Single-Step Enrichment of <i>N</i>-Glycopeptides and Multifunctional Ti⁴⁺-Immobilized Dendrit Nanomaterials

Analytical Chemistry 89, 7520-7526

DOI: 10.1021/acs.analchem.7b01209

Citation Report

#	Article	IF	CITATIONS
2	Development of Gd3+-immobilized glutathione-coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. Talanta, 2018, 180, 368-375.	2.9	33
3	Two-Dimensional MoS ₂ -Based Zwitterionic Hydrophilic Interaction Liquid Chromatography Material for the Specific Enrichment of Glycopeptides. Analytical Chemistry, 2018, 90, 6651-6659.	3.2	76
4	Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography–Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity. Analytical Chemistry, 2018, 90, 11008-11015.	3.2	78
5	Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides. Talanta, 2018, 190, 298-312.	2.9	44
6	Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. Journal of the American Society for Mass Spectrometry, 2019, 30, 2491-2501.	1.2	23
7	Advances in hydrophilic nanomaterials for glycoproteomics. Chemical Communications, 2019, 55, 10359-10375.	2.2	62
8	Asymptotic analysis to Von Kármán swirling-flow problem. Modern Physics Letters B, 2019, 33, 1950298.	1.0	2
9	Novel Ti ⁴⁺ -Chelated Polyoxometalate/Polydopamine Composite Microspheres for Highly Selective Isolation and Enrichment of Phosphoproteins. ACS Applied Materials & Interfaces, 2019, 11, 37471-37478.	4.0	20
10	Facile Fabrication of Biomimetic Chitosan Membrane with Honeycomb-Like Structure for Enrichment of Glycosylated Peptides. Analytical Chemistry, 2019, 91, 2985-2993.	3.2	56
11	Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Mikrochimica Acta, 2019, 186, 159.	2.5	47
12	A sensitive and selective phosphopeptide enrichment strategy by combining polyoxometalates and cysteamine hydrochloride-modified chitosan through layer-by-layer assembly. Analytica Chimica Acta, 2019, 1066, 58-68.	2.6	29
13	Nanomaterials in Proteomics. Advanced Functional Materials, 2019, 29, 1900253.	7.8	64
14	Scalable, Non-denaturing Purification of Phosphoproteins Using Ga3+-IMAC: N2A and M1M2 Titin Components as Study case. Protein Journal, 2019, 38, 181-189.	0.7	12
15	Glutathione-Functionalized Magnetic Covalent Organic Framework Microspheres with Size Exclusion for Endogenous Glycopeptide Recognition in Human Saliva. ACS Applied Materials & Interfaces, 2019, 11, 47218-47226.	4.0	54
16	Simultaneous analysis of phosphopeptides and intact glycopeptides from secretome with mode switchable solid phase extraction. Analytical Methods, 2019, 11, 5243-5249.	1.3	8
17	GO-META-TiO2 composite monolithic columns for in-tube solid-phase microextraction of phosphopeptides. Talanta, 2019, 192, 360-367.	2.9	26
18	Facile Fabrication of Magnetic Metal–Organic Framework Nanofibers for Specific Capture of Phosphorylated Peptides. ACS Sustainable Chemistry and Engineering, 2019, 7, 2245-2254.	3.2	33
19	Smart Hydrophilic Modification of Magnetic Mesoporous Silica with Zwitterionic <scp>I</scp> -Cysteine for Endogenous Glycopeptides Recognition. ACS Sustainable Chemistry and Engineering, 2019, 7, 2844-2851.	3.2	45

