Live birth derived from oocyte spindle transfer to preve

Reproductive BioMedicine Online 34, 361-368 DOI: 10.1016/j.rbmo.2017.01.013

Citation Report

#	Article	IF	CITATIONS
1	Inherited eye-related disorders due to mitochondrial dysfunction. Human Molecular Genetics, 2017, 26, R12-R20.	2.9	43
2	Novel reproductive technologies to prevent mitochondrial disease. Human Reproduction Update, 2017, 23, 501-519.	10.8	59
3	First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation. Reproductive BioMedicine Online, 2017, 34, 333-336.	2.4	49
4	Futuristic Look at Genetic and Birth Defect Diagnoses and Treatments. Clinical Obstetrics and Gynecology, 2017, 60, 867-877.	1.1	0
5	Mitochondrial replacement techniques or therapies (MRTs) to improve embryo development and to prevent mitochondrial disease transmission. Journal of Genetics and Genomics, 2017, 44, 371-374.	3.9	14
6	Genetic affinity and the right to â€~three-parent IVF'. Journal of Assisted Reproduction and Genetics, 2017, 34, 1577-1580.	2.5	13
7	Mitochondrial Replacement Techniques: Remaining Ethical Challenges. Cell Stem Cell, 2017, 21, 301-304.	11.1	13
8	Oocyte spindle transfer for prevention of mitochodrial disease: the question of membrane fusion technique. Reproductive BioMedicine Online, 2017, 35, 432.	2.4	3
9	Response: First birth following spindle transfer - should we stay or should we go?. Reproductive BioMedicine Online, 2017, 35, 546-547.	2.4	3
10	First birth following spindle transfer. Reproductive BioMedicine Online, 2017, 35, 542-543.	2.4	11
11	Response from the Editors: First birth following spindle transfer. Reproductive BioMedicine Online, 2017, 35, 548.	2.4	2
12	Response: First birth following spindle transfer. Reproductive BioMedicine Online, 2017, 35, 544-545.	2.4	4
13	Purifying selection on mitochondrial DNA in maturing oocytes: implication for mitochondrial replacement therapy. Human Reproduction, 2017, 32, 1948-1950.	0.9	2
14	Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nature Biotechnology, 2017, 35, 1059-1068.	17.5	87
15	Understanding Mitochondrial Polymorphisms in Cancer. Cancer Research, 2017, 77, 6051-6059.	0.9	35
16	Leber hereditary optic neuropathy. Current Opinion in Ophthalmology, 2017, 28, 403-409.	2.9	48
17	Recent developments in genetics and medically-assisted reproduction: from research to clinical applicationsâ€â€¡. Human Reproduction Open, 2017, 2017, hox015.	5.4	11
18	When replacement becomes reversion. Nature Biotechnology, 2017, 35, 1012-1015.	17.5	2

