A framework for data-driven analysis of materials under curse of dimensionality

Computer Methods in Applied Mechanics and Engineering 320, 633-667

DOI: 10.1016/j.cma.2017.03.037

Citation Report

#	Article	IF	CITATIONS
1	Adaptive multiscale homogenization of the lattice discrete particle model for the analysis of damage and fracture in concrete. International Journal of Solids and Structures, 2017, 125, 50-67.	1.3	39
2	Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns. Scientific Reports, 2017, 7, 15259.	1.6	17
3	Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network. Polymers, 2017, 9, 519.	2.0	30
4	Computational analysis of particle reinforced viscoelastic polymer nanocomposites – statistical study of representative volume element. Journal of the Mechanics and Physics of Solids, 2018, 114, 55-74.	2.3	24
5	Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization. International Journal of Solids and Structures, 2018, 139-140, 174-188.	1.3	52
6	Modeling process-structure-property relationships for additive manufacturing. Frontiers of Mechanical Engineering, 2018, 13, 482-492.	2.5	64
7	From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber reinforced composites. Composite Structures, 2018, 189, 206-227.	3.1	30
8	Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques. Progress in Materials Science, 2018, 95, 1-41.	16.0	252
9	An uncertainty model of acoustic metamaterials with random parameters. Computational Mechanics, 2018, 62, 1023-1036.	2.2	35
10	Leveraging the nugget parameter for efficient Gaussian process modeling. International Journal for Numerical Methods in Engineering, 2018, 114, 501-516.	1.5	48
11	Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Computational Mechanics, 2018, 61, 521-541.	2.2	162
12	Uncertainty quantification in multiscale simulation of woven fiber composites. Computer Methods in Applied Mechanics and Engineering, 2018, 338, 506-532.	3.4	90
13	Estimating mechanical properties from spherical indentation using Bayesian approaches. Materials and Design, 2018, 147, 92-105.	3.3	61
14	De novo composite design based on machine learning algorithm. Extreme Mechanics Letters, 2018, 18, 19-28.	2.0	306
15	Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity. Computational Methods in Applied Sciences (Springer), 2018, , 221-242.	0.1	25
16	A continuum approach for the large strain finite element analysis of auxetic materials. International Journal of Mechanical Sciences, 2018, 135, 441-457.	3.6	21
17	Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Computer Methods in Applied Mechanics and Engineering, 2018, 330, 547-577.	3.4	115
18	The Effect of High-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-Formaldehyde Resin, and Nitrile Rubber Blend. Materials, 2018, 11, 2405.	1.3	10

#	Article	IF	Citations
19	Multi-Information Source Fusion and Optimization to Realize ICME: Application to Dual-Phase Materials. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	32
20	Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufacturing Letters, 2018, 18, 35-39.	1.1	110
21	Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering. Integrating Materials and Manufacturing Innovation, 2018, 7, 157-172.	1.2	205
22	Interdisciplinary Research on Designing Engineering Material Systems: Results From a National Science Foundation Workshop. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	11
23	Void nucleation in alloys with lamella particles under biaxial loadings. Extreme Mechanics Letters, 2018, 22, 42-50.	2.0	8
24	A micromechanicsâ€based inverse study for stochastic order reduction of elastic UD fiber reinforced composites analyses. International Journal for Numerical Methods in Engineering, 2018, 115, 1430-1456.	1.5	6
25	Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network. Polymers, 2018, 10, 644.	2.0	24
26	In situ TEM investigation on void coalescence in metallic materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 260-268.	2.6	14
27	Spatial distribution and orientation of nanotubes for suppression of stress concentrations optimized using genetic algorithm and finite element analysis. Materials and Design, 2018, 158, 136-146.	3.3	16
28	Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach. Japan Journal of Industrial and Applied Mathematics, 2018, 35, 1085-1101.	0.5	21
29	Homogenization coarse graining (HCG) of the lattice discrete particle model (LDPM) for the analysis of reinforced concrete structures. Engineering Fracture Mechanics, 2018, 197, 259-277.	2.0	23
30	Quasi-static analysis and multi-objective optimization for tape spring hinge. Structural and Multidisciplinary Optimization, 2019, 60, 2417-2430.	1.7	12
31	Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	42
32	High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 2019, 128, 105194.	2.8	133
33	Calibration of DEM material parameters to simulate stress-strain behaviour of unsaturated soils during uniaxial compression. Soil and Tillage Research, 2019, 194, 104303.	2.6	34
34	Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible. Advanced Materials, 2019, 31, e1904845.	11.1	154
35	Hysteretic Behavior of Random Particulate Composites by the Stochastic Finite Element Method. Materials, 2019, 12, 2909.	1.3	5
36	Data-Driven Microstructure Property Relations. Mathematical and Computational Applications, 2019, 24, 57.	0.7	3

