Hybridization of MOFs and polymers

Chemical Society Reviews 46, 3108-3133

DOI: 10.1039/c7cs00041c

Citation Report

#	Article	IF	CITATIONS
1	Opening of an Accessible Microporosity in an Otherwise Nonporous Metal–Organic Framework by Polymeric Guests. Journal of the American Chemical Society, 2017, 139, 7886-7892.	6.6	65
2	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	6.6	290
3	Free radical and RAFT polymerization of vinyl esters in metal–organic-frameworks. Polymer Chemistry, 2017, 8, 6204-6208.	1.9	48
4	Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid- \hat{l}^2 . Journal of Materials Chemistry B, 2017, 5, 8330-8336.	2.9	69
5	Synergic Effect between Nucleophilic Monomers and Cu(II) Metal–Organic Framework for Visible-Light-Triggered Controlled Photopolymerization. Chemistry of Materials, 2017, 29, 9445-9455.	3.2	50
6	The MOF ⁺ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angewandte Chemie - International Edition, 2017, 56, 16376-16379.	7.2	102
7	Zinc(II) and Copper(II) Hybrid Frameworks via Metal-Ion Metathesis with Enhanced Gas Uptake and Photoluminescence Properties. Inorganic Chemistry, 2017, 56, 14157-14163.	1.9	33
8	Smart pH-Responsive Polymer-Tethered and Pd NP-Loaded NMOF as the Pickering Interfacial Catalyst for One-Pot Cascade Biphasic Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36438-36446.	4.0	76
9	Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35075-35085.	4.0	111
10	Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews, 2017, 46, 6927-6945.	18.7	347
11	Ionic liquid/metal–organic framework hybrid generated by ion-exchange reaction: synthesis and unique catalytic activity. New Journal of Chemistry, 2017, 41, 14409-14413.	1.4	11
12	Synthesis of Coordination Polymer Nanoparticles using Selfâ€Assembled Block Copolymers as Template. Chemistry - A European Journal, 2017, 23, 18093-18100.	1.7	32
13	Poly(ethylene glycol) (PEG) in a Polyethylene (PE) Framework: A Simple Model for Simulation Studies of a Soluble Polymer in an Open Framework. Langmuir, 2017, 33, 11746-11753.	1.6	6
14	In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 18610-18617.	5.2	162
15	Porous crystalline materials: closing remarks. Faraday Discussions, 2017, 201, 395-404.	1.6	11
16	The MOF ⁺ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angewandte Chemie, 2017, 129, 16594-16597.	1.6	12
17	Creation and bioapplications of porous organic polymer materials. Journal of Materials Chemistry B, 2017, 5, 9278-9290.	2.9	82
18	Zirconium-Based Nanoscale Metal–Organic Framework/Poly(ε-caprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. ACS Applied Materials & Interfaces, 2017, 9, 41512-41520.	4.0	77

#	ARTICLE	IF	Citations
19	Simultaneous crystallization of an <i>in situ</i> formed conjugated polymer and inorganic matrix for structure solving. Chemical Communications, 2017, 53, 12365-12368.	2.2	32
20	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	4.1	174
21	Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules, 2017, 22, 2103.	1.7	117
22	Mg _{1â^'x} Co _x Li ₂ (3,5-pdcH) ₂ (DMF) ₂ (ci>x) Tj	ETQq1	1 0.784314 rg 3
23	A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale, 2018, 10, 6629-6638.	2.8	73
24	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	18.7	1,438
25	In Situ Oneâ€Pot Synthesis of MOF–Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy. Advanced Science, 2018, 5, 1800287.	5.6	115
26	Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. Journal of Membrane Science, 2018, 556, 146-153.	4.1	53
27	Toward Ultimate Control of Radical Polymerization: Functionalized Metal–Organic Frameworks as a Robust Environment for Metal-Catalyzed Polymerizations. Chemistry of Materials, 2018, 30, 2983-2994.	3.2	45
28	Tuning the CO ₂ and C1/C2 Hydrocarbon Capture and Separation Performance for a Zn-F-Triazolate Framework through Functional Amine Groups. Crystal Growth and Design, 2018, 18, 3229-3235.	1.4	31
29	Antifouling membrane surface construction: Chemistry plays a critical role. Journal of Membrane Science, 2018, 551, 145-171.	4.1	309
30	The point-of-care colorimetric detection of the biomarker of phenylamine in the human urine based on Tb 3+ functionalized metal-organic framework. Analytica Chimica Acta, 2018, 1012, 82-89.	2.6	44
31	Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. Journal of Membrane Science, 2018, 551, 283-293.	4.1	86
32	Morphogenesis of Metal–Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers. Journal of the American Chemical Society, 2018, 140, 2947-2956.	6.6	69
33	Novel Cu(<scp>ii</scp>) complexes with <i>NNO</i> -Schiff base-like ligands – structures and magnetic properties. CrystEngComm, 2018, 20, 818-828.	1.3	16
34	Metal–Organic Frameworks-Derived Hierarchical Co ₃ O ₄ Structures as Efficient Sensing Materials for Acetone Detection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9765-9773.	4.0	215
35	MOFwich: Sandwiched Metal–Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6820-6824.	4.0	34
36	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	11.1	1,740

3

#	ARTICLE	IF	CITATIONS
37	Fine-tuning metal–organic framework performances by spatially-differentiated postsynthetic modification. Journal of Materials Chemistry A, 2018, 6, 4260-4265.	5.2	22
38	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	11.8	56
39	Preparation of metal–organic frameworks hybridizing with attapulgite and adsorption behaviors for glutathione reduced. Journal of Chemical Technology and Biotechnology, 2018, 93, 2331-2340.	1.6	18
40	Stable Aluminum Metal–Organic Frameworks (Al-MOFs) for Balanced CO ₂ and Water Selectivity. ACS Applied Materials & Selectivity. ACS Applied Mater	4.0	52
41	Precise Synthesis of Wellâ€Defined Inorganicâ€Organic Hybrid Particles. Chemical Record, 2018, 18, 950-968.	2.9	14
42	Nanoconfined phase change materials for thermal energy applications. Energy and Environmental Science, 2018, 11, 1392-1424.	15.6	445
43	Understanding the origins of metal–organic framework/polymer compatibility. Chemical Science, 2018, 9, 315-324.	3.7	153
44	Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology, 2018, 192, 491-500.	3.9	98
45	Urea-based flexible dicarboxylate linkers for three-dimensional metal-organic frameworks. Inorganica Chimica Acta, 2018, 475, 35-46.	1.2	8
46	The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework. Microporous and Mesoporous Materials, 2018, 258, 55-61.	2.2	35
47	A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chemical Engineering Journal, 2018, 334, 2547-2557.	6.6	105
48	Thermal behaviors and adsorption properties of two Europium(III) complexes based on 2-(4-carboxyphenyl)imidazo[4,5-f]-1,10-phenanthroline. Inorganica Chimica Acta, 2018, 471, 397-403.	1.2	7
49	Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials. Advanced Materials, 2018, 30, 1705454.	11.1	318
50	Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation. Ceramics, 2018, 1, 353-363.	1.0	12
51	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
52	Highly conductive PEDOT:PSS threaded HKUST-1 thin films. Chemical Communications, 2018, 54, 13865-13868.	2.2	28
53	Microporous metal–organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. Journal of Materials Chemistry A, 2018, 6, 20822-20828.	5.2	30
54	Internally extended growth of core–shell NH ₂ -MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(<scp>ii</scp>). Journal of Materials Chemistry A, 2018, 6, 21029-21038.	5.2	150

#	Article	IF	CITATIONS
55	Crystal-controlled polymerization: recent advances in morphology design and control of organic polymer materials. Journal of Materials Chemistry A, 2018, 6, 23197-23219.	5.2	35
56	Novel metal–organic frameworks with high stability for selectively sensing nitroaromatics. Dalton Transactions, 2018, 47, 15399-15404.	1.6	24
57	Robust Bifunctional Core–Shell MOF@POP Catalyst for One-Pot Tandem Reaction. Inorganic Chemistry, 2018, 57, 14467-14470.	1.9	25
58	Polymer–MOF Hybrid Composites with High Porosity and Stability through Surface-Selective Ligand Exchange. Chemistry of Materials, 2018, 30, 8639-8649.	3.2	71
59	Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. Journal of the American Chemical Society, 2018, 140, 17203-17210.	6.6	204
60	Synthesis of core–shell ZIF-67@Co-MOF-74 catalyst with controllable shell thickness and enhanced photocatalytic activity for visible light-driven water oxidation. CrystEngComm, 2018, 20, 7659-7665.	1.3	59
61	Visualization of Anisotropic and Stepwise Piezofluorochromism in an MOF Single Crystal. CheM, 2018, 4, 2658-2669.	5.8	65
62	Development of highly-efficient ZIF-8@PDMS/PVDF nanofibrous composite membrane for phenol removal in aqueous-aqueous membrane extractive process. Journal of Membrane Science, 2018, 568, 121-133.	4.1	52
63	Selective Formation of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. Journal of Physical Chemistry C, 2018, 122, 24182-24189.	1.5	11
64	Hollow Polypyrrole Nanospindles for Highly Effective Cancer Therapy. ChemPlusChem, 2018, 83, 1127-1134.	1.3	11
65	Construction of Anti-Ultraviolet "Shielding Clothes―on Poly(<i>p</i> phenylene benzobisoxazole) Fibers: Metal Organic Framework-Mediated Absorption Strategy. ACS Applied Materials & amp; Interfaces, 2018, 10, 43262-43274.	4.0	51
66	ROMP for Metal–Organic Frameworks: An Efficient Technique toward Robust and High-Separation Performance Membranes. ACS Applied Materials & Interfaces, 2018, 10, 34640-34645.	4.0	42
67	Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. TrAC - Trends in Analytical Chemistry, 2018, 108, 135-153.	5.8	131
68	Coordination supramolecules with oxazoline-containing ligands. CrystEngComm, 2018, 20, 6109-6121.	1.3	7
69	Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nature Communications, 2018, 9, 3635.	5.8	44
70	CdS/NH ₂ -UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO ₂ . Journal of Materials Chemistry A, 2018, 6, 20152-20160.	5.2	69
71	Largeâ€Area Preparation of Crackâ€Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802052.	10.2	159
72	A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Mikrochimica Acta, 2018, 185, 469.	2.5	53