#	Article	IF	CITATIONS
20	Article Commentary: Mitochondrial Replacement Techniques: Genetic Relatedness, Gender Implications, and Justice. , 2017, 1, 1-6.	0.8	3
21	Genetic details of controversial 'three-parent baby' revealed. Nature, 2017, 544, 17-18.	27.8	36
22	Experience from the First Live-Birth Derived From Oocyte Nuclear Transfer as a Treatment Strategy for Mitochondrial Diseases. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2017, 11, .	0.1	1
23	The current landscape for the treatment of mitochondrial disorders. Journal of Genetics and Genomics, 2018, 45, 71-77.	3.9	7
24	Chief editor's 2017 annual report. Reproductive BioMedicine Online, 2018, 36, 245-249.	2.4	2
25	Mitochondrial manipulation in fertility clinics: Regulation and responsibility. Reproductive Biomedicine and Society Online, 2018, 5, 93-109.	1.8	29
26	Mitochondrial DNA selection in human germ cells. Nature Cell Biology, 2018, 20, 118-120.	10.3	6
27	Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE. European Journal of Human Genetics, 2018, 26, 450-470.	2.8	39
28	Scientific and Ethical Issues in Mitochondrial Donation. New Bioethics, 2018, 24, 57-73.	1.1	25
29	Preventing Mitochondrial Diseases: Embryo-Sparing Donor-Independent Options. Trends in Molecular Medicine, 2018, 24, 449-457.	6.7	18
30	Germline Modification and Policymaking: The Relationship between Mitochondrial Replacement and Gene Editing. New Bioethics, 2018, 24, 74-94.	1.1	6
31	The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive BioMedicine Online, 2018, 36, 686-697.	2.4	75
32	Maqasid al-Shariah as a Complementary Framework for Conventional Bioethics: Application in Malaysian Assisted Reproductive Technology (ART) Fatwa. Science and Engineering Ethics, 2018, 24, 1493-1502.	2.9	3
33	Management of Leigh syndrome: Current status and new insights. Clinical Genetics, 2018, 93, 1131-1140.	2.0	18
34	Recent developments in genetics and medically assisted reproduction: from research to clinical applications. European Journal of Human Genetics, 2018, 26, 12-33.	2.8	76
35	Responsible innovation in human germline gene editing. Background document to the recommendations of ESHG and ESHREâ€â€¡. Human Reproduction Open, 2018, 2018, hox024.	5.4	9
36	In Vitro Fertilization. , 2018, , .		0
38	Biparental Inheritance of Mitochondrial DNA in Humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13039-13044.	7.1	349

	CITATION	n Report	
#	Article	IF	CITATIONS
40	Presuming the Promotion of the Common Good by Large-Scale Health Research. , 0, , 155-182.		1
41	Detection of Innate and Artificial Mitochondrial DNA Heteroplasmy by Massively Parallel Sequencing: Considerations for Analysis. Journal of Korean Medical Science, 2018, 33, e337.	2.5	5
42	Stem Cell-Derived Gametes and Uterus Transplants. , 0, , 37-51.		0
43	Mexico and mitochondrial replacement techniques: what a mess. British Medical Bulletin, 2018, 128, 97-107.	6.9	4
44	Towards a therapy for mitochondrial disease: an update. Biochemical Society Transactions, 2018, 46, 1247-1261.	3.4	46
45	Mitochondrial genetic medicine. Nature Genetics, 2018, 50, 1642-1649.	21.4	226
46	Ethics of Mitochondrial Gene Replacement Therapy. , 2018, , 31-53.		2
47	A systematic review and meta-analysis reveals pervasive effects of germline mitochondrial replacement on components of health. Human Reproduction Update, 2018, 24, 519-534.	10.8	42
48	Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays in Biochemistry, 2018, 62, 455-465.	4.7	35
49	The 40th anniversary of human IVF: time to celebrate and time to reflect. Reproduction, 2018, 156, E1-E3.	2.6	2
50	The need for donor consent in mitochondrial replacement. Journal of Medical Ethics, 2018, 44, 825-829.	1.8	4
52	Narrating the First "Three-Parent Baby― The Initial Press Reactions From the United Kingdom, the United States, and Mexico. Science Communication, 2018, 40, 419-441.	3.3	20
53	Frankenstein and the Question of Children's Rights After Human Germline Genetic Modification. , 2018, , 9-24.		0
54	In Vitro Production of (Farm) Animal Embryos. , 2018, , 269-304.		1
55	Mitochondrial medicine in the omics era. Lancet, The, 2018, 391, 2560-2574.	13.7	197
56	Mitochondrial replacement therapy. Current Opinion in Obstetrics and Gynecology, 2018, 30, 217-222.	2.0	2
57	Assisted Reproduction. , 2019, , 779-822.e16.		5
58	Gamete and Embryo Manipulation. , 2019, , 823-856.e14.		2