#	ARTICLE A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization. Finite Elements in Analysis and Design, 2019, 165, 21-30.	IF 1.7	Citations
38	MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112587.	3.4	42
39	Design of a New N-Shape Composite Ultra-Thin Deployable Boom in the Post-Buckling Range Using Response Surface Method and Optimization. IEEE Access, 2019, 7, 129659-129665.	2.6	16
40	Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112594.	3.4	133
41	An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites. Computer Methods in Applied Mechanics and Engineering, 2019, 348, 97-138.	3.4	17
42	On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains. Computer Methods in Applied Mechanics and Engineering, 2019, 354, 783-801.	3.4	20
43	Nonlinear Computational Homogenization. Solid Mechanics and Its Applications, 2019, , 161-209.	0.1	5
45	A Data-Driven Multiscale Theory for Modeling Damage and Fracture of Composite Materials. Lecture Notes in Computational Science and Engineering, 2019, , 135-148.	0.1	3
46	Derivation of heterogeneous material laws via data-driven principal component expansions. Computational Mechanics, 2019, 64, 365-379.	2.2	53
47	General solution procedures to compute the stored energy density of conservative solids directly from experimental data. International Journal of Engineering Science, 2019, 141, 16-34.	2.7	8
48	An Artificial Neural Network Based Solution Scheme for Periodic Computational Homogenization of Electrostatic Problems. Mathematical and Computational Applications, 2019, 24, 40.	0.7	5
49	General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning. Computational Mechanics, 2019, 64, 1361-1374.	2.2	31
50	Learning slosh dynamics by means of data. Computational Mechanics, 2019, 64, 511-523.	2.2	27
51	Transfer learning of deep material network for seamless structure–property predictions. Computational Mechanics, 2019, 64, 451-465.	2.2	39
52	Exploring the 3D architectures of deep material network in data-driven multiscale mechanics. Journal of the Mechanics and Physics of Solids, 2019, 127, 20-46.	2.3	117
53	Self-consistent clustering analysis for multiscale modeling at finite strains. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 339-359.	3.4	53
54	Multiscale computational homogenization of woven composites from microscale to mesoscale using data-driven self-consistent clustering analysis. Composite Structures, 2019, 220, 760-768.	3.1	15

55	Deep learning–based inverse method for layout design. Structural and Multidisciplinary Optimization, 2019, 60, 527-536.	1.7	29
----	---	-----	----

#	Article	IF	CITATIONS
56	Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. PoliTO Springer Series, 2019, , .	0.3	0
57	Non-intrusive data learning based computational homogenization of materials with uncertainties. Computational Mechanics, 2019, 64, 807-828.	2.2	4
58	Structural-Genome-Driven computing for composite structures. Composite Structures, 2019, 215, 446-453.	3.1	40
59	Prediction of moisture saturation levels for vinylester composite laminates: A data-driven approach for predicting the behavior of composite materials. AIP Conference Proceedings, 2019, , .	0.3	1
60	Data-driven modeling and learning in science and engineering. Comptes Rendus - Mecanique, 2019, 347, 845-855.	2.1	150
61	Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26414-26420.	3.3	282
62	Image-based numerical prediction for effective thermal conductivity of heterogeneous materials: A quadtree based scaled boundary finite element method. International Journal of Heat and Mass Transfer, 2019, 128, 335-343.	2.5	22
63	Deep convolutional neural networks for eigenvalue problems in mechanics. International Journal for Numerical Methods in Engineering, 2019, 118, 258-275.	1.5	48
64	Data science for finite strain mechanical science of ductile materials. Computational Mechanics, 2019, 64, 33-45.	2.2	26
65	Datadriven HOPGD based computational vademecum for welding parameter identification. Computational Mechanics, 2019, 64, 47-62.	2.2	12
66	Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 735-753.	3.4	159
67	Machine learning materials physics: Surrogate optimization and multi-fidelity algorithms predict precipitate morphology in an alternative to phase field dynamics. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 666-693.	3.4	52
68	Wrapping dynamic analysis and optimization of deployable composite triangular rollable and collapsible booms. Structural and Multidisciplinary Optimization, 2019, 59, 1371-1383.	1.7	27
69	A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Computational Mechanics, 2019, 64, 307-321.	2.2	107
70	Hybrid constitutive modeling: data-driven learning of corrections to plasticity models. International Journal of Material Forming, 2019, 12, 717-725.	0.9	56
71	Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 216-241.	3.4	89
72	Variable selection using Gaussian process regression-based metrics for high-dimensional model approximation with limited data. Structural and Multidisciplinary Optimization, 2019, 59, 1439-1454.	1.7	20
	A deep material network for multiscale topology learning and accelerated poplinear modeling of		

#	Article	IF	Citations
74	Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Archives of Computational Methods in Engineering, 2020, 27, 105-134.	6.0	142
75	Efficient matrixized classification learning with separated solution process. Neural Computing and Applications, 2020, 32, 10609-10632.	3.2	0
76	Bayesian inference of non-linear multiscale model parameters accelerated by a Deep Neural Network. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112693.	3.4	38
77	A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics, A/Solids, 2020, 80, 103874.	2.1	115
78	Physics-based Deep Learning for Probabilistic Fracture Analysis of Composite Materials. , 2020, , .		2
79	Coiling and deploying dynamic optimization of a C-cross section thin-walled composite deployable boom. Structural and Multidisciplinary Optimization, 2020, 61, 1731-1738.	1.7	16
80	A deep learning–based method for the design of microstructural materials. Structural and Multidisciplinary Optimization, 2020, 61, 1417-1438.	1.7	66
81	Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112737.	3.4	113
82	Data-driven enhancement of fracture paths in random composites. Mechanics Research Communications, 2020, 103, 103443.	1.0	25
83	Data-driven fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113390.	3.4	69
84	Invited review: Machine learning for materials developments in metals additive manufacturing. Additive Manufacturing, 2020, 36, 101641.	1.7	61
85	Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys. Computer Methods in Applied Mechanics and Engineering, 2020, 371, 113281.	3.4	17
86	Auxetic orthotropic materials: Numerical determination of a phenomenological spline-based stored density energy and its implementation for finite element analysis. Computer Methods in Applied Mechanics and Engineering, 2020, 371, 113300.	3.4	8
87	Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 2020, 371, 113299.	3.4	107
88	Inverse-designed spinodoid metamaterials. Npj Computational Materials, 2020, 6, .	3.5	151
89	Machine Learning-Enabled Uncertainty Quantification for Modeling Structure–Property Linkages for Fatigue Critical Engineering Alloys Using an ICME Workflow. Integrating Materials and Manufacturing Innovation, 2020, 9, 376-393.	1.2	5
90	Parametric Study on the Homogenized Response of Woven Carbon Fibre Composites. , 2020, , .		2
91	Machine learning materials physics: Multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113362.	3.4	49