#	Article	IF	CITATIONS
73	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018, 47, 8611-8638.	18.7	994
74	Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy, 2018, 53, 643-649.	8.2	144
75	Incorporating the Thiazolo [5,4-d] thiazole Unit into a Coordination Polymer with Interdigitated Structure. Crystals, 2018, 8, 30.	1.0	19
76	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18
77	A flexible metal–organic framework with adaptive pores for high column-capacity gas chromatographic separation. Inorganic Chemistry Frontiers, 2018, 5, 2777-2783.	3.0	7
78	Fluorescence-Tuned Silicone Elastomers for Multicolored Ultraviolet Light-Emitting Diodes: Realizing the Processability of Polyhedral Oligomeric Silsesquioxane-Based Hybrid Porous Polymers. Chemistry of Materials, 2018, 30, 6370-6376.	3.2	46
79	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	4.0	76
80	Metal–Organic Frameworks with Reduced Hydrophilicity for Postcombustion CO ₂ Capture from Wet Flue Gas. ACS Sustainable Chemistry and Engineering, 2018, 6, 11904-11912.	3.2	43
81	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
82	Microporosityâ€Controlled Synthesis of Heteroatom Codoped Carbon Nanocages by Wrapâ€Bakeâ€Sublime Approach for Flexible Allâ€Solidâ€Stateâ€Supercapacitors. Advanced Functional Materials, 2018, 28, 1803786.	7.8	92
83	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	5.2	88
84	Development and application of metal organic framework/chitosan foams based on ultrasound-assisted solid-phase extraction coupling to UPLC-MS/MS for the determination of five parabens in water. Analytical and Bioanalytical Chemistry, 2018, 410, 6619-6632.	1.9	33
85	Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nature Communications, 2018, 9, 2785.	5.8	353
86	Hydrogen storage properties of the novel crosslinked UiO-66-(OH)2. International Journal of Hydrogen Energy, 2018, 43, 15370-15377.	3.8	29
87	Shapeable Fibrous Aerogels of Metal–Organic-Frameworks Templated with Nanocellulose for Rapid and Large-Capacity Adsorption. ACS Nano, 2018, 12, 4462-4468.	7.3	301
88	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.	4.0	120
89	Polyvinyl Alcohol/EuBa2Ca2Cu3O9â^'x Composites: Dielectric and Mechanical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1968-1979.	1.9	4
90	A nanosized metal–organic framework confined inside a functionalized mesoporous polymer: an efficient CO ₂ adsorbent with metal defects. Journal of Materials Chemistry A, 2018, 6, 17220-17226.	5.2	20

#	Article	IF	CITATIONS
91	Chemically stable ionic viologen-organic network: an efficient scavenger of toxic oxo-anions from water. Chemical Science, 2018, 9, 7874-7881.	3.7	91
92	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	1.0	50
93	Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 2201-2222.	1.4	33
94	Aptamer immobilization on amino-functionalized metal–organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of <i>Escherichia coli O157:H7</i> . Analyst, The, 2018, 143, 3191-3201.	1.7	73
95	Synthesis of a 2D phosphorus material in a MOF-based 2D nano-reactor. Chemical Science, 2018, 9, 5912-5918.	3.7	14
96	History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 2018, 28, 1704158.	7.8	264
97	Interface manipulation of CO ₂ â€"philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 15064-15073.	5.2	150
98	Metal–Organic Frameworks for Energy. Advanced Energy Materials, 2019, 9, 1801307.	10.2	160
99	Computer-aided discovery of connected metal-organic frameworks. Nature Communications, 2019, 10, 3620.	5.8	71
100	Ligand-Regulated Uptake of Dipolar-Aromatic Guests by Hydrophobically Assembled Suprasphere Hosts. Journal of the American Chemical Society, 2019, 141, 14078-14082.	6.6	7
101	<i>In situ</i> bottom–up growth of metal–organic frameworks in a crosslinked poly(ethylene oxide) layer with ultrahigh loading and superior uniform distribution. Journal of Materials Chemistry A, 2019, 7, 20293-20301.	5.2	28
102	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie - International Edition, 2019, 58, 15742-15746.	7.2	121
104	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie, 2019, 131, 15889-15893.	1.6	22
105	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
106	Achieving efficient proton conduction in a MOF-based proton exchange membrane through an encapsulation strategy. Journal of Membrane Science, 2019, 590, 117277.	4.1	80
107	Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Letters, 2019, 11, 54.	14.4	87
108	Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Progress in Materials Science, 2019, 106, 100579.	16.0	63
109	Metal-Organic Framework Composites for Catalysis. Matter, 2019, 1, 57-89.	5.0	308

#	Article	IF	Citations
110	Design strategies and applications of charged metal organic frameworks. Coordination Chemistry Reviews, 2019, 398, 113007.	9.5	72
111	Heteroepitaxial Growth of Multiblock Lnâ€MOF Microrods for Photonic Barcodes. Angewandte Chemie - International Edition, 2019, 58, 13803-13807.	7.2	94
112	Heteroepitaxial Growth of Multiblock Lnâ€MOF Microrods for Photonic Barcodes. Angewandte Chemie, 2019, 131, 13941-13945.	1.6	23
113	Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal. Chemical Engineering Journal, 2019, 375, 122076.	6.6	118
114	Mixed-ligand lanthanide complexes constructed by flexible 1,3-propanediaminetetraacetate and rigid terephthalate. Journal of Coordination Chemistry, 2019, 72, 1547-1559.	0.8	6
115	A voltammetric immunoassay for the carcinoembryonic antigen using silver(I)-terephthalate metal-organic frameworks containing gold nanoparticles as a signal probe. Mikrochimica Acta, 2019, 186, 509.	2.5	19
116	Biomimetic mineralization of nanoscale lanthanide metal-organic frameworks with thermo-sensitive polymer as organic ligands for solvent recognition and water detection. Journal of Solid State Chemistry, 2019, 277, 594-601.	1.4	11
117	A dye@MOF crystalline probe serving as a platform for ratiometric sensing of trichloroacetic acid (TCA), a carcinogen metabolite in human urine. CrystEngComm, 2019, 21, 4637-4643.	1.3	27
118	A Microporous Co(II)-Based 3-D Metal Organic Framework Built from Magnetic Infinite Rod-Shaped Secondary Building Units. European Journal of Inorganic Chemistry, 2019, 2019, 4056-4062.	1.0	4
119	Water–Ethanol and Methanol–Ethanol Separations Using in Situ Confined Polymer Chains in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 41383-41393.	4.0	29
120	Ca ₃ La ₂ Te ₂ O ₁₂ :Mn ⁴⁺ ,Nd ³⁺ ,Yb <sup 2019,="" 3,="" 403-413.<="" an="" and="" broadband="" c-si="" cells="" chemistry="" converter="" efficient="" for="" frontiers,="" leds.="" materials="" nir="" plant-growth="" red="" solar="" spectral="" td="" thermally-stable="" uv="" visible–far=""><td>p>3+3.2</td><td>p>: 26</td></sup>	p>3+3.2	p>: 26
121	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chemical Communications, 2019, 55, 14677-14680.	2.2	16
122	The Microscopic Structure–Property Relationship of Metal–Organic Polyhedron Nanocomposites. Angewandte Chemie, 2019, 131, 17573-17578.	1.6	8
123	The Microscopic Structure–Property Relationship of Metal–Organic Polyhedron Nanocomposites. Angewandte Chemie - International Edition, 2019, 58, 17412-17417.	7.2	29
124	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, 17084-17091.	1.6	31
125	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, 16928-16935.	7.2	141
126	Controlling the Packing of Metal–Organic Layers by Inclusion of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 14549-14553.	6.6	17
127	In situ Preparation of Chitosan/ZIF-8 Composite Beads for Highly Efficient Removal of U(VI). Frontiers in Chemistry, 2019, 7, 607.	1.8	56

#	Article	IF	CITATIONS
128	Deep eutectic solvents for Cu-catalysed ARGET ATRP under an air atmosphere: a sustainable and efficient route to poly(methyl methacrylate) using a recyclable Cu(ii) metal–organic framework. Green Chemistry, 2019, 21, 5865-5875.	4.6	37
129	Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal Growth and Design, 2019, 19, 6682-6697.	1.4	123
130	Multivariate CuBTC Metal–Organic Framework with Enhanced Selectivity, Stability, Compatibility, and Processability. Chemistry of Materials, 2019, 31, 8459-8465.	3.2	24
131	Metal–Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustainable Chemistry and Engineering, 2019, 7, 18114-18124.	3.2	50
132	The Nanoreactor Concept: Kinetic Features of Compartmentalization in Dispersed Phase Polymerization. Macromolecules, 2019, 52, 7963-7976.	2.2	53
133	A generalizable method for the construction of MOF@polymer functional composites through surface-initiated atom transfer radical polymerization. Chemical Science, 2019, 10, 1816-1822.	3.7	75
134	Zinc-based CPs for effective detection of Fe3+ and Cr2O72â^' ions. New Journal of Chemistry, 2019, 43, 1494-1504.	1.4	26
135	Block co-polyMOFs: morphology control of polymer–MOF hybrid materials. Chemical Science, 2019, 10, 1746-1753.	3.7	68
137	Fabrication of Desired Metal–Organic Frameworks via Postsynthetic Exchange and Sequential Linker Installation. Crystal Growth and Design, 2019, 19, 1454-1470.	1.4	57
138	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	3.2	165
139	Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 5412-5423.	1.7	47
140	Dispersed nano-MOFs <i>via</i> a stimuli-responsive biohybrid-system with enhanced photocatalytic performance. Materials Horizons, 2019, 6, 802-809.	6.4	25
141	Seaming the interfaces between topologically distinct metal–organic frameworks using random copolymer glues. Nanoscale, 2019, 11, 2121-2125.	2.8	26
142	MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorganic Chemistry Frontiers, 2019, 6, 184-191.	3.0	41
143	Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metabolism Reviews, 2019, 51, 356-377.	1.5	64
144	Hierarchically Porous and Water-Tolerant Metal–Organic Frameworks for Enzyme Encapsulation. Industrial & Engineering Chemistry Research, 2019, 58, 12835-12844.	1.8	32
145	Uncovering two kinetic factors in the controlled growth of topologically distinct core–shell metal–organic frameworks. Chemical Science, 2019, 10, 7755-7761.	3.7	55
146	The surface chemistry of metal–organic frameworks and their applications. Dalton Transactions, 2019, 48, 9037-9042.	1.6	58

#	Article	IF	CITATIONS
147	Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180225.	1.6	51
148	Hydrothermal synthesis of three zinc(II) coordination polymers from 0D to 2D: Synthesis, structure, luminescence properties and effect of auxiliary ligand on their structural architectures. Journal of Molecular Structure, 2019, 1195, 252-258.	1.8	8
149	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
150	Facile and Scalable Coating of Metal–Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22714-22721.	4.0	42
151	Modular Programming of Hierarchy and Diversity in Multivariate Polymer/Metal–Organic Framework Hybrid Composites. Journal of the American Chemical Society, 2019, 141, 10342-10349.	6.6	42
152	Self-Assembly of Catalytically Active Supramolecular Coordination Compounds within Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10350-10360.	6.6	50
153	Structural variation of transition metal–organic frameworks using deep eutectic solvents with different hydrogen bond donors. Dalton Transactions, 2019, 48, 10199-10209.	1.6	57
154	Extraâ€Framework Aluminum Species of Zeolite that Surrogate the Growth of Metal Organic Framework from Zeolite Matrix. Chemistry - an Asian Journal, 2019, 14, 2598-2603.	1.7	2
155	Metal–Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Accounts of Chemical Research, 2019, 52, 1461-1470.	7.6	319
156	Metal–Organic Gels Based on a Bisamide Tetracarboxyl Ligand for Carbon Dioxide, Sulfur Dioxide, and Selective Dye Uptake. ACS Applied Materials & Interfaces, 2019, 11, 19654-19667.	4.0	32
157	An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation reaction. Chemical Communications, 2019, 55, 6377-6380.	2.2	107
158	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
159	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	1.6	20
160	Electropolymerization of Molecularâ€Sieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	7.2	39
161	Simultaneous Improvement of Mechanical and Fire-Safety Properties of Polymer Composites with Phosphonate-Loaded MOF Additives. ACS Applied Materials & Interfaces, 2019, 11, 20325-20332.	4.0	71
162	The utility of the template effect in metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 44-68.	9.5	74
163	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
164	Bottom-Up Formation of Carbon-Based Magnetic Honeycomb Material from Metal–Organic Framework–Guest Polyhedra for the Capture of Rhodamine B. ACS Omega, 2019, 4, 5578-5585.	1.6	3