#	Article	IF	CITATIONS
59	Gas6 is a reciprocal regulator of mitophagy during mammalian oocyte maturation. Scientific Reports, 2019, 9, 10343.	3.3	11
60	Overgrowth of mice generated from postovulatoryâ€aged oocyte spindles. FASEB BioAdvances, 2019, 1, 393-403.	2.4	5
61	New Frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reproductive Biology and Endocrinology, 2019, 17, 55.	3.3	33
62	Estimating Demand for Germline Genome Editing: An <i>In Vitro</i> Fertilization Clinic Perspective. CRISPR Journal, 2019, 2, 304-315.	2.9	13
63	Comparative analysis of different nuclear transfer techniques to prevent the transmission of mitochondrial DNA variants. Molecular Human Reproduction, 2019, 25, 797-810.	2.8	11
64	Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, 2019, , .	1.6	6
65	Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope. Journal of Assisted Reproduction and Genetics, 2019, 36, 1781-1785.	2.5	4
66	Should Long-Term Follow-up Post-Mitochondrial Replacement be Left up to Physicians, Parents, or Offspring?. New Bioethics, 2019, 25, 318-331.	1.1	7
67	Human <i>in vitro</i> fertilisation and developmental biology: a mutually influential history. Development (Cambridge), 2019, 146, .	2.5	18
68	Mitochondria and reproduction: possibilities for testing and treatment. Panminerva Medica, 2019, 61, 82-96.	0.8	9
69	Are we ready for genome editing in human embryos for clinical purposes?. European Journal of Medical Genetics, 2019, 62, 103682.	1.3	10
71	Reproductive Options for Women with Mitochondrial Disease. , 2019, , 371-382.		4
72	A short history of in vitro fertilization (IVF). International Journal of Developmental Biology, 2019, 63, 83-92.	0.6	17
73	Mitochondrial DNA: Structure, Genetics, Replication and Defects. , 2019, , 127-152.		0
74	Mitochondrial Medicine: A Historical Point of View. , 2019, , 1-18.		0
75	Mitochondrial replacement therapy. , 2019, , 177-184.		1
76	Exercise and the Mitochondria. , 2019, , 23-48.		0
77	Preimplantation Genetic Testing. , 2019, , 161-173.		Ο

#	Article	IF	CITATIONS
78	Current Controversies in Prenatal Diagnosis 3: Gene editing should replace embryo selection following PGD. Prenatal Diagnosis, 2019, 39, 344-350.	2.3	8
79	Leber Hereditary Optic Neuropathy—Light at the End of the Tunnel?. Asia-Pacific Journal of Ophthalmology, 2019, 7, 242-245.	2.5	18
81	Mitochondria as a tool for oocyte rejuvenation. Fertility and Sterility, 2019, 111, 219-226.	1.0	88
82	Treatment strategies for Leber hereditary optic neuropathy. Current Opinion in Neurology, 2019, 32, 99-104.	3.6	27
83	Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction. Advances in Anatomy, Embryology and Cell Biology, 2019, 231, 75-103.	1.6	11
84	Overcoming bioethical, legal, and hereditary barriers to mitochondrial replacement therapy in the USA. Journal of Assisted Reproduction and Genetics, 2019, 36, 383-393.	2.5	22
85	Treatment of Leber Hereditary Optic Neuropathy. , 2019, , 201-207.		0
86	Mitochondrial Biology and Medicine. , 2019, , 267-322.		2
87	Tri-parent Baby Technology and Preservation of Lineage: An Analysis from the Perspective of Maqasid al-Shari'ah Based Islamic Bioethics. Science and Engineering Ethics, 2019, 25, 129-142.	2.9	3
88	Mitochondria and Their Role in Human Reproduction. DNA and Cell Biology, 2020, 39, 1370-1378.	1.9	14
89	Regulating Preimplantation Genetic Testing across the World: A Comparison of International Policy and Ethical Perspectives. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036681.	6.2	23
90	Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Research Reviews, 2020, 63, 101168.	10.9	83
91	Leber hereditary optic neuropathy—new insights and old challenges. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 2461-2472.	1.9	24
92	Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All―and "Precision Medicine― Strategies. Pharmaceutics, 2020, 12, 1083.	4.5	44
93	Revising, Correcting, and Transferring Genes. American Journal of Bioethics, 2020, 20, 7-18.	0.9	23
94	Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet?. Cell Transplantation, 2020, 29, 096368972092615.	2.5	15
95	Mitochondrial disorders due to mutations in the mitochondrial genome. , 2020, , 401-413.		0
96	Improvement of early developmental competence of postovulatoryâ€aged oocytes using metaphase II spindle injection in mice. Reproductive Medicine and Biology, 2020, 19, 357-364.	2.4	6

