Organics in comet 67P $\hat{a} \in$ " a first comparative analysis of COSAC and Ptolemy

Monthly Notices of the Royal Astronomical Society 469, S130-S141

DOI: 10.1093/mnras/stx1415

Citation Report

#	ARTICLE	IF	CITATIONS
1	Deep K-band Observations of TMC-1 with the Green Bank Telescope: Detection of HC ₇ 0, Nondetection of HC ₁₁ N, and a Search for New Organic Molecules. Astrophysical Journal, 2017, 850, 187.	1.6	32
2	Rosetta Mission: Electron Scattering Cross Sections—Data Needs and Coverage in BEAMDB Database. Atoms, 2017, 5, 46.	0.7	8
3	The chemical connection between 67P/C-G and IRAS 16293-2422. Proceedings of the International Astronomical Union, 2017, 13, 196-201.	0.0	0
4	CH3NCO detections in observations and the laboratory. Proceedings of the International Astronomical Union, 2017, 13, 360-363.	0.0	0
5	Exploring molecular complexity in the Galactic Center with ALMA. Proceedings of the International Astronomical Union, 2017, 13, 383-394.	0.0	0
6	Chemical modelling of complex organic molecules with peptide-like bonds in star-forming regions. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2796-2812.	1.6	79
7	On the Synthesis of Chocolate Flavonoids (Propanols, Butanals) in the Interstellar Medium. ChemPhysChem, 2018, 19, 556-560.	1.0	11
8	Significance of variables for discrimination: Applied to the search of organic ions in mass spectra measured on cometary particles. Journal of Chemometrics, 2018, 32, e3001.	0.7	1
9	Methyl isocyanate (CH3NCO): an important missing organic in current astrochemical networks. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L59-L63.	1.2	23
10	Cometary Dust. Space Science Reviews, 2018, 214, 1.	3.7	88
11	The ALMA-PILS survey: the sulphur connection between protostars and comets: IRAS 16293–2422 B and 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4949-4964.	1.6	74
12	IR spectra and properties of solid acetone, an interstellar and cometary molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 33-39.	2.0	37
13	Radiation chemistry of solid acetone in the interstellar medium – a new dimension to an old problem. Physical Chemistry Chemical Physics, 2018, 20, 5389-5398.	1.3	11
14	The Rosetta Mission and the Chemistry of Organic Species in Comet 67P/Churyumov–Gerasimenko. Elements, 2018, 14, 95-100.	0.5	12
15	Fitting Cometary Sampling and Composition Mass Spectral Results Using Non-negative Least Squares: Reducing Detection Ambiguity for <i>In Situ</i> Solar System Organic Compound Measurements. ACS Earth and Space Chemistry, 2018, 2, 1256-1261.	1.2	5
16	The ALMA-PILS survey: Stringent limits on small amines and nitrogen-oxides towards IRAS 16293–2422B. Astronomy and Astrophysics, 2018, 619, A28.	2.1	42
17	Infrared Spectra and Interstellar Sulfur: New Laboratory Results for H ₂ S and Four Malodorous Thiol Ices. Astrophysical Journal, 2018, 867, 138.	1.6	22
18	The Fate of Formamide in a Fragmenting Protoplanetary Disk. Astrophysical Journal, 2018, 868, 9.	1.6	10