#	Article	IF	CITATIONS
92	A Machine Learning Approach to Reduce Dimensional Space in Large Datasets. IEEE Access, 2020, 8, 148181-148192.	2.6	4
93	Learning material law from displacement fields by artificial neural network. Theoretical and Applied Mechanics Letters, 2020, 10, 202-206.	1.3	15
94	Ply-drop design of non-conventional laminated composites using Bayesian optimization. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106136.	3.8	7
95	Finiteâ€Elementâ€Based Deepâ€Learning Model for Deformation Behavior of Digital Materials. Advanced Theory and Simulations, 2020, 3, 2000031.	1.3	23
96	Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework. Npj Computational Materials, 2020, 6, .	3.5	41
97	An intelligent nonlinear meta element for elastoplastic continua: deep learning using a new Time-distributed Residual U-Net architecture. Computer Methods in Applied Mechanics and Engineering, 2020, 366, 113088.	3.4	39
98	Topology optimization of 2D structures with nonlinearities using deep learning. Computers and Structures, 2020, 237, 106283.	2.4	108
99	A new data-driven topology optimization framework for structural optimization. Computers and Structures, 2020, 239, 106310.	2.4	34
100	Efficient multiscale modeling for woven composites based on self-consistent clustering analysis. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112929.	3.4	47
101	Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112913.	3.4	33
102	Multiobjective Optimization of Deployable Viscoelastic Tape Springs under Uncertainty. , 2020, , .		1
103	A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths. Computer Methods in Applied Mechanics and Engineering, 2020, 369, 113234.	3.4	97
104	Numerical prediction of effective properties for heterogeneous viscoelastic materials via a temporally recursive adaptive quadtree SBFEM. Finite Elements in Analysis and Design, 2020, 177, 103426.	1.7	6
105	Data analytics for the sustainable use of resources in hospitals: Predicting the length of stay for patients with chronic diseases. Information and Management, 2022, 59, 103282.	3.6	21
106	FEA-Net: A physics-guided data-driven model for efficient mechanical response prediction. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112892.	3.4	47
107	Probabilistic homogenization of hyper-elastic particulate composites with random interface. Composite Structures, 2020, 241, 112118.	3.1	13
108	A Statistical Framework for Generating Microstructures of Two-Phase Random Materials: Application to Fatigue Analysis. Multiscale Modeling and Simulation, 2020, 18, 21-43.	0.6	10
109	Soft computing approaches to homogenized properties of inclusion-modified concrete mixtures: Application to XLPE-modified concrete. Journal of Building Engineering, 2020, 29, 101161.	1.6	5

#	Article	IF	CITATIONS
110	Machine learning applications in polymer composites. AIP Conference Proceedings, 2020, , .	0.3	9
111	Learning constitutive relations from indirect observations using deep neural networks. Journal of Computational Physics, 2020, 416, 109491.	1.9	86
112	Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks. Molecular Systems Design and Engineering, 2020, 5, 962-975.	1.7	33
113	Cost-Sensitive Feature Selection using Particle Swarm Optimization: A Post-Processing Approach. , 2020, , .		1
114	Multiscale simulation of fiber composites with spatially varying uncertainties. , 2020, , 355-384.		3
115	A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112791.	3.4	55
116	A kernel method for learning constitutive relation in data-driven computational elasticity. Japan Journal of Industrial and Applied Mathematics, 2021, 38, 39-77.	0.5	16
117	MAP123-EPF: A mechanistic-based data-driven approach for numerical elastoplastic modeling at finite strain. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113484.	3.4	18
118	Geometric Stability Classification: Datasets, Metamodels, and Adversarial Attacks. CAD Computer Aided Design, 2021, 131, 102948.	1.4	6
119	A Fourierâ€based machine learning technique with application in engineering. International Journal for Numerical Methods in Engineering, 2021, 122, 866-897.	1.5	4
120	Intelligent layout design of curvilinearly stiffened panels via deep learning-based method. Materials and Design, 2021, 197, 109180.	3.3	36
121	Monolithic binary stiffness building blocks for mechanical digital machines. Extreme Mechanics Letters, 2021, 42, 101120.	2.0	14
122	Learning non-Markovian physics from data. Journal of Computational Physics, 2021, 428, 109982.	1.9	12
123	A wavelet-based learning approach assisted multiscale analysis for estimating the effective thermal conductivities of particulate composites. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113591.	3.4	10
124	Quantification and compensation of thermal distortion in additive manufacturing: A computational statistics approach. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113611.	3.4	21
125	Thermodynamics-based Artificial Neural Networks for constitutive modeling. Journal of the Mechanics and Physics of Solids, 2021, 147, 104277.	2.3	144
126	A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113514.	3.4	17
127	Hierarchical Deep Learning Neural Network (HiDeNN): An artificial intelligence (AI) framework for computational science and engineering. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113452.	3.4	77