#	Article	IF	CITATIONS
165	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures. , 2019, , 151-194.		1
166	Decoration of bare carboxyl group on the pore surface of metal-organic frameworks for high selective fluorescence Fe3+ detection. Journal of Solid State Chemistry, 2019, 274, 18-25.	1.4	20
167	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
168	MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium–selenium batteries. Nanoscale, 2019, 11, 6970-6981.	2.8	83
169	Ethylene Polymerization over Metal–Organic Framework Crystallites and the Influence of Linkers on Their Fracturing Process. ACS Catalysis, 2019, 9, 3059-3069.	5.5	29
170	MOF-templated self-polymerization of <i>p</i> -phenylenediamine to a polymer with a hollow box-assembled spherical structure. Chemical Communications, 2019, 55, 4071-4074.	2.2	15
171	Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.	9.5	242
172	Metal–Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Accounts of Chemical Research, 2019, 52, 1598-1610.	7.6	112
173	Layer-by-layer integration of conducting polymers and metal organic frameworks onto electrode surfaces: enhancement of the oxygen reduction reaction through electrocatalytic nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 893-900.	1.7	38
174	N,S-Codoped Carbon Shells Embedded with Ultrafine Co NPs for Reductive Amination with Formic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 8876-8884.	3.2	36
175	Crisscrossing coordination networks: ligand doping to control the chemomechanical properties of stimuli-responsive metallogels. Chemical Science, 2019, 10, 3864-3872.	3.7	11
176	Superhydrophobic/Superoleophilic MOF Composites for Oil–Water Separation. Inorganic Chemistry, 2019, 58, 2261-2264.	1.9	94
177	Ni(<scp>ii</scp>)-doped anionic metal–organic framework nanowire arrays for enhancing the oxygen evolution reaction. Chemical Communications, 2019, 55, 4023-4026.	2.2	24
178	Direct grafting-from of PEDOT from a photoreactive Zr-based MOF – a novel route to electrically conductive composite materials. Chemical Communications, 2019, 55, 3367-3370.	2.2	29
179	Investigating the effect of alumina shaping on the sorption properties of promising metal–organic frameworks. RSC Advances, 2019, 9, 7128-7135.	1.7	14
180	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	9.5	298
181	Highly Transparent, Flexible, and Mechanically Strong Nanopapers of Cellulose Nanofibers @Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 3515-3520.	1.7	72
182	Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nature Communications, 2019, 10, 767.	5.8	247

#	Article	IF	CITATIONS
183	Transcription of Chirality from Metal–Organic Framework to Polythiophene. Journal of the American Chemical Society, 2019, 141, 19565-19569.	6.6	43
184	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	6.6	89
185	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
186	Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nature Materials, 2019, 18, 163-168.	13.3	172
187	CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1805372.	7.8	148
188	Nematic-to-columnar mesophase transition by in situ supramolecular polymerization. Science, 2019, 363, 161-165.	6.0	69
189	Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 1923-1927.	6.6	217
190	High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks. Applied Surface Science, 2019, 476, 61-69.	3.1	103
191	MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol. Journal of Electroanalytical Chemistry, 2019, 835, 254-261.	1.9	40
192	Enhancement of orientation of rigid polymer blocks by incorporating rod–coil block copolymer chains into metal–organic frameworks. Polymer International, 2019, 68, 772-778.	1.6	4
193	Synthesis of ironâ€based metal organic framework and its visible lightâ€driven photocatalytic degradation of dye pollutants. Applied Organometallic Chemistry, 2019, 33, e4642.	1.7	11
194	Kinetic Control in Synthesis of Polymers Using Nanoporous Metal-Organic Frameworks. , 2019, , 185-204.		1
195	Cu-metal-organic framework supported on chitosan for efficient condensation of aromatic aldehydes and malononitrile. Carbohydrate Polymers, 2020, 228, 115393.	5.1	33
196	High proton conductivity of MOFs-polymer composite membranes by phosphoric acid impregnation. Microporous and Mesoporous Materials, 2020, 292, 109763.	2.2	30
197	Metalâ€Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular Rapid Communications, 2020, 41, e1900333.	2.0	109
198	Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation. Journal of Membrane Science, 2020, 595, 117499.	4.1	157
199	Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Critical Reviews in Analytical Chemistry, 2020, 50, 472-484.	1.8	47
201	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34

#	Article	IF	CITATIONS
202	Metal organic framework/chitosan foams functionalized with polyethylene oxide as a sorbent for enrichment and analysis of bisphenols in beverages and water. New Journal of Chemistry, 2020, 44, 1485-1492.	1.4	16
203	MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chemical Reviews, 2020, 120, 8267-8302.	23.0	512
204	Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catalysis Science and Technology, 2020, 10, 12-34.	2.1	34
205	The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 1319-1333.	3.0	14
206	The syntheses, structures, and properties of metal-organic frameworks based on mixed multi-N donor and carboxylate ligands. Journal of Solid State Chemistry, 2020, 283, 121133.	1.4	9
207	Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy. Nano-Micro Letters, 2020, 12, 9.	14.4	104
208	Molecularâ€Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization. Angewandte Chemie, 2020, 132, 4431-4435.	1.6	1
209	Molecularâ€Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by Inâ€Situ Polymerization. Angewandte Chemie - International Edition, 2020, 59, 4401-4405.	7.2	35
210	Design of Antiâ€UV Radiation Textiles with Selfâ€Assembled Metal–Organic Framework Coating. Advanced Materials Interfaces, 2020, 7, 1901525.	1.9	25
211	Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers. Nanotechnology, 2020, 31, 125702.	1.3	16
212	Structureâ€thermal activity relationship in a novel polymer/MOFâ€based neutronâ€shielding material. Polymer Composites, 2020, 41, 1418-1427.	2.3	10
213	Metal-organic frameworks derived porous Co3O4 dodecahedeons with abundant active Co3+ for ppb-level CO gas sensing. Applied Surface Science, 2020, 506, 144900.	3.1	34
214	2D Metalâ€Organic Framework Materials for Membraneâ€Based Separation. Advanced Materials Interfaces, 2020, 7, 1901514.	1.9	80
215	Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. Journal of Molecular Liquids, 2020, 318, 114273.	2.3	26
216	A metal–organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis. Chemical Science, 2020, 11, 10991-10997.	3.7	32
217	Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach. Journal of the American Chemical Society, 2020, 142, 18503-18512.	6.6	86
218	Two-dimensional MoS ₂ : a platform for constructing three-dimensional structures using RAFT polymerization. New Journal of Chemistry, 2020, 44, 17961-17969.	1.4	4
219	Proton conducting behavior of a microporous metal-organic framework assisted by ligand isomerization. Journal of Solid State Chemistry, 2020, 290, 121570.	1.4	6

#	Article	IF	CITATIONS
220	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
221	Transport properties in porous coordination polymers. Coordination Chemistry Reviews, 2020, 421, 213447.	9.5	63
222	Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chemical Engineering Journal, 2020, 402, 126273.	6.6	80
223	Preparation of multitarget immunomagnetic beads based on metal–organic frameworks and their application in food samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1158, 122341.	1.2	11
224	Modular design of solar-thermal nanofluidics for advanced desalination membranes. Journal of Materials Chemistry A, 2020, 8, 24493-24500.	5.2	30
225	Amino-MIL-53(Al)-Nanosheets@Nafion Composite Membranes with Improved Proton/Methanol Selectivity for Passive Direct Methanol Fuel Cells. Industrial & Engineering Chemistry Research, 2020, 59, 14825-14833.	1.8	20
226	lonic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review. Materials Today, 2020, 40, 140-159.	8.3	115
227	Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?. Journal of Membrane Science, 2020, 614, 118426.	4.1	11
228	Pore Engineering of Covalently Connected Metal–Organic Framework Nanoparticle–Mixed-Matrix Membrane Composites for Molecular Separation. ACS Applied Nano Materials, 2020, 3, 9356-9362.	2.4	16
229	Mesoporous Metal–Organic Framework MIL-101 at High Pressure. Journal of the American Chemical Society, 2020, 142, 15012-15019.	6.6	37
230	Cationic Covalentâ€Organic Framework as Efficient Redox Motor for Highâ€Performance Lithium–Sulfur Batteries. Small, 2020, 16, e2002932.	5.2	64
231	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie - International Edition, 2020, 59, 21752-21757.	7.2	115
232	Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. Langmuir, 2020, 36, 10657-10673.	1.6	35
233	Emerging Porous Materials and Their Composites for NH ₃ Gas Removal. Advanced Science, 2020, 7, 2002142.	5.6	58
234	Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics, 2020, 22, 19401-19442.	1.3	38
235	Proton conductivity studies on five isostructural MOFs with different acidity induced by metal cations. New Journal of Chemistry, 2020, 44, 17821-17830.	1.4	13
236	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	3.2	82
237	Nanotrap Grafted Anion Exchangeable Hybrid Materials for Efficient Removal of Toxic Oxoanions from Water. ACS Central Science, 2020, 6, 1534-1541.	5.3	54

#	Article	IF	CITATIONS
238	Metal-Organic Frameworks for Macromolecular Recognition and Separation. Matter, 2020, 3, 652-663.	5.0	28
239	Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Frontiers in Chemistry, 2020, 8, 694.	1.8	36
240	A new route to porous metal–organic framework crystal–glass composites. Chemical Science, 2020, 11, 9910-9918.	3.7	21
241	Inside polyMOFs: layered structures in polymer-based metal–organic frameworks. Chemical Science, 2020, 11, 10523-10528.	3.7	12
242	Accelerating Biodiesel Catalytic Production by Confined Activation of Methanol over High-Concentration Ionic Liquid-Grafted UiO-66 Solid Superacids. ACS Catalysis, 2020, 10, 11848-11856.	5.5	32
243	Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymer micelles. Nanoscale Advances, 2020, 2, 4557-4565.	2.2	4
244	Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials. Nano-Micro Letters, 2020, 12, 173.	14.4	47
245	Anomalous Behavior of Heat Capacity in Ni ₂ (bdc) ₂ (dabco). Schottky Anomaly and Spin–Phonon Interaction. Journal of Physical Chemistry C, 2020, 124, 20222-20227.	1.5	3
246	Metal–Organic Framework Derived Multicomponent Nanoagent as a Reactive Oxygen Species Amplifier for Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 13500-13511.	7.3	75
247	Proton conduction studies on four porous and nonporous coordination polymers with different acidities and water uptake. CrystEngComm, 2020, 22, 6935-6946.	1.3	13
248	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie, 2020, 132, 21936-21941.	1.6	23
249	Tuning magnetic anisotropy by the π-bonding features of the axial ligands and the electronic effects of gold(i) atoms in 2D {Co(L)2[Au(CN)2]2}n metal–organic frameworks with field-induced single-ion magnet behaviour. Inorganic Chemistry Frontiers, 2020, 7, 4611-4630.	3.0	13
250	Rapid Production of Metal–Organic Frameworks Based Separators in Industrial‣evel Efficiency. Advanced Science, 2020, 7, 2002190.	5.6	34
251	Sprayâ€Coating of Catalytically Active MOF–Polythiourea through Postsynthetic Polymerization. Angewandte Chemie - International Edition, 2020, 59, 13984-13989.	7.2	49
252	Polymers in Metal–Organic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. Chemistry Letters, 2020, 49, 624-632.	0.7	15
253	Development of Multivalent Metal-Ion-Fabricated Fumaric Acid-Based Metal–Organic Frameworks for Defluoridation of Water. Journal of Chemical & Engineering Data, 2020, 65, 2990-3001.	1.0	53
254	Sprayâ€Coating of Catalytically Active MOF–Polythiourea through Postsynthetic Polymerization. Angewandte Chemie, 2020, 132, 14088-14093.	1.6	12
255	Vapor-phase linker exchange of metal-organic frameworks. Science Advances, 2020, 6, eaax7270.	4.7	76