#	Article	IF	CITATIONS
19	Monosaccharides and Their Derivatives in Carbonaceous Meteorites: A Scenario for Their Synthesis and Onset of Enantiomeric Excesses. Life, 2018, 8, 36.	1.1	15
20	The formation of peptide-like molecules on interstellar dust grains. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3628-3643.	1.6	53
21	A review of the development and application of space miniature mass spectrometers. Vacuum, 2018, 155, 108-117.	1.6	31
22	CO+- and CN-gas Relations in Comet 1P/Halley. Publications of the Astronomical Society of the Pacific, 2018, 130, 084401.	1.0	0
23	A Photoionization Reflectron Time-of-flight Mass Spectrometric Study on the Formation of Acetic Acid (CH ₃ COOH) in Interstellar Analog Ices. Astrophysical Journal, 2018, 862, 140.	1.6	21
24	Stability of CH ₃ NCO in Astronomical Ices under Energetic Processing: A Laboratory Study. Astrophysical Journal, 2018, 861, 61.	1.6	11
25	Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds. Life, 2018, 8, 12.	1.1	10
26	Infrared spectra of complex organic molecules in astronomically relevant ice matrices. Astronomy and Astrophysics, 2018, 611, A35.	2.1	34
27	Observations of Cometary Organics: A Post Rosetta Review. ACS Earth and Space Chemistry, 2019, 3, 1773-1791.	1.2	8
28	CHO-Bearing Molecules in Comet 67P/Churyumov-Gerasimenko. ACS Earth and Space Chemistry, 2019, 3, 1854-1861.	1.2	20
29	Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 489, 594-607.	1.6	112
30	Volatile Species in Comet 67P/Churyumov-Gerasimenko: Investigating the Link from the ISM to the Terrestrial Planets. ACS Earth and Space Chemistry, 2019, 3, 1792-1811.	1.2	39
31	On the formation of complex organic molecules in the interstellar medium: untangling the chemical complexity of carbon monoxide–hydrocarbon containing ice analogues exposed to ionizing radiation <i>via</i> a combined infrared and reflectron time-of-flight analysis. Physical Chemistry Chemical Physics, 2019, 21, 16949-16980.	1.3	35
32	Photodesorption of Water Ice from Dust Grains and Thermal Desorption of Cometary Ices Studied by the INSIDE Experiment. Astrophysical Journal, 2019, 880, 12.	1.6	17
33	Complex Organic Molecules in Comets from Remote-Sensing Observations at Millimeter Wavelengths. ACS Earth and Space Chemistry, 2019, 3, 1550-1555.	1.2	30
34	Formation of interstellar propanal and 1-propanol ice: a pathway involving solid-state CO hydrogenation. Astronomy and Astrophysics, 2019, 627, A1.	2.1	29
35	Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astronomy and Astrophysics, 2019, 630, A31.	2.1	36
	Organosulfur Compounds Formed by Sulfur Ion Bombardment of Astrophysical Ice Analogs:		

#	ARTICLE	IF	CITATIONS
38	Spectroscopy of Ices, Volatiles, and Organics in the Visible and Infrared Regions. , 2019, , 102-119.		2
39	Towards New Comet Missions. Space Science Reviews, 2019, 215, 1.	3.7	13
40	Calibration of parent and fragment ion detection rates in Rosettas ROSINA/DFMS mass spectrometer. International Journal of Mass Spectrometry, 2019, 446, 116233.	0.7	4
41	Contributions from Accreted Organics to Titan's Atmosphere: New Insights from Cometary and Chondritic Data. Astrophysical Journal, 2019, 871, 59.	1.6	39
42	Ammonium Salts as a Source of Small Molecules Observed with High-Resolution Electron-Impact Ionization Mass Spectrometry. Journal of Physical Chemistry A, 2019, 123, 5805-5814.	1.1	12
43	Evidence of Surface Catalytic Effect on Cosmic Dust Grain Analogs: The Ammonia and Carbon Dioxide Surface Reaction. Astrophysical Journal Letters, 2019, 878, L20.	3.0	29
44	Cometary Chemistry and the Origin of Icy Solar System Bodies: The View After <i>Rosetta</i> . Annual Review of Astronomy and Astrophysics, 2019, 57, 113-155.	8.1	108
45	Methylamine and other simple N-bearing species in the hot cores NGC 6334I MM1–3. Astronomy and Astrophysics, 2019, 624, A82.	2.1	34
46	Sublimation of buried cometary ice. Icarus, 2019, 329, 72-78.	1.1	9
47	Stellar Occultation by Comet 67P/Churyumov–Gerasimenko Observed with Rosetta's Alice Far-ultraviolet Spectrograph. Astronomical Journal, 2019, 157, 173.	1.9	5
48	Prebiotic Chemistry of Pluto. Astrobiology, 2019, 19, 831-848.	1.5	26
49	Radical-assisted polymerization in interstellar ice analogues: formyl radical and polyoxymethylene. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1953-1963.	1.6	14
50	Comet 67P/CG Nucleus Composition and Comparison to Other Comets. Space Science Reviews, 2019, 215, 1.	3.7	32
51	Molecular complexity in the interstellar medium. Proceedings of the International Astronomical Union, 2019, 15, 96-99.	0.0	Ο
52	A Comprehensive Spectral Rotational Analysis of the Interstellar Methyl Isocyanate CH ₃ NCO. Astrophysical Journal, Supplement Series, 2019, 245, 31.	3.0	5
54	Sublimation of cometary ices in the presence of organic volatiles II. Icarus, 2019, 319, 470-475.	1.1	6
55	Preparation and characterization of the enol of acetamide: 1-aminoethenol, a high-energy prebiotic molecule. Chemical Science, 2020, 11, 12358-12363.	3.7	13
56	Cometary Delivery of Hydrogen Cyanide to the Early Earth. Astrobiology, 2020, 20, 1109-1120.	1.5	32