#	Article	IF	Citations
97	Disruptive Synergy: Melding of Human Genetics and Clinical Assisted Reproduction. Cell Reports Medicine, 2020, 1, 100093.	6.5	4
98	Extraordinary claims require extraordinary evidence in asserted mtDNA biparental inheritance. Forensic Science International: Genetics, 2020, 47, 102274.	3.1	23
99	Mitochondrial genetics. , 2020, , 143-157.		72
100	Future technologies for preimplantation genetic applications. , 2020, , 255-269.		0
101	Estrategias de mejora de la fertilidad: preservación, rejuvenecimiento y células madre. Medicina Reproductiva Y EmbriologÃa ClÃnica, 2020, 7, 33-49.	0.1	0
102	The Regulation of Human Germline Genome Modification in Mexico. , 2020, , 129-152.		0
103	Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. Journal of Internal Medicine, 2020, 287, 634-644.	6.0	46
104	Listening to mother: Longâ€ŧerm maternal effects in mammalian development. Molecular Reproduction and Development, 2020, 87, 399-408.	2.0	16
105	Bioenergetics Consequences of Mitochondrial Transplantation in Cardiomyocytes. Journal of the American Heart Association, 2020, 9, e014501.	3.7	64
106	Between innovation and precaution: how did offspring safety considerations play a role in strategies of introducing new reproductive techniques?. Human Reproduction Open, 2020, 2020, hoaa003.	5.4	6
107	Mitochondrial Diseases: Hope for the Future. Cell, 2020, 181, 168-188.	28.9	243
108	Willing mothers: ectogenesis and the role of gestational motherhood. Journal of Medical Ethics, 2020, 46, 320-327.	1.8	4
109	Germline nuclear transfer in mice may rescue poor embryo development associated with advanced maternal age and early embryo arrest. Human Reproduction, 2020, 35, 1562-1577.	0.9	17
110	Clinical Therapeutic Management of Human Mitochondrial Disorders. Pediatric Neurology, 2020, 113, 66-74.	2.1	6
111	Genome transfer for the prevention of female infertility caused by maternal gene mutation. Journal of Genetics and Genomics, 2020, 47, 311-319.	3.9	9
112	Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes, 2020, 11, 192.	2.4	34
113	The special considerations of gene therapy for mitochondrial diseases. Npj Genomic Medicine, 2020, 5, 7.	3.8	35
114	Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in Cryptococcus neoformans. Scientific Reports, 2020, 10, 2468.	3.3	9

#	Article	IF	CITATIONS
115	The Regulation of Mitochondrial Replacement Techniques Around the World. Annual Review of Genomics and Human Genetics, 2020, 21, 565-586.	6.2	28
116	â€~Genes versus children': if the goal is parenthood, are we using the optimal approach?. Human Reproduction, 2020, 35, 5-11.	0.9	10
117	Molecular basis of Leigh syndrome: a current look. Orphanet Journal of Rare Diseases, 2020, 15, 31.	2.7	62
118	Can reproductive genetic manipulation save lives?. Medicine, Health Care and Philosophy, 2020, 23, 381-386.	1.8	7
119	Pathophysiology of Conversion to Symptomatic Leber Hereditary Optic Neuropathy and Therapeutic Implications: a Review. Current Neurology and Neuroscience Reports, 2020, 20, 11.	4.2	11
120	Therapeutic Options in Hereditary Optic Neuropathies. Drugs, 2021, 81, 57-86.	10.9	44
121	Mitochondrial replacement by genome transfer in human oocytes: Efficacy, concerns, and legality. Reproductive Medicine and Biology, 2021, 20, 53-61.	2.4	11
122	A retrospective study on the efficacy of prenatal diagnosis for pregnancies at risk of mitochondrial DNA disorders. Genetics in Medicine, 2021, 23, 720-731.	2.4	5
123	Germline transmission of donor, maternal and paternal mtDNA in primates. Human Reproduction, 2021, 36, 493-505.	0.9	22
124	Current progress with mammalian models of mitochondrial <scp>DNA</scp> disease. Journal of Inherited Metabolic Disease, 2021, 44, 325-342.	3.6	19
125	Mitochondria and Diseases. , 2021, , 139-156.		0
126	Therapies Approaches in Mitochondrial Diseases. , 2021, , 273-305.		0
127	Mitochondrial replacement therapy: Genetic counselors' experiences, knowledge, and opinions. Journal of Genetic Counseling, 2021, 30, 828-837.	1.6	2
128	Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life, 2021, 11, 76.	2.4	4
130	Mitochondrial DNA Replacement Techniques to Prevent Human Mitochondrial Diseases. International Journal of Molecular Sciences, 2021, 22, 551.	4.1	11
131	Mitochondrial enrichment in infertile patients: a review of different mitochondrial replacement therapies. Therapeutic Advances in Reproductive Health, 2021, 15, 263349412110235.	2.1	9
132	Is three-parent IVF the answer to preventing mitochondrial defects?. Biomedical Research Journal, 2021, 8, 9.	0.5	0
133	Ovarian Aging: Molecular Mechanisms and Medical Management. International Journal of Molecular Sciences, 2021, 22, 1371.	4.1	37