#	Article	IF	CITATIONS
256	Metal–organic frameworks for solid-state electrolytes. Energy and Environmental Science, 2020, 13, 2386-2403.	15.6	182
257	Effect of spin–phonon interactions on Urbach tails in flexible [M ₂ (bdc) ₂ (dabco)]. Physical Chemistry Chemical Physics, 2020, 22, 15242-15247.	1.3	8
258	Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chemical Science, 2020, 11, 10844-10849.	3.7	22
259	Metal–Organic Material Polymer Coatings for Enhanced Gas Sorption Performance and Hydrolytic Stability under Humid Conditions. ACS Applied Materials & Stability under Humid Conditions.	4.0	22
260	Terminus-dependent insertion of molten poly(ethylene glycol) into a flexible metal-organic framework. European Polymer Journal, 2020, 134, 109855.	2.6	3
261	One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. Nanomaterials, 2020, 10, 1105.	1.9	61
262	Programmable and Reversible Regulation of Catalytic Hemin@MOFs Activities with DNA Structures. Chemical Research in Chinese Universities, 2020, 36, 301-306.	1.3	7
263	Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 5509-5514.	6.6	37
264	Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Central Science, 2020, 6, 1046-1057.	5.3	285
265	Encapsulating polyaniline within porous MIL-101 for high-performance corrosion protection. Journal of Colloid and Interface Science, 2020, 579, 842-852.	5.0	45
266	Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chemical Engineering Journal, 2020, 400, 125942.	6.6	49
267	Polysaccharide templated biomimetic growth of hierarchically porous metal-organic frameworks. Microporous and Mesoporous Materials, 2020, 306, 110429.	2.2	37
268	Metal Organic Framework â€" Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Frontiers in Chemistry, 2020, 8, 534.	1.8	54
269	Novel Elastically Stretchable Metal–Organic Framework Laden Hydrogel with Pearl–Net Microstructure and Freezing Resistance through Postâ€Synthetic Polymerization. Macromolecular Rapid Communications, 2020, 41, e1900573.	2.0	10
270	Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. Journal of the American Chemical Society, 2020, 142, 3701-3705.	6.6	50
271	Controllable Synthesis of Metal-Organic Framework/Polyethersulfone Composites. Crystals, 2020, 10, 39.	1.0	6
272	Poly(ionic liquid) composites. Chemical Society Reviews, 2020, 49, 1726-1755.	18.7	234
273	Thermoâ€Responsive MOF/Polymer Composites for Temperatureâ€Mediated Water Capture and Release. Angewandte Chemie, 2020, 132, 11096-11102.	1.6	11

#	ARTICLE	IF	CITATIONS
274	Thermoâ€Responsive MOF/Polymer Composites for Temperatureâ€Mediated Water Capture and Release. Angewandte Chemie - International Edition, 2020, 59, 11003-11009.	7.2	101
275	Recent advances in applications of metal–organic frameworks for sample preparation in pharmaceutical analysis. Coordination Chemistry Reviews, 2020, 411, 213235.	9.5	65
276	Recent advances in fluorescence sensors based on DNA–MOF hybrids. Luminescence, 2020, 35, 440-446.	1.5	35
277	Computational characterization of halogen vapor attachment, diffusion and desorption processes in zeolitic imidazolate framework-8. Scientific Reports, 2020, 10, 3010.	1.6	O
278	N-doped carbon nanotube frameworks modified electrode for the selective sensing of hydroquinone and catechol. Journal of Electroanalytical Chemistry, 2020, 861, 113968.	1.9	23
279	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
280	Green and Functional Aerogels by Macromolecular and Textural Engineering of Chitosan Microspheres. Chemical Record, 2020, 20, 753-772.	2.9	42
281	A novel composite derived from a metal organic framework immobilized within electrospun nanofibrous polymers: An efficient methane adsorbent. Applied Organometallic Chemistry, 2020, 34, e5448.	1.7	32
282	Impeding Catalyst Sulfur Poisoning in Aqueous Solution by Metal–Organic Framework Composites. Small Methods, 2020, 4, 1900890.	4.6	22
283	Direct Synthesis of Two-Dimensional Metal–Organic Framework Nanoplates for Noble Metal Load and Gaseous Iodine Adsorption. Crystal Growth and Design, 2020, 20, 1378-1382.	1.4	6
284	Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release, 2020, 322, 566-592.	4.8	107
285	Metal-organic frameworks for QCM-based gas sensors: A review. Sensors and Actuators A: Physical, 2020, 307, 111984.	2.0	108
286	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
287	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
288	Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity. Separation and Purification Technology, 2020, 247, 116990.	3.9	44
289	Coordination-Driven Self-Assembly in Polymer–Inorganic Hybrid Materials. Chemistry of Materials, 2020, 32, 3680-3700.	3.2	62
290	Composite Polymer Electrolyte Incorporating Metal–Organic Framework Nanosheets with Improved Electrochemical Stability for All-Solid-State Li Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20514-20521.	4.0	73
291	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie - International Edition, 2021, 60, 14222-14235.	7.2	22

#	Article	IF	CITATIONS
292	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie, 2021, 133, 14342-14355.	1.6	3
293	Coordinationâ€Driven Assembly of Metal–Organic Framework Coating for Catalytically Active Superhydrophobic Surface. Advanced Materials Interfaces, 2021, 8, 2001202.	1.9	21
294	Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 2021, 427, 213525.	9.5	109
295	Two d10 coordination polymers based on 4-(4H-1,2,4-triazol-4-yl)benzenesulfonic acid ligand: Syntheses, structures, photoluminescence, and sensing property. Inorganica Chimica Acta, 2021, 514, 119987.	1.2	1
296	Selfâ€Assembled Singleâ€Site Nanozyme for Tumorâ€Specific Amplified Cascade Enzymatic Therapy. Angewandte Chemie - International Edition, 2021, 60, 3001-3007.	7.2	156
297	A straightforward strategy to synthesize supramolecular amorphous zirconium metal-organic gel for efficient Pb(II) removal. Chemical Engineering Journal, 2021, 407, 126744.	6.6	51
298	Fabrication of zeolitic imidazolate frameworks based mixed matrix membranes and mass transfer properties of C 4 H 6 and N 2 in membrane separation. AICHE Journal, 2021, 67, e17114.	1.8	7
299	Anionic Polymerization in Porous Organic Frameworks: A Strategy to Fabricate Anchored Polymers and Copolymers. Angewandte Chemie - International Edition, 2021, 60, 6117-6123.	7.2	3
300	Anionic Polymerization in Porous Organic Frameworks: A Strategy to Fabricate Anchored Polymers and Copolymers. Angewandte Chemie, 2021, 133, 6182-6188.	1.6	4
301	Modification strategies for metal-organic frameworks targeting at membrane-based gas separations. Green Chemical Engineering, 2021, 2, 17-26.	3.3	20
302	Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PETâ€RAFT Polymerization and Stereolithography. Angewandte Chemie, 2021, 133, 5549-5556.	1.6	16
303	Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. Journal of CO2 Utilization, 2021, 43, 101361.	3.3	59
304	Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PETâ€RAFT Polymerization and Stereolithography. Angewandte Chemie - International Edition, 2021, 60, 5489-5496.	7.2	122
305	<scp>Metal–organic framework polymer</scp> composite enhancement via acyl chloride modification. Polymer International, 2021, 70, 783-789.	1.6	11
306	Nanocomposite Hydrogel of Pd@ZIFâ€8 and Laponite [®] : Sizeâ€6elective Hydrogenation Catalyst under Mild Conditions. Chemistry - A European Journal, 2021, 27, 3268-3272.	1.7	16
307	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
308	Bio-functional metal organic framework composite as bioanode for enhanced electricity generation by a microbial fuel cell. Electrochimica Acta, 2021, 368, 137622.	2.6	23
309	The influence of pore aperture, volume and functionality of isoreticular gmelinite zeolitic imidazolate frameworks on the mixed gas CO2/N2 and CO2/CH4 separation performance in mixed matrix membranes. Separation and Purification Technology, 2021, 260, 118103.	3.9	14

#	Article	IF	CITATIONS
310	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
311	Construction of defective Zeolitic Imidazolate Frameworks with improved photocatalytic performance via Vanillin as modulator. Chemical Engineering Journal, 2021, 421, 127839.	6.6	6
312	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 839-859.	2.0	88
313	A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angewandte Chemie - International Edition, 2021, 60, 7389-7396.	7.2	42
314	Facile refluxed synthesis of TiO2/Ag2O@Ti-BTC as efficient catalyst for photodegradation of methylene blue and electrochemical studies. Journal of the Iranian Chemical Society, 2021, 18, 1269-1277.	1.2	2
315	Selfâ€Assembled Singleâ€Site Nanozyme for Tumorâ€Specific Amplified Cascade Enzymatic Therapy. Angewandte Chemie, 2021, 133, 3038-3044.	1.6	30
316	Current Trends in the Postsynthetic Modification of Framework Materials., 2021,, 1055-1073.		1
317	Fabricating a wettable microwells array onto a nitrogen plasma-treated ITO substrate: high-throughput fluorimetric platform for selective sensing of ammonia in blood using polymer-stabilized NH ₂ -MIL-125. Journal of Materials Chemistry B, 2021, 9, 5998-6005.	2.9	3
318	Metal-organic frameworks and their composites. , 2021, , 1-18.		1
319	Reverse synthesis of yolk–shell metal–organic frameworks. Chemical Communications, 2021, 57, 3415-3418.	2.2	7
320	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	6.6	28
321	Understanding the opportunities of metal–organic frameworks (MOFs) for CO ₂ capture and gas-phase CO ₂ conversion processes: a comprehensive overview. Reaction Chemistry and Engineering, 2021, 6, 787-814.	1.9	31
322	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.	2.1	35
323	Metal-organic framework-based processes for water desalination: Current development and future prospects., 2021,, 491-532.		0
324	Welding partially reduced graphene oxides by MOFs into micro–mesoporous hybrids for high-performance oil absorption. RSC Advances, 2021, 11, 30980-30989.	1.7	2
325	Structural diversity and photocatalytic activity of six Co(<scp>ii</scp>)/Ni(<scp>ii</scp>) complexes with three flexible phenylenediacetate isomers. CrystEngComm, 2021, 23, 1616-1627.	1.3	5
326	Construction of Metalâ€Organic Frameworks (MOFs)–Based Membranes and Their Ion Transport Applications. Small Science, 2021, 1, 2000035.	5.8	31
327	Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material. Chemical Communications, 2021, 57, 2523-2526.	2.2	15