		EPORT	
#	Article	IF	CITATIONS
128	Effect of microstructural variations on the failure response of a nano-enhanced polymer: a homogenization-based statistical analysis. Computational Mechanics, 2021, 67, 315-340.	2.2	7
129	Self-consistent clustering analysis for modeling of theromelastic heterogeneous materials. AIP Conference Proceedings, 2021, , .	0.3	4
130	Vision: Digitale Zwillinge für die Additive Fertigung. , 2021, , 77-100.		0
131	Machine-Learning Based Design of Near-Spherical Shells under External Pressure. , 2021, , .		0
132	A Data-Driven Approach to the Prediction of Spheroidal Graphite Cast Iron Yield Surface Probability Characteristics. Lecture Notes in Networks and Systems, 2021, , 565-576.	0.5	5
133	Numerical experiments on unsupervised manifold learning applied to mechanical modeling of materials and structures. Comptes Rendus - Mecanique, 2020, 348, 937-958.	0.3	3
134	A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network. Computers, Materials and Continua, 2021, 66, 1091-1120.	1.5	3
135	Structural Optimization. Lecture Notes on Numerical Methods in Engineering and Sciences, 2021, , 137-168.	0.0	0
136	Elastic–plastic deformation decomposition algorithm for metal clusters at the atomic scale. Computational Mechanics, 2021, 67, 567-581.	2.2	4
137	Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity. Computational Mechanics, 2021, 67, 1009-1019.	2.2	29
138	Sparse quantum Gaussian processes to counter the curse of dimensionality. Quantum Machine Intelligence, 2021, 3, 1.	2.7	1
139	Uncertainty and sensitivity analysis of modeling plant CO2 exchange in the built environment. Building and Environment, 2021, 189, 107539.	3.0	7
140	Learning constitutive relations using symmetric positive definite neural networks. Journal of Computational Physics, 2021, 428, 110072.	1.9	65
141	Nanomechanics serving polymer-based composite research. Comptes Rendus Physique, 2021, 22, 331-352.	0.3	7
142	Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML). Processes, 2021, 9, 672.	1.3	4
143	Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening. Computer Methods in Applied Mechanics and Engineering, 2021, 377, 113695.	3.4	82
144	Dimensionality reduction for tensor data based on projection distance minimization and hilbert-schmidt independence criterion maximization1. Journal of Intelligent and Fuzzy Systems, 2021, 40, 10307-10322.	0.8	1
145	Seepage Mechanism of Tight Sandstone Reservoir Based on Digital Core Simulation Method. Applied Sciences (Switzerland), 2021, 11, 3741.	1.3	2

#	Article	IF	CITATIONS
146	Exploring the potential of transfer learning for metamodels of heterogeneous material deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104276.	1.5	15
147	Evolutionary Gaussian Processes. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	8
148	A Stochastic FE2 Data-Driven Method for Nonlinear Multiscale Modeling. Materials, 2021, 14, 2875.	1.3	21
149	Concurrent material and structure optimization of multiphase hierarchical systems within a continuum micromechanics framework. Structural and Multidisciplinary Optimization, 2021, 64, 1175-1197.	1.7	6
150	A concurrent multiscale framework based on self-consistent clustering analysis for cylinder structure under uniaxial loading condition. Composite Structures, 2021, 266, 113827.	3.1	8
151	A new ANN based crystal plasticity model for FCC materials and its application to non-monotonic strain paths. International Journal of Plasticity, 2021, 144, 103059.	4.1	49
152	SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems. Physical Review Research, 2021, 3, .	1.3	22
153	A Data-Driven Framework for Buckling Analysis of Near-Spherical Composite Shells Under External Pressure. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	5
154	Combining dynamic <scp>XFEM</scp> with machine learning for detection of multiple flaws. International Journal for Numerical Methods in Engineering, 2021, 122, 6253-6282.	1.5	10
155	Reduced Order Multiscale Simulation of Diffuse Damage in Concrete. Materials, 2021, 14, 3830.	1.3	2
156	Dataâ€Driven Approaches Toward Smarter Additive Manufacturing. Advanced Intelligent Systems, 2021, 3, 2100014.	3.3	21
157	Unlocking the Potential of Second-order Computational Homogenisation: An Overview of Distinct Formulations and a Guide for their Implementation. Archives of Computational Methods in Engineering, 2022, 29, 1339-1393.	6.0	7
158	Deep support vector machine for PolSAR image classification. International Journal of Remote Sensing, 2021, 42, 6498-6536.	1.3	21
159	Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element implementation. Journal of the Mechanics and Physics of Solids, 2021, 153, 104481.	2.3	39
160	A computational framework to establish data-driven constitutive models for time- or path-dependent heterogeneous solids. Scientific Reports, 2021, 11, 15916.	1.6	9
161	Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure. Computational Mechanics, 2021, 68, 1003-1021.	2.2	3
162	Micro-mechanics and data-driven based reduced order models for multi-scale analyses of woven composites. Composite Structures, 2021, 270, 114058.	3.1	16
163	Estimation of Local Strain Fields in Two-Phase Elastic Composite Materials Using UNet-Based Deep Learning. Integrating Materials and Manufacturing Innovation, 2021, 10, 444-460.	1.2	15