#	Article	IF	CITATIONS
134	Prospects of Germline Nuclear Transfer in Women With Diminished Ovarian Reserve. Frontiers in Endocrinology, 2021, 12, 635370.	3.5	14
136	Mitochondrial Hepatopathies. , 2021, , 628-652.		0
137	Current and Emerging Clinical Treatment in Mitochondrial Disease. Molecular Diagnosis and Therapy, 2021, 25, 181-206.	3.8	36
138	Mitochondria: emerging therapeutic strategies for oocyte rescue. Reproductive Sciences, 2022, 29, 711-722.	2.5	18
139	Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell, 2021, 184, 1561-1574.	28.9	19
140	Maternal spindle transfer for mitochondrial disease: lessons to be learnt before extending the method to other conditions?. Human Fertility, 2022, 25, 838-847.	1.7	4
141	Twenty-five years after Dolly $\hat{a} \in$ How far have we come?. Reproduction, 2021, 162, F1-F10.	2.6	3
142	Redesigning Humanity. , 2021, , 264-286.		0
143	Leber Hereditary Optic Neuropathy: Review of Treatment and Management. Frontiers in Neurology, 2021, 12, 651639.	2.4	31
144	Potential roles of experimental reproductive technologies in infertile women with diminished ovarian reserve. Journal of Assisted Reproduction and Genetics, 2021, 38, 2507-2517.	2.5	9
145	Assignment of responsibility for creating persons using germline genome-editing. Gene and Genome Editing, 2021, 1, 100006.	2.6	0
146	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	48
147	The Present and Future of Mitochondrial-Based Therapeutics for Eye Disease. Translational Vision Science and Technology, 2021, 10, 4.	2.2	7
148	Electrofusion Stimulation Is an Independent Factor of Chromosome Abnormality in Mice Oocytes Reconstructed via Spindle Transfer. Frontiers in Endocrinology, 2021, 12, 705837.	3.5	4
149	Leigh Syndrome: A Tale of Two Genomes. Frontiers in Physiology, 2021, 12, 693734.	2.8	43
150	Exploration of the Cytoplasmic Function of Abnormally Fertilized Embryos via Novel Pronuclear-Stage Cytoplasmic Transfer. International Journal of Molecular Sciences, 2021, 22, 8765.	4.1	1
151	Mitochondrial disease: Replace or edit?. Science, 2021, 373, 1200-1201.	12.6	9
152	Mother's curse on conservation: assessing the role of mtDNA in sexâ€specific survival differences in exâ€situ breeding programs. Animal Conservation, 2022, 25, 342-351.	2.9	1