#	Article	IF	CITATIONS
328	The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 2021, 50, 5086-5125.	18.7	262
329	General Remarks of Soft-Matter Nanotubes. Nanostructure Science and Technology, 2021, , 1-58.	0.1	1
330	Thiolateâ€Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. Small, 2021, 17, e2005328.	5.2	73
331	Postsynthetic polymer-ligand exchange hybridization in M-MOF-74 composites. Journal of Coordination Chemistry, 2021, 74, 178-189.	0.8	3
332	An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals., 2021, 3, 320-326.		13
333	Precisely Controlled Reproducible Synthesis of Palladium Nanoparticles inside Metal-Organic Frameworks with H2 Gas as Reductant: Effects of Framework Crystallinity and H2 Gas Pressure. Chemistry Letters, 2021, 50, 244-247.	0.7	2
334	Preparation of MIL-101-NH2 MOF/triazine based covalent organic framework hybrid and its application in acid blue 9 removals. Polymer, 2021, 215, 123383.	1.8	42
335	Recent progress in electrospun nanofibrous membranes for oil/water separation. Separation and Purification Technology, 2021, 256, 117790.	3.9	82
336	A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angewandte Chemie, 2021, 133, 7465-7472.	1.6	7
337	Structural insights on the metal cross-linking of polymers from the first principles: Calcium – Polymethacrylic acid case study. Polymer, 2021, 215, 123368.	1.8	3
338	Enhanced photocatalytic performance of novel MIL53Sr metal-organic framework (MOF) for RhB dye degradation and H2 evolution by coupling MIL53Fe. Solar Energy, 2021, 215, 121-130.	2.9	26
339	Laponite-Incorporated UiO-66-NH ₂ -Polyethylene Oxide Composite Membranes for Protection against Chemical Warfare Agent Simulants. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10500-10512.	4.0	11
340	An Investigation into the Intrinsic Peroxidaseâ€Like Activity of Feâ€MOFs and Feâ€MOFs/Polymer Composites. Advanced Materials Technologies, 2021, 6, 2001048.	3.0	27
341	Two acidic coordination polymers containing uncoordinated carboxyl groups: Syntheses, crystal structures and proton conductivities in Nafion composite membranes. Journal of Solid State Chemistry, 2021, 295, 121932.	1.4	7
342	Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. Advanced Functional Materials, 2021, 31, 2100106.	7.8	139
343	Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. Small Structures, 2021, 2, 2100006.	6.9	13
344	Recent Progress on Conductive Metalâ€Organic Framework Films. Advanced Materials Interfaces, 2021, 8, 2002151.	1.9	37
345	Fibre-based composites from the integration of metal–organic frameworks and polymers. Nature Reviews Materials, 2021, 6, 605-621.	23.3	128

#	Article	IF	CITATIONS
346	Sparks from different worlds: Collaboration of MOFs and COFs. Coordination Chemistry Reviews, 2021, 430, 213735.	9.5	67
347	Encapsulation of Ultrafine Metal–Organic Framework Nanoparticles within Multichamber Carbon Spheres by a Two-Step Double-Solvent Strategy for High-Performance Catalysts. ACS Applied Materials & Lorentz &	4.0	8
348	Co(II)-coordination polymers: Magnetic properties and treatment activity on the chronic subdural hematoma via regulating the releasing of inflammatory cytokines. Journal of Solid State Chemistry, 2021, 296, 121991.	1.4	0
349	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie - International Edition, 2021, 60, 11830-11834.	7.2	18
350	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie, 2021, 133, 11936-11940.	1.6	0
351	Covalently immobilized cobalt Phthalocyanine@MWCNT PDMS hollow fiber membrane for highly selective, reversible and bio-inspired oxygen transport. Journal of Membrane Science, 2021, 624, 119119.	4.1	4
352	A review of synthesis strategies for MOF-derived single atom catalysts. Korean Journal of Chemical Engineering, 2021, 38, 1104-1116.	1,2	22
353	Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Materials, 2021, 36, 387-408.	9.5	137
354	A confinement strategy for stabilizing two-dimensional carbon / CoP hybrids with enhanced hydrogen evolution. Electrochimica Acta, 2021, 375, 137966.	2.6	18
356	Morphology Transcription in Hierarchical MOF-on-MOF Architectures. , 2021, 3, 738-743.		13
357	Preparation of UiO-66-NH2@PDA under Water System for Chemical Warfare Agents Degradation. Materials, 2021, 14, 2419.	1.3	12
358	Thermal and Gas Adsorption Properties of Tröger's Base/Diazaâ€cyclooctane Hybrid Ladder Polymers. ChemNanoMat, 2021, 7, 824-830.	1.5	4
359	Synthesis, Applications, and Prospects of Quantumâ€Dotâ€inâ€Perovskite Solids. Advanced Energy Materials, 2022, 12, 2100774.	10.2	39
360	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	23.0	194
361	Recent Progresses in Metal–Organic Frameworks Based Core–shell Composites. Advanced Energy Materials, 2022, 12, 2100061.	10.2	43
362	Understanding the Mechanical Reinforcement of Metal–Organic Framework–Polymer Composites: The Effect of Aspect Ratio. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51894-51905.	4.0	6
363	PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3934.	5.8	111
364	Cucurbiturilâ€verkapselnde metallorganische Gerüstverbindung über Mechanochemie: Adsorbentien mit verbesserter Leistung. Angewandte Chemie, 2021, 133, 15493-15498.	1.6	2

#	Article	IF	Citations
365	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie, 2021, 133, 21474-21479.	1.6	3
366	<scp>Nanobiotechnologyâ€enabled</scp> energy utilization elevation for augmenting <scp>minimallyâ€invasive</scp> and noninvasive oncology thermal ablation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1733.	3.3	23
367	Polymer Ligand-Sensitized Lanthanide Metal–Organic Frameworks for an On-Site Analysis of a Radionuclide. Analytical Chemistry, 2021, 93, 9226-9234.	3.2	16
368	Cucurbiturilâ€Encapsulating Metal–Organic Framework via Mechanochemistry: Adsorbents with Enhanced Performance. Angewandte Chemie - International Edition, 2021, 60, 15365-15370.	7.2	19
369	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie - International Edition, 2021, 60, 21304-21309.	7.2	33
370	Facile One-Step Metal–Organic Framework Surface Polymerization Method. Inorganic Chemistry, 2021, 60, 11750-11755.	1.9	8
371	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	1.7	14
372	A Highly Sensitive and Flexible Metal–Organic Framework Polymer-Based H ₂ S Gas Sensor. ACS Omega, 2021, 6, 17690-17697.	1.6	46
373	Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. Journal of the Electrochemical Society, 2021, 168, 067502.	1.3	21
374	Hierarchically Porous Monolith with High MOF Accessibility and Strengthened Mechanical Properties using Waterâ€inâ€Oil High Internal Phase Emulsion Template. Advanced Materials Interfaces, 2021, 8, 2100620.	1.9	12
375	Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation. Polymers, 2021, 13, 2539.	2.0	27
376	MOFâ€Nanocomposite Mixedâ€Matrix Membrane for Dual‣uminescence Ratiometric Temperature Sensing. Advanced Optical Materials, 2021, 9, 2100945.	3.6	7 5
377	Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. Journal of Colloid and Interface Science, 2021, 594, 593-603.	5.0	29
378	Enhancement of Thermostability of Aspergillus flavus Urate Oxidase by Immobilization on the Ni-Based Magnetic Metal–Organic Framework. Nanomaterials, 2021, 11, 1759.	1.9	22
379	Tuning electromagnetic absorption properties of transition metal oxides by hydrogenation with nascent hydrogen. Chemical Engineering Journal, 2021, 417, 127980.	6.6	18
380	Recent Progress in <scp>Metalâ€Organic</scp> Frameworks@Cellulose Hybrids and Their Applications. Chinese Journal of Chemistry, 2021, 39, 3462-3480.	2.6	34
381	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	2.9	49
382	A Highly Selective Supramolecule Array Membrane Made of Zeroâ€Dimensional Molecules for Gas Separation. Angewandte Chemie, 2021, 133, 21145-21151.	1.6	3

#	Article	IF	CITATIONS
383	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie - International Edition, 2021, 60, 24519-24525.	7.2	27
384	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
385	Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2021, 94, 2139-2148.	2.0	26
386	A Highly Selective Supramolecule Array Membrane Made of Zeroâ€Dimensional Molecules for Gas Separation. Angewandte Chemie - International Edition, 2021, 60, 20977-20983.	7.2	16
387	Tactfully Assembled CuMOF/CdS S-Scheme Heterojunction for High-Performance Photocatalytic H ₂ Evolution under Visible Light. ACS Applied Energy Materials, 2021, 4, 8550-8562.	2.5	21
388	New Hybrid Feâ€based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. ChemistrySelect, 2021, 6, 8120-8132.	0.7	23
389	Imidazoliumâ€Functionalized Chemically Robust Ionic Porous Organic Polymers (<i>i</i> POPs) toward Toxic Oxoâ€Pollutants Capture from Water. Chemistry - A European Journal, 2021, 27, 13442-13449.	1.7	35
390	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie, 2021, 133, 24724.	1.6	6
391	The Surge of Metal–Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules, 2021, 26, 5713.	1.7	12
392	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
393	Covalentâ€Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 2021, 11, 2102300.	10.2	106
394	ã,ã⁴ã†ã®ã₽声. Tanso, 2021, 2021, 129-129.	0.1	0
395	Metal–Organic Framework Modified MoS ₂ Nanozyme for Synergetic Combating Drugâ€Resistant Bacterial Infections via Photothermal Effect and Photodynamic Modulated Peroxidaseâ€Mimic Activity. Advanced Healthcare Materials, 2022, 11, e2101698.	3.9	42
396	A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. Energies, 2021, 14, 5440.	1.6	18
397	2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angewandte Chemie, 2021, 133, 22846.	1.6	4
398	2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angewandte Chemie - International Edition, 2021, 60, 22664-22671.	7.2	56
399	Enhanced Performance of Sulfonated Poly(ether ether Ketone) Hybrid Membranes by Introducing Sulfated MOF-808/Graphene Oxide Composites. ACS Applied Energy Materials, 2021, 4, 9664-9672.	2.5	9
400	A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. Journal of Industrial and Engineering Chemistry, 2021, 101, 78-125.	2.9	43