#	ARTICLE	IF	CITATIONS
20 21	Novel Nanomaterials for Protein Analysis. , 2019, , 37-88. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti4+: A dual-purpose affinity material for highly efficient enrichment of	2.9	2
22	glycopeptides/phosphopeptides. Talanta, 2019, 197, 77-85. Developing Workflow for Simultaneous Analyses of Phosphopeptides and Glycopeptides. ACS Chemical Biology, 2019, 14, 58-66.	1.6	31
23	Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. TrAC - Trends in Analytical Chemistry, 2020, 124, 115570.	5.8	103
24	A one-pot synthesis of hydrophilic poly(glycerol methacrylate) chitosan for highly selective enrichment of glycopeptides. Chemical Communications, 2020, 56, 908-911.	2.2	9
25	Amino Acid-Functionalized Two-Dimensional Hollow Cobalt Sulfide Nanoleaves for the Highly Selective Enrichment of N-Linked Glycopeptides. Analytical Chemistry, 2020, 92, 2151-2158.	3.2	37
26	Affinity chromatography: A review of trends and developments over the past 50Âyears. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1157, 122332.	1.2	93
27	<p>Phosphoproteomics Reveals Key Regulatory Kinases and Modulated Pathways Associated with Ovarian Cancer Tumors</p> . OncoTargets and Therapy, 2020, Volume 13, 3595-3605.	1.0	4
28	Coupling hydrophilic interaction chromatography materials with immobilized Fe ³⁺ for phosphopeptide and glycopeptide enrichment and separation. RSC Advances, 2020, 10, 22176-22182.	1.7	8
29	High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond–based Bifunctional Smart Polymer. Analytical Chemistry, 2020, 92, 6269-6277.	3.2	42
30	Facile synthesis of hydrophilic magnetic graphene nanocomposites via dopamine self-polymerization and Michael addition for selective enrichment of N-linked glycopeptides. Scientific Reports, 2020, 10, 71.	1.6	18
31	Bifunctional Magnetic Supramolecular-Organic Framework: A Nanoprobe for Simultaneous Enrichment of Glycosylated and Phosphorylated Peptides. Analytical Chemistry, 2020, 92, 2680-2689.	3.2	76
32	Phosphopeptide enrichment for phosphoproteomic analysis - A tutorial and review of novel materials. Analytica Chimica Acta, 2020, 1129, 158-180.	2.6	41
33	Facile preparation of bifunctional adsorbents for efficiently enriching N-glycopeptides and phosphopeptides. Analytica Chimica Acta, 2021, 1144, 111-120.	2.6	29
34	A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry–Based Glycoproteomics. Molecular and Cellular Proteomics, 2021, 20, 100029.	2.5	121
35	Relative Quantification of Phosphorylated and Glycosylated Peptides from the Same Sample Using Isobaric Chemical Labelling with a Two-Step Enrichment Strategy. Methods in Molecular Biology, 2021, 2228, 185-203.	0.4	5
36	Simultaneous Application of Nanomaterials to Separation of Phosphorylated and Glycosylated Proteins. Nanostructure Science and Technology, 2021, , 297-323.	0.1	0
37	Hollow MnFe ₂ O ₄ @C@APBA Nanospheres with Size Exclusion and pH Response for Efficient Enrichment of Endogenous Glycopeptides. ACS Applied Materials & Interfaces, 2021, 13, 9714-9728.	4.0	14