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
153	Mitochondria: Their relevance during oocyte ageing. Ageing Research Reviews, 2021, 70, 101378.	10.9	80
154	Treatment and Management of Hereditary Metabolic Myopathies. , 2022, , 572-594.		0
156	Advances Towards Therapeutic Approaches for mtDNA Disease. Advances in Experimental Medicine and Biology, 2019, 1158, 217-246.	1.6	5
157	The Molecularised Me. , 0, , 245-260.		3
159	Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction, 2019, 157, R159-R179.	2.6	97
160	Circumvention Medical Tourism and Cutting Edge Medicine: The Case of Mitochondrial Replacement Therapy. Indiana Journal of Global Legal Studies, 2018, 25, 439.	0.2	7
161	Stem cells and reproduction. BMB Reports, 2019, 52, 482-489.	2.4	6
162	Three-parent babies: Mitochondrial replacement therapies. Jornal Brasileiro De Reproducao Assistida, 2020, 24, 189-196.	0.7	11
163	Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice. ELife, 2020, 9, .	6.0	23
164	Human Reproduction in the Twenty-First Century. Journal of Posthuman Studies: Philosophy, Technology, Media, 2017, 1, 205.	0.3	1
165	Personalised Medicine, Individual Choice and the Common Good. , 2018, , .		3
166	Human mitochondrial genome surgery. Genes and Cells, 2018, 13, 32-37.	0.2	0
167	Human zygote reconstruction by spindle, polar body or pronuclear transfer to treat repeated embryo fragmentation or embryo developmental arrest: The future is now. Journal of Gynecological Research and Obstetrics, 0, , 049-051.	0.3	0
169	A National Portrait. , 2020, , 1-33.		0
170	Genetik menschlicher Erkrankungen. , 2020, , 725-812.		0
171	MITOCHONDRIAL REPLACEMENT THERAPY: FUTURE OR PRESENT?. Reproduktivnaâ Medicina, 2020, , 7-12.	0.1	2
173	Mitochondrial donation: is Australia ready?. Medical Journal of Australia, 2022, 216, 118-121.	1.7	3
174	Current progress in the therapeutic options for mitochondrial disorders Physiological Research, 2020, 69, 967-994.	0.9	3

#	Article	IF	CITATIONS
175	Diagnostische Verfahren. , 2020, , 551-631.		0
177	Combating the Trade in Organs. , 0, , 77-112.		1
178	The need for regulation in the practice of human assisted reproduction in Mexico. An overview of the regulations in the rest of the world. Reproductive Health, 2021, 18, 241.	3.1	2
179	Germline Nuclear Transfer Technology to Overcome Mitochondrial Diseases and Female Infertility. , 2021, , 141-147.		Ο
181	Effects of intracytoplasmic sperm injection timing and fertilization methods on the development of bovine spindle transferred embryos. Theriogenology, 2022, 180, 63-71.	2.1	4
182	Human germline nuclear transfer to overcome mitochondrial disease and failed fertilization after ICSI. Journal of Assisted Reproduction and Genetics, 2022, 39, 609-618.	2.5	11
183	Therapeutic options for premature ovarian insufficiency: an updated review. Reproductive Biology and Endocrinology, 2022, 20, 28.	3.3	25
184	Enucleated oocyte donation: first for infertility treatment, then for mitochondrial diseases. Journal of Assisted Reproduction and Genetics, 2022, 39, 605-608.	2.5	6
185	Horizontal mtDNA transfer between cells is common during mouse development. IScience, 2022, 25, 103901.	4.1	7
186	The history of assisted reproductive technologies: from prohibition to recognition. History of Science and Technology, 2021, 11, 315-328.	0.4	1
187	Ethics in fertility and pregnancy management. , 2022, , 479-492.		0
188	Artificial Oocyte: Development and Potential Application. Cells, 2022, 11, 1135.	4.1	3
189	When is the right time to stop autologous inÂvitro fertilization treatment in poor responders?. Fertility and Sterility, 2022, 117, 682-687.	1.0	2
190	The benefits, risks and alternatives of mitochondrial replacement therapy – bringing proportionality into public policy debate. Clinical Ethics, 2022, 17, 368-376.	0.7	1
191	Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nature Biomedical Engineering, 2022, 6, 339-350.	22.5	25
192	Altmetric and bibliometric analysis of influential articles in reproductive biology, 1980–2019. Reproductive BioMedicine Online, 2022, 45, 384-390.	2.4	3
193	Hereditary Optic Neuropathies. , 2022, , 4575-4607.		0
194	Ultrastructural Evaluation of the Human Oocyte at the Germinal Vesicle Stage during the Application of Assisted Reproductive Technologies. Cells, 2022, 11, 1636.	4.1	4