#	Article	IF	CITATIONS
401	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	6.6	64
402	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
403	Homoporous hybrid membranes containing metal-organic cages for gas separation. Journal of Membrane Science, 2021, 636, 119564.	4.1	27
404	Recyclable europium functionalized metal-organic fluorescent probe for detection of tryptophan in biological fluids and food products. Analytica Chimica Acta, 2021, 1180, 338897.	2.6	27
405	Metal–organic framework-based sorbents in analytical sample preparation. Coordination Chemistry Reviews, 2021, 445, 214107.	9.5	138
406	Chiral polyaniline modified Metal-Organic framework Core-Shell composite MIL-101@c-PANI for HPLC enantioseparation. Microchemical Journal, 2021, 169, 106576.	2.3	9
407	A comprehensive review on the synthesis and performance of different zirconium-based adsorbents for the removal of various water contaminants. Chemical Engineering Journal, 2021, 424, 130509.	6.6	52
408	Resorcin[4]arene-based microporous metal–organic framework/reduced graphene oxide composite as an electrocatalyst for effective and simultaneous determination of p-nitrophenol and o-nitrophenol isomers. Sensors and Actuators B: Chemical, 2021, 347, 130604.	4.0	18
409	Polymer of intrinsic microporosity coated on a metal-organic framework composite membrane for highly efficient dye separation. Journal of Membrane Science, 2021, 637, 119619.	4.1	21
410	Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Separation and Purification Technology, 2021, 274, 119003.	3.9	27
411	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
412	Soluble polymeric metal-organic frameworks toward crystalline membranes for efficient cation separation. Journal of Membrane Science, 2021, 639, 119757.	4.1	8
413	Recent advances in metal-organic framework membranes for water treatment: A review. Science of the Total Environment, 2021, 800, 149662.	3.9	450
414	Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation. Chemical Engineering Journal, 2022, 427, 131962.	6.6	42
415	Highly efficient removal of quinolones by using the easily reusable MOF derived-carbon. Journal of Hazardous Materials, 2022, 423, 127181.	6.5	30
416	Well-Aligned Ni-Heteroatom (N, S) MOF Arrays Enhanced Electrocatalytic Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 1305-1309.	1.9	10
417	Modulating surficial oxygen vacancy of the VO $<$ sub $>$ 2 $<$ /sub $>$ nanostructure to boost its electromagnetic absorption performance. Journal of Materials Chemistry C, 0, , .	2.7	56
418	Preparation of a one-dimensional hierarchical MnO@CNT@Co–N/C ternary nanostructure as a high-performance bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 22533-22543.	5 . 2	41

#	Article	IF	CITATIONS
419	Eu3+ functionalized robust membranes based on the post-synthetic copolymerization of a metal–organic framework and ethyl methacrylate. Dalton Transactions, 2021, 50, 7597-7603.	1.6	4
420	Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chemical Science, 2021, 12, 12576-12586.	3.7	23
421	Research Progress in Metal-Organic Framework and Its Composites for Separation of C ₂ Based on Sieving Multiple Effects. Acta Chimica Sinica, 2021, 79, 459.	0.5	13
422	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
423	Metal-organic framework/poly (Îμ-caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112626.	2.0	34
424	Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chemical Reviews, 2020, 120, 2347-2407.	23.0	147
425	Poly(lauryl methacrylate)-Grafted Amino-Functionalized Zirconium-Terephthalate Metal–Organic Framework: Efficient Adsorbent for Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. ACS Omega, 2020, 5, 12202-12209.	1.6	9
426	Structure of the Polymer Backbones in polyMOF Materials. Journal of the American Chemical Society, 2020, 142, 10863-10868.	6.6	19
427	Crystal structure of tetrakis[î¼-2-(methoxycarbonyl)benzoato-îº⟨sup⟩2⟨ sup⟩⟨i>O⟨ i⟩⟨sup⟩:⟨i>O⟨ i⟩⟨sup⟩1⟨ sup⟩:⟨i>O⟨ i⟩⟨sup⟩1′⟨ sup⟩]bis[(⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩-dimethylformamide-κ⟨i>O⟨ i⟩)copper()](⟨i⟩Cu⟨ i⟩—⟨i⟩Cu⟨ i⟩)dimethylformamide disolvate. Acta Crystallographica Section E: Crystallographic Communications,	0.2	2
428	2018, 74, 691-694. Interactions Between Building Blocks of the Zn2(BDC)2DABCO Metal-Organic Framework. Journal of Structural Chemistry, 2020, 61, 161-165.	0.3	3
429	Niacin Metal-Organic Framework-Laden Self-Healing Hydrogel for Wound Healing. Journal of Biomedical Nanotechnology, 2020, 16, 1719-1726.	0.5	6
430	Synthesis and characterization of aluminosilicates [Zn3 (BTC)2] hybrid composite materials. ÉpÃŧÅʻanyag: Journal of Silicate Based and Composite Materials, 2017, 69, 98-101.	0.0	7
431	Metal and Covalent Organic Frameworks for Membrane Applications. Membranes, 2020, 10, 107.	1.4	38
432	A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy and Environmental Science, 2021, 14, 6455-6463.	15.6	145
433	Catalytic Conversion of Lignin to Liquid Fuels with an Improved H/C _{eff} Value over Bimetallic NiMo-MOF-Derived Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 13937-13952.	3.2	20
434	Label-free electrochemical immunosensor based on PdCuPt/PPY/DCSC as a signal amplification platform for sensitive detection of cardiac troponin I. Sensors and Actuators B: Chemical, 2022, 351, 130970.	4.0	13
435	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	2.8	10
436	Syntheses, Structures, and Ratiometric Fluorescent Sensing Properties of a Series of Lanthanide Coordination Polymers. Crystal Growth and Design, 2021, 21, 6543-6551.	1.4	5

#	Article	IF	CITATIONS
437	Reticular frameworks and their derived materials for CO2 conversion by thermoâ° catalysis. EnergyChem, 2021, 3, 100064.	10.1	52
438	Heterometallic Mg@Fe-MIL-101/TpPa-1-COF grown on stainless steel mesh: Enhancing photo-degradation, fluorescent detection and toxicity assessment for tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127725.	2.3	13
439	Chapter 1. MOF-derived Materials for Extremely Efficient Electrocatalysis. RSC Smart Materials, 2019, , 1-38.	0.1	2
440	Proton-responsive annunciator based on i-motif DNA structure modified metal organic frameworks for ameliorative construction of electrochemical immunosensing interface. Journal of Colloid and Interface Science, 2022, 608, 2050-2057.	5.0	6
441	Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews, 2022, 451, 214263.	9.5	165
442	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	9.5	63
443	Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method. Chemosphere, 2022, 288, 132537.	4.2	8
444	The lamellar <scp>MOFs</scp> @polymer networks hybrids fabricated in reversed microemulsion for efficient <scp>CO₂</scp> capture. Polymers for Advanced Technologies, 2022, 33, 750-759.	1.6	5
445	A novel core-shell coordination assembled hybrid via postsynthetic metal exchange for simultaneous detection and removal of tetracycline. Analytica Chimica Acta, 2022, 1190, 339247.	2.6	10
446	Polymers in Metal–Organic Frameworks: Synthesis, Recognition, and Hybrid Materials. RSC Smart Materials, 2021, , 31-71.	0.1	0
447	Mind the gap! tailoring sol–gel ceramic mesoporous coatings on labile metal–organic frameworks through kinetic control. Inorganic Chemistry Frontiers, 2022, 9, 221-230.	3.0	1
448	Preparation of HKUST-1/PEI mixed-matrix membranes: Adsorption-diffusion coupling control of small gas molecules. Journal of Membrane Science, 2022, 643, 120070.	4.1	23
449	Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug delivery and enhanced therapy efficiency. Materials Today Chemistry, 2022, 23, 100660.	1.7	8
450	Facile fabrication of Tb3+-functionalized COF mixed-matrix membrane as a highly sensitive platform for the sequential detection of oxolinic acid and nitrobenzene. Journal of Hazardous Materials, 2022, 427, 127869.	6.5	32
451	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	16.0	161
452	Contemporary thrust and emerging prospects of catalytic systems for substitute natural gas production by CO methanation. Fuel, 2022, 311, 122604.	3.4	11
453	Microscopic techniques for fabrication of polyethersulfone thinâ \in film nanocomposite membranes intercalated with UiOâ \in 66â \in 60 3 H for heavy metal ions removal from water. Microscopy Research and Technique, 2021, , .	1.2	4
454	The adsorption of cationic dye onto ACPMG@ZIF-8 core-shell, optimization using central composite response surface methodology (CCRSM). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 128039.	2.3	13

#	Article	IF	CITATIONS
455	Synthesis and Mechanical Properties of sub 5â€Âμm PolyUiOâ€66 Thin Films on Gold Surfaces. ChemPhysChem, 2021, , .	1.0	1
456	Dual-emission ratiometric fluorescent probe-based lanthanide-functionalized hydrogen-bonded organic framework for the visual detection of methylamine. Journal of Materials Chemistry C, 2022, 10, 1212-1219.	2.7	33
457	Emerging Covalent Organic Framework and Linear Polymer (COF–LP) Composites: Synthetic Approaches and Applications. RSC Smart Materials, 2021, , 344-374.	0.1	1
458	Chapter 6. Applications of Metal–Organic Framework/Polymer Hybrid Materials. RSC Smart Materials, 2021, , 142-225.	0.1	0
460	Metal–Organic Framework/Polymer Hybrid Materials. RSC Smart Materials, 2021, , 72-97.	0.1	1
461	Preparation of poly(ionic liquid@MOF) composite monolithic column and its application in the online enrichment and purification of tectochrysin in medicinal plants. Analytical Methods, 2022, , .	1.3	5
462	Pearl necklace-like CoMn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption. Carbon, 2022, 188, 254-264.	5.4	40
463	Two novel luminescent metal-organic frameworks based on the thioether bond modification: The selective sensing and effective CO2 fixation. Journal of Solid State Chemistry, 2022, 307, 122813.	1.4	2
464	Dynamic ring-opening polymerization, D-ROP: Applications in coordination polymers. Coordination Chemistry Reviews, 2022, 454, 214342.	9.5	4
465	Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coordination Chemistry Reviews, 2022, 456, 214393.	9.5	25
466	Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Applied Catalysis B: Environmental, 2022, 305, 121031.	10.8	20
467	Metal-organic framework-derived hierarchical flower-like Mo-doped Co3O4 for enhanced triethylamine sensing properties. Journal of Alloys and Compounds, 2022, 900, 163470.	2.8	21
468	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
469	MOFs in photoelectrochemical water splitting: New horizons and challenges. International Journal of Hydrogen Energy, 2022, 47, 5192-5210.	3.8	14
470	Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Applied Materials Today, 2022, 26, 101387.	2.3	26
471	2D Covalent Organic Framework Direct Osteogenic Differentiation of Stem Cells. Advanced Healthcare Materials, 2022, 11, e2101737.	3.9	8
472	MOF Membranes for CO2 Capture: Past, Present and Future. Carbon Capture Science & Technology, 2022, 2, 100026.	4.9	39
473	Microscale synthesis system for regulation and prediction of metal organic framework morphologies. Materials Today Chemistry, 2022, 23, 100767.	1.7	5