#	Article	IF	Citations
57	On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. Space Science Reviews, 2020, 216, 102.	3.7	42
58	Quasi-symmetry effects in the threshold photoelectron spectrum of methyl isocyanate. Journal of Chemical Physics, 2020, 153, 074308.	1.2	0
59	First in situ detection of the CN radical in comets and evidence for a distributed source. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2239-2248.	1.6	15
60	Near-infrared Methanol Bands Probe Energetic Processing of Icy Outer Solar System Objects. Astrophysical Journal Letters, 2020, 894, L3.	3.0	8
61	Organic Matter in the Solar System—Implications for Future on-Site and Sample Return Missions. Space Science Reviews, 2020, 216, 1.	3.7	19
62	On the Formation of the Popcorn Flavorant 2,3â€Butanedione (CH ₃ COCOCH ₃) in Acetaldehyde ontaining Interstellar Ices. ChemPhysChem, 2020, 21, 1531-1540.	1.0	12
63	Identification of Prebiotic Molecules Containing Peptide-like Bonds in a Hot Molecular Core, G10.47+0.03. Astrophysical Journal, 2020, 895, 86.	1.6	36
64	The ALMA-PILS survey: inventory of complex organic molecules towards IRAS 16293–2422 A. Astronomy and Astrophysics, 2020, 635, A48.	2.1	87
65	Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science, 2020, 367, .	6.0	115
66	Chemical and Isotope Composition of Comet 67P/Churyumovâ^'Gerasimenko: The Rosettaâ^'Philae Mission Results Reviewed in the Context of Cosmogony and Cosmochemistry. Solar System Research, 2020, 54, 96-120.	0.3	10
67	Hydrogen abstraction in astrochemistry: formation of Ë™CH ₂ CONH ₂ in the reaction of H atom with acetamide (CH ₃ CONH ₂) and photolysis of E™CH ₂ CONH _{CONH₂CONH_{CONH}}}	1.3	19
68	Evolution of mobile phases in cometary interiors. Publications of the Astronomical Society of Australia, 2020, 37, .	1.3	0
69	Infrared detection of aliphatic organics on a cometary nucleus. Nature Astronomy, 2020, 4, 500-505.	4.2	41
70	High-Resolution Gas Phase Spectroscopy of Molecules Desorbed from an Ice Surface: A Proof-of-Principle Study. ACS Earth and Space Chemistry, 2020, 4, 86-91.	1.2	12
71	ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1180-1198.	1.6	58
72	Comets, sliding of surface dust. Icarus, 2020, 348, 113781.	1.1	6
73	Formation of complex molecules in translucent clouds: acetaldehyde, vinyl alcohol, ketene, and ethanol via "nonenergetic―processing of C ₂ H ₂ ice. Astronomy and Astrophysics, 2020, 635, A199.	2.1	29
74	A non-energetic mechanism for glycine formation in the interstellar medium. Nature Astronomy, 2021, 5, 197-205.	4.2	69