#	Article	IF	CITATIONS
164	Constrained neural network training and its application to hyperelastic material modeling. Computational Mechanics, 2021, 68, 1179-1204.	2.2	15
165	A supervised machine learning approach for accelerating the design of particulate composites: Application to thermal conductivity. Computational Materials Science, 2021, 197, 110664.	1.4	14
166	An adaptive multi-temperature isokinetic method for the RVE generation of particle reinforced heterogeneous materials, Part I: Theoretical formulation and computational framework. Mechanics of Materials, 2021, 163, 104069.	1.7	2
167	Machine learning based topology optimization of fiber orientation for variable stiffness composite structures. International Journal for Numerical Methods in Engineering, 2021, 122, 6736-6755.	1.5	14
168	Static condensation based reduced order modelling of stochastically parametered large ordered systems. Probabilistic Engineering Mechanics, 2021, 66, 103166.	1.3	3
169	Harnessing deep learning for physics-informed prediction of composite strength with microstructural uncertainties. Computational Materials Science, 2021, 197, 110663.	1.4	8
171	Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.	5.0	143
172	Cell division in deep material networks applied to multiscale strain localization modeling. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113914.	3.4	16
173	A neural network-aided Bayesian identification framework for multiscale modeling of nanocomposites. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113937.	3.4	15
174	Learning constitutive models from microstructural simulations via a non-intrusive reduced basis method. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113924.	3.4	9
175	On the efficient enforcement of uniform traction and mortar periodic boundary conditions in computational homogenisation. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113930.	3.4	16
176	A Bayesian surrogate constitutive model to estimate failure probability of elastomers. Mechanics of Materials, 2021, 162, 104044.	1.7	12
177	A review of artificial neural networks in the constitutive modeling of composite materials. Composites Part B: Engineering, 2021, 224, 109152.	5.9	140
178	Recurrent neural network modeling of the large deformation of lithium-ion battery cells. International Journal of Plasticity, 2021, 146, 103072.	4.1	34
179	CPINet: Parameter identification of path-dependent constitutive model with automatic denoising based on CNN-LSTM. European Journal of Mechanics, A/Solids, 2021, 90, 104327.	2.1	10
180	A methodology to generate design allowables of composite laminates using machine learning. International Journal of Solids and Structures, 2021, 233, 111095.	1.3	37
181	Bayesian neural networks for uncertainty quantification in data-driven materials modeling. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114079.	3.4	44
182	Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites. European Journal of Mechanics, A/Solids, 2022, 91, 104384.	2.1	13

#	Article	IF	CITATIONS
183	Artificial intelligence and machine learning in design of mechanical materials. Materials Horizons, 2021, 8, 1153-1172.	6.4	237
184	Machine learning-assisted modeling of composite materials and structures: a review. , 2021, , .		2
185	Hybrid wavelet-based learning method of predicting effective thermal conductivities of hybrid composite materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 030701.	0.2	4
186	On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X, 2021, 9, 100083.	1.1	9
187	Multiscale computation on feedforward neural network and recurrent neural network. Frontiers of Structural and Civil Engineering, 2020, 14, 1285-1298.	1.2	21
188	A data-driven self-consistent clustering analysis for the progressive damage behavior of 3D braided composites. Composite Structures, 2020, 249, 112471.	3.1	32
189	Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model. Machine Learning: Science and Technology, 2020, 1, 035005.	2.4	17
190	Integrating an Analytical Uncertainty Quantification Approach to Multi-Scale Modeling of Nanocomposites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	0.8	1
191	Integration of Normative Decision-Making and Batch Sampling for Global Metamodeling. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	1.7	6
192	Shared-Gaussian Process: Learning Interpretable Shared Hidden Structure Across Data Spaces for Design Space Analysis and Exploration. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	1.7	11
193	Learning Nonlinear Constitutive Laws Using Neural Network Models Based on Indirectly Measurable Data. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	26
194	Exploring Elastoplastic Constitutive Law of Microstructured Materials Through Artificial Neural Network—A Mechanistic-Based Data-Driven Approach. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	31
195	Homogenized yarn-level cloth. ACM Transactions on Graphics, 2020, 39, .	4.9	32
196	Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis. CMES - Computer Modeling in Engineering and Sciences, 2020, 122, 433-458.	0.8	18
197	A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues. Materials, 2020, 13, 2319.	1.3	10
198	A data-driven approach for modeling tension–compression asymmetric material behavior: numerical simulation and experiment. Computational Mechanics, 2022, 69, 299-313.	2.2	6
200	Gaussian Process Emulation for Big Data in Data-Driven Metamaterials Design. , 2019, , .		0
201	A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data. Computers, Materials and Continua, 2022, 70, 5363-5381.	1.5	13