#	Article	IF	CITATIONS
474	Surface oxygen vacancies modified ridge-like CeO2/ZnO nanobelts for enhancing photocatalytic activity. Chemical Physics Letters, 2022, 791, 139376.	1.2	2
475	Functional graphene paper from smart building to sensor application. Biosensors and Bioelectronics, 2022, 203, 114031.	5.3	6
476	ATP-responsive near-infrared fluorescent nanoparticles for synergistic chemotherapy and starvation therapy. Nanoscale, 2022, 14, 3808-3817.	2.8	11
477	Enhanced proton conductivity of Nafion membrane induced by incorporation of MOF-anchored 3D microspheres: a superior and promising membrane for fuel cell applications. Chemical Communications, 2022, 58, 2906-2909.	2.2	12
478	Iron(II) Immobilized within a Metal–Organic Framework Mixed-Matrix Membrane as a H ₂ O ₂ Turn-On Sensor. Inorganic Chemistry, 2022, 61, 3103-3110.	1.9	9
479	Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. Acta Chimica Sinica, 2022, 80, 168.	0.5	1
481	Bimetallic Metal–Organic Frameworks MIL-53(<i>x</i> Al– <i>y</i> Fe) as Efficient Catalysts for H ₂ S Selective Oxidation. Inorganic Chemistry, 2022, 61, 3774-3784.	1.9	12
482	Metal–Organic Framework Membranes: Advances, Fabrication, and Applications. Small Structures, 2022, 3, .	6.9	14
483	Tumor microenvironment self-regulation: Bimetallic metal nanozyme-derived multifunctional nanodrug for optimizable cascade catalytic reaction-synergetic anti-tumor theranostics. Chemical Engineering Journal, 2022, 442, 136096.	6.6	27
484	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
485	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	1.6	0
486	Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter, 2022, 5, 1070-1091.	5.0	35
487	Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: Promising development opportunities and translational challenges. TrAC - Trends in Analytical Chemistry, 2022, 152, 116622.	5.8	37
488	Facilitated propylene transport in mixed matrix membranes containing <scp>ZIF</scp> â€8@Agmim coreâ€shell hybrid material. AICHE Journal, 2022, 68, .	1.8	5
489	Nanoconfinement of an Otherwise Useless Fluorophore in Metal–Organic Frameworks to Elicit and Tune Emission. Journal of Physical Chemistry C, 2022, 126, 6628-6636.	1.5	5
490	Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorganic Chemistry Communication, 2022, 140, 109436.	1.8	24
491	Twoâ€Photon 3D Printing in Metal–Organic Framework Single Crystals. Small, 2022, 18, e2200514.	5.2	15
492	Rh/ZrO2@C(MIL) catalytic activity and TEM images. CO2 conversion performance and structural systematic evaluation of novel catalysts derived from Zr-MOF metallated with Ru, Rh, Pd or In. Microporous and Mesoporous Materials, 2022, 336, 111855.	2.2	5

#	Article	IF	Citations
493	Effect of solution chemistry on the stability and transport of ZIF-8 in saturated porous media. Journal of Environmental Chemical Engineering, 2022, 10, 107562.	3.3	5
494	3D bismuth/tin dual-doped palladium modified prism-folding layered graphene/MOF-74 composites as highly active electrocatalyst for ethylene glycol electrooxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128725.	2.3	3
495	Composite SPE Paper Membrane Based on the Functional Superstructure of Metal–Organic Frameworks and Ionic Liquids for Detection of Tetracycline-like Antibiotics. ACS Applied Materials & & Amp; Interfaces, 2022, 14, 2102-2112.	4.0	19
496	Radical PolyMOFs: A Role for Ligand Dispersity in Enabling Crystallinity. Chemistry of Materials, 2021, 33, 9508-9514.	3.2	8
497	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	5.8	46
498	Hybridization of Synthetic Humins with a Metal–Organic Framework for Precious Metal Recovery and Reuse. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60027-60034.	4.0	19
499	Response to the Temperature and Solvent Stimulation of MOF Material in a Single-Crystal to Single-Crystal Manner. Inorganic Chemistry, 2022, 61, 47-51.	1.9	4
500	MOFs-Derived Zn-Based Catalysts in Acetylene Acetoxylation. Nanomaterials, 2022, 12, 98.	1.9	11
501	A Zr-MOF nanoflower sensor and its mixed-matrix membrane for the highly sensitive detection of nitroaromatics. Journal of Materials Chemistry C, 2022, 10, 7469-7475.	2.7	105
502	Polarized Laser Switching with Giant Contrast in MOFâ€Based Mixedâ€Matrix Membrane. Advanced Science, 2022, 9, e2200953.	5.6	12
504	MOF-based electrolytes for battery applications. , 2022, , 341-362.		0
505	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	4.6	16
506	Recent Advances in Mofs-Based Proton Exchange Membranes. SSRN Electronic Journal, 0, , .	0.4	0
507	Regulating Cutoff Size of Metal–Organic Frameworks by In Situ Anchoring of Poly(ethylene glycol) to Boost CO ₂ Capture. Industrial & Engineering Chemistry Research, 2022, 61, 6650-6661.	1.8	5
508	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie, 0, , .	1.6	2
509	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
510	Experimental investigation of optical anisotropy of polymethyl methacrylate aligned by metal–organic framework via in situ polymerization and direct chainâ€introduction. Journal of Applied Polymer Science, 0, , .	1.3	0
511	Performance Research of PVA (Polyvinyl alcohol) Based on HKUST-1 as Additive. Chemistry Letters, 2022, 51, 658-661.	0.7	1

#	Article	IF	CITATIONS
512	Bimetallic phosphide nanoparticles embedded in carbon nanostrips for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2022, 47, 18700-18707.	3.8	3
513	Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection. ACS Applied Materials & Detection and Service Applied Materials & Detection &	4.0	13
514	Metal–Organic Frameworks (MOFs) Containing Adsorbents for Carbon Capture. Energies, 2022, 15, 3473.	1.6	9
515	Design Strategies for Structurally Controlled Polymer Surfaces via Cyclophaneâ€Based CVD Polymerization and Post VD Fabrication. Advanced Materials, 2022, 34, e2201761.	11.1	6
516	Polarized and blue-shifted fluorescent MEH-PPV@MOF synthesized via direct chain-introduction. Polymer Testing, 2022, 111, 107609.	2.3	0
517	Construction of trifunctional electrode material based on Pt-Coordinated Ce-Based metal organic framework. Journal of Colloid and Interface Science, 2022, 622, 378-389.	5.0	22
518	The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chemical Society Reviews, 2022, 51, 4537-4582.	18.7	70
519	Dynamic Surface Modification of Metal–Organic Framework Nanoparticles via Alkoxyamine Functional Groups. Langmuir, 2022, 38, 6531-6538.	1.6	4
520	Reciprocal regulation between MOFs and polymers. Coordination Chemistry Reviews, 2022, 466, 214601.	9.5	25
521	Impact of N-donor auxiliary ligands on two new Co(<scp>ii</scp>)-based MOFs with N-heterocyclic ligands and a magnetism study. New Journal of Chemistry, 2022, 46, 11623-11631.	1.4	27
522	Synergetic and Cooperative Effects in Multimetallic Macrocyclic Complexes for Biological, Catalytic and Magnetic Activity. Asian Journal of Chemistry, 2022, 34, 1333-1346.	0.1	0
523	Metal organic frameworks (MOFs) as multifunctional nanoplatform for anticorrosion surfaces and coatings. Advances in Colloid and Interface Science, 2022, 305, 102707.	7.0	18
524	Copper-based theranostic nanocatalysts for synergetic photothermal-chemodynamic therapy. Acta Biomaterialia, 2022, 147, 258-269.	4.1	22
525	Insights into the luminescent properties of poly(phenylene sulfide)-grafted metal-organic framework (Tb–MOF–PPS) copolymers. High Performance Polymers, 2022, 34, 1028-1036.	0.8	1
526	Preparation and application of a nanocomposite of dopamine modified zirconium metal organic framework and polythiophene for solid-phase microextraction/gas chromatography of phenols released from polycarbonate materials. Journal of Chromatography A, 2022, 1676, 463187.	1.8	2
527	Controlled assemblies of conjugated polymers in metalâ^'organic frameworks. Polymer Journal, 2022, 54, 1045-1053.	1.3	2
528	Mixed-linker strategy toward enhanced photoreduction-assisted uranium recovery from wastewater and seawater. Chemical Engineering Journal, 2022, 446, 137264.	6.6	28
529	Metalâ^'Organic Frameworks for Water Decontamination and Reuse: A Dig at Heavy Metal Ions and Organic Toxins. ACS Symposium Series, 0, , 77-124.	0.5	8

#	Article	IF	CITATIONS
530	Systematic Exploration of a Catalytic Metal–Organic Framework/Polyurethane Composite for Medical Device Applications: Effects of MOF Particle Size, MOF Loading, and Polymer Concentration on Composite Material Activity. Frontiers in Physics, 0, 10, .	1.0	4
531	Multi-step tandem functionalization assembly of MOFs-based hybrid polymeric films for color tuning luminescence and responsive sensing on organic vapors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129416.	2.3	6
532	Construction of hierarchical porous derived from the cellulose nanofiber / graphene / Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 920, 165868.	2.8	17
533	Engineering Bio-MOF/polydopamine as a biocompatible targeted theranostic system for synergistic multi-drug chemo-photothermal therapy. International Journal of Pharmaceutics, 2022, 623, 121912.	2.6	15
534	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials. , 2022, , 3-40.		0
535	Graphite Felt Anode Coated Nh2-Mil-101(Fe) Derivative-Polypyrrole Composite for Improving Performance of Generating Power and Biodegrading Indole of Mfc. SSRN Electronic Journal, 0, , .	0.4	0
536	Binary Cooperative Complementary Membranes: A Perspective. Advanced Materials Interfaces, 2022, 9, .	1.9	0
537	Polymer/ZIFâ€67 composite as an effective and recyclable nanocatalyst for Biginelli reaction. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
538	Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3339-3354.	1.9	19
539	Micropore filling and temperature dependent electrical transport aspects of PEDOT polymerised Zr― based metal organic framework (MOF). Physica Status Solidi (A) Applications and Materials Science, 0, ,	0.8	0
540	Washable and Reusable Zr-Metal–Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents. ACS Applied Nano Materials, 2022, 5, 9657-9665.	2.4	4
541	Engineering MOFsâ€Derived Nanoarchitectures with Efficient Polysulfides Catalytic Sites for Advanced Li–S Batteries. Advanced Materials Technologies, 2023, 8, .	3.0	4
542	Solid and Hollow Poly(<i>p</i> -xylylene) Particles Synthesis <i>via</i> Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials, 0, , .	3.2	4
543	Recent Advances in the Development and Antimicrobial Applications of Metal–Phenolic Networks. Advanced Science, 2022, 9, .	5.6	56
544	Tethering Effects in Oligomer-Based Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 12284-12292.	1.9	4
545	Nanoconfined synthesis of conjugated ladder polymers. Polymer Chemistry, 2022, 13, 5003-5018.	1.9	2
546	Atomically precise thiolateâ€protected gold nanoclusters: Current status of designability of the structure and physicochemical properties. Aggregate, 2023, 4, .	5.2	22
547	Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform. Nano Research, 2023, 16, 1296-1303.	5.8	9

