties of M5 Earthquakes in California Using Bayesian Source Spectral Analysis. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
40	Earthquake hazard and risk analysis for natural and induced seismicity: towards objective assessments in the face of uncertainty. Bulletin of Earthquake Engineering, 2022, 20, 2825-3069.	2.3	23
41	Spatiotemporal Variability of Earthquake Source Parameters at Parkfield, California, and Their Relationship With the 2004 M6 Earthquake. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2
42	Improved Stress Drop Estimates for M 1.5 to 4 Earthquakes in Southern California From 1996 to 2019. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
43	Source Characteristics and Path Attenuation for the Yangbi, China Seismic Sequence in 2021. Pure and Applied Geophysics, 2022, 179, 2721-2733.	0.8	3
44	Source scaling comparison and validation in Central Italy: data intensive direct <i>S</i> waves versus the sparse data coda envelope methodology. Geophysical Journal International, 2022, 231, 1573-1590.	1.0	6
45	Stress Drops of Intermediateâ€Depth and Deep Earthquakes in the Tonga Slab. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	3
46	Scaling theory for the statistics of slip at frictional interfaces. Physical Review E, 2022, 106, .	0.8	2
47	Magnitude estimation and ground motion prediction to harness fiber optic distributed acoustic sensing for earthquake early warning. Scientific Reports, 2023, 13, .	1.6	14
48	A Source Model for Earthquakes near the Nucleation Dimension. Bulletin of the Seismological Society of America, 2023, 113, 909-923.	1.1	1
49	A Time-Domain Approach for Accurate Spectral Source Estimation with Application to Ridgecrest, California, Earthquakes. Bulletin of the Seismological Society of America, 2023, 113, 1091-1101.	1.1	1
50	The Rocks That Did Not Fall: A Multidisciplinary Analysis of Nearâ€Source Ground Motions From an Active Normal Fault. AGU Advances, 2023, 4, .	2.3	1
51	Induced Earthquake Source Parameters, Attenuation, and Site Effects From Waveform Envelopes in the Fennoscandian Shield. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	4
52	Source-Parameter Estimation after Attenuation Correction through the Use of <i>Q</i> Tomography. Bulletin of the Seismological Society of America, 0, , .	1.1	0