#	Article	IF	CITATIONS
195	State of the art of nuclear transfer technologies for assisting mammalian reproduction. Molecular Reproduction and Development, 2022, 89, 230-242.	2.0	6
196	Cytoplasmic streaming induced by intracytoplasmic spindle translocation contributes to developmental competence through mitochondrial distribution in mouse oocytes. F&S Science, 2022, , .	0.9	0
199	Role of Mitochondria Transfer in Infertility: A Commentary. Cells, 2022, 11, 1867.	4.1	7
200	A synopsis of the 2021 International Society of Fertility Preservation bi-annual meeting. Journal of Assisted Reproduction and Genetics, 0, , .	2.5	0
201	Noninvasive autologous mitochondria transport improves the quality and developmental potential of oocytes from aged mice. F&S Science, 2022, , .	0.9	1
202	An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines, 2022, 10, 1689.	3.2	6
203	Single-cell multiomics analyses of spindle-transferred human embryos suggest a mostly normal embryonic development. PLoS Biology, 2022, 20, e3001741.	5.6	9
204	History of Natural Cycle and Minimal Stimulation IVF. , 2022, , 15-28.		0
205	United States—Mini IVF®. , 2022, , 259-260.		0
206	Reprogenetic Technologies and the Valuing of the Biogenetic Family. Muslim World, The, 2022, 112, 353-366.	0.3	1
207	The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Current Neuropharmacology, 2023, 21, 1100-1116.	2.9	5
208	Mitochondrial donation is now possible: science must now ensure that it is safe. Internal Medicine Journal, 2022, 52, 1663-1665.	0.8	1
209	Mitochondrial aggregation caused by cytochalasin B compromises the efficiency and safety of three-parent embryo. Molecular Human Reproduction, 2022, 28, .	2.8	1
210	From Sex for Reproduction to Reproduction without Sex. , 2022, , 1-7.		0
211	Is the "E―being removed from Reproductive Endocrinology to be replaced by a "G―for Genetics?. Fertility and Sterility, 2022, 118, 1036-1043.	1.0	0
212	The mitochondrial challenge: Disorders and prevention strategies. BioSystems, 2023, 223, 104819.	2.0	1
213	Ovarian aging: mechanisms and intervention strategies. Medical Review, 2023, 2, 590-610.	1.2	5
214	Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes, 2022, 13, 2151.	2.4	3

	CITATION	REPORT	
#	ARTICLE	IF	CITATIONS
216	Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation?. Biological Reviews, 2023, 98, 1225-1249.	10.4	1
218	My Genome, My Right. , 0, , 183-199.		0
219	Personalised Medicine and the Politics of Human Nuclear Genome Transfer. , 0, , 17-36.		0
222	I Run, You Run, We Run. , 0, , 226-244.		0
223	Personalising Future Health Risk through â€~Biological Insurance'. , 0, , 52-76.		0
224	†The Best Me I Can Possibly Be'. , 0, , 200-225.		0
225	When There Is No Cure. , 0, , 113-132.		0
226	Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomedicine and Pharmacotherapy, 2023, 159, 114268.	5.6	15
227	Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. International Journal of Molecular Sciences, 2023, 24, 2738.	4.1	11
228	Reproductive options in mitochondrial disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 207-228.	1.8	3
229	Genome transfer technique for bovine embryo production using the metaphase plate and polar body. Journal of Assisted Reproduction and Genetics, 0, , .	2.5	0
230	Modeling mitochondrial <scp>DNA</scp> diseases: from base editing to pluripotent stemâ€cellâ€derived organoids. EMBO Reports, 2023, 24, .	4.5	7
231	Characterization of ovarian tissue oocytes from transgender men reveals poor calcium release and embryo development, which might be overcome by spindle transfer. Human Reproduction, 2023, 38, 1135-1150.	0.9	4
232	Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods in Molecular Biology, 2023, , 83-104.	0.9	1
233	On Current Change Trends in the Problematic Field of the Philosophy and Technology. Science Governance and Scientometrics, 2023, 18, 10-29.	0.2	0
234	Genealogical obscurement: mitochondrial replacement techniques and genealogical research. Journal of Medical Ethics, 0, , jme-2022-108659.	1.8	0
235	Mitochondria in Human Fertility and Infertility. International Journal of Molecular Sciences, 2023, 24, 8950.	4.1	3
236	Exonic genetic variants associated with unexpected fertilization failure and zygotic arrest after ICSI: a systematic review. Zygote, 2023, 31, 316-341.	1.1	1