#	Article	IF	CITATIONS
202	A learning-based multiscale method and its application to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 2022, 158, 104668.	2.3	23
203	Computational modeling and dataâ€driven homogenization of knitted membranes. International Journal for Numerical Methods in Engineering, 2022, 123, 683-704.	1.5	6
204	Deep Learning Approach to Mechanical Property Prediction of Single-Network Hydrogel. Mathematics, 2021, 9, 2804.	1.1	12
205	MESH-BASED GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR MODELING MATERIALS WITH MICROSTRUCTURE. Journal of Machine Learning for Modeling and Computing, 2022, 3, 1-30.	0.9	10
206	Data-driven and topological design of structural metamaterials for fracture resistance. Extreme Mechanics Letters, 2022, 50, 101528.	2.0	22
207	Flexible and interpretable generalization of self-evolving computational materials framework. Computers and Structures, 2022, 260, 106706.	2.4	6
208	An adaptive multi-temperature isokinetic method for the RVE generation of particle reinforced heterogeneous materials, Part II: Numerical assessment and statistical analysis. Mechanics of Materials, 2022, 165, 104068.	1.7	1
209	Development of deep learning-based joint elements for thin-walled beam structures. Computers and Structures, 2022, 260, 106714.	2.4	4
210	Efficient two-scale analysis with thermal residual stresses and strains based on self-consistent clustering analysis. European Journal of Mechanics, A/Solids, 2022, 92, 104477.	2.1	5
211	Interaction-based material network: A general framework for (porous) microstructured materials. Computer Methods in Applied Mechanics and Engineering, 2022, 389, 114300.	3.4	10
212	A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features. Computational Mechanics, 2022, 69, 733-766.	2.2	31
213	Statistical Design of Experiments: An introductory case study for polymer composites manufacturing applications. MATEC Web of Conferences, 2021, 347, 00028.	0.1	2
214	Multidisciplinary design optimization in design for additive manufacturing. Journal of Computational Design and Engineering, 2021, 9, 128-143.	1.5	7
215	Surrogate model for energy release rate and structure optimization of double-ceramic-layers thermal barrier coatings system. Surface and Coatings Technology, 2022, 430, 127989.	2.2	7
216	Creep anisotropy modeling and uncertainty quantification of an additively manufactured Ni-based superalloy. International Journal of Plasticity, 2022, 151, 103177.	4.1	15
217	A representative volume element network (RVE-net) for accelerating RVE analysis, microscale material identification, and defect characterization. Computer Methods in Applied Mechanics and Engineering, 2022, 390, 114507.	3.4	9
218	Deep learning and crystal plasticity: A preconditioning approach for accurate orientation evolution prediction. Computer Methods in Applied Mechanics and Engineering, 2022, 389, 114392.	3.4	10
219	Establish algebraic data-driven constitutive models for elastic solids with a tensorial sparse symbolic regression method and a hybrid feature selection technique. Journal of the Mechanics and Physics of Solids, 2022, 159, 104742.	2.3	10

#	Article	IF	CITATIONS
220	Recurrent Neural Networks (RNNs) with dimensionality reduction and break down in computational mechanics; application to multi-scale localization step. Computer Methods in Applied Mechanics and Engineering, 2022, 390, 114476.	3.4	25
221	A Bayesian Fault Diagnosis Method Incorporating Background Knowledge of Abnormality Signs. , 2020, , .		1
222	Deep-learning-based porous media microstructure quantitative characterization and reconstruction method. Physical Review E, 2022, 105, 015308.	0.8	18
223	Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers, 2022, 14, 216.	2.0	34
224	G-MAP123: A mechanistic-based data-driven approach for 3D nonlinear elastic modeling — Via both uniaxial and equibiaxial tension experimental data. Extreme Mechanics Letters, 2022, 50, 101545.	2.0	3
225	Novel Four-Cell Lenticular Honeycomb Deployable Boom with Enhanced Stiffness. Materials, 2022, 15, 306.	1.3	7
226	Neural network constitutive model for uniaxial cyclic plasticity based on return mapping algorithm. Mechanics Research Communications, 2022, 119, 103815.	1.0	3
227	Managing Boundary Uncertainty in Diagnosing the Patients of Rural Area Using Fuzzy and Rough Set. Journal of Healthcare Informatics Research, 2022, 6, 1-47.	5.3	0
228	Multiscale modelling and material design of woven textiles using Gaussian processes. Acta Mechanica, 2022, 233, 317-341.	1.1	2
229	Explainable Artificial Intelligence for Mechanics: Physics-Explaining Neural Networks for Constitutive Models. Frontiers in Materials, 2022, 8, .	1.2	13
230	Machine learning constitutive models of elastomeric foams. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114492.	3.4	19
231	Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures, 2022, 263, 106742.	2.4	12
232	Variational Autoencoder-Based Topological Optimization of an Anechoic Coating: An Efficient- and Neural Network-Based Design. SSRN Electronic Journal, 0, , .	0.4	0
233	Efficient Exploration of Microstructure-Property Spaces via Active Learning. Frontiers in Materials, 2022, 8, .	1.2	6
234	The Use of Machine-Learning Techniques in Material Constitutive Modelling for Metal Forming Processes. Metals, 2022, 12, 427.	1.0	10
235	Modelling of Environmental Ageing of Polymers and Polymer Composites—Durability Prediction Methods. Polymers, 2022, 14, 907.	2.0	38
236	Mechanistically informed data-driven modeling of cyclic plasticity via artificial neural networks. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114766.	3.4	15
237	Adaptivity for clustering-based reduced-order modeling of localized history-dependent phenomena. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114726.	3.4	9