#	Article	IF	Citations
75	Detection of volatiles undergoing sublimation from 67P/Churyumov-Gerasimenko coma particles using ROSINA/COPS. Astronomy and Astrophysics, 2021, 645, A38.	2.1	7
76	Astrobiology: An Overview. , 2021, , 737-757.		0
77	Organic Matter in Cometary Environments. Life, 2021, 11, 37.	1.1	9
78	Identification of Methyl Isocyanate and Other Complex Organic Molecules in a Hot Molecular Core, G31.41+0.31. Astrophysical Journal, 2021, 907, 108.	1.6	21
79	Atomistic simulations of the free-energy landscapes of interstellar chemical reactions: the case of methyl isocyanate. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1565-1570.	1.6	6
80	Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies. Life, 2021, 11, 568.	1.1	8
81	Synthesis of the first nitrogen-heterocycles in interstellar ice analogues containing methylamine (CH3NH2) exposed to UV radiation: formation of trimethylentriamine (TMT, c-(-CH2-NH)3) and hexamethylentetramine (HMT, (CH2)6N4). Monthly Notices of the Royal Astronomical Society, 2021, 506, 791-805.	1.6	3
82	Formation of complex organic molecules in molecular clouds: acetaldehyde, vinyl alcohol, ketene, and ethanol via the "energetic―processing of C ₂ H ₂ ice. Astronomy and Astrophysics, 2021, 650, A85.	2.1	15
83	Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life?. Physics of Life Reviews, 2021, 37, 65-93.	1.5	18
84	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	1.6	4
85	Detection of volatiles undergoing sublimation from 67P/Churyumov-Gerasimenko coma particles using ROSINA/COPS. Astronomy and Astrophysics, 2021, 651, A26.	2.1	3
86	The GUAPOS project. Astronomy and Astrophysics, 2021, 653, A129.	2.1	29
87	Propionamide (C ₂ H ₅ CONH ₂): The Largest Peptide-like Molecule in Space. Astrophysical Journal, 2021, 919, 4.	1.6	13
88	Sublimation of organic-rich comet analog materials and their relevance in fracture formation. Astronomy and Astrophysics, 2021, 653, A153.	2.1	1
89	Sulfur ion irradiation experiments simulating space weathering of Solar System body surfaces. Astronomy and Astrophysics, 2021, 655, A74.	2.1	10
90	Sublimation of porous granular ice in vacuum. Icarus, 2021, 368, 114613.	1.1	8
91	Excitation, emission, and synchronous fluorescence for astrochemical applications: Experiments and computer simulations of synchronous spectra of polycyclic aromatic hydrocarbons and their mixtures. Icarus, 2021, 370, 114689.	1.1	5
92	Possibility of concentration of nonvolatile species near the surface of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2021, 645, A134.	2.1	2

#	Article	IF	CITATIONS
93	Hydrogen Abstraction of Acetic Acid by Hydrogen Atom to Form Carboxymethyl Radical •CH2C(O)OH in Solid para-Hydrogen and Its Implication in Astrochemistry. ACS Earth and Space Chemistry, 2021, 5, 106-117.	1.2	10
94	Astrobiology: An Overview. , 2020, , 1-17.		1
95	The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nature Astronomy, 2019, 3, 314-319.	4.2	87
96	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558, 564-568.	13.7	282
97	ROSINA ion zoo at Comet 67P. Astronomy and Astrophysics, 2020, 642, A27.	2.1	14
98	Molecular and isotopic compositions of nitrogen-containing organic molecules formed during UV-irradiation of simulated interstellar ice. Geochemical Journal, 2019, 53, 5-20.	0.5	6
99	On the Production of Polyols and Hydroxycarboxylic Acids in Interstellar Analogous Ices of Methanol. Astrophysical Journal, 2020, 889, 134.	1.6	14
100	The Family of Amide Molecules toward NGC 6334I. Astrophysical Journal, 2020, 901, 37.	1.6	34
101	A Mechanistic Study on the Formation of Acetic Acid (CH ₃ COOH) in Polar Interstellar Analog Ices Exploiting Photoionization Reflectron Time-of-flight Mass Spectrometry. Astrophysical Journal, 2020, 901, 84.	1.6	12
102	Astrobiology: An Overview. , 2019, , 1-17.		0
103	Upper Limits for Emissions in the Coma of Comet 67P/Churyumov–Gerasimenko near Perihelion as Measured by Rosetta's Alice Far-UV Spectrograph. Astronomical Journal, 2019, 158, 252.	1.9	1
104	Propanal, an interstellar aldehyde – first infrared band strengths and other properties of the amorphous and crystalline forms. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4606-4615.	1.6	13
105	Gas Emissions Near the Nucleus. Astronomy and Astrophysics Library, 2020, , 179-280.	0.2	0
106	Is There Any Linkage between Interstellar Aldehyde and Alcohol?. Astrophysical Journal, 2021, 922, 194.	1.6	8
107	Volatile Abundances, Extended Coma Sources, and Nucleus Ice Associations in Comet C/2014 Q2 (Lovejoy). Planetary Science Journal, 2022, 3, 6.	1.5	4
108	Refractory elements in the gas phase for comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2022, 658, A87.	2.1	1
109	The Prebiotic Molecular Inventory of Serpens SMM1: II. The Building Blocks of Peptide Chains. ACS Earth and Space Chemistry, 2022, 6, 455-467.	1.2	11
110	Microwave- and millimeter-wave spectra of five conformers of cysteamine and their interstellar search. Astronomy and Astrophysics, 0, , .	2.1	1