#	Article	IF	CITATIONS
548	Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor. Composites Part B: Engineering, 2022, 245, 110174.	5.9	30
549	PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation. Desalination, 2022, 540, 116013.	4.0	38
550	Recent advances in MOFs-based proton exchange membranes. Coordination Chemistry Reviews, 2022, 471, 214740.	9.5	48
551	Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Materials, 2022, 52, 201-209.	9.5	32
552	Pore engineering of MOFs through in-situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes. Journal of Membrane Science, 2022, 661, 120882.	4.1	11
553	Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. Journal of Membrane Science, 2022, 662, 121003.	4.1	16
554	Multifunctional Mn(II) Metal-Organic framework for photocatalytic aerobic oxidation and C H direct trifluoromethylation. Journal of Catalysis, 2022, 414, 294-301.	3.1	9
555	Solid-state synthesis of a MOF/polymer composite for hydrodeoxygenation of vanillin. Chemical Communications, 2022, 58, 11559-11562.	2.2	2
556	Self-healing mixed matrix membranes containing metal–organic frameworks. Chemical Science, 2022, 13, 12127-12135.	3.7	5
557	Fast catalytic transfer hydrogenation of phenol to cyclohexanol over urea modified Ni@CN nanoparticles. New Journal of Chemistry, 2022, 46, 16941-16950.	1.4	3
558	Single–atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. Nanoscale, 2022, 14, 13861-13889.	2.8	18
559	Decoupling layer metal–organic frameworks <i>via</i> ligand regulation to achieve ultra-thin carbon nanosheets for oxygen reduction electrocatalysis. Nanoscale, 2022, 14, 11684-11692.	2.8	0
560	Optically Anisotropic Polymer Materials based on MOF Nano-confined Channels. , 2022, , .		0
561	In Situ Growth of a Stable Metal–Organic Framework (MOF) on Flexible Fabric via a Layer-by-Layer Strategy for Versatile Applications. ACS Nano, 2022, 16, 14779-14791.	7.3	54
562	A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Nanomaterials, 2022, 12, 3400.	1.9	25
563	The Functionalized UiO-66 Engineering for the Synergistic Enhancement of Mechanical Properties of Polydicyclopentadiene Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 328-336.	1.9	2
564	One-step rapid fabrication of MOF@polymer core–shell particles through non-solvent induced surface deposition. Journal of Materials Chemistry A, 2022, 10, 24676-24684.	5.2	4
565	Uniaxial orientation of anisotropic polythiophene rods toward macroscopic chain ordering. Molecular Systems Design and Engineering, 0, , .	1.7	0

#	Article	IF	CITATIONS
566	Influence of Polymer Characteristics on the Self-Assembly of Polymer-Grafted Metal–Organic Framework Particles. ACS Nano, 2022, 16, 18168-18177.	7. 3	10
567	Rapid solid phase microextraction of DNA using mesoporous metal–organic framework coating for PCR-based identification of meat adulteration. Mikrochimica Acta, 2022, 189, .	2.5	3
568	Recent advances of metal–organic frameworksâ€based proton exchange membranes in fuel cell applications. SusMat, 2022, 2, 504-534.	7.8	22
569	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	6.6	33
570	Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coordination Chemistry Reviews, 2023, 474, 214859.	9.5	45
571	Zeolitic imidazolate frameworks dispersed in waterborne epoxy resin to improve the anticorrosion performance of the coatings. E-Polymers, 2022, 22, 883-897.	1.3	2
572	Colorimetric Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Metal–Organic Framework Nanosheets. Analytical Chemistry, 2022, 94, 16345-16352.	3.2	16
573	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
574	Metal–organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chemical Communications, 2023, 59, 836-851.	2.2	4
575	In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. Journal of Membrane Science, 2023, 668, 121267.	4.1	10
576	Boosting Photocatalytic Hydrogen Peroxide Production from Oxygen and Water Using a Hafnium-Based Metal–Organic Framework with Missing-Linker Defects and Nickel Single Atoms. ACS Catalysis, 2022, 12, 14825-14835.	5 . 5	22
577	Co-MOFs as Emerging Pulse Modulators for Femtosecond Ultrafast Fiber Laser. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 53971-53980.	4.0	9
578	Free-standing polymer-metal-organic framework membrane with high proton conductivity and water stability. Nano Research, 2023, 16, 7950-7957.	5.8	1
579	3,11â€Diaminodibenzo[<i>a,j</i>]phenazine: Synthesis, Properties, and Applications to Tröger's Baseâ€Forming Ladder Polymerization. Chemistry - A European Journal, 2023, 29, .	1.7	1
580	Efficient Strategy for U(VI) Photoreduction: Simultaneous Construction of U(VI) Confinement Sites and Water Oxidation Sites. ACS Applied Materials & Samp; Interfaces, 2023, 15, 1063-1072.	4.0	9
581	Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine <i>Bis</i> -Urea Macrocycles. Macromolecules, 2022, 55, 11013-11022.	2.2	4
582	Protection against Chemical Warfare Agents and Biological Threats Using Metal–Organic Frameworks as Active Layers. Accounts of Materials Research, 2023, 4, 168-179.	5.9	6
583	The Properties of Microwave-Assisted Synthesis of Metal–Organic Frameworks and Their Applications. Nanomaterials, 2023, 13, 352.	1.9	28

#	Article	IF	CITATIONS
584	Metal $\hat{a}\in$ Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics, 2023, 15, 274.	2.0	15
585	Perovskite solar cells: Li–TFSI and <i>t</i> -BP-based chemical dopant engineering in spiro-OMeTAD. Journal of Materials Chemistry A, 2023, 11, 2544-2567.	5.2	12
586	Uncertainty in Composite Membranes: From Defect Engineering to Film Processing. Journal of the American Chemical Society, 2023, 145, 830-840.	6.6	12
587	Flexible fluorescent metal-organic frameworks towards highly stable optical fibers and biocompatible cell platforms. Science China Materials, 2023, 66, 1659-1669.	3.5	1
588	ZnFe2O4/ZrO2/NaX zeolite nanocomposite catalyst: elaboration and its application for the removal of dimethyl 4-nitrophenyl phosphate (DMNP) chemical nerve agent simulant from water solution. Research on Chemical Intermediates, 0, , .	1.3	О
589	Metal-Organic Frameworks and Their Derived Structures for Biomass Upgrading. , 2023, , 184-255.		0
590	Biomedically-relevant metal organic framework-hydrogel composites. Biomaterials Science, 2023, 11, 2661-2677.	2.6	10
591	Controlling the Output Performance of Triboelectric Nanogenerator Through Filling Isostructural Metal–Organic Frameworks With Varying Functional Groups. Advanced Materials Technologies, 2023, 8, .	3.0	8
592	Electrospray-on-Electrospun Breathable, Biodegradable, and Robust Nanofibrous Membranes with Photocatalytic Bactericidal Activity. ACS Applied Nano Materials, 2023, 6, 1828-1838.	2.4	13
593	Mixing ligands to enhance gas uptake in polyMOFs. Molecular Systems Design and Engineering, 0, , .	1.7	2
594	A rational design of functional porous frameworks for electrocatalytic CO ₂ reduction reaction. Chemical Society Reviews, 2023, 52, 1382-1427.	18.7	48
595	Three isostructural MOFs based on different metal cations: proton conductivities and SC–SC transformation leading to magnetic changes. CrystEngComm, 2023, 25, 2755-2766.	1.3	2
596	Hierarchical Cu-MOF hollow nanowire modified copper mesh for efficient antibacterial PM filtration. Inorganic Chemistry Frontiers, 2023, 10, 2457-2465.	3.0	2
597	Fabrication of PA-PEI-MOF303(Al) by Stepwise Impregnation Layer-by-Layer Growth for Highly Efficient Removal of Ammonia. Nanomaterials, 2023, 13, 727.	1.9	1
598	Rewritable Paper Based on Layered Metal–Organic Frameworks with NIRâ€Triggered Reversible Color Switching. Advanced Optical Materials, 2023, 11, .	3.6	6
599	MOF-derived one-dimensional Ru/Mo co-doped Co3O4 hollow microtubes for high-performance triethylamine sensing. Sensors and Actuators B: Chemical, 2023, 383, 133583.	4.0	10
600	N-plasma modulation for boosting electromagnetic wave absorption behavior of MoO3 ceramic based on non-metallic doping. Materialia, 2023, 28, 101727.	1.3	1
601	Engineering particles for sensing applications via in-situ synthesizing carbon dots@SiO2 photonic crystals. Chemical Engineering Journal, 2023, 465, 142851.	6.6	5

#	Article	IF	CITATIONS
602	MOF based composites with engineering aspects and morphological developments for photocatalytic CO2 reduction and hydrogen production: A comprehensive review. Journal of Environmental Chemical Engineering, 2023, 11, 109408.	3.3	23
603	A rapid self-healing glassy polymer/metal–organic-framework hybrid membrane at room temperature. Dalton Transactions, 2023, 52, 3148-3157.	1.6	0
604	In Situ Embedding Hydrogenâ€Bonded Organic Frameworks Nanocrystals in Electrospinning Nanofibers for Ultrastable Broadâ€Spectrum Antibacterial Activity. Advanced Functional Materials, 2023, 33, .	7.8	23
605	Stable and high-flux polyacrylonitrile/hafnium phosphonate nanofibrous membranes for efficient removal of actinides from strong acidic solutions. Journal of Environmental Chemical Engineering, 2023, 11, 109619.	3.3	5
606	Effect of Pyrolysis Conditions on the MOFs-Derived Zinc-Based Catalysts in Acetylene Acetoxylation. Catalysts, 2023, 13, 532.	1.6	1
607	Removal of metals from water using MOF-based composite adsorbents. Environmental Science: Water Research and Technology, 2023, 9, 1305-1330.	1.2	8
608	Thermal Transformation of Polyacrylonitrile Accelerated by the Formation of Ultrathin Nanosheets in a Metal–Organic Framework. ACS Macro Letters, 2023, 12, 415-420.	2.3	2
609	Nanofluidic membrane for confined ion transport: From uniform to composite strategy. Materials Today, 2023, 65, 189-206.	8.3	3
610	Ratiometric Luminescent Thermometer Based on the Lanthanide Metal–Organic Frameworks by Thermal Curing. ACS Applied Materials & Interfaces, 2023, 15, 18114-18124.	4.0	12
611	Metalloporphyrin-Based Metal–Organic Frameworks for Photocatalytic Carbon Dioxide Reduction: The Influence of Metal Centers. Processes, 2023, 11, 1042.	1.3	6
612	Hierarchically porous ZIF-67/chitosan beads with high surface area and strengthened mechanical properties: Application to CO2 storage. Materials Today Sustainability, 2023, 22, 100394.	1.9	5
613	A customized MOF-polymer composite for rapid gold extraction from water matrices. Science Advances, 2023, 9, .	4.7	18
614	MOF-derived nanocarbon materials loaded with bimetallic sulfides as cathode catalysts for zinc–air batteries. New Journal of Chemistry, 2023, 47, 9870-9878.	1.4	2
637	MOFs meet membrane: application in water treatment and separation. Materials Chemistry Frontiers, 2023, 7, 5140-5170.	3.2	2
649	Covalent connections between metal–organic frameworks and polymers including covalent organic frameworks. Chemical Society Reviews, 2023, 52, 6379-6416.	18.7	7
650	Metal–Organic Framework Nanocomposites. , 2023, , 80-101.		0
655	Advancing metal–organic frameworks' materials chemistry. Advances in Inorganic Chemistry, 2023, , 69-118.	0.4	0
665	Introduction to Metal–Organic Framework Sponges and Their Synthetic and Functionalization Strategies. , 2023, , 187-218.		0

Article IF Citations