#	ARTICLE A concurrent three-scale scheme FE-SCA <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathMI " display="inline" id="d1e1082"</mml:math 	IF	CITATIONS
238	altimg="si1.svg"> <mml:msup><mml:mrow /><mml:mrow></mml:mrow></mml:mrow </mml:msup> for the nonlinear mechanical behavior of braided composites. Computer Methods in Applied Mechanics and Engineering,	3.4	11
239	2022, 393, 114827. A porosity-based model of dynamic compaction in under-dense materials. International Journal of Solids and Structures, 2022, , 111598.	1.3	0
240	Spatially-dependent material uncertainties in anisotropic nonlinear elasticity: Stochastic modeling, identification, and propagation. Computer Methods in Applied Mechanics and Engineering, 2022, 394, 114897.	3.4	7
241	Simulation trained CNN for accurate embedded crack length, location, and orientation prediction from ultrasound measurements. International Journal of Solids and Structures, 2022, 242, 111521.	1.3	10
242	Multi-objective optimization of urban environmental system design using machine learning. Computers, Environment and Urban Systems, 2022, 94, 101796.	3.3	13
243	Ensemble wavelet-learning approach for predicting the effective mechanical properties of concrete composite materials. Computational Mechanics, 2022, 70, 335-365.	2.2	4
244	Modeling and simulation of microstructure in metallic systems based on multi-physics approaches. Npj Computational Materials, 2022, 8, .	3.5	10
245	Equilibrium-based convolution neural networks for constitutive modeling of hyperelastic materials. Journal of the Mechanics and Physics of Solids, 2022, 164, 104931.	2.3	8
246	A combined machine learning and numerical approach for evaluating the uncertainty of 3D angle-interlock woven composites. Composite Structures, 2022, 294, 115726.	3.1	8
247	Fracture pattern prediction with random microstructure using a physics-informed deep neural networks. Engineering Fracture Mechanics, 2022, 268, 108497.	2.0	5
248	Machine learning based prediction of the electronic structure of quasi-one-dimensional materials under strain. Physical Review B, 2022, 105, .	1.1	4
249	Elevated temperature contact creep and friction of nickel-based superalloys using machine learning assisted finite element analysis. Mechanics of Materials, 2022, 171, 104346.	1.7	5
250	Eighty Years of the Finite Element Method: Birth, Evolution, and Future. Archives of Computational Methods in Engineering, 2022, 29, 4431-4453.	6.0	42
251	A mixed-categorical data-driven approach for prediction and optimization of hybrid discontinuous composites performance. , 2022, , .		1
252	Data-driven multiscale method for composite plates. Computational Mechanics, 2022, 70, 1025-1040.	2.2	9
253	Reduced-order multiscale modeling of plastic deformations in 3D alloys with spatially varying porosity by deflated clustering analysis. Computational Mechanics, 2022, 70, 517-548.	2.2	7
254	A fully secondâ€order homogenization formulation for the multiâ€scale modeling of heterogeneous materials. International Journal for Numerical Methods in Engineering, 2022, 123, 5274-5318.	1.5	5
255	Advanced corrective training strategy for surrogating complex hysteretic behavior. Structures, 2022, 41, 1792-1803.	1.7	6

#	Δρτιςι ε	IF	CITATIONS
"	Statistically equivalent surrogate material models: Impact of random imperfections on the		
256	elasto-plastic response. Computer Methods in Applied Mechanics and Engineering, 2022, , 115278.	3.4	1
257	Microstructure-guided deep material network for rapid nonlinear material modeling and uncertainty quantification. Computer Methods in Applied Mechanics and Engineering, 2022, 398, 115197.	3.4	12
258	Variational autoencoder-based topological optimization of an anechoic coating: An efficient- and neural network-based design. Materials Today Communications, 2022, 32, 103901.	0.9	2
259	Polymorphic uncertainty quantification for engineering structures via a hyperplane modelling technique. Computer Methods in Applied Mechanics and Engineering, 2022, 398, 115250.	3.4	9
260	A meshfree peridynamic model for brittle fracture in randomly heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 2022, 399, 115340.	3.4	11
261	Thermodynamically consistent machine-learned internal state variable approach for data-driven modeling of path-dependent materials. Computer Methods in Applied Mechanics and Engineering, 2022, 402, 115348.	3.4	21
262	A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials. Archives of Computational Methods in Engineering, 2023, 30, 191-222.	6.0	30
263	Design allowables of composite laminates: A review. Journal of Composite Materials, 2022, 56, 3617-3634.	1.2	5
264	Knowledge database creation for design of polymer matrix composite. Computational Materials Science, 2022, 214, 111703.	1.4	3
265	Uncertainty analysis based on reduced-order models for composite structures with interval field variables. Composite Structures, 2022, 300, 116153.	3.1	2
266	Multiple Kernel Subspace Learning for Clustering and Classification. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1-14.	4.0	4
267	Toward stochastic multiscale methods in continuum solid mechanics. Advances in Applied Mechanics, 2022, , 1-254.	1.4	0
268	Deep learning for non-parameterized MEMS structural design. Microsystems and Nanoengineering, 2022, 8, .	3.4	12
269	Influence of the parameters of the convolutional neural network model in predicting the effective compressive modulus of porous structure. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
270	Integrated simulation, machine learning, and experimental approach to characterizing fracture instability in indentation pillar-splitting of materials. Journal of the Mechanics and Physics of Solids, 2023, 170, 105092.	2.3	10
271	Machine Learning-Assisted Identification of Copolymer Microstructures Based on Microscopic Images. ACS Applied Materials & Interfaces, 2022, 14, 47157-47166.	4.0	7
272	Computational intelligence methods in simulation and modeling of structures: A state-of-the-art review using bibliometric maps. Frontiers in Built Environment, 0, 8, .	1.2	9
273	Tversky Similarity based Deep Neural Learning Classification for Engineering Alloys. IOP Conference Series: Materials Science and Engineering, 2022, 1258, 012059.	0.3	0