#	Article	IF	CITATIONS
111	Lyalpha irradiation of solid-state formamide. Astronomy and Astrophysics, 0, , .	2.1	1
112	Comets, sliding of surface dust II. Icarus, 2022, 379, 114946.	1.1	7
113	Square Kilometre Array. , 2022, , 1-3.		0
114	ESA's Cometary Mission Rosetta—Re haracterization of the COSAC Mass Spectrometry Results. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
115	Computer simulation investigation of the adsorption of acetamide on low density amorphous ice. An astrochemical perspective . Journal of Chemical Physics, 2022, 156, 184703.	1.2	3
116	ESAs Kometenâ€Mission Rosetta – Neuâ€Analyse der Daten des COSAC Massenspektrometers. Angewandte Chemie, 2022, 134, .	1.6	2
117	Identification and characterization of a new ensemble of cometary organic molecules. Nature Communications, 2022, 13, .	5.8	15
118	Formation of the Simplest Amide in Molecular Clouds: Formamide (NH ₂ CHO) and Its Derivatives in H ₂ O-rich and CO-rich Interstellar Ice Analogs upon VUV Irradiation. Astrophysical Journal, 2022, 933, 107.	1.6	9
119	The emergence of interstellar molecular complexity explained by interacting networks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
120	Hydrogenâ€atom tunneling reactions in solid <i>para</i> â€hydrogen and their applications to astrochemistry. Journal of the Chinese Chemical Society, 2022, 69, 1159-1173.	0.8	7
121	Microfluidic Chromatography for Enhanced Amino Acid Detection at Ocean Worlds. Astrobiology, 2022, 22, 1116-1128.	1.5	3
122	Analysis of Charona€™s spectrum at 2.21- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si59.svg" display="inline" id="d1e2257"> <mml:mrow> <mml:mi mathvariant="normal">I¼ <mml:mi mathvariant="normal"> m </mml:mi </mml:mi </mml:mrow> </mml:math> from New Horizons/LEISA and	1.1	5
123	Earth-based observations, Icarus, 2020, 309, 115242. The Molecular Composition of Shadowed Proto-solar Disk Midplanes Beyond the Water Snowline. Astrophysical Journal, 2022, 936, 188.	1.6	5
124	Ion irradiation triggers the formation of the precursors of complex organics in space. The case of formaldehyde and acetaldehyde. Astronomy and Astrophysics, 0, , .	2.1	0
125	Rosetta Spacecraft. , 2022, , 1-7.		0
126	C/2020 F3 (NEOWISE) production rates from high-resolution TNG/HARPS-N spectra. Planetary and Space Science, 2023, 230, 105664.	0.9	Ο
127	Prebiotic Synthesis and Isomerization in Interstellar Analog Ice: Glycinal, Acetamide, and Their Enol Tautomers. Angewandte Chemie, 2023, 135, .	1.6	1
128	Prebiotic Synthesis and Isomerization in Interstellar Analog Ice: Clycinal, Acetamide, and Their Enol Tautomers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3

#	Article	IF	CITATIONS
129	Multi-instrument analysis of 67P/Churyumov-Gerasimenko coma particles: COPS-GIADA data fusion. Astronomy and Astrophysics, 2023, 671, A168.	2.1	1
130	Modelling of the processes of dunes formation on the surface of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1570-1577.	1.6	2
131	Insights into the formation and evolution of extraterrestrial amino acids from the asteroid Ryugu. Nature Communications, 2023, 14, .	5.8	9
132	Comparative Study of the Adsorption of 1- and 2-Propanol on Ice by Means of Grand Canonical Monte Carlo Simulations. ACS Earth and Space Chemistry, 2023, 7, 850-862.	1.2	1
133	Development of a Prototype Mass Spectrometer. Uju Gisulgwa Eungyong, 2023, 3, 86-99.	0.1	0
140	Rosetta Spacecraft. , 2023, , 2689-2695.		Ο
141	Square Kilometre Array. , 2023, , 2838-2840.		0
145	Formation ofÂComplex Molecules inÂtheÂTranslucent Phase via"non-energetic―Processing onÂC\$\$_extbf{2}\$\$H\$\$_extbf{2}\$\$ Ice. Thirty Years of Astronomical Discovery With UKIRT, 2023, , 29-34.	0.3	Ο
152	The Comet Interceptor Mission. Space Science Reviews, 2024, 220, .	3.7	1