	ON L		-
AII	ONE	Repor	

#	Article	IF	CITATIONS		
237	Therapeutic potential of engineering the mitochondrial genome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166804.	3.8	1		
238	Nuclear transfer improves the developmental potential of embryos derived from cytoplasmic deficient oocytes. IScience, 2023, 26, 107299.	4.1	0		
239	Mitochondrial Replacement Therapy: An Islamic Perspective. Journal of Bioethical Inquiry, 0, , .	1.5	1		
240	Novel economical, accurate, sensitive, single-cell analytical method for mitochondrial DNA quantification in mtDNA mutation carriers. Journal of Assisted Reproduction and Genetics, 0, , .	2.5	0		
241	Prevention and Management of Ovarian Aging. , 2023, , 199-238.		0		
242	AMPK–FOXO–IP3R signaling pathway mediates neurological and developmental defects caused by mitochondrial DNA mutations. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1		
243	Preembryo: Medical, Moral, and Legal Aspects. Donald School Journal of Ultrasound in Obstetrics and Gynecology, 2023, 17, 217-222.	0.3	0		
244	Ethics of mitochondrial gene replacement therapy. , 2023, , 33-57.		0		
245	In-vitro-Produktion von Nutztier-Embryonen. , 2023, , 303-341.		0		
246	Significant decrease of maternal mitochondria carryover using optimized spindle-chromosomal complex transfer. PLoS Biology, 2023, 21, e3002313.	5.6	Ο		
247	Dissecting the roles of the nuclear and mitochondrial genomes in a mouse model of autoimmune diabetes. Diabetes, 0, , .	0.6	0		
248	Clinical Approaches for Mitochondrial Diseases. Cells, 2023, 12, 2494.	4.1	1		
249	19 å^©ç"`辅助生殖技æœ⁻é~»æ–线ç²ä½"疾病å'生ä͵Žé⊷ä¼çš"å•行性探è®". Scientia Sinica Vi taa , 2023, .				
250	Sirtuin 3-mediated deacetylation of superoxide dismutase 2 ameliorates sodium fluoride-induced mitochondrial dysfunction in porcine oocytes. Science of the Total Environment, 2024, 908, 168306.	8.0	0		
251	Aggregated chromosomes/chromatin transfer: a novel approach for mitochondrial replacement with minimal mitochondrial carryover: the implications of mouse experiments for human aggregated chromosome transfer. Molecular Human Reproduction, 2023, 29, .	2.8	0		
252	Regulatory and governance gaps for human genome editing in Mexico. Trends in Biotechnology, 2023, ,	9.3	0		
253	Pronuclear transfer rescues poor embryo development of <i>in vitro</i> -grown secondary mouse follicles. Human Reproduction Open, 2024, 2024, .	5.4	0		
254	What importance do donors and recipients attribute to the nuclear DNA-related genetic heritage of oocyte donation?. Human Reproduction, 2024, 39, 770-778.	0.9	Ο		

#	Article	IF	CITATIONS
255	Implications of Lawâ \in ^{IM} s Response to Mitochondrial Donation. Laws, 2024, 13, 20.	1.1	0