#	Article	IF	CITATIONS
274	Integrated wavelet-learning method for macroscopic mechanical properties prediction of concrete composites with hierarchical random configurations. Composite Structures, 2023, 304, 116357.	3.1	2
275	An Efficient SSFEM-POD Scheme for Wideband Stochastic Analysis of Permittivity Variations. IEEE Transactions on Antennas and Propagation, 2023, 71, 1654-1661.	3.1	3
276	Modeling and Design of Zero‧tiffness Elastomer Springs Using Machine Learning. Advanced Intelligent Systems, 2022, 4, .	3.3	3
277	Review and prospects of metamaterials used to control elastic waves and vibrations. Frontiers in Physics, 0, 10, .	1.0	6
278	A Data-Driven Framework forÂCrack Paths Propagation. Communications in Computer and Information Science, 2022, , 194-205.	0.4	0
279	Machine Learning Prediction for the Mechanical Properties of Lightweight Composite Materials. Composites Science and Technology, 2022, , 115-134.	0.4	0
280	Establishing the interfacial microstructure-behavior relations in composites via stochastic morphology reconstruction and deep learning. Acta Materialia, 2023, 244, 118582.	3.8	4
281	Designing a feature selection method based on explainable artificial intelligence. Electronic Markets, 2022, 32, 2159-2184.	4.4	17
282	Surrogate Model Based on Data-Driven Model Reduction for Inelastic Behavior of Composite Microstructure. International Journal of Aeronautical and Space Sciences, 0, , .	1.0	0
283	Probabilistic Analysis of Composite Materials with Hyper-Elastic Components. Materials, 2022, 15, 8878.	1.3	1
284	<scp>Data</scp> â€physics driven reduced order homogenization. International Journal for Numerical Methods in Engineering, 2023, 124, 1620-1645.	1.5	5
285	A batch process for high dimensional imputation. Computational Statistics, 2024, 39, 781-802.	0.8	1
286	Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering, 2023, 405, 115852.	3.4	28
287	A machine learning approach to predicting mechanical behaviour of non-rigid foldable square-twist origami. Engineering Structures, 2023, 278, 115497.	2.6	6
288	Model-free data-driven identification algorithm enhanced by local manifold learning. Computational Mechanics, 2023, 71, 637-655.	2.2	1
289	Fast homogenization through clustering-based reduced-order modeling. , 2023, , 113-168.		0
290	Design of Refractory Alloys for Desired Thermal Conductivity via Al-Assisted In-Silico Microstructure Realization. Materials, 2023, 16, 1088.	1.3	3
291	Operator Learning for Predicting Mechanical Response of Hierarchical Composites with Applications of Inverse Design. International Journal of Applied Mechanics, 2023, 15, .	1.3	6

#	Article	IF	CITATIONS
292	A data-fusion method for uncertainty quantification of mechanical property of bi-modulus materials: an example of graphite. Journal of Applied Mechanics, Transactions ASME, 0, , 1-19.	1.1	0
293	Deep learning based nanoindentation method for evaluating mechanical properties of polymers. International Journal of Mechanical Sciences, 2023, 246, 108162.	3.6	8
294	Dataâ€based prediction of the viscoelastic behavior of short fiber reinforced composites. Proceedings in Applied Mathematics and Mechanics, 2023, 22, .	0.2	0
295	Data-driven computing for nonlinear problems of composite structures based on sub-domain search technique. Computers and Structures, 2023, 279, 106982.	2.4	3
296	Multiscale analysis of nonlinear systems using a hierarchy of deep neural networks. International Journal of Solids and Structures, 2023, 271-272, 112261.	1.3	2
297	Heuristic molecular modelling of quasi-isotropic auxetic metamaterials under large deformations. International Journal of Mechanical Sciences, 2023, 251, 108316.	3.6	0
298	An enhanced data-driven constitutive model for predicting strain-rate and temperature dependent mechanical response of elastoplastic materials. European Journal of Mechanics, A/Solids, 2023, 100, 104996.	2.1	2
299	A generalized machine learning framework for brittle crack problems using transfer learning and graph neural networks. Mechanics of Materials, 2023, 181, 104639.	1.7	3
300	A database construction method for data-driven computational mechanics of composites. International Journal of Mechanical Sciences, 2023, 249, 108232.	3.6	4
301	Rapid assessment of out-of-plane nonlinear shear stress–strain response for thick-section composites using artificial neural networks and DIC. Composite Structures, 2023, 310, 116770.	3.1	0
302	Detecting Microstructural Criticality/Degeneracy through Hybrid Learning Strategies Trained by Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 0, , .	4.0	2
303	Physically recurrent neural networks for path-dependent heterogeneous materials: Embedding constitutive models in a data-driven surrogate. Computer Methods in Applied Mechanics and Engineering, 2023, 407, 115934.	3.4	11
304	Reduction of training computation by network optimization of Integration Neural Network approximator. , 2023, , .		1
305	Plastic anisotropy of AA7075-T6 alloy under quasi-static compression: experiments, classical plasticity and artificial neural networks modeling. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	4
306	A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures. Computational Mechanics, 2023, 72, 431-450.	2.2	1
307	POD-based reduced order model for the prediction of global and local elastic responses of fibre-reinforced polymer considering varying fibre distribution. Computational Mechanics, 2023, 71, 1041-1064.	2.2	0
308	Aspects of accuracy and uniqueness of solutions in dataâ€driven mechanics. Proceedings in Applied Mathematics and Mechanics, 2023, 22, .	0.2	1
309	Optimal shape design using machine learning for wind energy and pressure. Journal of Building Engineering, 2023, 70, 106337.	1.6	3

#	Article	IF	CITATIONS
310	Crystalline–Amorphous Nanostructures: Microstructure, Property and Modelling. Materials, 2023, 16, 2874.	1.3	1
326	Machine learning in metal forming processes. , 2023, , .		0
335	Neural Networks for Constitutive Modeling: From Universal Function Approximators to Advanced Models and the Integration of Physics. Archives of Computational Methods in Engineering, 2024, 31, 1097-1127.	6.0	2
338	Numerical modeling of highly nonlinear phenomena in heterogeneous materials and domains. Advances in Applied Mechanics, 2023, , 111-239.	1.4	0
345	Simplifying Hyperparameter Derivation for Integration Neural Networks Using Information Criterion*. , 2024, , .		0