CITATION REPORT

#	Article	IF	CITATIONS
38	Advanced nanomaterials as sample technique for bio-analysis. TrAC - Trends in Analytical Chemistry, 2021, 135, 116168.	5.8	70
39	Facile synthesis of titanium(IV) ion–immobilized arsenate-modified poly(glycidyl methacrylate) microparticles and the application to the specific enrichment of phosphoproteins. Analytical and Bioanalytical Chemistry, 2021, 413, 2893-2901.	1.9	4
40	Hydrophilic carrageenan functionalized magnetic carbonâ€based framework linked by silane coupling agent for the enrichment of <i>N</i> â€glycopeptides from human saliva. Journal of Separation Science, 2021, 44, 2143-2152.	1.3	4
41	Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers, 2021, 13, 1930.	1.7	24
42	Post-synthesis of biomimetic chitosan with honeycomb-like structure for sensitive recognition of phosphorylated peptides. Journal of Chromatography A, 2021, 1643, 462072.	1.8	10
43	Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides. Analytica Chimica Acta, 2021, 1158, 338412.	2.6	32
44	Controllable preparation and performance of bio-based poly(lactic acid-iminodiacetic acid) as sustained-release Pb2+ chelating agent. IScience, 2021, 24, 102518.	1.9	7
45	Dual-Functional Ti(IV)-IMAC Material Enables Simultaneous Enrichment and Separation of Diverse Glycopeptides and Phosphopeptides. Analytical Chemistry, 2021, 93, 8568-8576.	3.2	32
46	Facile synthesis of bifunctional polymer monolithic column for tunable and specific capture of glycoproteins and phosphoproteins. Journal of Chromatography A, 2021, 1651, 462329.	1.8	7
47	TiO2 Simultaneous Enrichment, On-Line Deglycosylation, and Sequential Analysis of Glyco- and Phosphopeptides. Frontiers in Chemistry, 2021, 9, 703176.	1.8	3
48	Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides. Analytica Chimica Acta, 2021, 1177, 338761.	2.6	18
49	Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. Experientia Supplementum (2012), 2021, 112, 73-135.	0.5	0
51	Analysis of carbohydrates and glycoconjugates by matrixâ€assisted laser desorption/ionization mass spectrometry: An update for 2017–2018. Mass Spectrometry Reviews, 2023, 42, 227-431.	2.8	10
52	Free-standing lamellar 3D architectures assembled from chitosan as a reusable titanium-immobilized affinity membrane for efficiently capturing phosphopeptides. Green Chemistry, 2022, 24, 238-250.	4.6	13
53	Synergistic synthesis of hydrophilic hollow zirconium organic frameworks for simultaneous recognition and capture of phosphorylated and glycosylated peptides. Analytica Chimica Acta, 2022, 1198, 339552.	2.6	23
54	Tailoring a multifunctional magnetic cationic metal–organic framework composite for synchronous enrichment of phosphopeptides/glycopeptides. Journal of Materials Chemistry B, 2022, 10, 3560-3566.	2.9	15
55	One-step preparation of magnetic zwitterionic–hydrophilic dual functional nanospheres for in-depth glycopeptides analysis in Alzheimer's disease patients' serum. Journal of Chromatography A, 2022, 1669, 462929.	1.8	9
56	Metal organic frameworks as advanced adsorbent materials for separation and analysis of complex samples. Journal of Chromatography A, 2022, 1671, 462971.	1.8	11

#	Article	IF	CITATIONS
57	Inherently hydrophilic mesoporous channel coupled with metal oxide for fishing endogenous salivary glycopeptides and phosphopeptides. Chinese Chemical Letters, 2022, 33, 4695-4699.	4.8	24
58	Design and fabrication of highly hydrophilic magnetic material by anchoring l-cysteine onto chitosan for efficient enrichment of glycopeptides. Chinese Chemical Letters, 2023, 34, 107498.	4.8	9
59	Design of two-dimensional molybdenum trioxide-immobilized magnetic graphite nitride nanocomposites with multiple affinity sites for phosphopeptide enrichment. Journal of Chromatography A, 2022, 1678, 463374.	1.8	6
60	Hydrophilic, dual amino acid–functionalized zinc sulfide quantum dot for specific identification of <i>N</i> â€glycopeptides from biological samples. Rapid Communications in Mass Spectrometry, 2022, 36, .	0.7	1
61	Simultaneous enrichment and sequential separation of glycopeptides and phosphopeptides with poly-histidine functionalized microspheres. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
62	Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. TrAC - Trends in Analytical Chemistry, 2023, 158, 116862.	5.8	5
63	(Glycan Binding) Activityâ€Based Protein Profiling in Cells Enabled by Mass Spectrometryâ€Based Proteomics. Israel Journal of Chemistry, 2023, 63, .	1.0	0
64	Construction of dual-hydrophilic metal-organic framework with hierarchical porous structure for efficient glycopeptide enrichment. Talanta, 2023, 259, 124505.	2.9	5

CITATION REPORT